
C2 FUNDAMENTAL THEORY OF DYNAMICAL SYSTEMS

HANDOUT 5

THE JORDAN NORMAL FORM

Recall that by linearizing around hyperbolic fixed points and periodic orbits of nonlinear systems, one
can obtain a locally accurate picture of the dynamics. Hence, it is important to understand the
different kinds of evolution that can occur in a linear system. The JNF  allows a complete
representation of the eigenstructure of linear systems, with an associated picture of linear dynamics.
The JNF is often called the canonical form of a matrix, because it is essentially the “simplest possible”
representation after a change of variables. In particular, powers of a matrix and exponentials are easy
to compute in canonical form. This handout summarizes the Jordan Normal Form (JNF) of a real
matrix, and some of its implications for the dynamics of linear systems. In particular, it shows how to
compute the JNF of a given matrix:

STRUCTURE OF REAL n×n MATRICES

Recall that an eigenvalue λ and its corresponding eigenvector v ≠ 0 are defined by

Av = λv

From this definition, we see that A  has an eigenvalue λ  if and only if the matrix (A - λI) is non-
invertible. Hence χ(λ) = det (A - λI) = 0. Clearly χ is a degree n polynomial in λ, and hence has n real
or complex roots, some possibly repeated. Since χ has real coefficients, complex roots come in
conjugate pairs, that is if χ(λ) = 0, then χ(

_
λ) = 

_
χ(

_
λ) = 

_
0 = 0. Note that if v is an eigenvector, then so is

cv for any scalar c ≠ 0. If λ  is an eigenvalue of multiplicity r (ie (x-λ)r divides χ(x)), then there are at
most r linearly independent eigenvectors corresponding to λ  (recall that r vectors v1, …, vr are
linearly independent if c1v1 + … + crvr = 0 implies c1 = … = cr = 0).

The n eigenvalues of A may therefore arise in the following combinations:

i) A real eigenvalue λ of multiplicity r with r independent eigenvectors.

ii) A real eigenvalue λ of multiplicity r with less than r independent eigenvectors.

iii) A complex eigenvalue λ of multiplicity r with r independent complex eigenvectors.

iv) A complex eigenvalue λ of multiplicity r with fewer than r independent eigenvectors.

JORDAN NORMAL FORM OF A

The JNF of A is block diagonal, with a block corresponding to each distinct eigenvalue (or complex
conjugate pair). Each block in turn is made up of sub-blocks, each corresponding to an independent
eigenvector. Because of the block structure, we can treat each of the above cases separately, and will
in fact just consider the following three scenarios: a) A has n independent eigenvectors (which may
correspond to distinct or repeated eigenvalues), b) A has λ  as an eigenvalue of multiplicity n and
only one independent eigenvector and c) n = 2 and A has a complex conjugate pair of eigenvalues.
From these we can build up all possible combinations of i)-iii) above; we do not treat iv) explicitly
since this is just a combination of cases ii) and iii).
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DIAGONAL BLOCKS

Suppose that A  has n independent eigenvectors. Then it is diagonalizable, that is there exists an
invertible P such that P-1AP = diag(λ1, …, λn) = B, where diag(λ1, …, λn) is the diagonal matrix with
diagonal entries λ 1, …, λ n. The matrix P  is the matrix whose columns are the n independent
eigenvectors v1, v2, …, vn of A. We denote this as P = [v1| v2| …| vn]. Note that the fact that v1, v2, …, vn

are independent implies that P is independent (excercise).

To see that P diagonalizes A, observe that

AP = A[v1| v2| …| vn]

= [Av1| Av2| …| Avn]

= [λ1v1| λ2v2| …| λnvn]

= [v1| v2| …| vn] diag(λ1, …, λn)

= PB

NON-TRIVIAL BLOCKS

Suppose now that A has a single eigenvalue λ  of multiplicity n, so that χ(x) = (x-λ)n, but only one
independent eigenvector v1. We define n-1 generalized eigenvectors obtained by solving

(A - λI)v2 = v1

  M
(A - λI)vi = vi-1

  M
(A - λI)vn = vn-1

with vi ≠ 0 for i = 2, …, n. The term generalized eigenvector is motivated by the fact that (A - λI)kvk = 0
for a generalized eigenvector, whereas (A - λI)v = 0 for an ordinary eigenvector. Note that v1,  v2, …,
vn are linearly independent (exercise, use the fact that (A - λI)kvk = 0) and hence P = [v1| v2| …| vn] is
invertible. Using the same argument as above (see Q4, Ex. Sheet 4), it is easy to see that AP = PB,
where B is the n×n Jordan block
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COMPLEX CONJUGATE EIGENVALUES

Suppose that A  is a 2×2 matrix with a complex conjugate pair of eigenvalues λ  = α  + iβ, 
_
λ  = α  - iβ,

with β ≠ 0. Let u + iv be the complex eigenvector corresponding to λ, so that

A(u+iv) = (α+iβ)(u+iv)

Equating real and imaginary parts, we get

Au = αu - βv (2a)

Av = αv + βu (2b)
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We first show that this means that u and v are linearly independent as real valued vectors. Suppose
not, so that there exists constants c and d such that

cu + dv = 0 (3)

with either c ≠ 0 or d ≠ 0. Applying A to (3) we obtain

(cα + dβ)u  +  (dα - cβ)v = 0 (4)

From (3) we have dv = -cu. Substituting this into (4) gives αcu + βdu - αcu - βcv = 0, so that βdu = βcv.
Since β ≠ 0, this implies that du = cv, and hence d2u = cdv. However, by (3) we have cdv  = -c2u and
hence d 2u = -c2u. Since c and d are real and at least one is assumed to be non-zero, we cannot have
d 2 = -c2, and hence u = 0. From (2b), we obtain Av = αv and since α is not an eigenvalue of A, we have
v = 0. But this is a contradiction since this means that u+iv  = 0, but u+iv is meant to be an
eigenvector of A. Hence u and v are linearly independent.

Thus if we let P = [u|v], then P is an invertible matrix. Proceeding as above, we have

AP = A[u|v]

= [Au|Av]

= [αu-βv|αv+βu]

= [u|v]B

where

B =
α β
β α−





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(5)

IMPLICATIONS FOR LINEAR DYNAMICAL SYSTEMS

The long-term evolution of a linear system is best analysed in the canonical form provided by the
JNF decomposition. As above, let the matrix P be such that if B is the JNF of A then

AP = PB

As we have seen in lectures the study of the system

xm+1 = Axm

is reduced to that of

ym+1 = Bym

by changing variables from x to y = P-1x. Similarly, in the case of differential equations

.
x = Ax

is transformed into

.
y = By
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POWERS OF B

i) If B = diag(λ1, …, λn) then Bm = diag(λm
1 , …, λm

n ).

ii) If B is a non-trivial block given by (1), then by induction it is straightforward to show that

Bm =
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with the convention that
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= 0

for j ≥ m.

iii) If B corresponds to a complex conjugate pair of eigenvalues, and so is given by (5), let r and
θ be given by α = rcosθ, β = rsinθ. Then by induction, it can be shown

Bm = rm
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EXPONENTIALS OF B

Recall that the solution of 
.
y = By is given by y(t) = expBt.y(0). As shown in lectures, the matrix expBt

can be easily computed when B is in JNF.

i) If B = diag(λ1, …, λn) then expBt = diag(expλ1t, …, expλnt).

ii) If B is a non-trivial block given by (1), then

expBt = eλt 
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This formula is most easily verified using the decomposition given in lectures.

iii) If B corresponds to a complex conjugate pair of eigenvalues, and so is given by (5), then, as
shown in lectures

expBt = eαt 
    

cos sin

sin cos
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