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Abstract

Let X be a projective variety and f : X → CP1 nondegenerate. Then we may mimic the
usual Morse theory by studying the topology of X in terms of the slices f−1(t), t ∈ CP1, and in
particular a generic fiber X∗. The local behavior of f is no longer described by an index, but
by an action on H∗(X∗) called the monodromy. The monodromy is described explicitly by the
Picard-Lefschetz formula. We then restrict to the special case where f is the Lefschetz fibration
associated to a Lefschetz pencil on X. The Lefschetz hyperplane theorem relates the homology
of X with that of X∗. The Hard Lefschetz theorem gives a decomposition of H∗(X) in terms of
generic hyperplane sections; equivalently, it gives a decompositon of Hn−1(X∗) into vanishing
and invariant cycles.

1 Introduction

In real Morse theory, we study topology of a manifold X by means of a nondegenerate smooth
function f : X → R. We find that the diffeomorphism type of the sublevel set Xt :=
f−1 ((−∞, t]) does not change as t varies unless t crosses at critical value; as t crosses a critical
value, we find that M t undergoes a handle attachment by a λ-cell, where λ is the Morse index
of f at the corresponding critical point. The topology of M is determined completely by the
local behavior of f near its critical points, and by the Morse lemma, the local behavior of f is
completely determined by its Morse index.

Now consider the case when X is a smooth projective variety, and f is a holomorphic func-
tion f : X → P1 (note that the obvious choice of taking f : X → C would not be interesting,
since for compact M the only such holomorphic functions are constant). If f has only nonde-
generate critical points, then by a holomorphic version of the Morse lemma, we can choose local
holomorphic coordinates near its critical points such that f is quadratic.

Since f is a complex valued (thinking of P1 as C ∪ {∞}), we no longer have a good notion
of sublevel sets, nor of its index at a critical point. In the case of a real Morse function, as
we vary t ∈ R parameterizing the sublevel sets, we have no choice but to cross each critical
value. In the present case, we can approach a critical value in a more interesting way. Consider
and closed path γ in P1 which does not pass through any critical valued of f . Then we can
try to understand how the topology of the fibers f−1(t) changes along γ. This leads to the
notion of the monodromy group. Let P∗ be P1 \ Crit(f). We obtain a representation of π1(P∗)
on Aut (H∗ (X∗)), where X∗ is a generic fiber of f , and the monodromy group is the subgroup
of Aut (H∗ (X∗)) generated by this action. The action of the monodromy group is described
explicitly by the Picard-Lefschetz formula.

This leads to two types of cycles: those which are invariant under the action of the mon-
odromy group, denoted I, and those which vanish when pushed inside of X∗, denoted V for
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vanishing cycles. The Lefshetz hyperplane and Hard Lefschetz theorems describe explicitly the
relationship between I and V and the topology of X and X∗.

In what follows, we will outline how to make these notions rigorous, state the theorems
precisely, and give some applications. This paper will roughly follow the exposition of [9] and
[6]. A treatment by Lefschetz himself can be found in [7]. Applications beyond the scope of this
paper can be found in [10]. The theory we present is related to more modern developments in
algebraic geometry; see for example [1].

2 Complex Morse Functions

Let X be a compact n-dimensional complex manifold and f : X → P1 a holomorphic map.
Suppose that f is a nonresonant Morse function, i.e. all of its critical points are nondegenerate
and distinct critical points correspond to distinct critical values. Let C = {t1, . . . , tr} be the set
of critical points of f . Since P1 ≃ S2, we may decompose P1 as the union of two closed disks
D+ and D− chosen so that all of the critical values lie in the interior to D+. Let ∗ ∈ ∂D+ be a
regular value, and set X+ = f−1(D+) and X∗ = f−1(∗). By the Ehresmann fibration theorem
[3], f fibres locally trivially over D+ \ C, so we might expect to obtain information about the
topology of X+ from that of the generic fiber X∗, together with precise information about the
local behavior of f near the critical points. In fact, we have the following.

Lemma 2.1. The homology Hq(X+, X∗) vanishes for q ̸= n. For q = n, Hn(X+,X∗) is free of
rank r, with one generator Cj for each critical point.

Sketch of proof. Let xi be the critial points and ti be the critical values. Let Dj ⊂ D+ be disks
of radius ρ centered at the critical values with ρ small enough so that they are all disjoint. Let
li be a path in D+ connecting ∗ to ∂Dj . Let l be the union of the paths li and k be the union
of l and ∪DJ (see figure 1). Set L = f−1(l) and K = f−1(k). Using the fact that k is a strong
deformation retract of D+ and that ∗ is a strong deformation retract of l, together with the
Ehresmann fibration theorem and the homotopy lifting property of fibrations, it is not hard to
show that X∗ is a deformation retract of L and that K is a deformation retract of X+. Then
we have

Hq(X+, X∗) = Hq(X+, L) = Hq(K,L).

Now let XDj = f−1(Dj) and Xj = f−1(tj + ρ). Let U = f−1(l − ∪∂Dj), i.e. U is the open
subset of L which does not lie above any of the boundaries ∂Dj . Then we have

K − U =
⊔

XDj ,

L− U =
⊔

Xj .

Thus by excision we have

Hq(K,L) = Hq(K − U,L− U) =

r⊕
j=1

Hq(XDj , Xj),

and hence Hq(X+, X∗) = ⊕jHq(XDj , Xj). Now let Bj be a small closed ball of radius R in X+

centered at xj . Set Ej = XDj ∩ Bj , Fj = Xj ∩ Bj . Once again using the Ehresmann fibration
theorem, one may deduce that Fj is a deformation retract of Fj ∪ (XDj \ int(Bj)). Using this
fact, and excising XDj \ int(Bj), gives

Hq(XDj , Xj) = Hq(XDj , Fj ∪ (XDj \ int(Bj))) = Hq(Ej , Fj).
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Figure 1: The sets l and k and the paths generating π1(D \ {t1, . . . , tr}).

Thus the homology of the pair (X+, X∗) is completely localized near the critical points of f .
Since f is a nondegenerate, we may choose local (holomorphic) Morse coordinates near Bj so
that

f(x) = tj +
∑
i

x2
i .

Using these local coordinates (and dropping the index j), we have

E = {x ∈ Cn :
∑
i

|xi|2 ≤ R2, |
∑
i

x2
i | ≤ ρ},

F = {x ∈ E :
∑
i

z2i = ρ}.

From this description, it is clear that E is contractible, and hence the connecting homomorphism
Hq(E,F ) → Hq−1(F ) is an isomorphism when q ̸= 0. Furthermore, H0(E,F ) = 0. It is
relatively straightforward to check that F is diffeomorphic to the disk bundle of the tangent
bundle TSn−1. Hence for q ̸= 0,

Hq(E,F ) = Hq−1(F ) = Hq−1(TS
n−1) = Hq−1(S

n−1) =

{
0, q ̸= n,
Z, q = n.

It will be useful to have a geometric description of the generators of Hn(X+, X∗). For each
critical point, we consider the local model (E,F ). As noted in the proof of the lemma, F is
diffeomorphic to the disk bundle of the tangent bundle TSn−1√

ρ , where Sn−1√
ρ is the sphere of

radius
√
ρ. For each (sufficiently small) ρ > 0, Hn−1(Fρ) is generated by the sphere Sρ (once we

choose an orientation on it). However, as we approach a critical point, ρ → 0 and Fρ degenerates
into the cone ∑

x2
i = 0.

For this reason, we call Sρ a vanishing sphere. Its class in Hn−1(Fρ), denoted ∆, is called a
vanishing cycle. As ρ → 0, the family of vanishing cycles ∆ trace out an n-cycle Z. More
precisely, since ∂ : Hn(E,F ) → Hn−1(F ) is an isomorphism, there exists a unique relative cycle
Z ∈ Hn(E,F ) such that ∂Z = ∆. Such a relative cycle is called the Lefschetz thimble associated
with the vanishing cycle ∆ (see figures 2 and 3).
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Figure 2: The thimble Z bounding the vanishing sphere ∆. As the radius goes to 0, the disk bundle collapses
to a cone and ∆ vanishes. The disk ∇ is a generator of the infinite cyclic group Hn−1(F, ∂F ).
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Figure 3: The geometric representation of the thimble Zj in Hn(X+,X∗).
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Let ∆j be the vanishing cycle corresponding to the critical point xj . Now consider the path
lj connecting xj + ρ to the basepoint ∗ of D+. Thinking of X+ as a fiber bundle over D∗

+, we
may restrict it to the path lj . Since lj is contractible, the restriction X+|lj is a trivial fiber

bundle, and hence there is a homeomorphism ϕ : F∗ × lj → X+|lj . Using this homeomorphism,

we see that the image of ∆j in Hn(X+, X∗) may be represented geometrically by the thimble
Cj = ∆j ∪ ϕ(Sn−1 × lj) (see figure 3).

We will denote by V(X∗) the submodule of Hn−1(X∗) generated by the vanishing cycles.
V(X∗) is called the module of vanishing cycles. Since each vanishing cycle is the boundary of a
thimble Cj , we have

V(X∗) = image (∂ : Hn(X+,X∗) → Hn−1(X∗))

3 Monodromy and the Picard-Lefschetz Theory

We will begin by introducing the general notions of geometric and algebraic monodromy. Sup-
pose we have a map f : A → B, B∗ ⊂ B, such that f fibers E = f−1(B∗) locally trivially over
B∗. Let γ : [0, 1] → B∗ be a path from a to b. Since [0, 1] is contractible, the pullback bundle
γ∗E is trivial, i.e. there exists a map Γ : Fa × [0, 1] → E ↪→ A which lifts γ. In detail, f ◦Γ = γ,
Γ(x, 0) = x ∀x ∈ Fa, and x 7→ Γ(x, t) is a homeomorphism Fa

∼= Fγ(t) for all t. Then for L ⊂ A
such that Fa ∪ Fb ⊂ L, Γ is a map between pairs Γ : Fa × (I, ∂I) → (A,L), where I = [0, 1].
Furthermore, since Γ1 := Γ(−, 1) gives a homeomorphism Fa

∼= Fb, it induces an isomorphism
(Γ1)∗ : H∗(Fa) → H∗(Fb). This map depends only on the homotopy class of γ (relative to ∂I),
so we denote it by γ∗ = (Γ1)∗. If γ is a closed path, then Γ is called a geometric monodromy
and γ∗ is called the algebraic monodromy. The main goal of this section is to describe γ∗ when
f is a complex Morse function.

We must introduce the notion of extension along γ. Let ι be the canonical generator of
H1(I, ∂I). Then the extension along γ is

τγ : Hq(Fa) → Hq+1(A,L)

x 7→ Γ∗(x× ι).

Now suppose x ∈ Hq(Fa). Then we have

∂τγ(x) = ∂Γ∗(x× ι)

= Γ∗(∂(x× ι))

= Γ∗((−1)q(x× {1} − x× {0})
= (−1)q ((Γ1)∗x− (Γ0)

∗x)

= (−1)q (γ∗x− x) .

That is,
γ∗(x) = x+ (−1)q∂τγ(x).

Thus we will understand γ∗ completely if we understand τγ .
Now restrict to the case where f is a complex Morse function. As before, f gives a fibration

f : X∗ → P∗ where P∗ = P1 \ {t1, . . . , tr} and X∗ = f−1(P∗). The fundamental group π1(P∗)
is generated by the paths γj , where γj is a path starting at the basepoint ∗, traveling along
a path lj to a neighborhood of tj , circling tj once counterclockwise, and then returning to ∗
back along lj . The extension τγ satisfies a certain naturality condition (i.e. it preserves certain
commutative diagrams) and a composition law, which allow us to reduce global computations
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to local ones (full details can be found in §5 of [6]). Thus we need only compute the monodromy
in the local model (E,F ).

However, in the local model we have an explicit description of everything. F is the disk
bundle of the tangent bundle TSn−1, hence Hn−1(F ) = Z, generated by the vanishing cycle
∆ = [Sn−1]. The connecting homomorphism ∂ : Hn(E,F ) → Hn−1(F ) is an isomorphism,
hence Hn(E,F ) = Z, generated by the thimble Z satisfying ∂Z = ∆. The group Hn−1(F, ∂F ) is
infinite cyclic, generated by any fiber of the disk bundle F . Denote by∇ any such disk (see figures
2 and 4). Poincaré-Lefschetz duality gives an isomorphism PD : Hn−1(F ) → Hn−1(F, ∂F ), so
we may define an intersection pairing Hn−1(F, ∂F )×Hn−1(F ) → Z by

⟨x, y⟩ := ⟨PD−1x, y⟩,

where the bracket on the right hand side is the usual Kronecker pairing. Here we use the
orientation on F induced by its complex structure. With this orientation, we have

⟨∇,∆⟩ = (−1)n(n−1)/2.

Now f is a fibration E∗ → D∗, and π1(D
∗) is generated by the path γ(t) = exp(2πit). Thus

it suffices to compute (τγ)∗(∇). This may be done explicitly in the local model (see §6 of [6] or
§4.4 of [9]). The result is

τγ(∇) = −Z

Combining this with the previous computation relating γ∗(x) and τγ(x), we have

γ∗(∇)−∇ = (−1)n−1∂τγ(∇)

= −(−1)n−1∂Z

= (−1)n∆.

For any c ∈ Hn−1(F, ∂F ) we have c = (−1)n(n−1)/2⟨c,∆⟩∇. Thus γ∗(c)−c = (−1)n+n(n−1)/2⟨c,∆⟩[∆] =
(−1)n(n+1)/2⟨c,∆⟩[∆]. Thus we have the following theorem.

Theorem 3.1. The Picard-Lefschetz formula. For q ̸= n−1, π1(P∗, ∗) acts trivially on Hq(X∗).
For q = n− 1, the generator γj acts by

(γj)∗(c)− c = (−1)n(n+1)/2⟨c,∆j⟩∆j .

Let G be the subgroup of Aut(Hn−1(X∗,Z)) generated by the monodromies. G is called the
monodromy group. We may consider the submodule I(X∗) ⊂ Hn−1(X∗,Z) which is invariant
under the action of G. I(X∗) is called the module of invariant cycles. From the Picard-Lefschetz
formula, it is clear that I(X∗) is the orthogonal complement to V(X∗) with respect to the
intersection pairing. That this gives a direct sum decomposition of Hn−1(X∗) will be the main
result of §4.

4 Pencils and the Lefschetz Theorems

So far we have studied the local behavior of a general nonresonant holomorphic Morse function
f : X → P1. Such a function gives a family of slices (Xt)t∈P1 . Using the results of sections
§2 and §3, we would like to obtain information about the global topology of X in terms of the
topology of the slices Xt. Before we do this, we must first restrict our attention to the special
case where f : X → P1 is the Lefschetz fibration associated to a Lefschetz pencil, to be defined
below.
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Figure 4: Monodromy around a critical value.

Let P (d,N) be the space of all degree d polynomials in C[x0, . . . , xN ] and let P(d,N) be
its projectivization. Let U be any subvariety of P(d,N). Then each t ∈ U defines a degree
d hypersurface Ht ⊂ PN , and this defines a family of slices Xt := X ∩ Ht on X. The family
(Xt)t∈U is called an (ample) linear system. When dimU = 1, it is called a pencil. The base
locus of the linear system is the intersection

B =
∩
t∈U

Xt,

and its elements are called base points. For any x ∈ X \ B, we obtain a hyperplane Hx ⊂ U
defined by

Hx := {f ∈ U : f(x) = 0},
i.e. the set of all functions in U which vanish at x. Hx is just a hyperplane in U , and thus can
be identified as a point in the dual projective space Û , and in this way we obtain a map

f : X \B → Û

by x 7→ Hx. For convenience, let X
∗ = X \B. Next, define

X̂ = {(x,H) ∈ X × Û : f(x) = 0 ∀p ∈ H},

i.e. X̂ is the closure in X × Û of the graph of f . X̂ is called the modification of X, and is just a
blow-up of X along the base locus B. The projection onto the second factor gives a holomorphic
map

f̂ : X̂ → Û .

To see the connection with complex Morse functions, we now retrict to the case where
U is one-dimensional, so that U ∼= Û ∼= P1. The modification gives us a holomorphic map
f̂ : X̂ → U ∼= P1. In this case, the family (Xt)t∈U is called a Lefschetz pencil if the following
conditions are satisfied:

1. The base locus B is either empty or smooth of complex codimension 1 in X.

2. The modification X̂ is a smooth manifold.

3. The map f̂ : X̂ → U is a nonresonant Morse function.
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The map f̂ : X̂ → U is called the Lefschetz fibration associated to the Lefschetz pencil on X.
We have the following genericity result (§1 and §2 of [6], §4.1 of [9]).

Theorem 4.1. For an generic projective line U ⊂ P(d,N), the pencil (Xt)t∈U is Lefschetz.

We now give an important construction of Lefschetz pencils. Fix a complex codimension 2
subspace A ⊂ PN called the axis. Let U be the set of hyperplanes in PN containing A. U can be
identified with any line in PN not containing A. Let S be any such line. S is called the screen.
Any point s ∈ S determines a unique hyperplane H(s) passing through s and containing A.
The base locus is

B =
∩
s∈S

Xs =
∩
s∈S

X ∩H(s) = X ∩A.

For a generic A, this determines a Lefschetz pencil (Xs)s∈S on X.
Now suppose X ⊂ PN and H is a hyperplane in PN which intesects X transversally (i.e. H is

generic). We will now use the results of §2 and §3 to obtain information about the relationship
between the topology ofX and the topology of X∩H. Fix any generic codimension two subspace
A ⊂ PN so that A defines a Lefschetz pencil on X as above. Then X ∩ H is diffeomorphic to
a generic fiber of the associated Lefschetz fibration f̂ : X̂ → S. As in §2, write P1 = D+ ∪D−
such that the interior of D+ contains all of the critical values of f̂ . Let X̂± = f̂−1(D±), and
let B be the base locus of the pencil on X. Let p : X̂ → X be the projection map from the
modification of X, and let B̂ = f−1(B). Then B̂ is diffeomorphic to B × P1, and since P1 ∼= S2

the Künneth theorem gives us

Hq(B̂) ∼= Hq(B)⊕Hq−2(B).

We have a natural injection Hq−2(B) → Hq(B̂) given by c 7→ c× [S2], and composing this with
the inclusion B̂ → X̂ gives a map

κ : Hq−2(B) → Hq(X̂).

Combining this with the projection map p∗ : Hq(X̂) → Hq(X), one may show the following

Lemma 4.2. The sequence

0 → Hq−2(B)
κ−→ Hq(X̂)

p∗−→ Hq(X) → 0.

is exact and splits for every q.

We now state the first theorem relating X and X ∩H.

Theorem 4.3. Lefschetz Hyperplane Theorem. If H is a hyperplane intersecting X trans-
versely, then

Hq(X,X ∩H) = 0, q ≤ n− 1.

Sketch of proof. Consider the following isomorphisms

Hq(X̂, X̂+ ∩ B̂) ∼= Hq−2(X∗, B),

Hq(X̂, X̂∗ ∪ B̂) ∼= Hq(X,X∗),

Hq(X̂+ ∪ B̂, X̂∗ ∪ B̂) ∼= Hq(X̂+, X̂∗).

The first may be deduced by excision together with the Ehresmann fibration theorem. The
second is induced by the projection map X̂ → X. The third is by excision. Using these
isomorphisms, the long exact sequence for the triple (X̂, X̂+ ∪ B̂, X̂∗ ∪ B̂) becomes

· · · → Hq−1(X∗, B) → Hq(X̂+, X̂∗) → Hq(X,X∗) → Hq−2(X∗, B) → · · · .
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By the lemma 2.1, Hq(X̂+, X̂∗) = 0 for q ≤ n− 1 and we immediately obtain isomorphisms

Hq(X,X∗) ∼= Hq−2(X∗, B), q ̸= n, n+ 1,

and the exact sequence

0 → Hn+1(X,X∗) → Hn−1(X∗, B) → Hn(X̂, X̂∗) →
→ Hn(X,X∗) → Hn−2(X∗, B) → 0.

The proof may now be completed by induction on n. For n = 1, the result is obviously true.
Now suppose that it is true for n − 1. Then dimX∗ = n − 1 and the base locus B intersects
it transversely, so by the induction hypothesis we have Hq(X∗, B) = 0 ∀q ≤ n − 2. Using the
isomorphism Hq(X,X∗) ∼= Hq−2(X∗, B) for q ̸= n, n+ 1, we obtain the desired result.

It is actually possible to prove the stronger statement that the pair (X,X ∩H) is (n − 1)-
connected (see for example [2] and [8]). This may be proved using ordinary Morse-Bott theory,
and has the advantage that it may be exteneded to the equivariant case. However, for our
purposes the above proof is sufficient, and makes explicit the role of vanishing cycles.

So far we have not made use of the monodromy of the Lefschetz fibration. Recall the module
of module of vanishing cycles:

V(X∗) = ker
(
Hn−1(X̂∗),Hn−1(X̂)

)
,

which is spanned by the vanishing cycles ∆j . Also recall the module of invariant cycles, defined
as the submodule of Hn−1(X∗) which is invariant under the action of the monodromy group.
By the Picard-Lefschetz formula, a cycle c ∈ Hn−1(X∗) is invariant if and only if ⟨c,∆j⟩ = 0 ∀j.
Thus I(X∗) is the orthogonal complement to V(X∗) with respect to the intersection pairing. We
have the following deep theorem.

Theorem 4.4. Hard Lefschetz Theorem. For field coefficients, we have

Hn−1(X∗) = V(X∗)⊕ I(X∗).

Before indicating how this theorem is proved, we must give an alternative but equivalent
statement. The Lefschetz hyperplane theorem implies that the map i∗ : Hn−1(X∗) → Hn−1(X)
is an epimorphism sending V(X∗) to 0. Hence the Hard Lefschetz theorem is equivalent to the
statement that the restriction i∗ : I(X∗) → Hn−1(X) is an isomorphism. Let i! be the Gysin
morphism Hn+1(X) → Hn−1(X∩H), i.e. i! = PDX∗ ◦i∗◦PD−1

X , where PD is the Poincaré dual
map. The Lefschetz hyperplane theorem implies that i∗ is injective, and hence i! is injective.
Furthermore, its image is I(X∗). Then it follows that the Hard Lefshetz theorem is equivalent
to the statement that the composition i∗ ◦ i! : Hq+1(X) → Hq−1(X) is an isomorphism. Let
ω ∈ H2(X) be the Poincaré dual of the hyperplane section X∗ = X ∩ H, i.e. [X∗] = ω ∩ [X].
Then we have i∗ ◦ i! = ω∩.

Thus the Hard Lefschetz theorem is equivalent to the statement that ω∩ is an isomorphism.
Now suppose x ∈ Hn+q(X), 0 ≤ q ≤ n. Then x is called primitive if ωq+1 ∩ x = 0. Then
repeated application of the isomorphism ω∩, i.e. considering a sequence of hyperplane sections
X ⊃ X ′ ⊃ X ′′ ⊃ . . . ⊃ ∅, yields the following, equivalent to the Hard Lefschetz theorem.

Theorem 4.5. Lefschetz Decomposition Theorem. Every x ∈ Hn+q(X) can be written uniquely
as

x = x0 + ω ∩ x1 + ω2 ∩ x2 + . . . ,

and each x ∈ Hn−q(X) can be written uniquely as

x = ωq ∩ x0 + ωq+1 ∩ x1 + . . . ,

where the xi ∈ Hn+q+2i(X) are primitive, and q ≥ 0.
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The Hard Lefschetz Theorem and Lefschetz Decomposition theorems may be proved using
Hodge theory. Using Poincaré duality, the Hard Lefschetz theorem is equivalent to the statement
that ∪ω : Hn−1(X) → Hn+1(X) is an isomorphism. If we work over field coefficients, then the
singular cohomology is isomorphic to the de Rham cohomology, so we may represent ω by a
2-form. Since H2

dR(PN ) is one-dimensional and spanned by [ωFS ], where ωFS is the standard
(Fubini-Study) Kähler form on PN , [ωFS ] is the Poincaré dual to the hyperplane H ⊂ PN . Thus
[ωFS |X ] represents ω ∈ H2

dR(X), i.e. ω can be represented by the Kähler form on X.
Thus for complex coefficients, the Hard Lefschetz theorem is equivalent to the statement

that L : Hn−1
dR (X) → Hn+1

dR (X), given by L(η) = η ∧ ωFS , is an isomorphism. Let L† be the
adjoint of L and h = [L,L†]. Using standard results of Hodge theory (see for example [4]), one
may show that these maps define a representation of the Lie algebra sl(2,C) on H∗

dR(X). The
Lefschetz Decomposition theorem is then a consequence of standard results in the representation
theory of sl(2,C).

5 Applications

The study of complex Morse functions has already led us to a rather deep theorem concerning
the topology of algebraic varieties. We now give some immediate corollaries to the results of
the previous sections.

To begin with, we saw that for a complex Morse function f : X → P1, the generic fibers
are all diffeomorphic (this is a consequence of the Ehresmann fibration theorem). Now consider
this result applied to PN itself. We have the following.

Proposition 5.1. All smooth degree d hypersurfaces of PN are diffeomorphic.

In the proof of the Lefschetz hyperplane theorem, we found that Hq+1(X,X∗) = Hq(X∗) for
q ̸= n, n− 1. Then if n ≥ 2, we have that H0(X,X∗) = 0 and H1(X,X∗) = 0. Then considering
the long exact sequence for the pair (X,X∗), we see H0(X,X∗) = H0(X). Thus we have the
following version of Bertini’s theorem:

Proposition 5.2. For n ≥ 2, a generic hyperplane section of X is smooth and connected.

Next we deduce an interesting consequence of the Hard Lefschetz theorem. Consider the
restriction of the intersection form onHn−q(X) to Iq(X). Here, we have a sequence of hyperplane
sections X(i+1) ⊂ X(i) and Iq(X) := I(X(q)). We have already seen that Iq(X) is the orthogonal
complement of Vq(X) with respect to the intersection form. Thus it is easy to see that the Hard
Lefschetz theorem is equivalent to the statement that the restriction of the intersection form to
Iq(X) is nondegenerate. When n− q is odd, the intersection form is skew. But a skew form on
a vector space can be nondegenerate only if the space is even dimensional. Thus we obtain the
following result.

Proposition 5.3. If X is a smooth projective variety, then the odd-dimensional Betti numbers
of X are even.

Now consider the manifold X = S3 × S1. X can be identified with a quotient of C2 \ {0}
by a holomorphic group action (see [5]), and thus inherits a complex structure, so that X is a
compact complex manifold. This manifold is called the Hopf surface. On the other hand, by the
Künneth theorem we have b1(X) = 1. Since b1(X) is odd, we see by the previouis proposition
that X is cannot be biholomorphically equivalent to a projective variety, and thus by Chow’s
theorem [4] is not algebraic. Thus we have the following highly nontrivial result:

Proposition 5.4. There exist compact complex manifolds which are not algebraic.
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