|mplementing the Microsoft. NET
Pet Shop using Java

Featuring JPetStore: Open Source Edition

Verson 1.2.0

“Javaisnot a product, it'san industry.”
--James Gosling

Created: November 18, 2002

Prepared by Clinton Begin

ilﬁ&'!ﬁ('

Table of Contents

A note about this Revision 3
Abstract 4
Background 5
I ntroduction 5
A Note on Terminology 5
What does Pet Store Demo Application do? 6
Enter JPetStore: Open Source Edition 7
Some Point-for-Point Design Comparisons 8
Database & Persistence Layer 8
Presentation Layer: Model-ViewController 10
An MVC Framework: Struts 11
| mplementing JPetStore: Java I nfrastructure 12
Tools & Frameworks 12
Runtime Environment 12
Lines of Code “ Required” vs. “Used” 13
Isit possible to implement Pet Storein Java with fewer lines of code? 15
How to Eliminate another 300 Lines of Code from JPetStore 15
A Word on File Extensions 15
What was Counted? 15
Generated Code: The Ultimate Vendor Dependency 16
Fewer Filesisnot Necessarily Better 16
Conclusion 17
Wher e ar e the Performance Benchmarks? 17
Who is Clinton Begin and what isiBATIS 17

A note about thisRevision

Thisisavery important update to the origina JPetStore white paper. In the original comparison
an error was made while counting the lines of code for JPetStore. After correcting the error it
was found that JPetStore was in fact developed using fewer lines of code than the .Net Pet Shop.
The error was made by accidentaly counting dl of the lines of JSP code in the JPetStore
goplication. Later it was discovered that the CLOC utility used by Microsoft only counts server
sde blocks (<%%>) in JSPfiles. This made a dramatic difference in the line countsin favor of
JPetStore and resulted in JPetStore using 330 fewer lines of code. All new line counts are now
done using Microsoft’'s CLOC utility that isincluded with their .Net Pet Shop download
available from their website at the following URL.:

http://www.gotdotnet.com/team/compare/petshop-1.5.2.tar.gz

Although these are the rules created by Microsoft, the author of JPetStore disagrees with this
methodology and bdlievesthat dl lines of code in JSP files should be counted. The author also
maintains that line counts are not done indicative of developer productivity. For al respects and

purposes the author would be happy to consider the .Net Pet Shop “equa” in terms of lines of
code.

Abstract

The Java 2 Platform is more productive, cheaper and provides more platform choices than
Microsoft’'s .Net. Thiswhite paper and the JPetStore application proves thiswhile avoiding any
marketing hype or corporate agendas.

JPetStore is a completely new implementation of Pet Store demo application written in Java.
While using Javato develop the Pet Store gpplication, the following benefits were redized when
comparing Javato .Net:

= Java Enabled Higher Developer Productivity: JPetStore was implemented in lesstime,
with fewer resources and using fewer lines of code than the .Net Pet Shop. Javawas
found to be 4x more productive than .Net in the implementation of the Pet Store
goplication.

= TheJavaPatformisLower Cost (FREE): JPetStore can (and was) implemented using
completely free tools and runtime platforms, including the devel opment tooal,
frameworks, application server and the database management system.

= JavaisVendor Independent: At thetime of thiswriting JPetStore runson &t lesst 4
operating systems, 6 gpplication servers and 7 database management systems. This
portability is achieved with no changes to the application source code. Such vendor
independence enables greater choice of operating systems, more scalable hardware
options and amuch wider price range (starting at $0.00).

The source code for JPetStore is available at http://www.ibatis.com, the source code for the .Net
Pet Shop isavailable at http://www.gotdotnet.comv/compar e/, and the source code for the Sun’s
JPEE Pet Store is available at http: //java.sun.convj2ee/blueprints/index.html.

Source Code: The Real Story

17500 } . . .
Lines of code used in the implementation

15000 NA

B .NET Pet Shop
Il JZ2EE Pet Store
[Java.JPetStore |

12500

10,000

7500

5000

QI

2500 684 nia 730 56 ' 90
— ltrl

Total Lines User Middle Tier Data Tier Config
of Code Interface Tier

Background

When Sun Microsystems created their origind Java Pet Store, they clearly stated that itisa
sample gpplication to illustrate basic usage of J2EE technology and demonstrate current best
practices in system design. The intent of the Sun Java Pet Store is to cover as much of the
platform as possble, as clearly as possible, in ardatively smal gpplication. The intent of Sun’s
implementation is not to implement the Pet Store requirements using as few lines of code as
possible, nor isit to be used as a performance benchmark. Although it demonstrates best
practices, it tries to demondtrate al J2EE features and every best practice imaginable. So, itis
bloated to say the least. One could Smply say that Sun’s J2EE Pet Store is * overarchitected”.
Shortly after Sun created the Java Pet Store, Oracle opened the door to benchmarking the Pet
Store gpplication in order to demongtrate the performance of the Oracle application server.
Microsoft quickly followed suit and made what many consider to be an unfair comparison of the
J2EE Pet Store to their .Net Pet Shop. The comparison is considered unfair because the designs
of the applications are so dramaticaly different, that dmost any comparison of the two would be
technicdly flawed. Furthermore, the .Net Pet Shop was clearly written for the benchmark. This
can be clearly seen by their use of known anti-patterns (worst practices) to achieve the highest
possible performance. This makes the .Net Pet Shop a poor example of ared world gpplication
and therefore isirrdevant.

I ntroduction

This document describes a new Pet Store implementation called JPetStore. The new JPetStore
application is based on opentsource tools and frameworks that are fredly available. JPetStore has
been fully developed and deployed without spending a dime on tools (e.g. IDE) or runtime
software (e.g. gpplication server).

A Note on Terminology

Now that there are at least three Pet Store like applications, it may be confusing as to which one
isbeing referred to in a particular case. For that reason this document will use the following
terms for the various Pet Store flavors.

Theterm Pet Store will be used genericdly to refer to any and al Pet Store
implementations and is usudly used to refer to the requirements or the generd

functiondity of the gpplication.

JPetSore will refer to the new application, based on opent source frameworks and tools,
that this document was written to discuss.

Java Pet Store or J2EE Pet Sore will refer to Sun’s origind Pet Store implementation
and/or Oracle' s enhanced Pet Store application. The differences between the two were
minimal and not relevant to this documen.

.Net Pet Shop or Microsoft Pet Shop refer to Microsoft’ s implementation of the Pet Store
goplication.

What does Pet Store Demo Application do?

The Pet Store gpplication was origindly implemented by Sun and had many more festures than
the .Net Pet Shop. The Microsoft .Net Pet Shop included only a subset of the J2EE Pet Store
gpplication features that includes a basic online storefront and shopping cart.

The Pet Store application feature set will be familiar to most users of the Web. The customer

can browse through a catalog of pets that vary by category, product type and individud traits. If
the customer sees an item they like, they can add it to their shopping cart. When the customer is
done shopping, they can checkout by submitting an order that includes payment, billing and
shipping details. Before the customer can checkout, they must Signin or cregte a new account.
The customer’ s account keeps track of their name, address and contact information. It aso keeps
track of profile preferencesincluding favorite categories and user interface options (banners

efc.). Below isasite map of the generd flow of the application.

JPetStore Site Map
Default

Inde: / \ Help
v
‘ Catt

Main Menu : Search
Sign In ;
Catenory List g Ecitt Accourt Results
— A oy l A
Category Detail Checkout Meyw Account Orders List ‘Product Detsils!
Product List SUmImArY fterm Lizt

13 / by T 5

Product Detail | Payment & ‘_ =lgn In Order Details
term List Billing Infa | (as required)
VR

ftem Cretail Shipping Infa

Qrder
Confirmation

Enter JPetStore: Open Sour ce Edition

JPetStore is a completely rewritten Pet Store gpplication that isimplemented using adesign
much like Microsoft's .Net Pet Shop gpplication, but without many of it's shortcomings.
JPetStore is completely vendor independent. It can run on various gpplication servers and use a
wide range of databases with no changes to the Java code.

The most noteworthy design differences between JPetStore and Microsoft’s .Net Pet Shop are:

JPetStore does not use Stored Procedures, nor does it embed SQL in the Java code.
JPetStore does not store HTML in the database.

JPetStore does not use generated code.

JPetStore uses the Model View Controller presentation pattern.

JPetStore was implemented using completely opentsource freeware, including the
development tool, runtime environment and database management system.

JPetStore uses the Modd View Controller pattern to improve the maintainability of the
presentation layer —the layer which is often the most likely to change. The JPetStore persistence
layer uses SQL mapped to Java classes through XML files. The advantagesto this are clear: the
elimination of stored procedures means JPetStore is independent of the database vendor, and
eliminaing the SQL from the Java source code means improved maintainability in the data tier.
The picture below shows ahigh leve view of the architecture of the gpplication.

Web Application

Web View Business Object Model Persistence
(Presentation Layer) {Domain Layer) {Infrastructure Layer}

E}—? ﬂ Access Db];lb
bean

I:IA-::‘I IC‘:‘: '_

_| Tn msu:bv .

Fa.'.mn-
Java Jawva _,/H
‘ Bean Sarviel | bean | bean bean . .
\[Jave / hl—‘ ! DAO ./ DAO ;! DAO
Server
Paoa bean baan
SEJLMap |_.L'.ILMa:u Iw
oo || Stts \DEJ
Acton Ation
Farm E,QLM
T .-' Rules Rules ‘ Rules . H
\ oo r" soL| | sal | s
e XML | | XML XML

Page

Some Point-for-Point Design Comparisons

One of the god's of the JPetStore gpplication was to implement the Pet Store gpplication usng a
design smilar to Microsoft’s, therefore creeting an gpplication that can be more fairly compared
to the .Net Pet Shop. Thisisadifficult task when the implementations are in such dragticaly
different environments. This section identifies some of the amilarities and differencesin the
design. For adiscussion of Microsoft's design, please see their white paper at:

http: //www.gotdotnet.com/compare.

Database & Persistence Layer

The database desgn was largely unchanged. The mgor differences were in the dimination of
stored procedures and some improvements to the table definitions. During implementation of
JPetStore, the author was uncomfortable with having HTML code in the database. Thisisavery
poor practice and complicates user interface design as well as reduces the vaue of the datain the
database. In summary the differences in database desgn/implementation are:

Eliminated al stored procedures.

Added “image’ column to the Product table to store image filename and normalized the
origind “DESCN” column data.

Added “image’ column to the Category to store image filename and normdized the
origina “DESCN” column data

To replace the stored procedures without having to write complicated JDBC code, asmple
object/relational mapping framework was employed. The framework, caled iBATIS Database
Layer, uses smple XML descriptor files (included in the line count) to describe the inputs and
outputs of an SQL statement. It alows the programmer to Smply pass a JavaBean into a
MappedStatement as a parameter (input) and receive a JavaBean as aresult (output).

The following example shows how JPetStore uses a clean, vendor independent API to create a
new record in the Account and Profile tables. The method looks like this:

JPetStore Usesa Very Clean API for Object/Relational M apping

public void insertAccount(DaoTransacti on trans, Account account)
t hrows DaoException {
execut eUpdat e("i nsert Account", trans, account);
execut eUpdate("insertProfile”, trans, account);

}

The same functiondity in the .Net gpplication used acdll to a proprietary stored procedure that
only works on Microsoft's SQL Server. It'son the next page because it needed an entire page to
itsdf!

The .Net Pet Shop uses a complex, unhelpful and vendor dependent persistence API

public string Add(string userid, string password, string email, string
firstName, string | astNane, string addressl, string address2, string
city, string state, string zip, string country, string phone, string
| anguagePref, string favoriteCategory, int nmylistOption, int bannerOptions) {
Dat abase data = new Dat abase();
Sql Paraneter[] pranms = {
dat a. Makel nPar am(" @iseri d", Sql DbType. Var Char, 80, userid),
dat a. Makel nPar am(" @assword", Sql DbType. Var Char, 25, password)
dat a. Makel nParam(" @mai | ", Sql DbType. Var Char, 80, emil),
dat a. Makel nParam(" @i r st nane", Sql DbType. Var Char, 80, firstNanme),
dat a. Makel nPar am(" @ ast nane", Sql DbType. Var Char, 80, | astNane),
dat a. Makel nPar am(" @ddr 1", Sql DbType. Var Char, 80, addressl),
dat a. Makel nPar am(" @ddr 2", Sql DbType. Var Char, 80, address2),
dat a. Makel nParam(" @i ty", Sql DbType. Var Char, 80, city)
dat a. Makel nPar am " @t at e", Sql DbType. Var Char, 20, state),
dat a. Makel nPar am(" @i p", Sql DbType. Var Char, 20, zip),
dat a. Makel nPar am(" @ountry", Sql DbType. Var Char, 80, country),
dat a. Makel nPar am(" @hone", Sql DbType. Var Char, 80, phone),
dat a. Makel nPar am(" @ angpref", Sql DbType. Var Char, 25, |anguagePref),
dat a. Makel nPar am(" @ avcat egory", Sql DbType. Var Char, 25,
favoriteCategory),
dat a. Makel nPar am(" @ryl i st opt ", Sql DbType. I nt, 4, mylistOption),
dat a. Makel nPar am(" @anner opt ", Sql DbType. I nt, 4, banner Opti ons)
1
try {
Dat aReader
int retval = data. RunProc("upAccount Add", prans);
if (retval == 0)
return userid;
el se
return null

} catch (Exception ex) {
Error.Log(ex. ToString());
return null;

The method above shows not only how the use of stored procedures actually complicated the C#
code, but it aso shows how poor the implementation of the .Net Pet Shop redly was. The Add()
method has sixteen (16!) parameters. Imagine what would happen in amore redistic enterprise
goplication. Even if the method parameters were wrapped up in a single convenient parameter
(e.g. CustomerDetails class), the number of individua calsto dataMakel nParam() would
continue to increase as columns were added. Worse yet, the database column type and size are
hard coded ingde the application code! This meansthat to dlow for greeter field widthin a
particular column the application code needs to be recompiled (e.g. State needs to accommodate
“Northwest Territories” during internationdization of .Net PetShop).

Presentation Layer: Modd-ViewController

JPetStore implements a very well established and widely accepted pattern for separating
presentation code from businesslogic. This pattern isthe Mode View Controller pattern. To
avoid writing yet another description of MV C, here is an excerpt from Sun’s website that
describes the pattern.

Source: http://java.sun.comVblueprints/patternsg/j2ee_patterns/model_view_controller/index.html

By applying the Modd-View-Controller (MVC) architecture to a 2EE gpplication, you separate
core data access functionaity from the presentation and control logic that usesthis functiondity.
Such separation alows multiple views to share the same enterprise data mode, which makes
supporting multiple clients eeser to implement, test, and maintain.

The MV C architecture has its roots in Smalltalk, where it was origindly gpplied to map the
traditional input, processing, and output tasks to the graphica user interaction model. However,
it is straightforward to map these concepts into the domain of multi-tier enterprise applications:

The model represents enterprise data and the business rules that govern access to and
updates of this data. Often the moded serves as a software gpproximation to a real-world
process, so smple real-world modeing techniques apply when defining the mode.

A view renders the contents of amodel. It accesses enterprise data through the model and
specifies how that data should be presented. It isthe view's respongibility to maintain
conggency in its presentation when the model changes. This can be achieved by using a
push modd, where the view registers itsdlf with the mode for change notifications, or a
pull modd, where the view is responsible for caling the mode when it needsto retrieve
the most current data.

A controller trandates interactions with the view into actions to be performed by the
modd. In astand-aone GUI dient, user interactions could be button clicks or menu
selections, whereas in a Web gpplication, they appear as GET and POST HTTP requests.
The actions performed by the modd include activating business processes or changing
the state of the moddl. Based on the user interactions and the outcome of the model
actions, the controller responds by selecting an appropriate view.

The MV C architecture has the following benefits:

Multiple views using the same model. The separation of mode and view dlows
multiple views to use the same enterprise modd. Consequently, an enterprise
gpplication's model components are easier to implement, test, and maintain, sncedl
access to the mode goes through these components.

Easier support for new types of clients. To support anew type of client, you smply
write aview and controller for it and wire them into the existing enterprise model.

10

An MVC Framework: Struts

The framework that was used by JPetStore to implement the Model View Controller pattern was
the popular framework known as Struts (http://jakarta.apache.org). Struts, like everything used
by JPetStore, isfredy available and open-source. The Struts framework played akey rolein the
design and implementation of the JPetStore presentation layer. Combined with JSP, it helped
maintain aconsstent look and fedl aswell as good flow contral throughout the application. It

did thiswhile helping reduce the overal code size for JPetStore and improving the overdl

design.

Struts has three main components. the ActionForm (modd), the JavaServer Page (view) and the
Action (controller). Struts uses an XML descriptor file to connect these three components
together, which helps smplify future code maintenance on the presentation layer —alayer prone
to change. The diagram below illugtrates the three main components and how they interact with
each other.

It isimportant to note that writing these componentsis very smple, lightweight and is amost
exactly likewriting anorma Servlet. The largest Struts-based source file (Action or
ActionForm) in JPetStore is 121 lines of code.

ActionForm State

State M
odel
Query () Change
* Encapsulates application state
* Responds to state queries

* Exposes application functionality

View Selection ;
JavaServer Page Action
(View) (Controller)
* Defines application behaviour

* Renders the model * Maps user actions to model
* Requests updates from model > updates

* Sends user gestures to controller * Selects view for response
* Allows controller to select view * One for each function

User Gesture

Bazed on work from: httpdiava sun comblueprintspatternsiZee patterns’model view contrallerindex htmi

11

| mplementing JPetStore: Java Infrastructure

In Microsoft’ s white paper titled “Implementing Sun’s Java Pet Store using Microsoft .Net”,
Microsoft claims that the code in the J2EE implementation was required to make up for alack of
infragtructure. Thefact is, Sun smply chose to stick to the APIsthat are coreto 2EE. They
didn’'t make use of any other frameworks or infrastructure. Sun never promised the universe,
they just sarted the fire. The big bang was €ft to the rest of the industry.

Tools & Frameworks

As mentioned previoudy, JPetStore was implemented completely using opensource freeware.
In the Java industry, there are numerous tools, frameworks and infrastructure components to
satisty nearly any requirement. Many of these are fredy available with source code included.
The JPetStore implementation used a number of such frameworks, including the very popular
Struts MV C framework. The following table ligts the tools and frameworks dong with their

associated cost (as unnecessary asit may be):

Category Product Cost

Integrated Development Environment NetBeans IDE $0.00
http://www.netbeans.org

Model View Controller Framework Jakarta Struts $0.00
http://jakarta.apache.org

Object/Relational Mapping IBATIS DAO/SQL Map Framework $0.00
http://www.ibatis.com

Format Tag Library Formatter TagLib, by Tak Yoshida $0.00
http://Aww.ibatis.com

Compiler & Software Development Kit Sun Java 2 SDK $0.00
http://java.sun.com

Total: $0.00

Runtime Environment

In addition to the tools and frameworks above, there are a number of free, open-source runtime

environments for Java, including application servers, web servers, Servlet/ISP containers and

relationa database management sysems. The following table ligts the runtime environment that

JPetStore was primarily intended for, athough JPetStore can run on any J2EE compliant

gpplication server and with any JDBC compliant database.

Category Product Cost

Web Server & Servlet/JSP Container Jakarta Tomcat $0.00
http://|akarta.apache.org

Relationa Database Management System PostgreSQL $0.00
http://www.postgres.org

Operating System Red Ha Linux $0.00
http://www.redhat.com

Total: $0.00

12

Developer Productivity

The .Net Pet Shop was developed, at Microsoft’s request, by Vertigo Software. In an interview
by Lamont Adams, published by Builder.com, Scott Stanfield, CEO of Vertigo Software made
the statement: “We did the whole [.Net Pet Shop] with two developersin atotd of five weeks,
which includes about three to four days of load testing and benchmarking at theend.” Hencea
conservative estimate would be that the development time was about four weeks with two
developers, or about eight person weeks.

In contrast, JPetStore was developed by asingle developer in his spare time (i.e. not hisfull time
job) over about two weeks. Assuming 4 hours per evening and 12 hours on weekend days a
more-than-fair estimate would be about 11 person days or about 2 person weeks. Even if these
estimates are doubled, that would still mean that Java was about twice (2x) as productive as the
.Net development environment.

Are these productivity gains congtant? No, of course not. There will be Stuations where any
given technology will outperform ancther. The important point to consider here isthat the clam
made by Microsoft is absolutely fase and Javaisjust as productive or possibly more productive
than .Net and C#.

The kill level of the developer(s) has alot to do with these types of comparisons. The benefit of
Javaisthat it isamature technology and has a good following of developers. The poal of
talented Java devel opers available is much greater than that of C# and Javahas a7 year head
dart in developer mind-share. Therefore Java has greater network effect*. Although thereisa
great demand for Java skills, the number of talented Java developersis aso great and the ratio of
upply to demand is Sgnificantly in favor of Java

*MetcafesLaw: the usefulness, or utility, of a network equals the square of the number of users.

Time to Deliver

Java was 4x more productive in
developing the Pet Stare Application!

Ferson Weeks

Java Jpet=tore et Pet Shop

13

Lines of Code “Required” vs. “Used”

In the same white paper mentioned above, Microsoft clams that using Java to implement the Pet
Store gpplication “required” over 14,000 lines of code. Thisissmply not the case. No piece of
software ever written has absolutely required any particular amount of code (athough there may
be theoretical minimums and maximums). Assuming somewhat smilar languages (eg. C# and
Java), the lines of code required to implement a solution is generdly amatter of design and is
more the result of decisions made by the designers and developers than anything dse. There are
S0 many design and infrasiructure choices in Java that the possibilities are quite endless.

JPetStore demongtrates a design that the author decided was appropriate for the requirements of
the Pet Store gpplication. It was implemented not to smply reduce the line count to below that
of the .Net implementation, but rather to implement the Pet Store requirements using a smart
design with no dependencies on any particular vendor. The author decided that Pet Store was
best implemented in Java using a design that required just over 3100 lines of code —300 fewer
than the .Net Pet Shop.

On the other hand, the .Net Pet Shop was developed using anti-patterns (worst practices) to
achieve low line counts and false performance. In addition, this was done at the expense of
being tied to Microsoft SQL Server through the excessive use of stored procedures.
Furthermore, the implementers of the .Net Pet Shop have discarded the industry accepted, bet-
practice presentation pattern called Modd-View-Controller and instead chose adesign thet is
unproven and unique to .Net.

Source Code: The Real Story
17500) . . :
Lines of code used in the implementation
15000 MIA
I .NET Pet Shop
12500
I J2EE Pet Store
10,000 [] Java.JPetStore |
7500
5000
MIA
e[
2500 684 i 730 56 ' a0
[— 7
Total Lines User Middle Tier Data Tier Config
of Code Interface Tier

14

Isit possible to implement Pet Storein Java with fewer lines of code?

Absolutdy. The functiona requirements of the Pet Store surely could have easily been worked
out in a couple thousand lines of Java code. If lines of code was the only measure of successin
software development, then JPetStore would have probably been implemented to that effect.

How to Eliminate another 300 Lines of Code from JPetStore

It'simportant to note that Smple coding conventions between languages can have a dramatic
effect on the number of lines of code. For example, examine the following two implementations
of the Product 1D property below. The example clearly shows that there is a difference of about
2 lines of code per property that is Smply due to different coding conventions between the two
languages. By diminating such differences, the author could have easily shaved off another 300
lines of code in JPetStore by following a convention smilar to that of C# (140 linesfrom
properties done). He chose not to do so to keep consstent with Java coding conventions.

Net Property; 5lines JavaBeans Property; 7 lines

private string m productid; private String productld;

public string productid { public String getProductld(){
get { return mproductid; } return productld;

set { mproductid = value; } [}

public void setProductld(String productld){
this.productld = productld.trim);

}

A Word on File Extensions

The extensons included in the line counts were not cons stent with those that Microsoft counted
in ther comparison, as it would not have made sense. For example, to implement the JPetStore
goplication the author did not have to write asingle TLD (tag library descriptor) file. Thiswould
have resulted in a configuration line count of zero, which would have been inaccurate. Therefore
for the JPetStore application “properties’ files were counted as configuration.

What was Counted?
The following extensons were included in the line counts: java, xml, jp, properties, sgl. Al
source code was counted excluding blank lines and Java comments. The code was counted using

Microsoft's own CLOC uitility, the same utility that was used to count the lines of code for both
the .Net Pet Shop and the Sun J2EE Pet Store.

15

Generated Code: The Ultimate Vendor Dependency

Some implementations of the Pet Store gpplication use generated code. Thisincludes
Microsoft’s .Net Pet Shop (e.g. ASP Forms) aswdl as afew Javal2EE implementations. In
both cases, it is generdly avery bad ideato generate code beyond very smple code. For
example, generating JavaBeans propertiesis not usualy harmful, because JavaBeans properties
can be hand-written very easly and with very little difference in implementation cost. Also,
generating JavaBeans properties will not result in any particular vendor dependency .

On the other hand, generating complex application architecture code is very risky because the
foundation of the application is at risk of becoming dependent on a particular vendor tool or
product. Furthermore, it is often the case that even though the code is generated initidly, there
are very few (if any) code generators that are sophisticated enough such that the code will not
have to eventudly be manualy modified to suit the gpplication requirements. To avoid these
and other potentid risks, the following guideines were used in implementing JPetStore:

Never generate code that will result in a dependency on a particular vendor or product.
Beware of generating code that would be sgnificantly more costly to write by hand (it
will likely have to maintain it by hand anyway —think Tota Cost of Ownership)

Keep generated code to a minimum (one J2EE Pet Store implementation generated over
22000 lines of Java code with only afew thousand hand written lines).

Reserve generated code for the uppermost layers of the application (i.e. Presentation
Layer).

Never generate code that you would never write by hand (because it will eventualy need
to maintained by hand anyway —count onit!).

Avoid generating Infrastructure Layer and Domain Layer code.

Exanpl e of Vendor/ Tool Dependency: From . Net Pet Shop Product. aspx.cs
/1l Required nmethod for Designer support - do not nodify

/1l the contents of this method with the code editor.

Moral: Don’t generate code that results in a dependency on a tool!

Fewer Filesisnot Necessarily Better

In their comparison of Sun’s J2EE Pet Store to the .Net Pet Shop, Microsoft showed how they
could jam pack 3484 lines of code into 65 files. Once again, this was done at the cost of their
desgn which wasin total conflict with known best practices. This can clearly be seen in how the
.Net Pet Shop domain layer isinfected with persstence code that ties the gpplication not only to
the specific implementation gpproach (use of stored procedures), but aso ties them to the vendor
(Microsoft, ADO.Net). Worse ye, it creates bloated classes that are difficult to maintain. For
example: in implementing the Customer/Account/Profile functiondity of the Pet Store

gpplication, the .Net Pet Shop used over 300 lines of code and 3 classes that were jammed into a
sngle source file. The JPetStore instead chose to separate the persstence layer from the domain
layer and in doing so used less than 200 lines of code, split into 2 logicaly separated files. Most
any developer would surely agree thet the latter gpproach is smpler, more maintainable and a
better design gpproach overdl.

16

Conclusion

Sun's J2EE Pet Store gpplication was never intended to be a benchmark application for
measuring efficiency, productivity or performance. 1t was Smply intended to demondirate the
functionality of the core 2EE APIs. Despite the intent, Oracle opened the doors for the “Pet
Store performance benchmark”. Microsoft then took it a step further with its .Net Pet Shop and
unfairly and irresponsibly dragged Sun’'s Pet Store into a competition comparing of lines of code
aswell as performance.

JPetStore is an implementation of the Pet Store gpplication that has successfully demonstrated
that Javais more productive, cheaper and offers more choice than Microsoft's .Net. In addition
it has shown how it can do this while achieving asuperior design. Most importantly though,
JPetStore has proven that Javatruly “is an industry” in which anyone can implement a
professona solution without paying adime for development tools or runtime software.

Wher e are the Per formance Benchmar ks?

JPetStore has not been tested for performance because the conditions under which the .Net Pet
Shop were tested could not be recreated. At thistime, the testing software and testing platforms
are not accessible to the author. Some performance benchmarks may be posted at
http://ww.ibatis.com, however it is not guaranteed that these will be directly comparable to the
.Net performance statistics gathered by Microsoft. If you would like to help performance test
JPetStore, please contact clinton.begin@ibatiscom. A description of the test configuration and
tools used by Microsoft .Net are available at
http://www.gotdotnet.com/team/compare/Benchmark ShortRepFinal .pdf.

Whois Clinton Begin and what isiBATIS

Clinton Begin is a software developer from Cagary Alberta (Canada). For nearly four years he
has been employed as a Java Software Specidist in the Canadian oil and gasindustry. iBATISIs
Clinton’ s website (www.ibatis.com), nothing more. iBATISisnot acompany, nor isit a
product. Therefore, other than shameless salf promotion, you will not be exposed to any sort of
sdes pitch or marketing campaign.

If you have any comments or suggestions regarding JPetStore or this document, please fed free
to contact Clinton at: clinton.begin@ibatis.com

17

The information contained in this document represents the current view of Clinton Begin on the issues discussed as of the date of
publication. Because Clinton Begin must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Clinton Begin, and Clinton Begin cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only.

CLINTON BEGIN MAKES NO WARRANTIES, EXPRESS OR IMPLIED, ASTO THE INFORMATION IN THISDOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into aretrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Clinton Begin.
Clinton Begin may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter
in this document. Except as expressly provided in any written license agreement from Clinton Begin, the furnishing of this document
does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Clinton Begin. All rights reserved.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

18

