# Complex Morse Theory 

Jonathan Fisher

April 22, 2010


#### Abstract

Let $X$ be a projective variety and $f: X \rightarrow \mathbb{C P}^{1}$ nondegenerate. Then we may mimic the usual Morse theory by studying the topology of $X$ in terms of the slices $f^{-1}(t), t \in \mathbb{C P}^{1}$, and in particular a generic fiber $X_{*}$. The local behavior of $f$ is no longer described by an index, but by an action on $H_{*}\left(X_{*}\right)$ called the monodromy. The monodromy is described explicitly by the Picard-Lefschetz formula. We then restrict to the special case where $f$ is the Lefschetz fibration associated to a Lefschetz pencil on $X$. The Lefschetz hyperplane theorem relates the homology of $X$ with that of $X_{*}$. The Hard Lefschetz theorem gives a decomposition of $H_{*}(X)$ in terms of generic hyperplane sections; equivalently, it gives a decompositon of $H_{n-1}\left(X_{*}\right)$ into vanishing and invariant cycles.


## 1 Introduction

In real Morse theory, we study topology of a manifold $X$ by means of a nondegenerate smooth function $f: X \rightarrow \mathbb{R}$. We find that the diffeomorphism type of the sublevel set $X^{t}:=$ $f^{-1}((-\infty, t])$ does not change as $t$ varies unless $t$ crosses at critical value; as $t$ crosses a critical value, we find that $M^{t}$ undergoes a handle attachment by a $\lambda$-cell, where $\lambda$ is the Morse index of $f$ at the corresponding critical point. The topology of $M$ is determined completely by the local behavior of $f$ near its critical points, and by the Morse lemma, the local behavior of $f$ is completely determined by its Morse index.

Now consider the case when $X$ is a smooth projective variety, and $f$ is a holomorphic function $f: X \rightarrow \mathbb{P}^{1}$ (note that the obvious choice of taking $f: X \rightarrow \mathbb{C}$ would not be interesting, since for compact $M$ the only such holomorphic functions are constant). If $f$ has only nondegenerate critical points, then by a holomorphic version of the Morse lemma, we can choose local holomorphic coordinates near its critical points such that $f$ is quadratic.

Since $f$ is a complex valued (thinking of $\mathbb{P}^{1}$ as $\mathbb{C} \cup\{\infty\}$ ), we no longer have a good notion of sublevel sets, nor of its index at a critical point. In the case of a real Morse function, as we vary $t \in \mathbb{R}$ parameterizing the sublevel sets, we have no choice but to cross each critical value. In the present case, we can approach a critical value in a more interesting way. Consider and closed path $\gamma$ in $\mathbb{P}^{1}$ which does not pass through any critical valued of $f$. Then we can try to understand how the topology of the fibers $f^{-1}(t)$ changes along $\gamma$. This leads to the notion of the monodromy group. Let $\mathbb{P}^{*}$ be $\mathbb{P}^{1} \backslash \operatorname{Crit}(f)$. We obtain a representation of $\pi_{1}\left(\mathbb{P}^{*}\right)$ on Aut $\left(H_{*}\left(X_{*}\right)\right)$, where $X_{*}$ is a generic fiber of $f$, and the monodromy group is the subgroup of Aut $\left(H_{*}\left(X_{*}\right)\right)$ generated by this action. The action of the monodromy group is described explicitly by the Picard-Lefschetz formula.

This leads to two types of cycles: those which are invariant under the action of the monodromy group, denoted $\mathbb{I}$, and those which vanish when pushed inside of $X_{*}$, denoted $\mathbb{V}$ for
vanishing cycles. The Lefshetz hyperplane and Hard Lefschetz theorems describe explicitly the relationship between $\mathbb{I}$ and $\mathbb{V}$ and the topology of $X$ and $X_{*}$.

In what follows, we will outline how to make these notions rigorous, state the theorems precisely, and give some applications. This paper will roughly follow the exposition of [9] and [6]. A treatment by Lefschetz himself can be found in [7]. Applications beyond the scope of this paper can be found in [10]. The theory we present is related to more modern developments in algebraic geometry; see for example [1].

## 2 Complex Morse Functions

Let $X$ be a compact $n$-dimensional complex manifold and $f: X \rightarrow \mathbb{P}^{1}$ a holomorphic map. Suppose that $f$ is a nonresonant Morse function, i.e. all of its critical points are nondegenerate and distinct critical points correspond to distinct critical values. Let $C=\left\{t_{1}, \ldots, t_{r}\right\}$ be the set of critical points of $f$. Since $\mathbb{P}^{1} \simeq S^{2}$, we may decompose $\mathbb{P}^{1}$ as the union of two closed disks $D_{+}$and $D_{-}$chosen so that all of the critical values lie in the interior to $D_{+}$. Let $* \in \partial D_{+}$be a regular value, and set $X_{+}=f^{-1}\left(D_{+}\right)$and $X_{*}=f^{-1}(*)$. By the Ehresmann fibration theorem [3], $f$ fibres locally trivially over $D_{+} \backslash C$, so we might expect to obtain information about the topology of $X_{+}$from that of the generic fiber $X_{*}$, together with precise information about the local behavior of $f$ near the critical points. In fact, we have the following.
Lemma 2.1. The homology $H_{q}\left(X_{+}, X_{*}\right)$ vanishes for $q \neq n$. For $q=n, H_{n}\left(X_{+}, X_{*}\right)$ is free of rank $r$, with one generator $C_{j}$ for each critical point.

Sketch of proof. Let $x_{i}$ be the critial points and $t_{i}$ be the critical values. Let $D_{j} \subset D_{+}$be disks of radius $\rho$ centered at the critical values with $\rho$ small enough so that they are all disjoint. Let $l_{i}$ be a path in $D_{+}$connecting $*$ to $\partial D_{j}$. Let $l$ be the union of the paths $l_{i}$ and $k$ be the union of $l$ and $\cup D_{J}$ (see figure 1). Set $L=f^{-1}(l)$ and $K=f^{-1}(k)$. Using the fact that $k$ is a strong deformation retract of $D_{+}$and that $*$ is a strong deformation retract of $l$, together with the Ehresmann fibration theorem and the homotopy lifting property of fibrations, it is not hard to show that $X_{*}$ is a deformation retract of $L$ and that $K$ is a deformation retract of $X_{+}$. Then we have

$$
H_{q}\left(X_{+}, X_{*}\right)=H_{q}\left(X_{+}, L\right)=H_{q}(K, L) .
$$

Now let $X_{D_{j}}=f^{-1}\left(D_{j}\right)$ and $X_{j}=f^{-1}\left(t_{j}+\rho\right)$. Let $U=f^{-1}\left(l-\cup \partial D_{j}\right)$, i.e. $U$ is the open subset of $L$ which does not lie above any of the boundaries $\partial D_{j}$. Then we have

$$
\begin{aligned}
K-U & =\bigsqcup X_{D_{j}} \\
L-U & =\bigsqcup X_{j}
\end{aligned}
$$

Thus by excision we have

$$
H_{q}(K, L)=H_{q}(K-U, L-U)=\bigoplus_{j=1}^{r} H_{q}\left(X_{D_{j}}, X_{j}\right)
$$

and hence $H_{q}\left(X_{+}, X_{*}\right)=\oplus_{j} H_{q}\left(X_{D_{j}}, X_{j}\right)$. Now let $B_{j}$ be a small closed ball of radius $R$ in $X_{+}$ centered at $x_{j}$. Set $E_{j}=X_{D_{j}} \cap B_{j}, F_{j}=X_{j} \cap B_{j}$. Once again using the Ehresmann fibration theorem, one may deduce that $F_{j}$ is a deformation retract of $F_{j} \cup\left(X_{D_{j}} \backslash \operatorname{int}\left(B_{j}\right)\right)$. Using this fact, and excising $X_{D_{j}} \backslash \operatorname{int}\left(B_{j}\right)$, gives

$$
H_{q}\left(X_{D_{j}}, X_{j}\right)=H_{q}\left(X_{D_{j}}, F_{j} \cup\left(X_{D_{j}} \backslash \operatorname{int}\left(B_{j}\right)\right)\right)=H_{q}\left(E_{j}, F_{j}\right) .
$$



Figure 1: The sets $l$ and $k$ and the paths generating $\pi_{1}\left(D \backslash\left\{t_{1}, \ldots, t_{r}\right\}\right)$.

Thus the homology of the pair $\left(X_{+}, X_{*}\right)$ is completely localized near the critical points of $f$. Since $f$ is a nondegenerate, we may choose local (holomorphic) Morse coordinates near $B_{j}$ so that

$$
f(x)=t_{j}+\sum_{i} x_{i}^{2}
$$

Using these local coordinates (and dropping the index $j$ ), we have

$$
\begin{aligned}
E & =\left\{x \in \mathbb{C}^{n}: \sum_{i}\left|x_{i}\right|^{2} \leq R^{2},\left|\sum_{i} x_{i}^{2}\right| \leq \rho\right\}, \\
F & =\left\{x \in E: \sum_{i} z_{i}^{2}=\rho\right\} .
\end{aligned}
$$

From this description, it is clear that $E$ is contractible, and hence the connecting homomorphism $H_{q}(E, F) \rightarrow H_{q-1}(F)$ is an isomorphism when $q \neq 0$. Furthermore, $H_{0}(E, F)=0$. It is relatively straightforward to check that $F$ is diffeomorphic to the disk bundle of the tangent bundle $T S^{n-1}$. Hence for $q \neq 0$,

$$
H_{q}(E, F)=H_{q-1}(F)=H_{q-1}\left(T S^{n-1}\right)=H_{q-1}\left(S^{n-1}\right)= \begin{cases}0, & q \neq n \\ \mathbb{Z}, & q=n\end{cases}
$$

It will be useful to have a geometric description of the generators of $H_{n}\left(X_{+}, X_{*}\right)$. For each critical point, we consider the local model $(E, F)$. As noted in the proof of the lemma, $F$ is diffeomorphic to the disk bundle of the tangent bundle $T S_{\sqrt{\rho}}^{n-1}$, where $S_{\sqrt{\rho}}^{n-1}$ is the sphere of radius $\sqrt{\rho}$. For each (sufficiently small) $\rho>0, H_{n-1}\left(F_{\rho}\right)$ is generated by the sphere $S_{\rho}$ (once we choose an orientation on it). However, as we approach a critical point, $\rho \rightarrow 0$ and $F_{\rho}$ degenerates into the cone

$$
\sum x_{i}^{2}=0
$$

For this reason, we call $S_{\rho}$ a vanishing sphere. Its class in $H_{n-1}\left(F_{\rho}\right)$, denoted $\Delta$, is called a vanishing cycle. As $\rho \rightarrow 0$, the family of vanishing cycles $\Delta$ trace out an $n$-cycle $Z$. More precisely, since $\partial: H_{n}(E, F) \rightarrow H_{n-1}(F)$ is an isomorphism, there exists a unique relative cycle $Z \in H_{n}(E, F)$ such that $\partial Z=\Delta$. Such a relative cycle is called the Lefschetz thimble associated with the vanishing cycle $\Delta$ (see figures 2 and 3 ).


Figure 2: The thimble $Z$ bounding the vanishing sphere $\Delta$. As the radius goes to 0 , the disk bundle collapses to a cone and $\Delta$ vanishes. The disk $\nabla$ is a generator of the infinite cyclic group $H_{n-1}(F, \partial F)$.


Figure 3: The geometric representation of the thimble $Z_{j}$ in $H_{n}\left(X_{+}, X_{*}\right)$.

Let $\Delta_{j}$ be the vanishing cycle corresponding to the critical point $x_{j}$. Now consider the path $l_{j}$ connecting $x_{j}+\rho$ to the basepoint $*$ of $D_{+}$. Thinking of $X_{+}$as a fiber bundle over $D_{+}^{*}$, we may restrict it to the path $l_{j}$. Since $l_{j}$ is contractible, the restriction $\left.X_{+}\right|_{l_{j}}$ is a trivial fiber bundle, and hence there is a homeomorphism $\phi: F_{*} \times\left. l_{j} \rightarrow X_{+}\right|_{l_{j}}$. Using this homeomorphism, we see that the image of $\Delta_{j}$ in $H_{n}\left(X_{+}, X_{*}\right)$ may be represented geometrically by the thimble $C_{j}=\Delta_{j} \cup \phi\left(S^{n-1} \times l_{j}\right)$ (see figure 3).

We will denote by $\mathbb{V}\left(X_{*}\right)$ the submodule of $H_{n-1}\left(X_{*}\right)$ generated by the vanishing cycles. $\mathbb{V}\left(X_{*}\right)$ is called the module of vanishing cycles. Since each vanishing cycle is the boundary of a thimble $C_{j}$, we have

$$
\mathbb{V}\left(X_{*}\right)=\operatorname{image}\left(\partial: H_{n}\left(X_{+}, X_{*}\right) \rightarrow H_{n-1}\left(X_{*}\right)\right)
$$

## 3 Monodromy and the Picard-Lefschetz Theory

We will begin by introducing the general notions of geometric and algebraic monodromy. Suppose we have a map $f: A \rightarrow B, B^{*} \subset B$, such that $f$ fibers $E=f^{-1}\left(B^{*}\right)$ locally trivially over $B^{*}$. Let $\gamma:[0,1] \rightarrow B^{*}$ be a path from $a$ to $b$. Since $[0,1]$ is contractible, the pullback bundle $\gamma^{*} E$ is trivial, i.e. there exists a map $\Gamma: F_{a} \times[0,1] \rightarrow E \hookrightarrow A$ which lifts $\gamma$. In detail, $f \circ \Gamma=\gamma$, $\Gamma(x, 0)=x \forall x \in F_{a}$, and $x \mapsto \Gamma(x, t)$ is a homeomorphism $F_{a} \cong F_{\gamma(t)}$ for all $t$. Then for $L \subset A$ such that $F_{a} \cup F_{b} \subset L, \Gamma$ is a map between pairs $\Gamma: F_{a} \times(I, \partial I) \rightarrow(A, L)$, where $I=[0,1]$. Furthermore, since $\Gamma_{1}:=\Gamma(-, 1)$ gives a homeomorphism $F_{a} \cong F_{b}$, it induces an isomorphism $\left(\Gamma_{1}\right)_{*}: H_{*}\left(F_{a}\right) \rightarrow H_{*}\left(F_{b}\right)$. This map depends only on the homotopy class of $\gamma$ (relative to $\partial I$ ), so we denote it by $\gamma_{*}=\left(\Gamma_{1}\right)_{*}$. If $\gamma$ is a closed path, then $\Gamma$ is called a geometric monodromy and $\gamma_{*}$ is called the algebraic monodromy. The main goal of this section is to describe $\gamma_{*}$ when $f$ is a complex Morse function.

We must introduce the notion of extension along $\gamma$. Let $\iota$ be the canonical generator of $H_{1}(I, \partial I)$. Then the extension along $\gamma$ is

$$
\begin{aligned}
\tau_{\gamma}: H_{q}\left(F_{a}\right) & \rightarrow H_{q+1}(A, L) \\
x & \mapsto \Gamma_{*}(x \times \iota) .
\end{aligned}
$$

Now suppose $x \in H_{q}\left(F_{a}\right)$. Then we have

$$
\begin{aligned}
\partial \tau_{\gamma}(x) & =\partial \Gamma_{*}(x \times \iota) \\
& =\Gamma_{*}(\partial(x \times \iota)) \\
& =\Gamma_{*}\left((-1)^{q}(x \times\{1\}-x \times\{0\})\right. \\
& =(-1)^{q}\left(\left(\Gamma_{1}\right)_{*} x-\left(\Gamma_{0}\right)^{*} x\right) \\
& =(-1)^{q}\left(\gamma_{*} x-x\right)
\end{aligned}
$$

That is,

$$
\gamma_{*}(x)=x+(-1)^{q} \partial \tau_{\gamma}(x)
$$

Thus we will understand $\gamma_{*}$ completely if we understand $\tau_{\gamma}$.
Now restrict to the case where $f$ is a complex Morse function. As before, $f$ gives a fibration $f: X^{*} \rightarrow \mathbb{P}^{*}$ where $\mathbb{P}^{*}=\mathbb{P}^{1} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$ and $X^{*}=f^{-1}\left(\mathbb{P}^{*}\right)$. The fundamental group $\pi_{1}\left(\mathbb{P}^{*}\right)$ is generated by the paths $\gamma_{j}$, where $\gamma_{j}$ is a path starting at the basepoint $*$, traveling along a path $l_{j}$ to a neighborhood of $t_{j}$, circling $t_{j}$ once counterclockwise, and then returning to $*$ back along $l_{j}$. The extension $\tau_{\gamma}$ satisfies a certain naturality condition (i.e. it preserves certain commutative diagrams) and a composition law, which allow us to reduce global computations
to local ones (full details can be found in $\S 5$ of [6]). Thus we need only compute the monodromy in the local model $(E, F)$.

However, in the local model we have an explicit description of everything. $F$ is the disk bundle of the tangent bundle $T S^{n-1}$, hence $H_{n-1}(F)=\mathbb{Z}$, generated by the vanishing cycle $\Delta=\left[S^{n-1}\right]$. The connecting homomorphism $\partial: H_{n}(E, F) \rightarrow H_{n-1}(F)$ is an isomorphism, hence $H_{n}(E, F)=\mathbb{Z}$, generated by the thimble $Z$ satisfying $\partial Z=\Delta$. The group $H_{n-1}(F, \partial F)$ is infinite cyclic, generated by any fiber of the disk bundle $F$. Denote by $\nabla$ any such disk (see figures 2 and 4). Poincaré-Lefschetz duality gives an isomorphism $P D: H^{n-1}(F) \rightarrow H_{n-1}(F, \partial F)$, so we may define an intersection pairing $H_{n-1}(F, \partial F) \times H_{n-1}(F) \rightarrow \mathbb{Z}$ by

$$
\langle x, y\rangle:=\left\langle P D^{-1} x, y\right\rangle,
$$

where the bracket on the right hand side is the usual Kronecker pairing. Here we use the orientation on $F$ induced by its complex structure. With this orientation, we have

$$
\langle\nabla, \Delta\rangle=(-1)^{n(n-1) / 2}
$$

Now $f$ is a fibration $E^{*} \rightarrow D^{*}$, and $\pi_{1}\left(D^{*}\right)$ is generated by the path $\gamma(t)=\exp (2 \pi i t)$. Thus it suffices to compute $\left(\tau_{\gamma}\right)_{*}(\nabla)$. This may be done explicitly in the local model (see $\S 6$ of $[6]$ or $\S 4.4$ of [9]). The result is

$$
\tau_{\gamma}(\nabla)=-Z
$$

Combining this with the previous computation relating $\gamma_{*}(x)$ and $\tau_{\gamma}(x)$, we have

$$
\begin{aligned}
\gamma_{*}(\nabla)-\nabla & =(-1)^{n-1} \partial \tau_{\gamma}(\nabla) \\
& =-(-1)^{n-1} \partial Z \\
& =(-1)^{n} \Delta .
\end{aligned}
$$

For any $c \in H_{n-1}(F, \partial F)$ we have $c=(-1)^{n(n-1) / 2}\langle c, \Delta\rangle \nabla$. Thus $\gamma_{*}(c)-c=(-1)^{n+n(n-1) / 2}\langle c, \Delta\rangle[\Delta]=$ $(-1)^{n(n+1) / 2}\langle c, \Delta\rangle[\Delta]$. Thus we have the following theorem.
Theorem 3.1. The Picard-Lefschetz formula. For $q \neq n-1, \pi_{1}\left(\mathbb{P}^{*}, *\right)$ acts trivially on $H_{q}\left(X_{*}\right)$. For $q=n-1$, the generator $\gamma_{j}$ acts by

$$
\left(\gamma_{j}\right)_{*}(c)-c=(-1)^{n(n+1) / 2}\left\langle c, \Delta_{j}\right\rangle \Delta_{j} .
$$

Let $\mathfrak{G}$ be the subgroup of $\operatorname{Aut}\left(H_{n-1}\left(X_{*}, \mathbb{Z}\right)\right)$ generated by the monodromies. $\mathfrak{G}$ is called the monodromy group. We may consider the submodule $\mathbb{I}\left(X_{*}\right) \subset H_{n-1}\left(X_{*}, \mathbb{Z}\right)$ which is invariant under the action of $\mathfrak{G} . \mathbb{I}\left(X_{*}\right)$ is called the module of invariant cycles. From the Picard-Lefschetz formula, it is clear that $\mathbb{I}\left(X_{*}\right)$ is the orthogonal complement to $\mathbb{V}\left(X_{*}\right)$ with respect to the intersection pairing. That this gives a direct sum decomposition of $H_{n-1}\left(X_{*}\right)$ will be the main result of $\S 4$.

## 4 Pencils and the Lefschetz Theorems

So far we have studied the local behavior of a general nonresonant holomorphic Morse function $f: X \rightarrow \mathbb{P}^{1}$. Such a function gives a family of slices $\left(X_{t}\right)_{t \in \mathbb{P}^{1}}$. Using the results of sections $\S 2$ and $\S 3$, we would like to obtain information about the global topology of $X$ in terms of the topology of the slices $X_{t}$. Before we do this, we must first restrict our attention to the special case where $f: X \rightarrow \mathbb{P}^{1}$ is the Lefschetz fibration associated to a Lefschetz pencil, to be defined below.


Figure 4: Monodromy around a critical value.

Let $P(d, N)$ be the space of all degree $d$ polynomials in $\mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$ and let $\mathbb{P}(d, N)$ be its projectivization. Let $U$ be any subvariety of $\mathbb{P}(d, N)$. Then each $t \in U$ defines a degree $d$ hypersurface $H_{t} \subset \mathbb{P}^{N}$, and this defines a family of slices $X_{t}:=X \cap H_{t}$ on $X$. The family $\left(X_{t}\right)_{t \in U}$ is called an (ample) linear system. When $\operatorname{dim} U=1$, it is called a pencil. The base locus of the linear system is the intersection

$$
B=\bigcap_{t \in U} X_{t}
$$

and its elements are called base points. For any $x \in X \backslash B$, we obtain a hyperplane $H_{x} \subset U$ defined by

$$
H_{x}:=\{f \in U: f(x)=0\}
$$

i.e. the set of all functions in $U$ which vanish at $x . H_{x}$ is just a hyperplane in $U$, and thus can be identified as a point in the dual projective space $\hat{U}$, and in this way we obtain a map

$$
f: X \backslash B \rightarrow \hat{U}
$$

by $x \mapsto H_{x}$. For convenience, let $X^{*}=X \backslash B$. Next, define

$$
\hat{X}=\{(x, H) \in X \times \hat{U}: f(x)=0 \forall p \in H\}
$$

i.e. $\hat{X}$ is the closure in $X \times \hat{U}$ of the graph of $f . \hat{X}$ is called the modification of $X$, and is just a blow-up of $X$ along the base locus $B$. The projection onto the second factor gives a holomorphic map

$$
\hat{f}: \hat{X} \rightarrow \hat{U}
$$

To see the connection with complex Morse functions, we now retrict to the case where $U$ is one-dimensional, so that $U \cong \hat{U} \cong \mathbb{P}^{1}$. The modification gives us a holomorphic map $\hat{f}: \hat{X} \rightarrow U \cong \mathbb{P}^{1}$. In this case, the family $\left(X_{t}\right)_{t \in U}$ is called a Lefschetz pencil if the following conditions are satisfied:

1. The base locus $B$ is either empty or smooth of complex codimension 1 in $X$.
2. The modification $\hat{X}$ is a smooth manifold.
3. The map $\hat{f}: \hat{X} \rightarrow U$ is a nonresonant Morse function.

The map $\hat{f}: \hat{X} \rightarrow U$ is called the Lefschetz fibration associated to the Lefschetz pencil on $X$. We have the following genericity result ( $\S 1$ and $\S 2$ of [6], $\S 4.1$ of [9]).
Theorem 4.1. For an generic projective line $U \subset \mathbb{P}(d, N)$, the pencil $\left(X_{t}\right)_{t \in U}$ is Lefschetz.
We now give an important construction of Lefschetz pencils. Fix a complex codimension 2 subspace $A \subset \mathbb{P}^{N}$ called the axis. Let $U$ be the set of hyperplanes in $\mathbb{P}^{N}$ containing $A . U$ can be identified with any line in $\mathbb{P}^{N}$ not containing $A$. Let $S$ be any such line. $S$ is called the screen. Any point $s \in S$ determines a unique hyperplane $H(s)$ passing through $s$ and containing $A$. The base locus is

$$
B=\bigcap_{s \in S} X_{s}=\bigcap_{s \in S} X \cap H(s)=X \cap A
$$

For a generic $A$, this determines a Lefschetz pencil $\left(X_{s}\right)_{s \in S}$ on $X$.
Now suppose $X \subset \mathbb{P}^{N}$ and $H$ is a hyperplane in $\mathbb{P}^{N}$ which intesects $X$ transversally (i.e. $H$ is generic). We will now use the results of $\S 2$ and $\S 3$ to obtain information about the relationship between the topology of $X$ and the topology of $X \cap H$. Fix any generic codimension two subspace $A \subset \mathbb{P}^{N}$ so that $A$ defines a Lefschetz pencil on $X$ as above. Then $X \cap H$ is diffeomorphic to a generic fiber of the associated Lefschetz fibration $\hat{f}: \hat{X} \rightarrow S$. As in $\S 2$, write $\mathbb{P}^{1}=D_{+} \cup D_{-}$ such that the interior of $D_{+}$contains all of the critical values of $\hat{f}$. Let $\hat{X}_{ \pm}=\hat{f}^{-1}\left(D_{ \pm}\right)$, and let $B$ be the base locus of the pencil on $X$. Let $p: \hat{X} \rightarrow X$ be the projection map from the modification of $X$, and let $\hat{B}=f^{-1}(B)$. Then $\hat{B}$ is diffeomorphic to $B \times \mathbb{P}^{1}$, and since $\mathbb{P}^{1} \cong S^{2}$ the Künneth theorem gives us

$$
H_{q}(\hat{B}) \cong H_{q}(B) \oplus H_{q-2}(B) .
$$

We have a natural injection $H_{q-2}(B) \rightarrow H_{q}(\hat{B})$ given by $c \mapsto c \times\left[S^{2}\right]$, and composing this with the inclusion $\hat{B} \rightarrow \hat{X}$ gives a map

$$
\kappa: H_{q-2}(B) \rightarrow H_{q}(\hat{X}) .
$$

Combining this with the projection map $p_{*}: H_{q}(\hat{X}) \rightarrow H_{q}(X)$, one may show the following
Lemma 4.2. The sequence

$$
0 \rightarrow H_{q-2}(B) \xrightarrow{\kappa} H_{q}(\hat{X}) \xrightarrow{p_{*}} H_{q}(X) \rightarrow 0 .
$$

is exact and splits for every $q$.
We now state the first theorem relating $X$ and $X \cap H$.
Theorem 4.3. Lefschetz Hyperplane Theorem. If $H$ is a hyperplane intersecting $X$ transversely, then

$$
H_{q}(X, X \cap H)=0, q \leq n-1 .
$$

Sketch of proof. Consider the following isomorphisms

$$
\begin{aligned}
H_{q}\left(\hat{X}, \hat{X}_{+} \cap \hat{B}\right) & \cong H_{q-2}\left(X_{*}, B\right), \\
H_{q}\left(\hat{X}, \hat{X}_{*} \cup \hat{B}\right) & \cong H_{q}\left(X, X_{*}\right), \\
H_{q}\left(\hat{X}_{+} \cup \hat{B}, \hat{X}_{*} \cup \hat{B}\right) & \cong H_{q}\left(\hat{X}_{+}, \hat{X}_{*}\right) .
\end{aligned}
$$

The first may be deduced by excision together with the Ehresmann fibration theorem. The second is induced by the projection map $\hat{X} \rightarrow X$. The third is by excision. Using these isomorphisms, the long exact sequence for the triple $\left(\hat{X}, \hat{X}_{+} \cup \hat{B}, \hat{X}_{*} \cup \hat{B}\right)$ becomes

$$
\cdots \rightarrow H_{q-1}\left(X_{*}, B\right) \rightarrow H_{q}\left(\hat{X}_{+}, \hat{X}_{*}\right) \rightarrow H_{q}\left(X, X_{*}\right) \rightarrow H_{q-2}\left(X_{*}, B\right) \rightarrow \cdots
$$

By the lemma 2.1, $H_{q}\left(\hat{X}_{+}, \hat{X}_{*}\right)=0$ for $q \leq n-1$ and we immediately obtain isomorphisms

$$
H_{q}\left(X, X_{*}\right) \cong H_{q-2}\left(X_{*}, B\right), q \neq n, n+1
$$

and the exact sequence

$$
\begin{aligned}
0 \rightarrow H_{n+1}\left(X, X_{*}\right) & \rightarrow H_{n-1}\left(X_{*}, B\right) \rightarrow H_{n}\left(\hat{X}, \hat{X}_{*}\right) \rightarrow \\
& \rightarrow H_{n}\left(X, X_{*}\right) \rightarrow H_{n-2}\left(X_{*}, B\right) \rightarrow 0 .
\end{aligned}
$$

The proof may now be completed by induction on $n$. For $n=1$, the result is obviously true. Now suppose that it is true for $n-1$. Then $\operatorname{dim} X_{*}=n-1$ and the base locus $B$ intersects it transversely, so by the induction hypothesis we have $H_{q}\left(X_{*}, B\right)=0 \forall q \leq n-2$. Using the isomorphism $H_{q}\left(X, X_{*}\right) \cong H_{q-2}\left(X_{*}, B\right)$ for $q \neq n, n+1$, we obtain the desired result.

It is actually possible to prove the stronger statement that the pair $(X, X \cap H)$ is $(n-1)$ connected (see for example [2] and [8]). This may be proved using ordinary Morse-Bott theory, and has the advantage that it may be exteneded to the equivariant case. However, for our purposes the above proof is sufficient, and makes explicit the role of vanishing cycles.

So far we have not made use of the monodromy of the Lefschetz fibration. Recall the module of module of vanishing cycles:

$$
\mathbb{V}\left(X_{*}\right)=\operatorname{ker}\left(H_{n-1}\left(\hat{X}_{*}\right), H_{n-1}(\hat{X})\right)
$$

which is spanned by the vanishing cycles $\Delta_{j}$. Also recall the module of invariant cycles, defined as the submodule of $H_{n-1}\left(X_{*}\right)$ which is invariant under the action of the monodromy group. By the Picard-Lefschetz formula, a cycle $c \in H_{n-1}\left(X_{*}\right)$ is invariant if and only if $\left\langle c, \Delta_{j}\right\rangle=0 \forall j$. Thus $\mathbb{I}\left(X_{*}\right)$ is the orthogonal complement to $\mathbb{V}\left(X_{*}\right)$ with respect to the intersection pairing. We have the following deep theorem.
Theorem 4.4. Hard Lefschetz Theorem. For field coefficients, we have

$$
H_{n-1}\left(X_{*}\right)=\mathbb{V}\left(X_{*}\right) \oplus \mathbb{I}\left(X_{*}\right) .
$$

Before indicating how this theorem is proved, we must give an alternative but equivalent statement. The Lefschetz hyperplane theorem implies that the map $i_{*}: H_{n-1}\left(X_{*}\right) \rightarrow H_{n-1}(X)$ is an epimorphism sending $\mathbb{V}\left(X_{*}\right)$ to 0 . Hence the Hard Lefschetz theorem is equivalent to the statement that the restriction $i_{*}: \mathbb{I}\left(X_{*}\right) \rightarrow H_{n-1}(X)$ is an isomorphism. Let $i^{!}$be the Gysin morphism $H_{n+1}(X) \rightarrow H_{n-1}(X \cap H)$, i.e. $i^{!}=P D_{X_{*}} \circ i^{*} \circ P D_{X}^{-1}$, where $P D$ is the Poincaré dual map. The Lefschetz hyperplane theorem implies that $i^{*}$ is injective, and hence $i^{!}$is injective. Furthermore, its image is $\mathbb{I}\left(X_{*}\right)$. Then it follows that the Hard Lefshetz theorem is equivalent to the statement that the composition $i_{*} \circ i^{!}: H_{q+1}(X) \rightarrow H_{q-1}(X)$ is an isomorphism. Let $\omega \in H^{2}(X)$ be the Poincaré dual of the hyperplane section $X_{*}=X \cap H$, i.e. $\left[X_{*}\right]=\omega \cap[X]$. Then we have $i_{*} \circ i^{!}=\omega \cap$.

Thus the Hard Lefschetz theorem is equivalent to the statement that $\omega \cap$ is an isomorphism. Now suppose $x \in H_{n+q}(X), 0 \leq q \leq n$. Then $x$ is called primitive if $\omega^{q+1} \cap x=0$. Then repeated application of the isomorphism $\omega \cap$, i.e. considering a sequence of hyperplane sections $X \supset X^{\prime} \supset X^{\prime \prime} \supset \ldots \supset \emptyset$, yields the following, equivalent to the Hard Lefschetz theorem.
Theorem 4.5. Lefschetz Decomposition Theorem. Every $x \in H_{n+q}(X)$ can be written uniquely as

$$
x=x_{0}+\omega \cap x_{1}+\omega^{2} \cap x_{2}+\ldots,
$$

and each $x \in H_{n-q}(X)$ can be written uniquely as

$$
x=\omega^{q} \cap x_{0}+\omega^{q+1} \cap x_{1}+\ldots,
$$

where the $x_{i} \in H_{n+q+2 i}(X)$ are primitive, and $q \geq 0$.

The Hard Lefschetz Theorem and Lefschetz Decomposition theorems may be proved using Hodge theory. Using Poincaré duality, the Hard Lefschetz theorem is equivalent to the statement that $\cup \omega: H^{n-1}(X) \rightarrow H^{n+1}(X)$ is an isomorphism. If we work over field coefficients, then the singular cohomology is isomorphic to the de Rham cohomology, so we may represent $\omega$ by a 2-form. Since $H_{\mathrm{dR}}^{2}\left(\mathbb{P}^{N}\right)$ is one-dimensional and spanned by $\left[\omega_{F S}\right.$ ], where $\omega_{F S}$ is the standard (Fubini-Study) Kähler form on $\mathbb{P}^{N},\left[\omega_{F S}\right]$ is the Poincaré dual to the hyperplane $H \subset \mathbb{P}^{N}$. Thus [ $\left.\omega_{F S}\right|_{X}$ ] represents $\omega \in H_{\mathrm{dR}}^{2}(X)$, i.e. $\omega$ can be represented by the Kähler form on $X$.

Thus for complex coefficients, the Hard Lefschetz theorem is equivalent to the statement that $L: H_{\mathrm{dR}}^{n-1}(X) \rightarrow H_{\mathrm{dR}}^{n+1}(X)$, given by $L(\eta)=\eta \wedge \omega_{F S}$, is an isomorphism. Let $L^{\dagger}$ be the adjoint of $L$ and $h=\left[L, L^{\dagger}\right]$. Using standard results of Hodge theory (see for example [4]), one may show that these maps define a representation of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ on $H_{\mathrm{dR}}^{*}(X)$. The Lefschetz Decomposition theorem is then a consequence of standard results in the representation theory of $\mathfrak{s l}(2, \mathbb{C})$.

## 5 Applications

The study of complex Morse functions has already led us to a rather deep theorem concerning the topology of algebraic varieties. We now give some immediate corollaries to the results of the previous sections.

To begin with, we saw that for a complex Morse function $f: X \rightarrow \mathbb{P}^{1}$, the generic fibers are all diffeomorphic (this is a consequence of the Ehresmann fibration theorem). Now consider this result applied to $\mathbb{P}^{N}$ itself. We have the following.
Proposition 5.1. All smooth degree d hypersurfaces of $\mathbb{P}^{N}$ are diffeomorphic.
In the proof of the Lefschetz hyperplane theorem, we found that $H_{q+1}\left(X, X_{*}\right)=H_{q}\left(X_{*}\right)$ for $q \neq n, n-1$. Then if $n \geq 2$, we have that $H_{0}\left(X, X_{*}\right)=0$ and $H_{1}\left(X, X_{*}\right)=0$. Then considering the long exact sequence for the pair $\left(X, X_{*}\right)$, we see $H_{0}\left(X, X_{*}\right)=H_{0}(X)$. Thus we have the following version of Bertini's theorem:
Proposition 5.2. For $n \geq 2$, a generic hyperplane section of $X$ is smooth and connected.
Next we deduce an interesting consequence of the Hard Lefschetz theorem. Consider the restriction of the intersection form on $H_{n-q}(X)$ to $\mathbb{I}_{q}(X)$. Here, we have a sequence of hyperplane sections $X^{(i+1)} \subset X^{(i)}$ and $\mathbb{I}_{q}(X):=\mathbb{I}\left(X^{(q)}\right)$. We have already seen that $\mathbb{I}_{q}(X)$ is the orthogonal complement of $\mathbb{V}_{q}(X)$ with respect to the intersection form. Thus it is easy to see that the Hard Lefschetz theorem is equivalent to the statement that the restriction of the intersection form to $\mathbb{I}_{q}(X)$ is nondegenerate. When $n-q$ is odd, the intersection form is skew. But a skew form on a vector space can be nondegenerate only if the space is even dimensional. Thus we obtain the following result.
Proposition 5.3. If $X$ is a smooth projective variety, then the odd-dimensional Betti numbers of $X$ are even.

Now consider the manifold $X=S^{3} \times S^{1} . X$ can be identified with a quotient of $\mathbb{C}^{2} \backslash\{0\}$ by a holomorphic group action (see [5]), and thus inherits a complex structure, so that $X$ is a compact complex manifold. This manifold is called the Hopf surface. On the other hand, by the Künneth theorem we have $b_{1}(X)=1$. Since $b_{1}(X)$ is odd, we see by the previouis proposition that $X$ is cannot be biholomorphically equivalent to a projective variety, and thus by Chow's theorem [4] is not algebraic. Thus we have the following highly nontrivial result:
Proposition 5.4. There exist compact complex manifolds which are not algebraic.

## References

[1] Mark Andrea, A. De Cataldo, and Migliorini Luca. The decomposition theorem, perverse sheaves, and the topology of algebraic maps. Bulletin of the American Mathematical Society, 46(4):535-633, 2009.
[2] Raoul Bott. On a theorem of Lefschetz. Michigan Math. J., 6:211-216, 1959.
[3] Ch. Ehresmann. Sur l'espaces fibrés différentiables. C. R. Acad. Sci. Paris, 224:1611-1612, 1947.
[4] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley-Interscience, 1994.
[5] Kunihiko Kodaira. Complex structures on $S^{1} \times S^{3}$. Proceedings of the National Academy of Sciences of the United States of America, 55(2):240-243, 1966.
[6] L. Lamotke. The topology of complex projective varieties after S. Lefschetz. Topology, 20(1):15-51, 1981.
[7] S. Lefschetz. Applications of Algebraic Topology: Graphs and Networks, the PicardLefschetz Theory, and Feynman Integrals. Springer-Verlag, 1975.
[8] John Milnor. Morse Theory. Princeton University Press, 1963.
[9] Liviu Nicolaescu. Invitation to Morse Theory. Springer New York, 2007.
[10] V. A. Vassiliev. Applied Picard-Lefschetz Theory. American Mathematical Society, 2002.

