
JavaScript as a compilation target
Making it fast

Florian Loitsch, Google

Who am I?

Florian Loitsch, software engineer at Google

Projects
● Scheme2Js - Scheme-to-JavaScript compiler
● Js2scheme - JavaScript-to-Scheme compiler
● V8 - high-performance JavaScript virtual machine
● Dart - structured programming for the web

What is Dart?

● Unsurprising object-oriented programming language
● Class-based single inheritance
● Familiar syntax with proper lexical scoping
● Optional static type annotations

main() {
 for (int i = 99; i > 0; i--) {
 print("$i bottles of beer on the wall,");
 print("Take one down and pass it around ...");
 }
}

Dart execution and deployment

Dart source

Dart-to-JavaScript
compiler

JavaScript

Dart virtual
machine

runs on all modern browsers

in browser or standalone

Dart-to-JavaScript compiler goals

● Support Dart apps on all modern browsers
○ Tested on Chrome, Firefox, IE, and Safari
○ Ensures that the use of the Dart VM is optional

● Generate efficient and compact JavaScript

Example: What's the point?
Source code in Dart

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 ...
}

Example: What's the point?
Compiled JavaScript code

$.main = function() {
 var p = $.Point(2, 3);
 var q = $.Point(3, 4);
 var distance = p.distanceTo$1(q);
 ...
};

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 ...
}

Example: What's the point?

● Static functions are put on the $ object
○ Top-level functions such as $.main
○ Factory functions such as $.Point

● Method calls are translated to functions calls
○ Arity is encoded in the selector (distanceTo$1)
○ Supports named optional arguments

Language challenges

Closures

● JavaScript doesn't check arity
● Encoding the arity into the name does not

work for closures

● Dart supports named arguments
● Dart call operator makes objects behave

like closures

Operators

● JavaScript implicitly converts + inputs to
numbers or strings

● Dart has user-defined operators

1 + "2"; // => "12"
1 - "2"; // => -1
{} + 3; // => 3
3 * {}; // => NaN

Array accesses

● JavaScript has no notion of out of bounds
access and all keys are treated as strings

● In JavaScript, the index operator works on
every object

var a = [1, 2];
a[2]; // => undefined.
a[1.5]; // => undefined
a["1"]; // => 2
var t = {};
t[0]; // => undefined.

Solutions

Closures - Solution

● Treat closures as class instances
○ Use instance fields for captured (boxed) variables
○ Use methods for implementing calling conventions

● Allocating small JavaScript objects is fast!
○ New JavaScript closure ~ new object with six fields

Example: Closures
Source code in Dart

main() {
 var list = [1, 2, 3];
 print(list.map((each) => list.indexOf(each)));
}

Example: Closures
Compiled JavaScript code

$.main = function() {
 var list = [1, 2, 3];
 $.print($.map(list, new $.main$closure(list)));
};

$.main$closure = {"": ["list"],
 call$1: function(each) {
 return $.indexOf$1(this.list, each);
 }
};

Note the compact
class representation

main() {
 var list = [1, 2, 3];
 print(list.map((each) => list.indexOf(each)));
}

● Implement operator methods.

Operators - Naive Solution

Number.prototype.add = function(x) {
 if (!isNumber(x)) throw $.ArgumentError(x);
 return this + x;
};
Array.prototype.index = function(i) {
 if (!isInteger(i)) throw $.ArgumentError(i);
 if (i < 0 || i > this.length)
 throw $.RangeError(i);
 return this[i];
};

● Implement operator methods.

Operators - Naive Solution

Number.prototype.add = function(x) {
 if (!isNumber(x)) throw $.ArgumentError(x);
 return this + x;
};
Array.prototype.index = function(i) {
 if (!isInteger(i)) throw $.ArgumentError(i);
 if (i < 0 || i > this.length)
 throw $.RangeError(i);
 return this[i];
};

x + y;
list[i];

x.add(y);
list.index(i);

Operators - Naive Solution
Drawbacks

● Pollutes global objects (Number, Array,
String, Object ...)

● Can be very slow. (Especially without strict
mode)

● Static interceptors

Interceptors

$.add = function(x, y) {
 if (isNumber(x) && isNumber(y)) return x + y;
 if (isNumber(x)) throw $.ArgumentError(y);
 if (isDartObject(x)) return x.add$1(y);
 throw noSuchMethodException(x, "+", y);
};
$.index = function(a, i) {
 if (isArray(a)) {
 if (!isInteger(i)) throw $.ArgumentError(i);
 if (i < 0 || i > a.length) throw $.RangeError(i);
 return a[i];
 }
 ...
};

typeof y === 'number'

Example: Sum the elements of a list
Source code in Dart

main() {
 var list = [2, 3, 5, 7];
 var sum = 0;
 for (var i = 0; i < list.length; i++) {
 sum += list[i];
 }
 print("sum = $sum");
}

Example: Sum the elements of a list
Compiled JavaScript code

$.main = function() {
 var list = [2, 3, 5, 7];
 for (var sum = 0, i = 0; $.ltB(i, $.length(list)); i = $.add(i, 1)) {
 sum = $.add(sum, $.index(list, i));
 }
 $.print('sum = ' + $.S(sum));
}

main() {

 var list = [2, 3, 5, 7];

 var sum = 0;

 for (var i = 0; i < list.length; i++) {

 sum += list[i];

 }

 print("sum = $sum");

}

Performance
on V8

Slow:
● about ~6 times slower than handwritten

JavaScript

● for some benchmarks up to ~23 times slower

Types

First improvement:
● Avoid global interceptors when the type is

known

● Track types and do (local) type-inference

Example: Sum the elements of a list
Compiled JavaScript code with local type inference

$.main = function() {
 var list = [1, 2, 3, 4];
 for (var sum = 0, i = 0; i < list.length; ++i) {
 // Check that the index is within range before
 // reading from the list.
 if (i < 0 || i >= t1) throw $.ioore(i);
 var t1 = list[i];
 // Check that the element read from the list is
 // a number so it is safe to use + on it.
 if (typeof t1 !== 'number') throw $.iae(t1);
 sum += t1;
 }
 $.print('sum = ' + $.S(sum));
};

Performance
Type inference

much better:
● 50%+ speed of handwritten JS code

● Global type inference algorithm not good
enough:
○ Still too many calls to the interceptors
○ We don't know if the instructions have side-effects

Speculative Optimizations

Speculative Optimizations

● Try to guess the type of an instruction based
on its inputs and uses

● Optimize for the speculated type

● Bailouts in case the guess was wrong

Speculative optimizations (1)
It would be great if x was a JavaScript array

sum(x) {
 var result = 0;
 for (var i = 0; i < x.length; i++) {
 result += x[i];
 }
 return result;
}

Speculative optimizations (2)
We really hope x is a JavaScript array

$.sum = function(x) {
 if (!$.isJsArray(x)) return $.sum$bailout(1, x);
 var result = 0;
 for (var t1 = x.length, i = 0; i < t1; ++i) {
 if (i < 0 || i >= t1) throw $.ioore(i);
 var t2 = x[i];
 if (typeof t2 !== 'number') throw $.iae(t2);
 result += t2;
 }
 return result;
};

Speculative optimizations (3)
What if it turns out x is not a JavaScript array?

$.sum$bailout = function(state, x) {
 var result = 0;
 for (var i = 0; $.ltB(i, $.get$length(x)); ++i) {
 var t1 = $.index(x, i);
 if (typeof t1 !== 'number') throw $.iae(t1);
 result += t1;
 }
 return result;
};

Heuristics for speculating

● To avoid generating too much code we need
to control the speculative optimizations

● Hard to strike the right balance between
optimizing too little and too much

● Current solution: Only speculate about
types for values that are used from within
loops

Profile guided optimizations

What if we aggressively speculated about types
and used profiling to figure out if it was helpful?

1. Use speculative optimizations everywhere!
2. Profile the resulting code
3. Re-compile with less speculation

Don't keep optimized methods that are rarely
used or always bail out

Performance
Speculative Optimizations

Really pays off:
● ~75% speed of handwritten code

Space/Speed Trade-off:
● 15% code increase when using the

heuristics
● 72% code increase when always speculating

Tree shaking

● Only compile functions that are potentially
reachable.

Tree shaking

main

Point

distanceTo

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 var line = new Line(p, q);
 ...
}

Line

● Only compile functions that are potentially
reachable.

Tree shaking

main

Point

distanceTo

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 var line = new Line(p, q);
 ...
}

Line

Point
Line

● Only compile functions that are potentially
reachable.

Tree shaking

main

Point

distanceTo

main() {
 var p = new Point(2, 3);
 var q = new Point(3, 4);
 var distance = p.distanceTo(q);
 var line = new Line(p, q);
 ...
}

Line

sqrt
Point
Line

cross
Point

Code after tree shaking

Diet parsed

Resolved

Compiled

SSA

Intermediate Representations

Builder

Dart syntax tree

Code generator

SSA graph

JavaScript syntax tree

+

1 2

t0 = constant(1)
t1 = constant(2)
t2 = call('+', t0, t1)

SSA - Single Static Assignment

SSA form convenient for analyses and
optimizations:
● Local type inference
● Function inlining
● Global value numbering
● Loop-invariant code motion
● Range propagation

Global Value Numbering

GVN: replace instructions with equal ones from
dominators if no side-effects can affect the outcome.

if (compiler.generated != null) {
 return compiler.generated;
}

var t0 = compiler.generated;
if (t0 != null) {
 return t0;
}

Loop invariant code motion

LICM: hoist instructions out of loops if its computation
doesn't have any side-effect, and the value is independent
of the loop's body.

for (int i = 0; i < a.length; i++) {
 sum += a[i];
}

var t0 = a.length;
for (int i = 0; i < t0; i++) {
 sum += a[i];
}

Example: Sum the elements of a list
Compiled JavaScript code with all optimizations

$.main = function() {
 var list = [1, 2, 3, 4];
 for (var t1 = list.length, sum = 0, i = 0; i < t1; ++i) {
 var t2 = list[i];
 // Check that the element read from the list is
 // a number so it is safe to use + on it.
 if (typeof t2 !== 'number') throw $.iae(t2);
 sum += t2;
 }
 $.print('sum = ' + $.S(sum));
};

Status

Code size

● Size of the generated code has improved
since our first release!

● If your app translates to sizeable chunks of
JavaScript it could be because of imports

● Work on supporting minification is in
progress (use --minify option)

Performance

Conclusions

● Speculative optimizations are crucial for
speed

● Compiled Dart now at 75%+ speed of
handwritten JavaScript code

● You should give Dart a try

Questions?

I will be at the Google booth during the
next coffee break for more Q&A.

