C2 Fundamental Theory of Dynamical Systems

Handout 5

The Jordan Normal Form

Recall that by linearizing around hyperbolic fixed points and periodic orbits of nonlinear systems, one can obtain a locally accurate picture of the dynamics. Hence, it is important to understand the different kinds of evolution that can occur in a linear system. The JNF allows a complete representation of the eigenstructure of linear systems, with an associated picture of linear dynamics. The JNF is often called thecanonical form of a matrix, becauseit is essentially the "simplest possible" representation after a change of variables. In particular, powers of a matrix and exponentials areeasy to compute in canonical form. This handout summarizes the Jordan Normal Form (JNF) of a real matrix, and some of its implications for the dynamics of linear systems. In particular, it shows how to computetheJNF of a given matrix:

STRUCTURE OF REAL $\mathbf{n} \times \mathbf{n}$ MATRICES

Recall that an eigenvalue λ and its corresponding eigenvector $\mathrm{v} \neq 0$ are defined by

```
Av = 
```

From this definition, we see that A has an eigenvalue λ if and only if the matrix (A - λI) is noninvertible. Hence $\chi(\lambda)=\operatorname{det}(\mathrm{A}-\lambda I)=0$. Clearly χ is a degreen polynomial in λ, and hence has n real or complex roots, some possibly repeated. Since χ has real coefficients, complex roots come in conjugate pairs, that is if $\chi(\lambda)=0$, then $\chi(\lambda)=\bar{\chi}(\lambda)=\overline{0}=0$. Note that if v is an eigenvector, then so is cv for any scalar $c \neq 0$. If λ is an eigenvalue of multiplicity r (ie ($x-\lambda)^{r}$ divides $\chi(x)$), then there are at most r linearly independent eigenvectors corresponding to λ (recall that r vectors v_{1}, \ldots, v_{r} are linearly independent if $c_{1} v_{1}+\ldots+c_{1} v_{r}=0$ implies $c_{1}=\ldots=c_{r}=0$).

The n eigenvalues of A may therefore arise in the following combinations:
i) A real eigenvalue λ of multiplicity r with r independent eigenvectors.
ii) A real eigenvalue λ of multiplicity r with less than r independent eigenvectors.
iii) A complex eigenvalue λ of multiplicity r with r independent complex eigenvectors.
iv) A complex eigenvalue λ of multiplicity r with fewer than r independent eigenvectors.

JORDAN NORMAL FORM OF A

The JNF of A is block diagonal, with a block corresponding to each distinct eigenvalue (or complex conjugate pair). Each block in turn is made up of sub-blocks, each corresponding to an independent ei genvector. Because of the block structure, we can treat each of the above cases separately, and will in fact just consider the following three scenarios: a) A has n independent eigenvectors (which may correspond to distinct or repeated eigenvalues), b) A has λ as an eigenvalue of multiplicity n and only one independent eigenvector and c) $\mathrm{n}=2$ and A has a complex conjugate pair of eigenvalues. From these we can build up all possible combinations of i)-iii) above; we do not treat iv) explicitly since this is just a combination of cases ii) and iii).

Diagonal Blocks

Suppose that A has n independent eigenvectors. Then it is diagonalizable, that is there exists an invertible P such that $P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=B$, where $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the diagonal matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. The matrix P is the matrix whose columns are the n independent ei genvectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ of A. We denote this as $\mathrm{P}=\left[\mathrm{v}_{1}\left|\mathrm{v}_{2}\right| \ldots \mid \mathrm{v}_{\mathrm{n}}\right]$. Note that the fact that $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are independent implies that P is independent (excercise).

To see that P diagonalizes A , observe that

$$
\begin{aligned}
\mathrm{AP} & =\quad A\left[\mathrm{v}_{1}\left|\mathrm{v}_{2}\right| \ldots \mid \mathrm{v}_{n}\right] \\
& =\left[A v_{1}\left|A v_{2}\right| \ldots \mid A v_{n}\right] \\
& =\quad\left[\lambda_{1} v_{1}\left|\lambda_{2} \mathrm{v}_{2}\right| \ldots \mid \lambda_{n} v_{n}\right] \\
& =\left[\mathrm{v}_{1}\left|\mathrm{v}_{2}\right| \ldots \mid v_{n}\right] \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& =P B
\end{aligned}
$$

NON-TRIVAL BLOCKS

Suppose now that A has a single eigenvalue λ of multiplicity n, so that $\chi(x)=(x-\lambda)^{n}$, but only one independent eigenvector v_{1}. We define $n-1$ generalized eigenvectors obtained by solving

$(A-\lambda l) v_{2}$	$=$	v_{1}
	\vdots	
$(A-\lambda I) v_{i}$	$=$	v_{i-1}
	\vdots	
$(A-\lambda I) v_{n}$	$=$	v_{n-1}

with $v_{i} \neq 0$ for $i=2, \ldots, n$. The term generalized eigenvector is motivated by the fact that $(A-\lambda l)^{k} v_{k}=0$ for a generalized eigenvector, whereas $(A-\lambda l) v=0$ for an ordinaryeigenvector. Note that v_{1}, v_{2}, \ldots, v_{n} are linearly independent (exercise, use the fact that ($\left.A-\lambda I\right)^{k} v_{k}=0$) and henceP $=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right]$ is invertible. Using the same argument as above (see Q4, Ex. Sheet 4), it is easy to see that $A P=P B$, where B is the $n \times n$ Jordan block

$$
\text { B }=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \tag{1}\\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

COMPLEX CONJUGATE EIGENVALUES

Suppose that A is a 2×2 matrix with a complex conjugate pair of eigenvalues $\lambda=\alpha+\mathrm{i} \beta, \lambda=\alpha-\mathrm{i} \beta$, with $\beta \neq 0$. Let $\mathrm{u}+\mathrm{iv}$ be the complex eigenvector corresponding to λ, so that

$$
\mathrm{A}(u+\mathrm{i} v) \quad=\quad(\alpha+\dot{i} \beta)(u+\dot{i} v)
$$

Equating real and imaginary parts, we get

$$
\begin{array}{lll}
\mathrm{Au} & =\alpha \mathrm{u}-\beta \mathrm{v} \\
\mathrm{Av} & =\alpha \mathrm{v}+\beta \mathrm{u} \tag{2b}
\end{array}
$$

We first show that this means that u and v are linearly independent as real valued vectors. Suppose not, so that there exists constants c and d such that

$$
\begin{equation*}
c u+d v \quad=\quad 0 \tag{3}
\end{equation*}
$$

with either $c \neq 0$ or $d \neq 0$. Applying A to (3) we obtain

$$
\begin{equation*}
(\mathrm{c} \alpha+\mathrm{d} \beta) \mathrm{u}+(\mathrm{d} \alpha-\mathrm{c} \beta) \mathrm{v}=0 \tag{4}
\end{equation*}
$$

From (3) we have $d v=-c u$. Substituting this into (4) gives $\alpha c u+\beta d u-\alpha c u-\beta c v=0$, so that $\beta d u=\beta c v$. Since $\beta \neq 0$, this implies that $d u=c v$, and henced ${ }^{2} u=c d v$. However, by (3) we have cdv $=-c^{2} u$ and hence $d^{2} u=-c^{2} u$. Sincec and d are real and at least one is assumed to be non-zero, we cannot have $d^{2}=-c^{2}$, and henceu $=0$. From (2b), we obtain $A v=\alpha v$ and since α is not an eigenvalue of A, we have $v=0$. But this is a contradiction since this means that $u+i v=0$, but $u+i v$ is meant to be an eigenvector of A. Hence u and v are linearly independent.

Thus if we let $P=[u \mid v]$, then P is an invertible matrix. Proceeding as above, we have

$$
\begin{aligned}
\mathrm{AP} & = \\
& =\mathrm{A}[\mathrm{u} \mid \mathrm{v}] \\
& =[\mathrm{Au} \mid \mathrm{Av}] \\
& =[\alpha \mathrm{u}-\beta \mathrm{v} \mid \alpha \mathrm{v}+\beta \mathrm{u}] \\
& =[\mathrm{u} \mid \mathrm{v}] \mathrm{B}
\end{aligned}
$$

where

$$
\mathrm{B} \quad=\left(\begin{array}{cc}
\alpha & \beta \tag{5}\\
-\beta & \alpha
\end{array}\right)
$$

IMPLICATIONS FOR LINEAR DYNAMICAL SYSTEMS

The long-term evolution of a linear system is best analysed in the canonical form provided by the $J N F$ decomposition. As above, let the matrix P be such that if B is the JNF of A then

```
AP}=\quad\textrm{PB
```

As we have seen in lectures the study of the system

$$
x_{m+1}=A x_{m}
$$

is reduced to that of

$$
y_{m+1}=B y_{m}
$$

by changing variables from x to $y=P^{-1} x$. Similarly, in the case of differential equations

$$
\dot{x} \quad=\quad A x
$$

is transformed into

$$
\dot{y} \quad=\quad B y
$$

Powers of B

i) If $\mathrm{B}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then $\mathrm{B}^{m}=\operatorname{diag}\left(\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}\right)$.
ii) If B is a non-trivial block given by (1), then by induction it is straightforward to show that

$$
\mathrm{B}^{\mathrm{m}} \quad=\left(\begin{array}{ccccc}
\lambda^{m} & \mathrm{~m} \lambda^{m-1} & \binom{m}{2} \lambda^{m-2} & \ldots & \binom{m}{n-1} \lambda^{m-(n-1)} \\
0 & \lambda^{m} & m \lambda^{m-1} & \ldots & \binom{m}{n-2} \lambda^{m-(n-2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda^{m} & m \lambda^{m-1} \\
0 & 0 & \cdots & 0 & \lambda^{m}
\end{array}\right)
$$

where

$$
\binom{m}{j} \quad=\quad \frac{m!}{j!(m-j)!}
$$

with the convention that

$$
\binom{m}{j}=0
$$

for $\mathrm{j} \geq \mathrm{m}$.
iii) If B corresponds to a complex conjugate pair of eigenvalues, and so is given by (5), let r and θ be given by $\alpha=r \cos \theta, \beta=r \sin \theta$. Then by induction, it can be shown

$$
B^{m}=r^{m}\left(\begin{array}{cc}
\cos m \theta & \sin m \theta \\
-\sin m \theta & \cos m \theta
\end{array}\right)
$$

Exponentialsof B

Recall that the solution of $\dot{\mathrm{y}}=\mathrm{By}$ is given by $\mathrm{y}(\mathrm{t})=\operatorname{expB}$ t. $\mathrm{y}(0)$. As shown in lectures, the matrix expBt can be easily computed when B is in JNF.
i) If $B=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then $\operatorname{expBt}=\operatorname{diag}\left(\exp \lambda_{1} t, \ldots, \exp \lambda_{n} \mathrm{t}\right)$.
ii) If B is a non-trivial block given by (1), then

$$
\operatorname{expBt}=\quad e^{\lambda t}\left(\begin{array}{ccccc}
1 & t & \frac{1}{2!} t^{2} & \cdots & \frac{1}{(n-1)!} t^{n-1} \\
0 & 1 & t & \cdots & \frac{1}{(n-2)!} t^{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & t \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

This formula is most easily verified using the decomposition given in lectures.
iii) If B corresponds to a complex conjugate pair of eigenvalues, and so is given by (5), then, as shown in lectures

$$
\operatorname{expBt}=\quad \mathrm{e}^{a t}\left(\begin{array}{cc}
\operatorname{cost} \beta & \operatorname{sint} \beta \\
-\sin t \beta & \cos \beta
\end{array}\right)
$$

