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Abstract. Evolutionary algorithms have been quite effective in deal-
ing with single-objective “optimization” while the area of Evolutionary
Multiobjective Optimization (EMOO) has extended its efficiency to Mul-
tiple Criteria Decision Making (MCDM) as well. The number of technical
publications in EMOO is impressive and indicative of a rather explosive
growth in recent years. It is fair to say however that most of the progress
has been in applying and evolving algorithms and their convergence prop-
erties, not in evolving the optimality concept itself, nor in expanding the
notions of true optimization. Yet, the conceptual constructs based on
evolution and Darwinian selection have probably most to contribute –
at least in theory – to the evolution of optimality. They should be least
dependent on a priori fixation of anything in problem formulation: con-
straints, objectives or alternatives. Modern systems and problems are
typical for their flexibility, not for their fixation. In this paper we draw
attention to the impossibility of optimization when crucial variables are
given and present Eight basic concepts of optimality. In the second part
of this contribution we choose a more realistic problem of linear program-
ming where constraints are not “given” but flexible and to be optimized
and objective functions are multiple: De novo programming.

1 Introduction

Evolutionary algorithms have been quite effective in dealing with single-objective
“optimization” while the area of Evolutionary Multiobjective Optimization
(EMOO) has extended its efficiency to Multiple Criteria Decision Making
(MCDM) [10] as well. The number of technical publications in EMOO is im-
pressive and indicative of a rather explosive growth in recent years [1]. It is fair
to say however that most of the progress has been in applying and evolving algo-
rithms and their convergence properties, not in evolving the optimality concept
itself, nor in expanding the notions of true optimization. Yet, the conceptual
constructs based on evolution and Darwinian selection have probably most to
contribute – at least in theory – to the evolution of optimality. They should be
least dependent on a priori fixation of anything in problem formulation: con-
straints, objectives or alternatives.
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The notion of optimality and the process of optimization are pivotal to the
areas of economics, engineering, as well as management and business. What does it
mean to state that something is ‘optimal’? If optimal means ‘the best’, then asking
‘What is the best?’ remains a legitimate and still mostly unanswered question.

Any maxima or minima could be declared optimal under specific circum-
stances, but optima are not necessarily maxima or minima. The two concepts
are different: maximizing (or minimizing) is not optimizing.

Although dictionaries commonly use optimization as a synonym for max-
imization, we shall develop the concept of optimality in the sense of balance
among multiple criteria or objectives.

When there is only a single dimension or attribute chosen to describe real-
ity, then maximization or minimization with respect to constraints is sufficient.
When there are multiple criteria (measures or yardsticks), as is true in most
situations, then optimality and optimization (in the sense of balancing) need to
be developed.

Optimization applies to an economic problem only: when scarce means (con-
straints) are used to satisfy alternative ends (multiple objectives). If the means
are scarce, but there is only a single end, then the problem of how to use the
means is a technical problem: no value judgments enter into its solution, no bal-
ancing is needed, and no optimization can take place. Only knowledge of physical
and technical relationships is needed.

In other words, if all my constraints are “given” (fixed) and if my objective
function is single, then the solution is fully defined and determined by mathe-
matical problem formulation. The solution just needs to be revealed, explicated
or computed by an algorithm. No optimization is possible: all is given and fully
determined.

The technical problem is not what we wish to address when dealing with
optimality and optimization.

2 The Evolution of Optimality

Balancing of multiple criteria is about optimization, not about “satisficing”.
Simon acknowledged this quite simply by saying: ‘No one in his right mind will
satisfice if he can just as well optimize.’

Surprisingly, multiple criteria or multiple objective functions - the necessary
prerequisites for optimization - were not recognized and acknowledged by the op-
timization sciences until the early 1970s. Optimization in the sense of balancing
multi-dimensionality is not compatible with the traditional concepts of “opti-
mality” characterized by scalar or scalarized schemes, based on unique solutions
under complete information. These are rather limited in capturing the richness
and complexity of human problem solving, decision making and optimization.

We must strive to understand decision making not merely as computation
of the given, already-constructed world, but as a way of constructing our lo-
cal world, ordering of individual and collective experience. It is necessary to
acknowledge multiple concepts of optimality.
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3 Multiple Concepts of Optimality

There are some axiomatic prerequisites that must be at the base of any opti-
mization scheme.

For example, what is determined or given a priori cannot be subject to subse-
quent optimization and thus, clearly, does not need to be optimized: it is given.

What is not given must be selected, chosen or identified and is therefore, by
definition, subject to optimization.

Consequently, different optimality concepts can be derived from different dis-
tinctions between what is given and what is yet to be determined in problem-
solving or decision-making formulations.

For example, if I determine the value of the objective function a priori, set it
at a predetermined value, then I cannot optimize it (nor maximize or minimize).
If I set a value of the constraint a priori, then I cannot optimize that constraint.
Constraints have to become objectives in order to be optimized, see also [2]. Even
if I do not determine the value of the objective a priori, but the constraints are
fixed, I still cannot optimize it – it is strictly implied (given) by the constraints.

Traditionally, by optimal solution or optimization we implicitly understand
maximizing (or minimizing) a single, pre-specified objective function (or crite-
rion) with respect to a given, fixed set of decision alternatives (or situation con-
straints). Both criterion and decision alternatives are given, only the (optimal)
solution itself remains to be calculated.

There are at least eight distinct optimality concepts, all mutually irreducible,
all characterized by different applications, interpretations and mathematical for-
malisms. For details see [13, 14, and 15].

Single-Objective Optimality

This is not really optimization but refers to the conventional maximization (or
‘optimization’) problem. It should be included for the sake of completeness, out
of respect for tradition and as a potential special case of bona fide optimization.

To maximize a single criterion it is fully sufficient to perform technical mea-
surement and algorithmic search processes. Once X and f are formulated or
specified, the ‘optimum’ (that is, maximum) is found by computation, not by de-
cision processes or balancing. Search for optimality is reduced to ‘scalarization’:
assigning each alternative a number (scalar) and then identifying the largest-
numbered alternative.

Numerical example

Consider the following linear-programming problem with two variables and
five constraints:

Max f = 400x + 300y
subj. to 4x ≤ 20
2x + 6y ≤ 24
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12x +4y ≤ 60
3y ≤ 10.5
4x + 4y ≤ 26

The maximal solution to the above problem is x*= 4.25, y*= 2.25, and f* =
2375. Observe that all is given here and considering market prices of resources
is unnecessary. However, if p1= 30, p2= 40, p3= 9.5, p4= 20 and p5 = 10 were
respective market prices ($/unit) of the five respective resources, the total cost
of current resource portfolio (20, 24, 60, 10.5, 26) would be B= $2600.

Multi-objective Optimality

More generally, optimality, to be distinct from maximizing, should involve bal-
ancing and harmonizing multiple criteria. In the real world, people continually
resolve conflicts among multiple criteria which are competing for their attention
and assignments of importance. This corresponds to the vector optimization
problem. This maximization of individual functions should be non-scalarized,
separate and independent, that is, not subject to superfunctional aggregation
which would effectively reduce multi-objective optimality to single-objective
maximization: there would be no reason to consider multiple criteria other than
for constructing the superfunction. Multiple criteria, if they are to be meaningful
and functional, should be optimized (or balanced) in the non-scalarized vector
sense, in mutual competition with each other.

Numerical example

Max f1 = 400x + 300y
and f2 = 300x + 400y
subj. to 4x ≤ 20
2x + 6y ≤ 24
12x +4y ≤ 60
3y ≤ 10.5
4x + 4y ≤ 26

The maximal solution with respect to f1 is x* = 4.25 and y* = 2.25, f1 (4.25,
2.25) = 2375. The maximal solution with respect to f2 is x* =3.75 and y*=2.75,
f2 (3.75, 2.75) = 2225. The set of optimal (non-dominated) solutions X* includes
the two maximal solutions (extreme points) and their connecting (feasible) line
defined by 4x + 4y = 26. For example, 0.5(4.25, 2.25) + 0.5(3.75, 2.75) = (4.0,
2.5) is another non-dominated point in the middle of the line. Total cost of re-
source portfolio remains B =$2600.

Optimal System Design: Single Criterion

Instead of optimizing a given system with respect to selected criteria, humans
often seek to form or construct an optimal system of decision alternatives (opti-
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mal feasible set), designed with respect to such criteria. Single-criterion design
is the simplest of such concepts: it is analogous to single-criterion ‘optimization’,
producing the best (optimal) set of alternatives X at which a given, single ob-
jective function f is maximized subject to the cost of design (affordability).

Numerical example

Max f = 400x + 300y
subj. to 4x ≤ 29.4
2x+ 6y ≤ 14.7
12x + 4y ≤ 88.0
3y ≤ 0
4x + 4y ≤ 29.4

where the right-hand sides (resource portfolio) have been optimally designed.
Solving the above optimally designed system will yield x* = 7.3446, y*= 0 and
f(x*) = 2937.84. If market prices of the five resources (p1= 30, p2= 40, p3=
9.5, p4= 20 and p5 = 10) remain unchanged, then the total cost of the resource
portfolio (29.4, 14.7, 88, 0, 29.4) is again B = $2600.

Optimal System Design: Multiple Criteria

As before, multiple criteria cannot be scalarized into a superfunction. Rather,
all criteria compete independently or there would be no need for their separate
treatment.

Numerical example

Max f1 = 400x + 300y
and f2 = 300x + 400y
subj. to 4x ≤ 16.12
2x + 6y ≤ 23.3
12x +4y ≤ 58.52
3y ≤ 7.62
4x + 4y ≤ 26.28

The above represents an optimally designed portfolio of resources: maximal
solution with respect to both f1 and f2 is x* = 4.03 and y* =2.54, f1(4.03, 2.54)
= 2375 and f2(4.03, 2.54) = 2225. This can be compared (for reference only)
with the f1 and f2 performances in the earlier case of given right-hand sides.
Assuming the same prices of resources, the total cost of this resource portfolio
is B = $2386.74 ≤ $2600. One could therefore design even better performing
portfolios by spending the entire budget of 2600 (or the additional $213.26).

Optimal Valuation: Single Criterion

All previously considered optimization forms assume that decision criteria are
given a priori. However, in human decision making, different criteria are con-
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tinually being tried and applied, some are discarded, new ones added, until an
optimal (properly balanced) mix of both quantitative and qualitative criteria is
identified. There is nothing more suboptimal than engaging perfectly good set
of alternatives X towards unworthy, ineffective or arbitrarily determined criteria
(goals or objectives).

If the set of alternatives X is given and fixed a priori, we face a problem
of optimal valuation: According to what measures should the alternatives be
evaluated or ordered? According to criterion f1, f2 or f3? Which of the criteria
captures best our values and purposes? What specific criterion engages the avail-
able means (X) in the most effective way?

Numerical example

In order to evaluate X, should we maximize f1 or f2? How do we select a
criterion if only one is allowed (possible) or feasible?

Max f1 =400x + 300y
or f2 =300x + 400y
subj. to 4x ≤ 20
2x + 6y ≤ 24
12x +4y ≤ 60
3y ≤ 10.5
4x + 4y ≤ 26
The maximal solution with respect to f1 is x*= 4.25, y*= 2.25, f1 (4.25, 225)

=2375.
Maximal solution with respect to f2 is x* =3.75, y* =2.75, f2 (3.75, 2.75) =

2225. Is 2375 of f1 better than 2225 of f2 ? Only one of these valuation schemes
can be selected.

Optimal Valuation: Multiple Criteria

If the set of alternatives X is given and fixed a priori, but a set of multiple criteria
is still to be selected for the evaluation and ordering of X, we have a problem of
multiple-criteria valuation:

Which set of criteria best captures our value complex? Is it (f1 and f2)? Or
(f2 and f3)? Or perhaps (f1 and f2 and f3)? Or some other combination?

Numerical example

How do we select a set of criteria f1 or f2 or (f1 and f2) that would best express
a given value complex?

Max f1 = 400x+ 300y
or/and Max f2= 300x + 400y
subj. to 4x ≤ 20
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2x + 6y ≤ 24
12x +4y ≤ 60
3y ≤ 10.5
4x + 4y ≤ 26

The maximal solution with respect to f1 is x*= 4.25, y*= 2.25, f1 (4.25, 2.25)
= 2375. Maximal solution with respect to f2 is x*=3.75, y*= 2.75, f2 (3.75, 2.75)
= 2225. Should we use f1or f2 or should we use both f1 and f2 to achieve the
best valuation of X? Only one of possible (single and multiple criteria) valuation
schemes is to be selected.

Optimal Pattern Matching: Single Criterion

All previously considered optimization concepts assume that relevant decision
criteria are given and determined a priori. Yet, that is not how human decision-
making processes are carried out: different criteria are being tried and applied,
some are discarded, new ones added, until a proper balanced mix (or portfolio)
of both quantitative and qualitative criteria is derived.

Like any other decision-problem factors, criteria should be determined and
designed in an optimal fashion. There is nothing more wasteful than engaging
perfectly good means and processes towards unworthy, ineffective or only arbi-
trarily determined criteria.

There is a problem formulation representing an ‘optimal pattern’ of inter-
action between alternatives and criteria. It is this optimal, ideal or balanced
problem formulation or pattern that is to be approximated or matched by deci-
sion makers. Single-objective matching of such cognitive equilibrium [18] is once
more the simplest special case.

Numerical example

Should we maximize f1 or f2? How do we select a single criterion if only one
is allowed, possible or feasible?

Max f1 = 400x+ 300y
or Max f2 = 300x + 400y
subj. to 4x ≤ 29.4 or 0
2x+ 6y ≤ 14.7 41.27
12x + 4y ≤ 88 27.52
3y ≤ 0 20.63
4x + 4y ≤ 29.4 27.52

The above presents two optimally designed portfolios of resources with re-
spect to f1 and f2 respectively. Among the possible patterns are (x* = 7.3446,
y*= 0, f1 (x*) = 2937.84, B= $2600) and (x*= 0, y *= 6.8783, f2 (y*) = 2751.32,
B = $2600).
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Suppose that the value complex requires that the chosen criterion should
minimize the opportunity cost of the unchosen criteria, other things being equal.
Choosing f1 would make f2 drop only to 80.08 per cent of the opportunity per-
formance, whereas choosing f2 would make f1 drop to 70.24 per cent. So, f1 has
preferable opportunity impact, and the first pattern and its resource portfolio
would be selected.

A value complex indicating that deployed resource quantities should be as
small as possible would require choosing f2 and thus the second pattern.

Optimal Pattern Matching: Multiple Criteria

Pattern matching with multiple criteria is more involved and the most complex
optimality concept examined so far. In all/matching’ optimality concepts there
is a need to evaluate the closeness (resemblance or match) of a proposed problem
formulation (single or multi-criterion) to the optimal problem formulation.

Numerical example

How do we select a set of criteria f1, f2 or (f1, f2) that would best express our
current value complex?

Max f1 = 400x+ 300y
or/and Max f2 = 300x + 400y
subj. to 4x ≤ 29.4 or 0 or 19.98
2x+ 6y ≤ 14.7 41.27 28.78
12x + 4y ≤ 88 27.52 72.48
3y ≤ 0 20.63 9.39
4x + 4y ≤ 29.4 27.52 32.50

The above describes three optimally designed portfolios of resources with
respect f1, f2 and (f1, f2) respectively. So, among the possible patterns are (x*
=7.3446, y*=0, f1(x*) = 2937.84, B=$2600), (x* = 0, y*= 6.8783, f2(x*) =
2751.32, B = $2600) and (x* = 4.996, y* = 3.131, f1(x*) = 2937.84, f2(x*) =
2751.32, B = $2951.96).

If the value complex requires that B =2600 is not to be exceeded, we may
‘match’ the third optimal pattern to that level by scaling it down by the optimum-
path ratio r =2600/2951.% = 0.88. The new pattern is (x* = 4.396, y* = 2.755,
f1(x*) = 2585.30, f2(x*) = 2421.16, B = $2600). If producing both products is
of value, then the choice could be maximization of both f1 and f2.

4 Summary of Eight Concepts

In Figure 1 we summarize the eight major optimality concepts according to a dual
classification: single versus multiple criteria versus the extent of the ‘given’, rang-
ing from ‘all-but’ to ‘none except’. The traditional concept of optimality, charac-
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Number
of Criteria

Criteria &
Alternatives

Traditional
"Optimality"

Given
Single Multiple

Criteria
Only

Only
"Value Complex"

Alternatives
Only

Equilibrium
Cognitive

(Matching)

MCDM

Optimal Valuation
(Limited Equilibrium)

Equilibrium
(Matching)

(Limited Equilibrium)
Optimal Valuation

Cognitive

(De Novo Programming) (De Novo Programming)
Optimal Design Optimal Design

Fig. 1. Eight concepts of optimality

terized by too many ‘givens’ and a single criterion, naturally appears to be the
most remote from any sort of optimal conditions or circumstances for problem
solving as represented by cognitive equilibrium (optimum) with multiple criteria.
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The third row of Figure 1 can be solved by De novo programming in lin-
ear cases. In the next section we summarize the basic formalism of De Novo
programming, as it applies to linear systems [11, 12, 16, and 17]. It is only with
multiple objectives that optimal system design becomes fully useful, even though
a single-objective formulation can also lead to performance improvements.

5 Formal Summary of De Novo Programming

Formulate linear programming problem:

Max Z = Cx s. t. Ax - b ≤ 0, pb ≤ B, x ≥ 0, (1)

where C ∈ �qxn and A ∈ �mxn are matrices of dimensions q × n and
m × n, respectively, and b ∈ �m is m-dimensional unknown resource vector,
x ∈ �n is n-dimensional vector of decision variables, p ∈ �m is the vector
of the unit prices of m resources, and B is the given total available budget.

Solving problem (1) means finding the optimal allocation of B so that the
corresponding resource portfolio b maximizes simultaneously the values Z = Cx
of the product mix x.

Obviously, we can transform problem (1) into:

Max Z = Cx s. t. Vx ≤ B, x ≥ 0, (2)

where Z = (z1, ..., zq) ∈ �q and V = (V1, ..., Vn) = pA ∈ �n.

Let zk∗ = max zk, k = 1, ..., q, be the optimal value for kth objective of
Problem (2) subject to Vx ≤ B, x ≥ 0. Let Z∗ = (z1∗, ..., zq∗) be the q-objective
value for the ideal system with respect to B. Then, a metaoptimum problem can
be constructed as follows:

Min Vx s. t. Cx ≥ Z∗, x ≥ 0. (3)

Solving Problem (3) yields x∗, B∗ (= Vx∗) and b∗ (= Ax∗). The value B∗

identifies the minimum budget to achieve Z∗ through x∗ and b∗.
Since B∗ ≥B, the optimum-path ratio for achieving the ideal performance

Z∗ for a given budget level B is defined as:

r∗ = B/B∗ (4)

and establish the optimal system design as (x, b, Z), where x = r∗x∗, b = r∗b∗

and Z = r∗Z∗. The optimum-path ratio r∗ provides an effective and fast tool for
efficient optimal redesign of large-scale linear systems.

Shi [8] observed that two additional types of budget (other than B and B∗)
can be usefully introduced. One is Bk

j , the budget level for producing optimal
xk

j with respect to the kth objective, referring to a single-objective De Novo
programming problem.



The Evolution of Optimality: De Novo Programming 11

The other, B∗∗, refers to the case q ≤ n (the number of objectives smaller
than the number of variables). If x∗∗ is the degenerate optimal solution, then
B∗∗ = Vx∗∗ (See Shi [8]). It can be shown that B∗∗ ≥ B∗ ≥ B ≥ Bk

j , for k =
1, ..., q.

Shi defines six types of optimum-path ratios:

r1 = B∗/B∗∗; r2 = B/B∗∗; r3 = Σ λkBk
j /B∗∗;

r4 = r∗ = B/B∗; r5 = Σ λkBk
j /B∗; r6 = Σ λk Bk

j /B,

leading to six different optimal system designs. Comparative economic interpre-
tations of all optimum-path ratios are still to be fully researched.

The following numerical example is adapted from Zeleny [11]:

Max z1 = 50 x1 + 100 x2 + 17.5 x3
z2 = 92 x1 + 75 x2 + 50 x3
z3 = 25 x1 + 100 x2 + 75 x3

subject to

12 x1 + 17 x2 ≤ b1
3 x1 + 9 x2 + 8 x3 ≤ b2
10 x1 + 13 x2 + 15 x3 ≤ b3 (5)
6 x1 + 16 x3 ≤ b4
12 x2 + 7 x3 ≤ b5
9.5 x1+ 9.5 x2 + 4 x3 ≤ b6

We assume that the objective functions z1, z2, and z3 are equally important.
We are to identify the optimal resource levels of b1 through b6 when the current
unit prices of resources are p1 = 0.75, p2 = 0.60, p3 = 0.35, p4 = 0.50, p5 =
1.15 and p6 = 0.65. The initial budget B = 4658.75.

We calculate Z∗ = (10916.813; 18257.933; 12174.433) with respect to given
B (= 4658.75). The feasibility of Z∗ can be only assured by the metaoptimum
solution x∗ = (131.341, 29.683, 78.976) at the cost of B∗ = 6616.5631.

Because the optimal-path ratio r∗ = 4658.75/6616.5631 = 70.41%, the result-
ing x = (92.48, 20.90, 55.61) and Z = (7686.87; 12855.89; 8572.40). It follows
that the optimal portfolio b, with respect to B = 4658.75, can be calculated by
substituting x into the constraints (5). We obtain:

b1 = 1465.06
b2 = 910.42
b3 = 2030.65
b4 = 1444.64 (6)
b5 = 640.07
b6 = 1299.55
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If we spend precisely B = 4658.8825 (approx. 4658.75) the optimum portfolio
of resources to be purchased at current market prices is displayed in (6), allowing
us to produce x and realize Z in criteria performance. The analysis with respect
to the additional Shi ratios would proceed along similar lines.

6 Extended De Novo Formulation

There are many interesting extensions of De Novo programming [3-8]. But the
main extension always concerns the objective function [12]. The multiobjective
form of Max (cx - pb) appears to be the right function to be maximized in
a globally competitive economy. This is compatible with achieving long-term
maximum sustainable yields from deployed resources. Another realistic feature
would be multiple pricing and quantity discounts in both resources and products
markets.

Searching for a better portfolio of resources (redefining the bis of right-hand
sides) is tantamount to the continuous reconfiguration and “reshaping” of sys-
tems boundaries. Such practical considerations lead to a more general program-
ming formulation, starting to approximate the real concerns of free-market pro-
ducers.

For example, the following optimal-design formulation of the production
problem, although still quite incomplete, takes a full advantage of the De novo
programming computational efficiency while delivering the necessary decision
inputs:

Max z = Σj cj(xj)xj - [Σi∈I1 pibi]π1 - ... - [ Σi∈Ir pibi]πr

s.t Σj aijxj- bi ≤ 0 i ∈ I
[ Σi∈I pibi]ß ≤ B,
where I = I1 ∪ ... ∪ Ir, Is ∩ Is+1= 0, 0 < πs < 1, s = 1, ..., r, ß ≥ 1

and

cj1 xj ≤ xj1
cj2 xj1 < xj ≤ xj2
.
cj(xj) = .
.
cjkj xjkj−1 < xj ,
where cjh ≥ ch+1, h = 1, ... , kj .

The formulation above is more practical than the traditional LP- systems, but
perhaps still quite far away from the useful formulation of the real world-class
management systems.
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7 Conclusion

The challenge for EMOO is obvious: how to evolve its conceptual and technical
capabilities to transform itself into a truly evolutionary vehicle that would en-
compass all practical concepts of optimality, including at least the eight basic
ones, as outlined in this paper.
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