
Parsing Expression Grammars for Structured
Data

Fabio Mascarenhas1, Sérgio Medeiros2, Roberto Ierusalimschy3

1 Department of Computer Science – UFRJ – Rio de Janeiro – Brazil
fabiom@dcc.ufrj.br

2 Department of Computer Science – UFS – Aracaju – Brazil
sergio@ufs.br

3 Department of Computer Science – PUC-Rio – Rio de Janeiro – Brazil
roberto@inf.puc-rio.br

Abstract. Parsing Expression Grammars (PEGs) are a formalism for
language recognition that renewed academic interest in top-down parsing
approaches. LPEG is an implementation of the PEG formalism which
compiles PEGs to instructions of a virtual parsing machine, preserving
PEG semantics. The LPEG parsing machine has a formal model, and the
transformation of PEGs to this model has been proven correct. In this
paper, we extend both the PEG formalism and LPEG’s parsing machine
so they can match structured data instead of just strings of symbols.
Our extensions are conservative, and we prove the correctness of the
translation from extended PEGs to programs of the extended parsing
machine. We also present benchmarks that show that the performance
of the extended parsing machine for structured data is competitive with
the performance of equivalent hand-written parsers.

Keywords: parsing expression grammars, parsing machine, pattern match-
ing, natural semantics, tree grammars

1 Introduction

Parsing Expression Grammars (PEGs) [1] are an alternative formalism for de-
scribing a language’s syntax. Unlike Context-Free Grammars, PEGs are unam-
biguous by construction, and their standard semantics is based on recognizing
strings instead of generating them. A PEG can be considered both the specifica-
tion of a language and the specification of a top-down parser for that language.
The core of the PEG formalism is a form of limited backtracking via ordered
choice: the parser, when faced with several alternatives, will try them in a de-
terministic order (left to right), discarding remaining alternatives after one of
them succeeds. PEGs also introduce a more expressive syntax for grammatical
productions, based on the syntax of regexes, and syntactic predicates, a form
of unrestricted lookahead where the parser checks whether a parsing expression
matches the rest of the input without consuming it.

LPEG [2] is a pattern-matching tool for the Lua language [3, 4]. LPEG uses
PEGs to describe patterns instead of the more popular Perl-like “regular expres-
sions” (regexes). The implementation of LPEG uses a virtual parsing machine,
where each pattern translates to a program for this machine. LPEG builds these
programs at runtime, dynamically composing smaller programs into bigger pro-
grams. The parsing machine uses a stack to manage the information necessary
to implement PEG’s limited backtracking. A formal model of the parsing ma-
chine is available, along with a correctness proof of the translation from PEGs
to programs of the machine [5].

Both the original PEG formalism and LPEG’s parsing machine assume that
the subject a PEG recognizes is a string of characters. In this paper, we extend
the PEG formalism and the model of LPEG’s parsing machine so they can also
parse structured data in the form of Lisp-style lists (a possibly empty list where
each element can be an atom or another list). Our extensions are conservative, so
the behavior of PEGs when parsing strings is unaffected, and we give correctness
proofs for the translation from our extensions to PEGs to their counterparts in
the parsing machine.

Extending PEGs to parse structured data makes PEGs more useful for lan-
guage prototyping [6]. A PEG-based scannerless parser can construct an abstract
syntax tree, and PEG-based tree walkers and transformers can implement anal-
ysis and optimization passes on this tree. A PEG-based tree walker can also do
naive code generation to intermediate languages or machine code. Several ap-
plications also need to handle structured data in the form of DOM (document
object model) trees obtained from XML or HTML data, and PEGs can be used
to extract information from these trees with ad-hoc parsers.

We implemented our extensions as modifications to LPEG, and used this
implementation to compare the performance of LPEG with our list extensions
against another PEG-based parser and against hand-written tree matchers.

The rest of this paper is organized as follows: Section 2 explains the intuition
behind list parsing using PEGs, gives an example, and extends the PEG formal-
ism with list patterns; Section 3 extends the formal model of LPEG’s parsing
machine, and gives a translation from the extended PEG formalism to instruc-
tions of the extended parsing machine; Section 4 describes an optimization for
list patterns in LPEG’s parsing machine; Section 5 benchmarks our implemen-
tation of list parsing on LPEG; Section 6 reviews some related work; finally,
Section 7 summarizes our results.

2 Extending PEGs for Lists

A Lisp-style list is a recursive data structure inductively defined by the binary
operator : (cons). The empty list is ε, a:l is a list if a is an atom (any object that
is not a list, such as a character, a string, a number etc.) and l is a list, and l1:l2
is a list if both l1 and l2 are lists. The first argument of : is the head of the list
and the second argument is the tail. We will use {e1e2 . . . en} as another way to
write e1:e2:. . .:en:ε, where each ei can be an atom or a list. It is straightforward

to represent any tree as a list. We will also use l1l2 to denote the concatenation
of lists l1 and l2, which is the list of all elements of l1 followed by all elements
of l2.

Parsing expressions are also defined inductively as the empty expression ε, the
any expression ., a terminal symbol a, a non-terminal symbol A, a concatenation
p1p2 of two parsing expressions p1 and p2, an ordered choice p1/p2 between two
parsing expressions p1 and p2, a repetition p∗ of a parsing expression p, or a
not-predicate !p of a parsing expression p. A PEG is then a tuple (V, T, P, pS),
where V and T are sets of non-terminals and terminals, respectively, P is a
function from non-terminals to parsing expressions, and pS is the initial parsing
expression of the PEG.

Intuitively, ε just succeeds and leaves the subject unaffected; the expression
. matches and consumes any terminal and fails when we have reached the end of
the subject; a matches and consumes itself and fails otherwise; A tries to match
the expression P (A); p1p2 tries to match p1, if it succeeds then tries to match p2

on part of the subject that p1 did not consume; p1/p2 tries to match p1, and if it
fails tries to match p2; p∗ repeatedly tries to match p until it fails, consuming as
much of the subject as it can; finally, !p tries to match p and fails if p succeeds
and succeeds if p fails, in any case leaving the subject unaffected. It is easy to
see that the result of a match is either failure or a suffix of the subject (not a
proper suffix, as the expression may succeed without consuming anything).

Our extension consists of using the set of terminals T as the set of atoms, and
having the subject of the match be a list instead of a string of terminals. The
result of the match still is a suffix of the subject (which is also a list) or fail,
a match failure. We also add a new pattern, {p}, which tries to match the head
of the subject, which must be a list, against the pattern p. If p consumes the
whole list then the result of matching {p} is the tail of the subject. If p does not
consume the whole list, or the head of the subject is an atom, then the result of
matching {p} is fail. The abstract syntax of our extended parsing expressions
is given below:

p = ε
∣∣ . ∣∣ a ∣∣ A ∣∣ p1 p2

∣∣ p1/p2

∣∣ p∗ ∣∣ !p
∣∣ {p}

As an example, assume that we want to validate a tree representation of a
XML document according to the following DTD (Document Type Definition),
which specifies that the document is a <recipe> tag with a body composed
of a <title> tag followed by zero or more <ingredient> tags followed by a
<preparation> tag and optionally by a <comment> tag:

<!DOCTYPE recipe [

<!ELEMENT recipe (title,ingredient*,preparation,comment?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient*,preparation)?>

<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED>

<!ELEMENT preparation (step*)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

]>

A #PCDATA body means that the body is just plain text (which will be an
atom in the tree representation), and !ATTLIST lists the attributes of a tag,
where #REQUIRED means a required attribute and #IMPLIED an optional one. In
the tree representation, each tag is a list of the tag name (without brackets), a
list of attributes, if the tag has attributes, ordered by name, where each attribute
is a list of the attribute name and the attribute data (an atom), followed by the
body, which is either an atom or a list of tags. For example, take the XML
document below:

<recipe>

<title>Caffe Latte</title>

<ingredient name = "milk" amount = "2 cups" />

<ingredient name = "espresso" />

<preparation>

<step>Heat milk in a saucepan.</step>

<step>Whisk briskly to create foam.</step>

<step>Brew espresso.</step>

<step>Pour in milk.</step>

</preparation>

</recipe>

This XML document has the following tree representation:

{“recipe”

{{“title” “Caffe Latte”}
{“ingredient”{{“amount” “2cups”}{“name” “milk”}}}
{“ingredient”{{“name” “espresso”}}}
{“preparation”

{{“step” “Heat milk in a saucepan.”}
{“step” “Whisk briskly to create foam.”}
{“step” “Brew espresso.”}
{“step” “Pour in milk.”}}}}

We can validate the tree representation against the DTD with the following
extended PEG:

recipe→ {“recipe” {title ingredient∗ preparation (comment/ε)}} !.

title→ {“title” atom}
ingredient→ {“ingredient” {({“amount” atom}/ε) {“name” atom}}

({ingredient∗ preparation}/ε)}
preparation→ {“preparation” {step∗}}

step→ {“step” atom}
comment→ {“comment” atom}

atom→ !{.∗} .

In the PEG above, quoted strings represent atom patterns, and we use paren-
thesis to avoid having to worry about precedence of concatenation over ordered
choice. It is easy to check that the PEG matches any document that is valid
according to the DTD, and fails on any document that is not, assuming it is in
the tree representation we described above.

Figure 1 formalizes our extensions with natural semantics for
PEG
; , the match-

ing relation for PEGs with list expressions. The semantics is presented as a set

of inference rules, and G[p]xy
PEG
; y if and only if there is a finite proof tree for

it. The notation G[p′S] denotes a new grammar (V, T, P, p′S) that is equal to G
except for the initial parsing expression pS , which is replaced by p′S .

Rules list.1, list.2, and list.3 formalize the notion that a list pattern {p}
only succeeds if the head of the subject is also a list and if p exactly matches
this other list. Thus the pattern {ab} matches the list {ab} but not the atom a,
the list {ac}, or the list {abc}.

It is straightforward to see that our extension is conservative. Let us define
maps→l as a mapping from strings to lists, where the set of atoms is the alphabet
of the strings, with the following inductive definition:

maps→l(ε) = ε

maps→l(as) = a :maps→l(s)

We then have the following lemma, where ; is the standard matching se-
mantics for PEGs. It proves that our extended semantics is identical to the
standard semantics when the subject is either the empty list or a list where all
the elements are atoms.

Lemma 1. Given a PEG G and a parsing expression p without list expressions,

G[p] s1s2 ; s2 if and only if G[p]maps→l(s1s2)
PEG
; maps→l(s2) and G[p] s ;

fail if and only if G[p]maps→l(s)
PEG
; fail.

Proof. By induction on the height of the respective proof trees.

3 A Parsing Machine for Lists

The core of LPEG, an implementation of PEGs for the Lua language [2], is a
virtual parsing machine. LPEG compiles each parsing expression to a program
of the parsing machine, and the program for a compound expression is a combi-
nation of the programs for its subexpressions. The parsing machine has a formal
model of its operation, and proofs that compiling a PEG yields a program that
is equivalent to the original PEG [5].

Empty
G[ε] l

PEG
; l

(empty.1) Any
G[.] x : l

PEG
; l

(any.1)
G[.] ε

PEG
; fail

(any.2)

Variable
G[P (A)] l

PEG
; X

G[A] l
PEG
; X

(var.1)

Terminal
G[a] a : l

PEG
; l

(term.1)
G[a] b : l

PEG
; fail

, b 6= a (term.2)

G[a] ε
PEG
; fail

(term.3)
G[a] l1 : l2

PEG
; fail

(term.4)

Concatenation
G[p1] l1l2

PEG
; l2 G[p2] l2

PEG
; X

G[p1 p2] l1l2
PEG
; X

(con.1)
G[p1] l

PEG
; fail

G[p1 p2] l
PEG
; fail

(con.2)

Ordered Choice
G[p1] l1l2

PEG
; l2

G[p1 / p2] l1l2
PEG
; l2

(ord.1)
G[p1] l

PEG
; fail G[p2] l

PEG
; X

G[p1 / p2] l
PEG
; X

(ord.2)

Not Predicate
G[p] l

PEG
; fail

G[!p] l
PEG
; l

(not.1)
G[p] l1l2

PEG
; l2

G[!p] l1l2
PEG
; fail

(not.2)

Repetition
G[p] l

PEG
; fail

G[p∗] l
PEG
; l

(rep.1)
G[p] l1l2l3

PEG
; l2l3 G[p∗] l2l3

PEG
; l3

G[p∗] l1l2l3
PEG
; l3

(rep.2)

List
G[p] l1

PEG
; ε

G[{p}] l1 : l2
PEG
; l2

(list.1)
G[p] l1

PEG
; X

G[{p}] l1 : l2
PEG
; fail

, X 6= ε (list.2)

G[{p}] a : l
PEG
; fail

(list.3)
G[{p}] ε

PEG
; fail

(list.4)

Fig. 1. Natural Semantics of PEGs Extended with List Patterns

The parsing machine has a register to hold the program counter used to
address the next instruction to execute, a register to hold the subject, and a
stack that the machine uses for pushing call frames and backtrack frames. A call
frame is just a return address for the program counter, and a backtrack frame
is an address for the program counter and a subject. The machine’s instructions
manipulate the program counter, subject, and stack.

The compilation of the following PEG (for a sequence of zero or more as
followed by any character other than a followed by a b) uses all the basic in-
structions of the parsing machine:

A→ !a .B / aA

B → b

This PEG compiles to the following program:

Call A

A: Choice A1

Choice A2

Char a

Commit A3

A3: Fail

A2: Any

Call B

Commit A4

A1: Char a

Jump A

A4: Return

B: Char b

Return

The behavior of each instruction is straightforward: Call pushes a call frame
with the address of the next instruction and jumps to a label, Return pops a
call frame and jumps to its address, Jump is an unconditional jump, Char tries to
match a character with the start of the subject, consuming the first character of
the subject if successful, Any consumes the first character of the subject (failing
if the subject is ε), Choice pushes a backtrack frame with the subject and the
address of the label, Commit discards the backtrack frame in the top of the stack
and jumps, and Fail forces a failure. When the machine enters a failure state
it pops call frames from the stack until reaching a backtrack frame, then pops
this frame and resumes execution with the subject and address stored in it.

To extend the parsing machine for list subjects and patterns, we replaced the
Char instruction with an equivalent Atom instruction, and extended the stack to
also store list frames; a list frame saves the tail of the current subject in the

stack before matching a list pattern against its head. We also added two new
instructions that correspond to beginning and finishing a list pattern:

Open pushes a list frame on the stack, then sets the head of the subject as the
new subject. Fails if the head of the subject is not a list.

Close pops the top entry from the stack (a list frame) if the subject is the empty
list, setting the subject saved in the frame as the new subject. Fails if the
subject is not the empty list.

A list pattern {p} compiles to an Open instruction followed by the compilation
of p and a Close instruction.

Formally, the program counter register, the subject register, and the stack
form a machine state. We represent it as a tuple N × List× Stack, in the order
above. A machine state can also be a failure state, represented by Fail〈e〉, where
e is the stack. Stacks are lists of (N×List) ∪ List ∪ N , where N×List represents
a backtrack frame, List represents a list frame, and N represents a call frame.

Figure 2 presents the operational semantics of the extended parsing machine
as a relation between machine states. The program P that the machine executes

is implicit. The relation
Instruction−−−−−−−→ relates two states when pc in the first state

addresses a instruction matching the label, and the guard (if present) is valid.
The formal model of the LPEG parsing machine [5] represents the compila-

tion process using a transformation function Π, where Π(G, x, p) is the trans-
lation of pattern p in the context of the grammar G, where x is the position
where the program starts relative to the start of the compiled grammar. It also
uses the notation |Π(G, x, p)| to mean the number of instructions in the program
Π(G, x, p). In our extended model, we have

Π(G, x, {p}) ≡ Open

Π(G, x+ 1, p)

Close

as the definition of Π for list patterns and Π(G, x, a) ≡ Atom a as the definition
of Π for atom patterns.

The following lemma is the correctness lemma for our extended model of the
parsing machine.

Lemma 2. Given a grammar G and a parsing expression p, if G[p] l1l2
PEG
; l2

then 〈pc, l1l2, e〉
Π(G,x,p)−−−−−−→ 〈pc + |Π(G, x, p)|, l2, e〉, and if G[p] l

PEG
; fail then

〈pc, l, e〉 Π(G,x,p)−−−−−−→ Fail〈e〉.

Proof. By induction on the derivation trees for G[p] l1l2
PEG
; l2 or G[p] l

PEG
; fail,

as applicable. Most cases are identical to the cases in the correctness proof for
the original definition of Π. We just need to prove cases list.1, list.2, and list.3.

For case list.1, we have 〈pc, l1, e〉
Π(G,x,p)−−−−−−→ 〈pc + |Π(G, x, p)|, ε, e〉 by the

induction hypothesis. So the machine executes the following sequence of transi-
tions for Π(G, x, {p}):

〈pc, l1 : l2, e〉

〈pc, a : l, e〉 Atom a−−−−−−→ 〈pc+ 1, l, e〉

〈pc, b : l, e〉 Atom a−−−−−−→ Fail〈e〉, a 6= b

〈pc, ε, e〉 Atom a−−−−−−→ Fail〈e〉

〈pc, a : l, e〉 Any−−−−−−→ 〈pc+ 1, l, e〉

〈pc, ε, e〉 Any−−−−−−→ Fail〈e〉

〈pc, l, e〉 Choice i−−−−−−→ 〈pc+ 1, l, (pc+ i, l) :e〉

〈pc, l, e〉 Jump i−−−−−−→ 〈pc+ i, l, e〉

〈pc, l, e〉 Call i−−−−−−→ 〈pc+ i, l, (pc+ 1):e〉

〈pc1, l, pc2 :e〉
Return−−−−−−→ 〈pc2, l, e〉

〈pc, l, h :e〉 Commit i−−−−−−→ 〈pc+ i, l, e〉

〈pc, l, e〉 Fail−−−−−−→ Fail〈e〉

Fail〈pc :e〉 −−−−−−→ Fail〈e〉

Fail〈l :e〉 −−−−−−→ Fail〈e〉

Fail〈(pc, l) :e〉 −−−−−−→ 〈pc, l, e〉

〈pc, l1 : l2, e〉
Open−−−−−−→ 〈pc+ 1, l1, l2 :e〉

〈pc, a : l, e〉 Open−−−−−−→ Fail〈e〉, a /∈ List

〈pc, ε, e〉 Open−−−−−−→ Fail〈e〉

〈pc, ε, l :e〉 Close−−−−−−→ 〈pc+ 1, l, e〉

〈pc, l, e〉 Close−−−−−−→ Fail〈e〉, l 6= ε

Fig. 2. Operational semantics of the parsing machine

Open−−−→ 〈pc+ 1, l1, l2 : e〉
Π(G,x+1,p)−−−−−−−→ 〈pc+ |Π(G, x+ 1, p)|+ 1, ε, l2 : e〉

Close−−−−→ 〈pc+ |Π(G, x+ 1, p)|+ 2, l2, e〉

The final state in the sequence above is the same as 〈pc+|Π(G, x, {p})|, l2, e〉,
completing the proof for this case.

Case list.2 has two subcases, one where the p succeeds and another where
p fails. The first subcase is analogous to list.1, except the last transition is to
a failure state Fail〈e〉. The second subcase takes the machine to a failure state
Fail〈l2 :e〉 by the induction hypothesis, and the second transition rule for failure
states then takes the machine to Fail〈e〉.

Case list.3 is a straightforward application of the transition rule for Close,
completing our proof.

We have extended the PEG formalism and the LPEG parsing machine to
parse structured data. In the next section we will further extend the parsing
machine to make the result of compiling list patterns more efficient.

4 Optimizing List Patterns

The natural way of expressing a choice between two list patterns is {p1}/{p2}.
In the extended LPEG parsing machine this compiles to the following sequence
of instructions:

Π(g, x, {p1}/{p2}) ≡ Choice |Π(g, x, p1)|+ 4

Open

Π(g, x+ 2, p1)

Close

Commit |Π(g, x, p2)|+ 3

Open

Π(g, x+ |Π(g, x, p1)|+ 5, p2)

Close

When p1 fails, we are going to try to match p2 against the same subject, but
first the machine will unnecessarily backtrack to the parent of this subject first
and then try again. We can try to optimize this pattern so a failure in p1 will
backtrack to the state just before trying to match p1, and then the machine can
proceed by trying to match p2.

A naive way to do this optimization would be to transform {p1}/{p2} to
{p1/p2}, but this has a different behavior from the original pattern; if p1 matches
just a prefix of the subject and p2 matches the whole subject then the new pattern
will fail where the original would succeed. But it is easy to correct this error,
we just need to add a predicate after p1, transforming the original pattern to
{p1!. / p2}. Now the left side of the choice will fail on a partial match of p1, and
the new pattern has the same behavior as the original.

A simple extension to the parsing machine helps with this optimization: we
can add a new instruction, NotAny, that behaves as the pattern !.. The opera-
tional semantics of NotAny is simple:

〈pc, ε, e〉 NotAny−−−−−→ 〈pc+ 1, ε, e〉

〈pc, l, e〉 NotAny−−−−−→ Fail〈e〉

With the NotAny instruction the optimized version of {p1}/{p2} compiles to
the following program, which avoids the extra work of the original one:

Π(g, x, {p1}/{p2}) ≡ Open

Choice |Π(g, x, p1)|+ 3

Π(g, x+ 2, p1)

NotAny

Commit |Π(g, x, p2)|+ 1

Π(g, x+ |Π(g, x, p1)|+ 4, p2)

Close

Proofs of the correctness of the {p1}/{p2} ≡ {p1!. / p2} identity and the
correctness of compiling !. to NotAny are straightforward inductions on the height
of the derivation trees for these patterns.

5 Performance

We modified version 0.9 of LPEG, an implementation of the parsing machine as
an interpreter written in the C programming language and embedded in the Lua
programming language [2], to operate on structured data encoded as Lua arrays,
modifying the implementation of existing instructions of the virtual machine and
adding new instructions according to Section 3. The modifications are non-trivial
but straightforward, and are easy to port to later versions of LPEG. This section
presents some benchmarks on this implementation.

Our first benchmark evaluates the effectiveness of the optimization presented
in Section 4. The benchmark builds a parsing expression that is an ordered choice
of list patterns, where each list pattern matches a list containing a number of
atoms (randomly generated). We then try to match subjects against the full
expression, where this subject matches the last choice. We varied the number of
atoms in each choice from 1 to 10, and the number of choices in each expression
from 2 to 10 (for just one choice the optimization is obviously a no-op). We then
divided the 100 results obtained without the optimization by the 100 results
obtained with the optimization, yielding the relative speedup in each case (1.00x
means no speedup, 1.84x means that the optimized pattern was almost twice as
fast).

Table 1 shows the results of this benchmark. The increasing speedup as the
number of choices increase shows that the optimization is effective. Also, the
more work the correct choice has to do in relation to the failing choices (as
represented by the number of atoms) the less effective the optimization becomes.

Our second benchmark evaluates the overhead of list matching using our
modified LPEG compared to writing a hand-written tree walker in Lua. The
grammars in our benchmark are simple enough that the hand-written matchers
do not need to backtrack on choices.

Atoms

Choices 1 2 3 4 5 6 7 8 9 10

2 1.19x 1.18x 1.18x 1.17x 1.17x 1.17x 1.17x 1.17x 1.17x 1.16x

3 1.25x 1.24x 1.23x 1.23x 1.23x 1.22x 1.22x 1.21x 1.21x 1.21x

4 1.44x 1.43x 1.41x 1.40x 1.40x 1.40x 1.38x 1.38x 1.37x 1.37x

5 1.49x 1.48x 1.46x 1.46x 1.44x 1.44x 1.43x 1.43x 1.42x 1.42x

6 1.55x 1.53x 1.51x 1.50x 1.48x 1.49x 1.47x 1.46x 1.45x 1.46x

7 1.58x 1.56x 1.54x 1.53x 1.52x 1.51x 1.50x 1.50x 1.51x 1.48x

8 1.76x 1.73x 1.70x 1.70x 1.69x 1.68x 1.67x 1.67x 1.66x 1.65x

9 1.79x 1.77x 1.74x 1.74x 1.74x 1.72x 1.71x 1.70x 1.70x 1.69x

10 1.84x 1.82x 1.80x 1.77x 1.78x 1.77x 1.75x 1.76x 1.75x 1.73x

Table 1. Relative speedup of the choice optimization

The first grammar is a simple evaluator of an abstract syntax tree for simple
arithmetic expressions (addition, subtraction, multiplication and division). It is
the following grammar in LPEG’s RE syntax (extended with list patterns):

exp <- { "add" exp exp } -> add / { "sub" exp exp } -> sub /

{ "mul" exp exp } -> mul / { "div" exp exp } -> div /

{ "num" <.> }

The <.> pattern is a capture of pattern ., and pushes the captured value in
a capture evaluation stack. The "add" exp exp -> add pattern is a function
capture; it pops the values captured by the pattern on the left side of -> and
calls the function on the right side with these values, pushing the result. Quoted
strings are atoms.

The second grammar parses a tree encoding HTML data (in a manner similar
to the example in Section 2 and extracts the values of all src attributes from
img tags and href attributes from a tags. It is the following LPEG grammar:

html <- { tag* }

tag <- {"a" href html} / {"img" src} / {. . html} / .

href <- { {!"href" . .}* {"href" <.>} .* }

src <- { {!"src" . .}* {"src" <.>} .* }

The third grammar is the DTD example of Section 2, used to validate correct
trees. The LPEG grammar is a straightforward translation of the grammar in
the example.

The three grammars are matched against randomly generated data, where the
size of each dataset is set so the running times are in the same order of magnitude.
Figure 3 summarizes the results, with the running times in milliseconds.

The results show that the performance of a PEG matcher is competitive with
the performance of a hand-written tree matcher written in the same language as
the host language for the LPEG implementation. The number of lines of code in
the hand-written matchers range from about the same as the grammar, for the
evaluator, to several times the size of the grammar for the DTD validator.

 evaluate html validate
0

20

40

60

80

100

120

LPEG
Hand-written

ru
nn

in
g

tim
e

in
 m

s

Fig. 3. Comparison of LPEG and hand-written tree matchers

6 Related Work

Sorcerer was a tool that extended EBNF notation with tree patterns, where
each tree pattern must start with a terminal, its root [7]. Sorcerer’s grammars
must be LL(1); it is implied that for tree patterns this means that the roots of
each alternative of a non-terminal must be different, but no formal model for
the extension to EBNF and LL(1) grammars is given. It also has semantic and
syntactic predicates that can be used to disambiguate alternatives that are not
LL(1), but no model for how these additions work is given either. Sorcerer is
now part of the AntLR parser generator [8]. Unlike Sorcerer, our extension
to PEGs has a formal model, and it does not restrict list patterns.

OMeta is an object-oriented language that uses PEGs as a control mech-
anism [9], and is embedded in other languages (with a JavaScript embedding,
OMeta/JS, being the most mature). OMeta also has pattern matching on struc-
tured data, and has a formal model for a fragment of the full language, Core-
OMeta [10], that extends PEGs with both list patterns and semantic actions.

Core-OMeta’s extensions to PEGs are presented as a single unit, while we
focus on just what is necessary for extending PEGs to match structured data.
We also extend a parsing machine with new instructions for matching structured
data, and give a translation from extended PEGs to programs of this machine.

The OMeta implementations use a traditional combinator-based approach
plus memoization for directly executing PEGs. Our extensions could be straight-
forwardly implemented on an implementation of the parsing machine. On the
benchmarks of Figure 3 our implementation is respectively 35, 19, and 36 times

faster than OMeta/JS on version 3.2 of V8, a state-of-the-art JavaScript en-
gine [11].

Several programming languages, such as Haskell and the languages in the ML
family, include built-in pattern matching facilities to help define functions over
structured data [12, 13]. The patterns are limited and do not provide any looping
or repetition operators nor the ability to reference other patterns, including self-
reference. This makes them strictly less powerful than PEGs.

The Scheme language has an implementation of pattern matching on struc-
tured data that, like the pattern matching of Haskell and ML family languages,
is also primarily intended for breaking up structured data in its constituent
parts [14]. These patterns have a repetition that works like PEGs’ repetition
operator, but they still cannot reference other patterns, so they also are strictly
less powerful than PEGs.

There are several languages for matching and validating XML-structured
data that use patterns to describe document schemas, one of them being regular
expression types [15, 16], an extension to algebraic types that includes repetition.
The patterns that describe these types can reference other patterns (including
self-reference), but they are restricted to recognizing regular tree languages, a
restriction PEGs do not have.

Finally, parser combinators are a popular approach for building recursive-
descent parsers in functional programming languages [17]. Parser combinators
combine simple parsers using operators such as deterministic or non-deterministic
choice, sequencing, chaining, etc. Although originally designed for parsing char-
acter streams, parsing combinator libraries can be trivially applied to pars-
ing structured data. But their unrestricted backtracking can have a large time
and space cost, with naive implementations being particularly prone to space
leaks [18].

7 Conclusions

We presented an extension of Parsing Expression Grammars that allows match-
ing of structured data, instead of just character strings, adding a list pattern to
standard PEG syntax. We provided an operational semantics for PEGs with this
new pattern, and proved that our extensions are conservative.

We also extended the LPEG parsing machine with new instructions for com-
piling list patterns, and proved the correctness of the compilation of our PEG
extensions. We also presented an optimization for list patterns and another in-
struction for the parsing machine that enables this optimization.

Our extensions were implemented in LPEG 0.9. We benchmarked the ef-
fectiveness of the list pattern optimization, showing that the optimization is
effective and behaves as expected. We also benchmarked grammars written us-
ing our extensions with hand-written parsers for structured data, and showed
that the performance of LPEG with list patterns is competitive (from about the
same speed to about half as fast) with the performance of hand-written parsers.

LPEG has semantic actions that work efficiently in the presence of PEGs’
backtracking in the form of captures. Our implementation also extends these
semantic actions to work on structured data.

References

1. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, NY, USA, ACM (2004) 111–122

2. Ierusalimschy, R.: A text pattern-matching tool based on Parsing Expression
Grammars. Software - Practice and Experience 39(3) (2009) 221–258

3. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua - an extensible extension
language. Software - Practice and Experience 26(6) (1996) 635–652

4. Ierusalimschy, R.: Programming in Lua, Second Edition. Lua.Org (2006)
5. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: DLS ’08: Pro-

ceedings of the 2008 symposium on Dynamic languages, New York, NY, USA,
ACM (2008) 1–12

6. Piumarta, I.: PEG-based transformer provides front-, middle- and back-end stages
in a simple compiler. In: Workshop on Self-Sustaining Systems. S3 ’10, New York,
NY, USA, ACM (2010) 10–20

7. Parr, T.J.: An overview of SORCERER: A simple tree-parser generator. Technical
report, University of Minnesota (1994)

8. Parr, T.J.: ANTLR reference manual (2003)
9. Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern matching.

In: DLS ’07: Proceedings of the 2007 symposium on Dynamic languages, New York,
NY, USA, ACM (2007) 11–19

10. Warth, A.: Experimenting with Programming Languages. PhD thesis, University
of California Los Angeles (2009)

11. Google: Design elements of V8 (2011)
12. Peyton Jones, S.L.: The Implementation of Functional Programming Languages

(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA (1987)

13. Peyton Jones, S.: Haskell 98 Language and Libraries: the Revised Report. Cam-
bridge University Press (2003)

14. Wright, A.K.: Pattern matching for Scheme. Technical report, Department of
Computer Science, Rice University (1996)

15. Hosoya, H., Pierce, B.: Regular expression pattern matching for XML. In: POPL
’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, New York, NY, USA, ACM (2001) 67–80

16. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Transactions on Programming Languages and Systems (TOPLAS) 27(1) (2005)
46–90

17. Hutton, G., Meijer, E.: Monadic Parsing in Haskell. Journal of Functional Pro-
gramming 8(4) (July 1998) 437–444

18. Leijen, D.J.P., Meijer, H.J.M.: Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-35, Department of Information
and Computing Sciences, Utrecht University (2001)

