Ballistic Coefficients - Explained

The Beginning

It started back around 1850 when ballisticians of many countries began experiments in an effort to improve the accuracy of artillery shells and the measurements of the drag(1) or air resistance they encountered during flight. Basically, the necessities of war meant everyone wanted more accuracy.

There were no computers back in those days, so all of the mathematical solutions to these very complex equations were hand written. These took months and years to complete. Between 1875 and 1898, German, French, Russian and English ballisticians worked feverishly to quantify air drag resistance of artillery shells and finally came up with a standard model of projectile to which further calculations could be based.

This was to make it a little easier to calculate the trajectories of new shaped projectiles by lessening the time required for new calculations. This standard reference projectile shape is known as the G_{1} Standard bullet. "G" stands for the Gâvre(1) Commission of the French Naval Artillery. This commission conducted many air resistance firings at the Gâvre Proving Ground utilising a Belgian chronograph manufactured in 1864 . Figure 1 below illustrates the shape and measurement of this projectile in "calibres". One calibre is the width of the projectile.

Fig. 1

Between the First and the Second World Wars, again, out of necessity, further projectile shapes were designed, calculated and mapped for air drag resistance. Different projectile shapes emerged now with angled bases called "Boattails" and pointed tips. These pointed tips were constructed by making the radius of the projectile curve at the front called the "ogive", larger. The Ogive radius of the Type 1 projectile in Figure 1 is 2.00 calibres. The radii of the new projectile types were now between 6 and 10 calibres. These projectile types were numbered $G_{2}, G_{3}, G_{5}, G_{6}, G_{7}$ and G_{8}. They ranged from flat based more rounded nosed ones, to classic spitzer shaped projectiles with angled boattails as seen in today's long range small arms ammunition.

There are many projectiles we use today that closely match these reference models. For instance, the .30 -cal Berger 210 gn VLD very closely resembles the G_{7} model, although it is not actually a G_{7}. The .30-cal Nosler 150gn Ballistic Tip very closely resembles the G6.

The exact model of the G_{7} projectile is illustrated in Figure 2. If another projectile has all the same measurements except that the boattail angle is 8° instead of 7.5°, it is not a G_{7}.

Fig. 2

Drag and Form Factors of Projectiles

The amount of drag that a projectile experiences in supersonic flight heavily depends on it's shape and velocity. The speed of sound at sea level at a $15^{\circ} \mathrm{C}$, and $78 \% \mathrm{RH}$, may be around 1116 fps $(340 \mathrm{~m} / \mathrm{s})$. This can be referred to as Mach 1. A projectile travelling at this speed is travelling at the same speeds that sound travels in the same atmosphere. A projectile travelling in this same atmosphere at 2232 fps will be doing Mach 2 . Mach 2.5 would be approximately 2790 fps and so on.

A projectile travelling at these speeds has shock waves(2) of compressed air attached to the front and rear which tends to draw a large amount of energy from it, thus slowing it down aggressively. These shock waves are attached at certain angles to the projectile which change at different speeds and as a result, draw different amounts of energy from the projectile. What this means is that the amount of drag or resistance on the projectile varies at different speeds .

The two main factors that affect drag (air resistance) on a spin-stabilised free-flight projectile are, shape and velocity.

The blunt-nosed G_{1} projectile will be less efficient through the air than the G_{7} as it is simply not as streamlined. The relationship of a projectiles weight and it's cross sectional area is called the "sectional density". An example that may shed some light on this can be explained with arrows and crossbow bolts.

If an arrow is fired from a bow made with an aluminium shaft, a broad head tip and 3 plastic flights at a speed of 380 fps , it will only travel so far before hitting the ground. If a crossbow bolt made of the same width aluminium shaft but only $1 / 3$ the length, the same broad head tip and plastic flights and was fired at the same velocity of 380 fps , it would hit the ground earlier. Why? It has the same frontal area exposed to the oncoming air flow but it is lighter due to only being $1 / 3$ the length. The crossbow bolt had a lower sectional density than the arrow. Projectiles of the same calibre, but different weights, have different sectional densities.

However, this crossbow bolt that has a lower sectional density will travel further if launched at a higher velocity. This is usually the case with crossbows anyway. All things being equal, the higher the sectional density, the longer the flight or range.

The "form factor" of a projectile is a numerical figure that compares a projectile's unique drag to that of a standard bullet or reference bullet such as the G_{1} or G_{7} projectile. The lower the form factor (FF) of the test projectile, the more efficient it is. Let's compare the G_{1} projectile to the G_{7} projectile.

At a velocity of 2792 fps the amount of drag on the G_{1} projectile can be quantified into a numerical figure of say 0.540 . At the same velocity, the G_{7} projectile may have a drag coefficient(3) of 0.270 . The lower the drag coefficient the more efficient it is through the air. Compare these two by dividing the G_{7} by the G_{1} figures and you have the $\mathrm{G}_{1} \mathrm{FF}$ of 0.5 . If the figure is below 1.0 the projectile is more efficient than the reference projectile. In Figure 3 below you can see that the G_{7} is twice as efficient in air when compared to the G_{1}.

Fig. 3

Drag of 0.270 Drag of

Ballistic Coefficients(4)

A Ballistic coefficient is a numerical figure usually between 0 and 1 than allows you to see basically how well it penetrates through the air. The closer more accurate description would be "a numerical factor that describes the rate of velocity degradation of a particular projectile when compared with the rate of velocity degradation of a standard projectile". This figure is determined by two attributes of the projectile, sectional density and form factor.

The Sectional Density of a of a 210 gn Berger VLD would be as follows;

Sectional Density (SD)	$=$	$\frac{\text { Bullet weight in pounds (lb) }}{\text { Bullet calibre } \times \text { Bullet calibre }}$
Sectional Density (SD)	$=\quad \frac{\text { Weight in Grains }(210) / 7000(1 \mathrm{lb})}{.308 \times .308}$	
	$=0.316$	

Divide this number by the G_{1} Form factor $\left(\boldsymbol{i}_{1}\right)$, and you have the G_{1} Ballistic Coefficient.

This would read as; $\quad B C=\frac{S D}{i}$
SD = Sectional Density
$\boldsymbol{i}=$ Form Factor

| Therefore; | $\frac{0.316}{0.489}$ (\boldsymbol{i}_{1} form factor) |
| :--- | :--- | :--- |
| | |
| $G_{1} B C=$ | 0.646 (at 2790 fps only) |

If this projectile was travelling at a lower velocity then the G_{1} Ballistic Coefficient would change. At 2000 fps the form factor may be around .496. This would mean the G_{1} BC would be;

$\frac{0.316}{0.496}$ (\boldsymbol{i}_{1} form factor)	
$\mathrm{G}_{1} \mathrm{BC}=$	0.637 (at 2000fps only)

And again at 1500 fps

	$\frac{0.316}{0.532}$ (\boldsymbol{i}_{1} form factor)
$\mathrm{G}_{1} B C=$	0.593 (at 1500 fps only)

You can see what is happening here, the $\boldsymbol{i}_{\mathbf{1}}$ FF is changing at different speeds because the Form Factor is made from the drag coefficient. The drag coefficient is changing at the velocity is changing (slowing down). The $G_{1} B C$ given to us by Berger is the average $G_{1} B C$ experienced throughout the entire supersonic flight of the projectile. In this instance the average $G_{1} B C$ of this Berger 210 gn projectile is 0.631 . BC's supplied by other manufacturers may not be the average, but ones tested at short range at one or more velocities

BC myths and facts

1. $B C$'s are calculated all the same way.

No they aren't. They are calculated with different measuring equipment, some using ICAO standard atmospheres and other using Army Std Metro Atmospheres. Some are measured close to the chronographs and others are measured at some distance away. Some lower velocity BC's are measured with down-loaded cartridges at close range.
2. $G_{1} B C$'s change with velocity(3).

Yes they do. As described earlier as velocity changes, so does the drag and therefore the FF. Change the FF and the $\mathrm{G}_{1} \mathrm{BC}$ changes.
3. $\mathrm{G}_{7} \mathrm{BC}$'s don't change with velocity(3).

Yes they do. Only an exact G_{7} projectile will not, as the $\mathrm{G}_{7} \mathrm{BC}$ of a G_{7} projectile is only capering it against itself. Other projectiles that are close to the G_{7} profile will have a different form factor from the G_{7} value of 1.0. As these other projectiles' form factors (\boldsymbol{i}_{7}) change with velocity, so do the BC's., just to a lesser degree than G_{1} 's.
4. All Form Factors are the same.

No they are not. The $F F$ to calculate a $\mathrm{G}_{1} \mathrm{BC}$ must be a G_{1} Form Factor represented as \boldsymbol{i}_{1}. $A G_{7} B C$ needs a G_{7} Form factor represented as \boldsymbol{i}_{7}. The FF numerical value of a G_{1} projectile equals 1.0. The FF numerical value of a G_{7} projectile equals 1.0. The G_{7} FF of a 30 cal 210 gn Berger VLD may be 0.983, showing it is a little more efficient than the G_{7} standard projectile. The $G_{7} B C$ of this would then be;

$$
\frac{0.316(S D)}{0.983(i 7)}=0.321
$$

5. BC's are not important.

Yes they are. Without this knowledge we cannot estimate the loss of velocity down range. Knowing the muzzle velocity is great but knowing the terminal velocity just before the projectile strikes the target in a hunting situation is very helpful. This can educate us as to what projectiles will perform on the game we choose to take.
6. Sectional Density information is helpful(5).

Yes it is. Especially when hunting dangerous game. When taking dangerous game, the projectiles should have a sectional density of over 0.300 . This gives the professional hunting guide (PH) vital information on the penetration capabilities of the projectile.

Summary

Modelling drag on free flight spin stabilised projectiles has been going on for a long time now. Born out of necessity as a result of War, these calculations as previously stated are very complicated and therefore very misunderstood by the sport shooter and hunter.

Some of us only require small amounts of this information and other, a fair bit more. There is a lot of information available today which can be highly attributed to the speed at which information travels. With the massive steps forward in technology in the last 20 years, information such as this is now required by some sport shooters, particularly those in the long range shooting community.

Three simple areas should be remembered;

1. The higher the $B C$, the better it slices through the air.
2. The higher the Drag Coefficient $\left(C_{D}\right)$, the worse it slices through the air.
3. The higher the Sectional Density, the deeper the penetration.

The term Ballistic Coefficient is a very loose one in itself and someone should say is... what type of Ballistic Coefficient? This term, when understood a little better can help you the shooter make better informed decisions when choosing projectiles in the future.

Glen Roberts
Chief Instructor
Precision Shooting Australia
www.precisionshooting.com.au

References

1. McCoy RL. A Brief History of Exterior Ballistics. Modern Exterior Ballistics. Pennsylvania, USA: Schiffer Publishing Ltd; 1999. p. 10-7.
2. McCoy RL. Notes on Aerodynamic Drag. Modern Exterior Ballistics. Pennsylvania, USA: Schiffer Publishing Ltd; 1999. p. 57-69.
3. Litz B. The Ballistic Coefficient. Applied Ballistics for Long Range Shooting. Ceadr Springs MI: Applied Ballistics LLC; 2009. p. 14-5.
4. Litz B. Experimental Drag and BC Data. Applied Ballistics for Long Range Shooting. Cedar Springs MI: Applied Ballistics LLC; 2009. p. 468.
5. LaGrange M. Ballistics in Perspective. 2nd ed. Ferndale CA: Proffessional Hunter Supplies Publishing Division; 1990. p. 22-8.
