
TRANSITIVE CLOSURES OF BINARY RELATIONS I

V. FLAŠKA, J. JEŽEK, T. KEPKA AND J. KORTELAINEN

Abstract. Transitive closures of binary relations and relations α with
the property that any two α-sequences connecting two given elements
are of the same length are investigated.

Vyšetřuj́ı se tranzitivńı uzávěry binárńıch relaćı a relaćı α s vlast-
nost́ı, že každé dvě α-posloupnosti spojuj́ıćı dané dva prvky maj́ı stejnou
délku.

The present short note collects a few elementary observations concerning
the transitive closures of binary relations. All the formulated results are
fairly basic and of folklore character to much extent. Henceforth, we shall
not attribute them to any particular source!

1. Preliminaries

Let S be a set, idS = {(a, a)| a ∈ S} and irS = (S × S)− idS .
Let α be a binary relation defined on S (i.e., α ⊆ S × S). We put

i(α) = α ∩ irS and r(α) = α ∪ idS . The relation α is called
– irreflexive if α ⊆ irS (equivalently, α ∩ idS = ∅ or i(α) = α);
– reflexive if idS ⊆ α (or r(α) = α);
– strictly (or sharply) antisymmetric if (a, b) ∈ α implies (b, a) /∈ α;
– antisymmetric if a = b whenever (a, b) ∈ α and (b, a) ∈ α;
– symmetric if (a, b) ∈ α implies (b, a) ∈ α;
– transitive if (a, c) ∈ α whenever (a, b) ∈ α and (b, c) ∈ α;
– a quasiordering if α is reflexive and transitive;
– a strict (or sharp) ordering if α is irreflexive and transitive;
– a near-ordering if α is antisymmetic and transitive;
– a (reflexive) ordering if α is reflexive, antisymmetric and transitive;
– a tolerance if α is reflexive and symmetric;
– an equivalence if α is reflexive, symmetric and transitive.

1.1. Lemma. Let α be a binary relation on a set S.
(i) α is both irreflexive and reflexive iff α = ∅ = S.

(ii) α is strictly antisymmetric iff α is irreflexive and antisymmetric.
(iii) α is both strictly antisymmetric and symmetric iff α ⊆ idS.
(iv) If α is transitive then α is irreflexive iff α is strictly antisymmetric.
(v) If α is irreflexive, symmetric and transitive then α = ∅.
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(vi) If α is symmetric, transitive and if for every a ∈ S there is at least
one b ∈ S with either (a, b) ∈ α or (b, a) ∈ α then α is an equivalence.

Proof. It is obvious. ¤
1.2. Lemma. Let α be a binary relation on a set S.

(i) i(α) is the irreflexive core of α (i.e., the largest irreflexive relation
contained in α).

(ii) r(α) is the reflexive closure of α (i.e., the smallest reflexive relation
containing α).

(iii) i(α) = i r(α) ⊆ r(α) = r i(α).
(iv) If α is antisymmetric then i(α) is strictly antisymmetric and r(α) is

antisymmetric.
(v) If α is symmetric then i(α) and r(α) are symmetric.

(vi) If α is transitive then r(α) is a quasiordering.
(vii) If α is a near-ordering then i(α) is a strict ordering and r(α) is an

ordering.

Proof. It is obvious. ¤

2. Isolated elements

Let α be a binary relation on a set S. For every element a ∈ S put
R(a, α) = {b| (a, b) ∈ α} and L(a, α) = {b| (b, a) ∈ α}.
2.1. Lemma. The following conditions are equivalent for a binary relation
α on a set S:

(i) α is irreflexive (reflexive, resp.);
(ii) a /∈ R(a, α) (a ∈ R(a, α), resp.) for every a ∈ S;

(iii) a /∈ L(a, α) (a ∈ L(a, α), resp.) for every a ∈ S.

Proof. It is obvious. ¤
2.2. Lemma. Let α be a binary relation on a set S.

(i) α is strictly antisymmetric iff R(a, α)∩L(a, α) = ∅ for every a ∈ S.
(ii) α is antisymmetric iff R(a, α) ∩ L(a, α) ⊆ {a} for every a ∈ S.

Proof. It is obvious. ¤
2.3. Lemma. The following conditions are equivalent for a binary relation
α on a set S:

(i) α is symmetric;
(ii) R(a, α) ⊆ L(a, α) for every a ∈ S;

(iii) L(a, α) ⊆ R(a, α) for every a ∈ S;
(iv) R(a, α) = L(a, α) for every a ∈ S.

Proof. It is obvious. ¤
2.4. Lemma. The following conditions are equivalent for a binary relation
α on a set S:
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(i) α is transitive;
(ii) R(b, α) ⊆ R(a, α) for all a ∈ S and b ∈ R(a, α);

(iii) L(b, α) ⊆ L(a, α) for all a ∈ S and b ∈ L(a, α).

Proof. It is obvious. ¤
An element a ∈ S is called

– right (or upwards) strictly α-isolated if R(a, α) = ∅;
– right (or upwards) α-isolated if R(a, α) ⊆ {a};
– right (or upwards) α-pseudoisolated if R(a, α) ⊆ L(a, α).

Left (or downwards) (strictly) α-(pseudo)isolated elements are defined du-
ally.

2.5. Lemma. Let α be a binary relation on a set S.
(i) If α is irreflexive then every right isolated element is right strictly

isolated.
(ii) If α is reflexive then no element is right strictly isolated.

(iii) If α is strictly antisymmetric then every right pseudoisolated element
is right strictly isolated.

(iv) If α is antisymmetric then every right pseudoisolated element is right
isolated.

(v) If α is symmetric then an element is right (strictly) isolated iff it is
left (strictly) isolated.

Proof. It is obvious. ¤
2.6. Lemma. The following conditions are equivalent for a binary relation
α on a set S:

(i) α is symmetric;
(ii) every element is right pseudoisolated;

(iii) every element is left pseudoisolated.

Proof. It is obvious. ¤
2.7. Lemma. Let α be a binary relation on a set S. If α is transitive, a ∈ S
is a right pseudoisolated element and (a, b) ∈ α then b is right pseudoisolated.

Proof. It is obvious. ¤
2.8. Lemma. Let α be a binary relation on a set S.

(i) An element is right strictly i(α)-isolated iff it is right i(α)-isolated
and iff it is right α-isolated.

(ii) An element is right i(α)-pseudoisolated iff it is right α-pseudoiso-
lated.

(iii) An element is right r(α)-isolated iff it is right α-isolated.
(iv) An element is right r(α)-pseudoisolated iff it is right α-pseudoiso-

lated.

Proof. It is obvious. ¤
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3. Finite α-sequences

Let α be a binary relation on a set S. A finite sequence (a0, a1, . . . , am),
m ≥ 1, of elements of S is an α-sequence if (ai, ai+1) ∈ α for every 0 ≤ i ≤
m−1. The positive integer m is the length of the sequence. Furthermore, we
say that an α-sequence (b0, . . . , bn) is a reduct of the α-sequence (a0, . . . , am)
if there are integers 0 = j0 < j1 < · · · < jn−1 < jn = m such that bi = aji
for every 0 ≤ i ≤ n.

An α-sequence (a0, . . . , am) is called
– weakly pseudoirreducible if ai 6= ai+1 whenever 2 ≤ m and 0 ≤ i <
m;

– pseudoirreducible if ai 6= aj whenever 0 ≤ i < j ≤ m and (i, j) 6=
(0,m);

– irreducible if (ai, aj) /∈ α whenever 2 ≤ m and 0 ≤ i < i+2 ≤ j ≤ m.

3.1. Lemma. Let (a0, . . . , am) be an α-sequence.
(i) If the sequence is pseudoirreducible then it is weakly pseudoirre-

ducible.
(ii) If the sequence is irreducible then it is pseudoirreducible.

(iii) If the sequence is pseudoirreducible and a0 6= am (a0 = am, resp.)
then the elements a0, . . . , am (a0, . . . , am−1, resp.) are pairwise dif-
ferent.

(iv) If m = 1 then the sequence is irreducible.

Proof. (ii) Let (a0, . . . , am) be an irreducible α-sequence. Suppose that ai =
aj where 0 ≤ i < j ≤ m. If j < m then (ai, aj+1) ∈ α, a contradiction. If
0 < i then (ai−1, aj) ∈ α, a contradiction. Thus (i, j) = (0,m).

The other items are easy to see. ¤
3.2. Proposition. Every finite α-sequence has at least one irreducible reduct.

Proof. Let (a0, . . . , am) be an α-sequence such that m ≥ 2 and (ai, aj) ∈ α,
where 0 ≤ i < i + 2 ≤ j ≤ m. Then (a0, . . . , ai, aj , . . . , am) is an α-
sequence of length at most m−1. Consequently, we can proceed by induction
on m. ¤
3.3. Corollary. An α-sequence is irreducible if and only if it has no proper
reduct.

3.4. Lemma. Every α-sequence is weakly pseudoirreducible if and only if α
is irreflexive.

Proof. It is obvious. ¤
The relation α is called superirreflexive if every α-sequence is pseudoirre-

ducible.

3.5. Lemma. The following conditions are equivalent for a relation α:
(i) α is superirreflexive;

(ii) a0 6= am for every α-sequence (a0, . . . , am);
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(iii) The elements a0, . . . , am are pairwise different for every α-sequence
(a0, . . . , am).

Proof. (i) implies (ii). If a0 = am then (a0, . . . , am, a1) is a non-pseudoirre-
ducible α-sequence.

(ii) implies (iii). Let (a0, . . . , am) be an α-sequence with ai = aj , 0 ≤ i <
j ≤ m. Then (ai, ai+1, . . . , aj) is an α-sequence contradicting (ii).

(iii) implies (i). This is trivial. ¤
3.6. Lemma. If α is superirreflexive then α is irreflexive and strictly anti-
symmetric.

Proof. It is easy. ¤
The relation α is called

– (totally) antitransitive if every α-sequence is irreducible;
– regular if m = n whenever (a0, . . . , am) and (b0, . . . , bn) are α-sequ-

ences such that a0 = b0 and am = bn;
– weakly regular if m = n whenever (a0, . . . , am) and (b0, . . . , bn) are

irreducible α-sequences such that a0 = b0 and am = bn.

3.7. Lemma. Let α be a relation.
(i) If α is regular then α is antitransitive.

(ii) If α is antitransitive and weakly regular then α is regular.

Proof. It is obvious. ¤
3.8. Example. Put S = {0, 1, 2, 3, 4}.

(i) α1 = {(0, 1), (1, 0)} is irreflexive, weakly regular, but not superir-
reflexive.

(ii) α2 = {(0, 1), (1, 2), (0, 2)} is superirreflexive, but not antitransitive.
(iii) α3 = {(0, 1), (0, 3), (1, 2), (2, 4), (3, 4)} is antitransitive, but not we-

akly regular (and thus not regular).
(iv) α4 = {(0, 1)} is regular.

4. Transitive closures

Let α be a binary relation on a set S. We define a relation γ = t(α)
on S by (a, b) ∈ γ if and only if there exists at least one finite α-sequence
(a0, a1, . . . , am) such that a0 = a and am = b.

4.1. Proposition. Let α be a binary relation on a set S; put γ = t(α).
(i) γ is the transitive closure of α, i.e., γ is the smallest transitive rela-

tion containing α.
(ii) (a, b) ∈ γ if and only if there exists an irreducible α-sequence (a0, . . . ,

am) such that a0 = a and am = b.
(iii) If α is reflexive (symmetric, resp.) then γ is reflexive (symmetric,

resp.).
(iv) If α is a tolerance then γ is an equivalence.



6 V. FLAŠKA, J. JEŽEK, T. KEPKA AND J. KORTELAINEN

Proof. It is easy (use 3.2). ¤

4.2. Proposition. Let α be a binary relation on a set S.

(i) The relation δ = r t(α) = t r(α) is the quasiorder closure of α, i.e.,
the smallest quasiordering containing α.

(ii) If α is symmetric then δ is an equivalence.
(iii) i t(α) ⊆ t i(α) ⊆ t(α).

Proof. It is easy. ¤

4.3. Proposition. Let α be a binary relation on a set S; put γ = t(α). The
following conditions are equivalent:

(i) γ is irreflexive;
(ii) γ is strictly antisymmetric;

(iii) γ is a strict ordering;
(iv) α is superirreflexive.

Proof. It is easy (use 3.5). ¤

4.4. Proposition. Let α be a binary relation on a set S and let δ be the
quasiorder closure of α. The following conditions are equivalent:

(i) δ is antisymmetric;
(ii) δ is an ordering;

(iii) a0 = a1 = · · · = am whenever (a0, a1, . . . , am) is an α-sequence with
a0 = am;

(iv) i(α) is superirreflexive.

Proof. It is easy. ¤

4.5. Proposition. Let α be a binary relation on a set S; put γ = t(α).

(i) An element of S is right strictly γ-isolated if and only if it is right
strictly α-isolated.

(ii) An element of S is right γ-isolated if and only if it is right α-isolated.

Proof. It is easy. ¤

4.6. Proposition. Let α be a binary relation on a set S and let δ be the
quasiorder closure of α. An element of S is right δ-isolated if and only if it
is right α-isolated.

Proof. It is easy. ¤

4.7. Lemma. If S is finite and α is superirreflexive then for every a ∈ S
there exists at least one right strictly α-isolated element b ∈ S with (a, b) ∈ δ,
where δ is the quasiorder closure of α.

Proof. It is easy. ¤
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5. Infinite α-sequences

Let α be a binary relation on a set S, γ = t(α) and δ = r t(α). An infinite
(right or upwards directed) sequence (a0, a1, a2, . . . ) of elements of S is an
α-sequence if (ai, ai+1) ∈ α for every i ≥ 0.

An (infinite) α-sequence (a0, a1, a2, . . . ) is called
– weakly pseudoirreducible if ai 6= ai+1 for every i ≥ 0;
– pseudoirreducible if ai 6= aj for all 0 ≤ i < j (i.e., if the elements
a0, a1, a2, . . . are pairwise different);

– irreducible if (ai, aj) /∈ α for all 0 ≤ i < i+ 2 ≤ j.
5.1. Lemma. Let α be a binary relation on a set S.

(i) Every irreducible infinite α-sequence is pseudoirreducible.
(ii) Every pseudoirreducible infinite α-sequence is weakly pseudoirredu-

cible.

Proof. It is obvious. ¤
5.2. Lemma. The following conditions are equivalent for a binary relation
α on S:

(i) every finite α-sequence can be extended to an infinite one;
(ii) every right strictly α-isolated element is left strictly α-isolated.

Proof. It is easy. ¤
5.3. Lemma. The following conditions are equivalent for a binary relation
α on S:

(i) every weakly pseudoirreducible finite α-sequence can be extended to
a weakly pseudoirreducible infinite one;

(ii) every right α-isolated element is left α-isolated.

Proof. It is easy. ¤
5.4. Proposition. Let α be a binary relation on a set S and assume that
there exist no weakly pseudoirreducible infinite α-sequences. Then:

(i) α is antisymmetric;
(ii) i(α) is superirreflexive;

(iii) for every a ∈ S there exists at least one right α-isolated element
b ∈ S with (a, b) ∈ δ.

Proof. It is easy (for (ii) see 3.5 and 4.4). ¤
5.5. Proposition. Let α be a binary relation on a set S and assume that
there exist no infinite α-sequences. Then:

(i) α is strictly antisymmetric and superirreflexive;
(ii) for every a ∈ S there exists at least one right strictly α-isolated

element b ∈ S with (a, b) ∈ δ.

Proof. It is easy. ¤
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5.6. Lemma. Let α be a binary relation on a set S.
(i) Every infinite α-sequence is weakly pseudoirreducible if and only if

α is irreflexive.
(ii) Every infinite α-sequence is pseudoirreducible if and only if α is

superirreflexive.
(iii) If α is antitransitive then every infinite α-sequence is irreducible.
(iv) If α is a near-ordering then every weakly pseudoirreducible infinite

α-sequence is pseudoirreducible.

Proof. It is easy (for (i) use 3.4 and for (ii) use 3.5). ¤

5.7. Example. Consider the relation α2 from 3.8(ii). This relation is not
antitransitive. Clearly, there exist no infinite α2-sequences and hence every
infinite α2-sequence is irreducible.

5.8. Lemma. Let (a0, a1, a2, . . . ) be an infinite γ-sequence with (ai+1, ai) /∈
γ for every i ≥ 0. Then (ak, aj) /∈ δ for every 0 ≤ j < k (in particular, the
sequence is pseudoirreducible).

Proof. If k = j + 1 then (ak, aj) = (aj+1, aj) /∈ γ and, if ak = aj then
(ak, aj) = (aj , aj) = (aj , aj+1) ∈ γ, a contradiction. If j + 2 ≤ k and
(ak, aj) ∈ γ then (aj , ak−1) ∈ γ and (ak, aj) ∈ γ yields (ak, ak−1) ∈ γ, a
contradiction again. Finally, if j + 2 ≤ k and ak = aj then (aj , ak−1) ∈ γ
and (aj , ak−1) = (ak, ak−1) /∈ γ, a contradiction. ¤

6. Confluent relations

A binary relation α on a set S is said to be
– right (or upwards) strictly confluent if for all a, b, c ∈ S such that

(a, b) ∈ α and (a, c) ∈ α there exists at least one d ∈ S with (b, d) ∈ α
and (c, d) ∈ α;

– right (or upwards) confluent if for all a, b, c ∈ S such that (a, b) ∈ α,
(a, c) ∈ α and b 6= c there exists at least one d ∈ S with (b, d) ∈ α
and (c, d) ∈ α;

– right (or upwards) almost confluent if for all a, b, c ∈ S such that
(a, b) ∈ α, (a, c) ∈ α, (b, c) /∈ α, (c, b) /∈ α and b 6= c there exists at
least one d ∈ S with (b, d) ∈ α and (c, d) ∈ α (then b 6= d 6= c and
b 6= a 6= c).

Left (or downwards) confluent relations are defined dually.

6.1. Lemma. Let α be a binary relation on S.
(i) If α is right almost confluent then i(α) is right almost confluent.

(ii) If α is right almost confluent then r(α) is right strictly confluent.

Proof. It is obvious. ¤

6.2. Lemma. Let α be a right almost confluent relation on S and let a, b, c ∈
S be such that (a, b) ∈ α and (a, c) ∈ α.
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(i) If b is right pseudoisolated then either (c, b) ∈ r(α) or there exists an
element d ∈ S such that (c, d) ∈ α, (d, b) ∈ α and (b, d) ∈ α (then
(c, b) ∈ α provided that α is transitive).

(ii) If b is right isolated then (c, b) ∈ r(α).

Proof. It is obvious. ¤
6.3. Lemma. Let α be a right almost confluent relation on S. Then for
every a ∈ S there exists at most one right isolated element b ∈ S such that
(a, b) ∈ α.

Proof. Use 6.2. ¤
6.4. Lemma. A binary relation α on S is right strictly confluent if and only
if α is right confluent and every right strictly isolated element is left strictly
isolated.

Proof. It is obvious. ¤
6.5. Lemma. A binary relation α on S is right confluent if and only if α is
right almost confluent and the following two conditions are satisfied:

(a) if a, b, c ∈ S are pairwise different elements such that (a, b) ∈ α,
(a, c) ∈ α and (b, c) ∈ α then (b, d) ∈ α and (c, d) ∈ α for at least
one d ∈ S;

(b) if a, b ∈ S are such that a 6= b, (a, a) ∈ α and (a, b) ∈ α then
(a, e) ∈ α and (b, e) ∈ α for at least one e ∈ S.

Proof. It is obvious. ¤
6.6. Lemma. Let α be an irreflexive relation. Then α is right confluent if
and only if α is right almost confluent and satisfies 6.5(a).

Proof. Use 6.5. ¤
6.7. Lemma. Let α be a transitive relation. Then α is right strictly confluent
if and only if α is right almost confluent and every right strictly isolated
element is left strictly isolated.

Proof. It is obvious. ¤
6.8. Proposition. Let α be a right almost confluent relation on S. Then:

(i) The transitive closure γ = t(α) is right almost confluent.
(ii) The quasiorder closure δ = r t(α) is right strictly confluent.

Proof. By 6.1(ii), the relation β = r(α) is right strictly confluent. We are
going to show that δ = t(β) is also right strictly confluent. Let (a0, . . . , am)
and (b0, . . . , bn) be δ-sequences such that a0 = b0.

Consider first the case m = 1. Using induction, we find elements c1, . . . , cn
∈ S in the following way: Since β is right strictly confluent, there is an
element c1 ∈ S with (a1, c1) ∈ β and (b1, c1) ∈ β. Now, if 1 ≤ j < n and
c1, . . . , cj are found such that the sequence (a1, c1, c2, . . . , cj) is a β-sequence
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and all the pairs (b1, c1), (b2, c2), . . . , (bj , cj) are in β then (cj , cj+1) ∈ β and
(bj+1, cj+1) ∈ β for some cj+1 ∈ S. Consequently, by induction, (bn, cn) ∈ β
and (a1, c1, . . . , cn) is a β-sequence. Thus (am, cn) ∈ δ and (bn, cn) ∈ δ.

In the general case we proceed by induction on m + n. In view of the
preceding part of the proof, assume that m ≥ 2. Then there is a c ∈ S
with (am−1, c) ∈ δ and (bn, c) ∈ δ. Furthermore, (am−1, am) ∈ β and hence
(am, d) ∈ δ and (c, d) ∈ δ for at least one d ∈ S. Consequently, (am, d) ∈ δ
and (bn, d) ∈ δ.

We have proved that δ is right strictly confluent and the fact that γ is
right almost confluent follows easily. ¤

6.9. Proposition. Let α be a right almost confluent relation on S such that
every right strictly α-isolated element is left strictly α-isolated. Then t(α)
is right strictly confluent.

Proof. By 6.8(i), t(α) is right almost confluent. The rest follows from 6.7.
¤

6.10. Proposition. Let α be a right almost confluent relation on S. The
following conditions are equivalent for an element a ∈ S:

(i) a is right γ-pseudoisolated, where γ = t(α);
(ii) a is right δ-pseudoisolated, where δ = r t(α);

(iii) (b, a) ∈ γ for every b ∈ R(a, α);
(iv) (b, a) ∈ δ for every b ∈ R(a, β), where β = r(α).

Proof. Clearly, (i) is equivalent to (ii), (iii) is equivalent to (iv) and (i)
implies (iii). It remains to show that (iii) implies (i).

Let (a, b) ∈ γ. Then a = a0 and b = am for an α-sequence (a0, . . . , am).
We are going to prove (b, a) ∈ γ by induction on m. We can assume that
a 6= b. The case m = 1 is clear. Let m ≥ 2. We have (am−1, a) ∈ γ by
induction and we have (am−1, b) ∈ α. Proceeding similarly as in the proof
of 6.8, we find an element c ∈ S such that (a, c) ∈ β and (b, c) ∈ δ. Then
(c, a) ∈ δ and hence (b, a) ∈ δ, so that (b, a) ∈ γ. ¤

6.11. Lemma. Let α be a right confluent relation on S. If a, b, c ∈ S are
such that (a, b) ∈ α, (a, c) ∈ t(α) and (b, c) /∈ r t(α) then there is d ∈ S with
(c, d) ∈ α and (b, d) ∈ t(α).

Proof. Since (a, c) ∈ t(α), there is a finite α-sequence (a0, . . . , am), m ≥ 1,
such that a0 = a and am = c. If b = a1, then (b, c) ∈ r t(α), a contradiction.
Thus b 6= a1 and, since α is right confluent, there is b1 ∈ S with (b, b1) ∈ α
and (a1, b1) ∈ α. Now, if b0 = b, b1, . . . , bn, n < m, are such that (bi−1, bi) ∈
α, 1 ≤ i ≤ n, (aj , bj) ∈ α, 0 ≤ j ≤ n, then bn 6= an+1 (otherwise (b, c) ∈
r t(α)) and we find bn+1 ∈ S with (bn, bn+1) ∈ α and (an+1, bn+1) ∈ α.
Proceeding by induction we obtain bm ∈ S such that (bm−1, bm) ∈ α and
(am, bm) ∈ α, and hence (c, bm) ∈ α and (b, bm) ∈ t(α) and we put d = bm,
which completes the proof. ¤



TRANSITIVE CLOSURES OF BINARY RELATIONS I 11

7. Free confluent extensions

Let α be a binary relation on a set S.
Denote by ρ(S, α) the set of two-element subsets {b, c} ⊆ S such that

there exists at least one a ∈ S with (a, b) ∈ α, (a, c) ∈ α, but no d ∈ S with
(b, d) ∈ α, (c, d) ∈ α (notice that ρ(S, α) is empty if and only if α is right
confluent). Let f be a bijection of ρ(S, α) onto a set T disjoint with S. Put
σ(S) = S ∪ T and σ(α) = α ∪ {(b, f({b, c})), (c, f({b, c}))|{b, c} ∈ ρ(S, α)}.
7.1. Lemma. Let α be a binary relation on a set S.

(i) S ⊆ σ(S), α ⊆ σ(α) and α = σ(α) ¹ S.
(ii) f({b, c}) is right strictly σ(α)-isolated for every {b, c} ∈ ρ(S, α).

(iii) If {x, y} ∈ ρ(σ(S), σ(α)) then either x /∈ S or y /∈ S.
(iv) If α is antitransitive then σ(α) is so.

Proof. It is easy. ¤
Consider the infinite sequence α = σ0(α) ⊆ σ1(α) ⊆ σ2(α) ⊆ . . . where

σi+1(α) = σ(σi(α)) for i ≥ 0. Put τ(α) =
⋃∞
i=0 σ

i(α).

7.2. Proposition. Let α be a binary relation on a set S.
(i) α ⊆ τ(α).

(ii) τ(α) is right confluent.
(iii) If α is antitransitive then τ(α) is so.

Proof. Easy to check (use 7.1). ¤
Denote by κ(α) the set of right strictly α-isolated elements a ∈ S such

that a is not left strictly α-isolated. Let g be a bijection of κ(α) onto a set
R disjoint with S. Put λ(S) = S ∪R and λ(α) = α ∪ {(a, g(a))|a ∈ κ(α)}.
7.3. Lemma. Let α be a binary relation on a set S.

(i) S ⊆ λ(S), α ⊆ λ(α) and α = λ(α) ¹ S.
(ii) g(a) is right strictly λ(α)-isolated for every a ∈ κ(α).

(iii) κ(λ(α)) ∩ S = ∅.
(iv) If α is antitransitive then λ(α) is so.
(v) If α is right confluent then λ(α) is so.

Proof. It is easy. ¤
Consider the infinite sequence α = λ0(α) ⊆ λ1(α) ⊆ λ2(α) ⊆ . . . where

λi+1(α) = λ(λi(α)) for i ≥ 0. Put µ(α) =
⋃∞
i=0 λ

i(α) and ϑ(α) = µτ(α).

7.4. Proposition. Let α be a binary relation on a set S.
(i) α ⊆ µ(α).

(ii) Every right strictly µ(α)-isolated element is left strictly µ(α)-isolated.
(iii) If α is antitransitive then µ(α) is so.
(iv) If α is right confluent then µ(α) is so.

Proof. It is easy (use 7.3). ¤
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7.5. Proposition. Let α be a binary relation on a set S.
(i) α ⊆ ϑ(α).

(ii) ϑ(α) is right strictly confluent.
(iii) If α is antitransitive then ϑ(α) is so.

Proof. Combine 7.2 and 7.4. ¤

8. Regular relations

8.1. Proposition. Let α be a right confluent relation on a set S. If (a0, . . . ,
am) and (b0, . . . , bn) are α-sequences such that a0 = b0, am = bn and am is
right strictly α-isolated then m = n.

Proof. We will proceed by induction on m + n. We have m + n ≥ 2 and,
if m + n = 2, then m = 1 = n. Henceforth, assume that 1 ≤ n ≤ m and
2 ≤ m.

If a1 = b1 then n ≥ 2, since am = bn is right strictly α-isolated. Conse-
quently, (a1, . . . , am) and (b1, . . . , bn) are α-sequences of length m − 1 and
n− 1, resp. Now, m− 1 = n− 1 by induction and then m = n.

It remains to consider the case a1 6= b1. Since α is right confluent, there
is an element c1 ∈ S with (a, c1) ∈ α and (b1, c1) ∈ α. Since bn is right
strictly α-isolated, we have n ≥ 2 and, proceeding similarly, we find an
index 1 ≤ k < n and elements c1, . . . , ck such that (ci, ci+1) ∈ α for every
1 ≤ i < k, (bj , cj) ∈ α for every 1 ≤ j ≤ k and ck = bk+1 (use again the fact
that bn is right strictly α-isolated). Clearly, (a1, c1, . . . , ck−1, bk+1, . . . , bn)
and (a1, a2, . . . , am) are α-sequences of length n− 1 and m− 1, resp. Thus
n− 1 = m− 1 by induction and we get m = n again. ¤

8.2. Proposition. Let α be a right confluent relation on a set S. If (a0, . . . ,
am) and (b0, . . . , bn) are α-sequences such that a0 = b0, am = bn and
(am, a) ∈ r t(α) for at least one right strictly α-isolated element a, then
m = n.

Proof. If am is right strictly α-isolated then the equality m = n is proved
in 8.1. If am is not right strictly α-isolated then there is an α-sequence
(am, am+1, . . . , am+k), k ≥ 1, such that am+k = a. Then (a0, . . . , am+k) and
(b0, . . . , bn, am+1, . . . , am+k) are α-sequences of length m+k and n+k, resp.
Thus m+ k = n+ k by 8.1 and hence m = n. ¤

8.3. Corollary. Let α be a right confluent relation on a set S such that for
every a ∈ S there exists at least one right strictly α-isolated element b ∈ S
with (a, b) ∈ r t(α). Then α is regular (and hence it is strictly antisymmetric
and antitransitive).

8.4. Proposition. Let α be a right almost confluent relation on a set S such
that for every a ∈ S there exists at least one right α-isolated element b ∈ S
with (a, b) ∈ r t(α). Then i(α) is regular if and only if (a, c) /∈ α whenever
a, b, c ∈ S are such that a 6= b 6= c 6= a, (a, b) ∈ α and (b, c) ∈ α.
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Proof. Only the converse implication needs a proof. By 6.1(i), i(α) is right
almost confluent. Hence i(α) is right confluent by 6.6. Further, r t(α) =
r t i(α) and our result follows from 2.8(i) and 8.3. ¤
8.5. Proposition. Let α be a right almost confluent relation on a finite set
S. Then α is regular if and only if α is superirreflexive.

Proof. Combine 4.7 and 8.3. ¤
8.6. Example. Put S = {0, 1, 2, 3}.

(i) α1 = {(0, 1), (1, 2), (2, 0), (2, 3), (3, 1)} is both right and left strictly
confluent, strictly antisymmetric, but not regular.

(ii) α2 = {(0, 1), (0, 2), (1, 0), (2, 0), (1, 2), (2, 1)} is both right and left
strictly confluent, irreflexive, symmetric, transitive, but not regular.

8.7. Example. Put S = {0, 1, 2, . . . } and α = {(i, i + 1), (i, i + 2)|i ∈ S}.
Then α is right strictly confluent and superirreflexive. On the other hand,
α is not weakly regular.

8.8. Example. Consider the relation α3 from 3.8(iii) and put ε = ϑ(α) (see
Section 7). Then ε is antitransitive and right strictly confluent. On the
other hand, ε is not weakly regular.

8.9. Example. The relation {0, 1), (2, 1), (2, 3)} on {0, 1, 2, 3} is an example
of a regular relation which is neither right nor left almost confluent.

9. Roots of near-orderings

Let α be a near-ordering on a set S. The root (or the covering relation)
ζ =

√
α of α is the binary relation defined by (a, b) ∈ ζ if and only if

(a, b) ∈ i(α) and c ∈ {a, b} whenever (a, c) ∈ α and (c, b) ∈ α.

9.1. Lemma. Let α be a near-ordering on a set S.
(i)
√
α ⊆ α and

√
α is antitransitive.

(ii)
√
α =

√
i(α) =

√
r(α) = i(

√
α).

(iii)
√
α ⊆ t(

√
α) ⊆ i(α) ⊆ α ⊆ r(α).

(iv) Both t(
√
α) and i(α) are strict orderings on S.

Proof. It is obvious. ¤
9.2. Remark. Let α be a near-ordering on S.

(i)
√
α = ∅ if and only if α is dense. That is, for all (a, b) ∈ i(α) there

exists at least one c ∈ S with (a, c) ∈ i(α) and (c, b) ∈ i(α). If this
condition is satisfied then either α ⊆ idS or S is infinite.

(ii)
√
α = α if and only if α is irreflexive and every finite α-sequence has

length 1.

A near-ordering will be called resuscitable if α ⊆ r t(
√
α).

9.3. Lemma. Let α be a resuscitable near-ordering.
(i)
√
α ⊆ t(

√
α) = i(α) ⊆ α ⊆ r(α) ⊆ r t(

√
α).
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(ii) If α is reflexive then α = r t(
√
α).

(iii) If α is irreflexive then α = t(
√
α).

(iv) Both i(α) and r(α) are resuscitable.

Proof. It is obvious. ¤
9.4. Lemma. Every near-ordering on a finite set is resuscitable.

Proof. It is obvious. ¤
9.5. Lemma. Let α be a resuscitable near-ordering on a set S such that
β =

√
α is right confluent. If a, b, c ∈ S are such that (a, b) ∈ β and

d = supr(α)(a, c), e = supr(α)(b, c) exist in S then either d = e or (d, e) ∈ β.

Proof. If a = d then (c, a) ∈ r(α), and hence (c, b) ∈ r(α), e = b and (d, e) =
(a, b) ∈ β. Now, we can assume that a 6= d. Then (a, d) ∈ i(α) = t(β).
Moreover, if (b, d) ∈ r(α), then d = e, and so we can also assume that d 6= e
and (b, d) /∈ r(α). Then (b, d) /∈ r t(β) and, by 6.11, there is f ∈ S with
(d, f) ∈ β and (b, f) ∈ t(β) ⊆ α. From this (e, f) ∈ r(α) and, since d 6= e,
we get e = f . ¤
9.6. Lemma. Let β be a binary relation satisfying the equivalent conditions
of 4.4. Put α = t(β).

(i) α is a near-ordering.
(ii)
√
α ⊆ β ⊆ α and t(

√
α) ⊆ α.

(iii) If i(β) is antitransitive, then i(β) =
√

i(α), i(α) = i t(β) ⊆ t i(β) =
t(
√

i(α)) ⊆ t(
√
α) and α ⊆ r i(α) ⊆ r t(

√
α) (in particular, α is

resuscitable).

9.7. Corollary. Let β be an antitransitive binary relation satisfying the
equivalent conditions of 4.4. Then β =

√
t(β) and t(β) is resuscitable.

9.8. Lemma. Let β be a binary relation on a finite set such that β satisfies
the equivalent conditions of 4.4. Put α = t(β). Then t(

√
α) = i(α) ⊆ α ⊆

r t(
√
α) ⊆ r(α).

Proof. Combine 9.4 and 9.6. ¤
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