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Outline

• What is the Heisenberg limit, and can it be beaten?

• How do we define the proper resources to determine the scaling?

• Given the proper resource count, the Heisenberg limit is optimal.

• How is the Heisenberg limit related to the Uncertainty Principle?
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FIG. 1: a) General parameter estimation procedure involving state
preparation P, evolutionU(!) and generalized measurement M with
outcomes x, which produces a probability distribution p(x|!). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameter ! . b) Example for N = 4 of the usual
situation described by HGLM, where each system performs a single
query, and the number of queries equals the number of systems (the
grey box represents Oj(!)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) for HRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

where (#!)2 is the mean square error in the parameter ! ,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect to T , and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. The SQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities, T and F , respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.
To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to
probe for the parameter ! . The couplings that introduce !
into the network can be considered queries, and the scaling of
the error in ! is then determined by the query complexity of
the network. The number of queries Q is not always identical
to the number of physical systems N in the network.

As an example, consider the quantum networks presented
in Fig. 1. The quantum network in b) was analysed by Gio-
vannetti, Lloyd, and Maccone [10]. Suppose that each grey
box in Fig. 1 is a unitary gate Oj(!) = exp(−i!Hj), where
j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-
tian operator. It is convenient to define the generator of the
joint queries as HGLM = $ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),
where each query consists of a joint interaction on two modes.
In other words, the queries are given by the unitary gates
Oi j = exp(−i!Hi⊗Hj) where i �= j. Since all Hi commute
with each other, the generator of the joint queries can be writ-
ten as

HBFCG =$
i> j
Hi⊗Hj . (3)

The number of terms inHBFCG, and therefore the query com-
plexity with respect to the number of systems, is given by
Q = 1

2N(N − 1) = O(N2). Finally, the network correspond-
ing to the protocol of Roy and Braunstein is given in Fig. 1d).
It is easy to see that the number of terms in the corresponding
generatorHRB is given by 2N − 1, and the number of queries
is therefore Q = 2N − 1. Since we have a systematic method
for increasing N (and Q) given the gate Oj, this defines an
asymptotic query complexity of the network. Since both T
andQ count the number of queries, this allows us to meaning-
fully compare the SQL with the Heisenberg limit.
From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-
lated to the generator of the joint queriesH . The most natu-
ral way to map this operator to a number (i.e., the count) is by
taking the expectation value �H �. However, we have to ad-
dress an important subtlety. WhenH corresponds to a proper
Hamiltonian, the fact that the origin of the energy scale has no
physical meaning means that the actual value of �H � can be
changed arbitrarily. Hence, we must fix the scale such that
the ground state (which may be degenerate) has zero energy.
In most cases, this is an intuitive choice. For example, most
people would agree that it is natural to associate zero energy
to the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a GHZ state
(|↑�⊗N+ |↓�⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between |↑� and |↓�.
For more general interactionsU(!)where we include feed-

forward and arbitrary unitary gates between queries in Fig. 1,
we can use an argument by Giovannetti et al. [10] to show that
�H �= �i(%U(!)/%!)U†(!)� is unaffected by the intermedi-
ate unitary gates, and the scaling is therefore still determined
by Q.
Finally, one may argue that the resource count should be

defined in terms of the variance or semi-norm ofH . Indeed,
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What is the Heisenberg limit?

• Mean squared error and Cramer-Rao bound:

• Fisher information:

• where 

• Scaling of the CR bound: Standard quantum limit and Heisenberg limit:

• How to compare the two (T versus F)?
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Parameter estimation is a fundamental pillar of science and technology, and improved measurement tech-
niques for parameter estimation have often led to scientific breakthroughs and technological advancement. It
has long been known that quantum metrology promises improved sensitivity in parameter estimation over clas-
sical procedures. However, there is an extensive debate over the question how the sensitivity scales with the
resources (such as the average photon number) and number of phase gates that are used in estimation proce-
dures. Here, we reconcile the physical definition of the relevant resources used in parameter estimation with
the information-theoretical scaling in terms of the query complexity of a quantum network. This leads to a
completely general optimality proof of the Heisenberg limit for quantum metrology. We give an example how
our proof resolves paradoxes that suggest sensitivities beyond the Heisenberg limit, and we clarify the precise
relationship between the Heisenberg limit and Heisenberg’s uncertainty principle.

The field of quantum metrology started with the work of Hel-
strom [1, 2], who derived the minimum value for the mean
square error in a parameter in terms of the density matrix of
the quantum system and a measurement procedure. This was
a generalisation of a known result in classical parameter esti-
mation, called the Cramér-Rao bound. Braunstein and Caves
[3] showed how this bound can be formulated for the most
general state preparation and measurement procedures. While
it is generally a hard problem to show that the Cramér-Rao
bound can be attained in a given setup, at least it gives an up-
per limit to the precision of quantum parameter estimation.
Caves [4] showed that quantum mechanical systems can in
principle produce greater sensitivity over classical methods.

A second, related problem is to find an expression for the
mean square error in terms of the resources used in the param-
eter estimation procedure. In other words, is there a general
optimal scaling of the quantum Cramér-Rao bound? We usu-
ally consider two scaling regimes: (i) the standard quantum

limit (SQL) [5] or shot-noise limit, which is typically given by
the inverse square root of the number of times T we make a
measurement, and (ii) the Heisenberg limit [6], in which the
mean error scales linearly inversely with the resource count.
Often the standard quantum limit and the Heisenberg limit
can be compared directly in terms of e.g., the average pho-
ton number. However, as we will see shortly, they refer to two
fundamentally different quantities.

The question is now twofold: First, what is the appropriate
resource count for the Cramér-Rao bound? And second, is the
Heisenberg limit (i.e., linear scaling) also the ultimate limit
of the quantum Cramér-Rao bound? For many common cases
the first question is easily answered: when in an optical pa-
rameter estimation procedure each photon probes the system
of interest once, the appropriate resource count is the pho-
ton number. In most cases the Heisenberg limit is then given
by the inverse photon number N

−1, as expected. However,
there are cases where the error in a parameter can scale much
more favourably with respect to the average photon number.
For example, Boixo et al. [7] devised a parameter estimation
procedure that sees the error scale with N

−2, and Roy and
Braunstein [8] construct a procedure that achieves an error

that scales with 2−N . In the case of continuous variables, Bel-
trán and Luis [9] showed that the use of classical optical non-
linearities can lead to an error with average photon number
scaling N

−3/2. It is tempting to conclude that these protocols
beat the Heisenberg limit, but this is not the case. To see this,
we first need to establish the exact nature of the resource count
that is to be used. We will see that in some cases this is not

the photon number or average energy used in the procedure.
This paper is organized as follows: First, we will argue that

the proper resource count is given by the expectation value of
the generator of translations in the parameter ϕ . Second, we
prove that the mean error in ϕ is bounded by the inverse of this
resource count. This will shed light on the precise relation be-
tween the Heisenberg limit and Heisenberg’s uncertainty prin-
ciple. Finally, we show how the proposal by Beltrán and Luis
is reconciled with our proof.

The most general parameter estimation procedure is shown
in Fig. 1a). Consider a probe system prepared in an ini-
tial quantum state ρ(0) that is evolved to a state ρ(ϕ) by
U(ϕ) = exp(−iϕH ). This is a unitary evolution when we in-
clude the relevant environment into our description, and it in-
cludes feed-forward procedures. The Hermitian operator H

is the generator of translations in ϕ , the parameter we wish
to estimate. The system is subjected to a generalized mea-
surement M, described by a Positive Operator Valued Mea-
sure (POVM) that consists of elements Êx, where x denotes
the measurement outcome. These can be discrete or con-
tinuous (or a mixture of both). The probability distribution
that describes the measurement data is given by the Born rule
p(x|ϕ) = Tr[Êx ρ(ϕ)], and the maximum amount of informa-
tion about ϕ that can be extracted from this measurement is
given by the Fisher information

F(ϕ) =
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�2
. (1)

This leads to the quantum Cramér-Rao bound [1, 3]

δϕ ≥ 1�
T F(ϕ)

, (2)
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Parameter estimation is a fundamental pillar of science and
technology, and improved measurement techniques for pa-
rameter estimation have often led to scientific breakthroughs
and technological advancement. The field of quantummetrol-
ogy started with the work of Helstrom [1, 2], who derived the
minimum value for the mean square error in a parameter in
terms of the density matrix of the quantum system and a mea-
surement procedure. This was a generalisation of a known re-
sult in classical parameter estimation, called the Cramér-Rao
bound. Braunstein and Caves [3] showed how this bound can
be formulated for the most general state preparation and mea-
surement procedures. While it is generally a hard problem to
show that the Cramér-Rao bound can be attained in a given
setup, at least it gives an upper limit to the precision of quan-
tum parameter estimation. Caves [4] showed that quantum
mechanical systems can in principle produce greater sensi-
tivity over classical methods. A second, related problem is
to find an expression for the mean square error in terms of
the resources used in the parameter estimation procedure. In
other words, is there a general optimal scaling of the quan-
tum Cramér-Rao bound? We usually consider two scaling
regimes: (i) the standard quantum limit (SQL) [5] or shot-
noise limit, which is typically given by the inverse square root
of the number of times T we make a measurement, and (ii)
the Heisenberg limit [6], in which the mean error scales lin-
early inversely with the resource count. Often the standard
quantum limit and the Heisenberg limit can be compared di-
rectly in terms of e.g., the average photon number. However,
as we will see shortly, they refer to two fundamentally differ-
ent quantities.
The question is now twofold: First, what is the appropriate

resource count for the Cramér-Rao bound? And second, is the
Heisenberg limit (i.e., linear scaling) also the ultimate limit
of the quantum Cramér-Rao bound? For many common cases
the first question is easily answered: when in an optical pa-
rameter estimation procedure each photon probes the system
of interest once, the appropriate resource count is the pho-
ton number. In most cases the Heisenberg limit is then given
by the inverse photon number N−1, as expected. However,
there are cases where the error in a parameter can scale much

more favourably with respect to the average photon number.
For example, Boixo et al. [7] devised a parameter estimation
procedure that sees the error scale with N−2, and Roy and
Braunstein [8] construct a procedure that achieves an error
that scales with 2−N . In the case of continuous variables, Bel-
trán and Luis [9] showed that the use of classical optical non-
linearities can lead to an error with average photon number
scaling N−3/2. It is tempting to conclude that these protocols
beat the Heisenberg limit, but this is not the case. To see this,
we first need to establish the exact nature of the resource count
that is to be used. We will see that in some cases this is not
the photon number or average energy used in the procedure.
This paper is organized as follows: First, we will argue that

the proper resource count is given by the expectation value of
the generator of translations in the parameter ! . Second, we
prove that the mean error in ! is bounded by the inverse of this
resource count. This will shed light on the precise relation be-
tween the Heisenberg limit and Heisenberg’s uncertainty prin-
ciple. Finally, we show how the proposal by Beltrán and Luis
is reconciled with our proof.
The most general parameter estimation procedure is shown

in Fig. 1a). Consider a probe system prepared in an ini-
tial quantum state "(0) that is evolved to a state "(!) by
U(!) = exp(−i!H ). This is a unitary evolution when we in-
clude the relevant environment into our description, and it in-
cludes feed-forward procedures. The Hermitian operator H

is the generator of translations in ! , the parameter we wish
to estimate. The system is subjected to a generalized mea-
surement M, described by a Positive Operator Valued Mea-
sure (POVM) that consists of elements Êx, where x denotes
the measurement outcome. These can be discrete or con-
tinuous (or a mixture of both). The probability distribution
that describes the measurement data is given by the Born rule
p(x|!) = Tr[Êx"(!)], and the maximum amount of informa-
tion about ! that can be extracted from this measurement is
given by the Fisher information
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∫
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Beating the Heisenberg limit?

• Giovannetti, Lloyd, and Maccone: Query complexity, and HL is optimal.                                                       
(Phys. Rev. Lett. 96, 010401, 2006).

• Boixo, Flammia, Caves, and Geremia: Nonlinear Hamiltonians can beat HL. 
(Phys. Rev. Lett. 98, 090401, 2007).

• Roy and Braunstein: Exploit full Hilbert space to get exponential scaling. 
(Phys. Rev. Lett. 100, 220401, 2008).

• Beltran and Luis: Nonlinear classical optics can beat the Heisenberg limit! 
(Phys. Rev. A 72, 045801, 2005).
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Defining the appropriate resources
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Resources versus query complexity

• Physicists: how does the CR bound scale with the energy resources?

• Computer scientists:  how does the CR bound scale with the number of 
queries?

• How can we reconcile the two viewpoints?
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Query complexity 

• a) general parameter 
estimation setup.

• b) each grey box is a query;

• c) each vertical pair is a 
query;

• d) each subset is a query.

• The number of systems does 
not generally equal the 
number of queries.

2

a)

b) c)

d)

Q= N = 4 Q= 1
2N(N−1) = 6

Q= 2N −1 = 15

P M p(x|!)U(!)
"(0) "(!)

FIG. 1: a) General parameter estimation procedure involving state
preparation P, evolutionU(!) and generalized measurement M with
outcomes x, which produces a probability distribution p(x|!). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameter ! . b) Example for N = 4 of the usual
situation described by HGLM, where each system performs a single
query, and the number of queries equals the number of systems (the
grey box represents Oj(!)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) for HRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

where (#!)2 is the mean square error in the parameter ! ,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect to T , and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. The SQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities, T and F , respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.
To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to
probe for the parameter ! . The couplings that introduce !
into the network can be considered queries, and the scaling of
the error in ! is then determined by the query complexity of
the network. The number of queries Q is not always identical
to the number of physical systems N in the network.

As an example, consider the quantum networks presented
in Fig. 1. The quantum network in b) was analysed by Gio-
vannetti, Lloyd, and Maccone [2]. Suppose that each grey
box in Fig. 1 is a unitary gate Oj(!) = exp(−i!Hj), where
j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-
tian operator. It is convenient to define the generator of the
joint queries as HGLM = $ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),
where each query consists of a joint interaction on two modes.
In other words, the queries are given by the unitary gates
Oi j = exp(−i!Hi⊗Hj) where i #= j. Since all Hi commute
with each other, the generator of the joint queries can be writ-
ten as

HBFCG =$
i> j
Hi⊗Hj , (3)

The number of terms inHBFCG, and therefore the query com-
plexity with respect to the number of systems, is given by
Q = 1

2N(N − 1) = O(N2). Finally, the network correspond-
ing to the protocol of Roy and Braunstein is given in Fig. 1d).
It is easy to see that the number of terms in the corresponding
generatorHRB is given by 2N − 1, and the number of queries
is therefore Q = 2N − 1. Since we have a systematic method
for increasing N (and Q) given the gate Oj, this defines an
asymptotic query complexity of the network. Since both T
andQ count the number of queries, this allows us to meaning-
fully compare the SQL with the Heisenberg limit.
From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-
lated to the generator of the joint queriesH . The most natu-
ral way to map this operator to a number (i.e., the count) is by
taking the expectation value 〈H 〉. However, we have to ad-
dress an important subtlety. WhenH corresponds to a proper
Hamiltonian, the fact that the origin of the energy scale has no
physical meaning means that the actual value of 〈H 〉 can be
changed arbitrarily. Hence, we must fix the scale such that
the ground state (which may be degenerate) has zero energy.
In most cases, this is an intuitive choice. For example, most
people would agree that it is natural to associate zero energy
to the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a GHZ state
(|↑〉⊗N+ |↓〉⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between |↑〉 and |↓〉.
Finally, one may argue that the resource count should be

defined in terms of the variance or semi-norm ofH . Indeed,
this is how the resource count is performed to date. However,
there are important classes of quantum systems for which the
variance of the energy diverges, such as systems with a Breit-
Wigner (or Lorentzian) spectrum [14, 15]. In these cases the
resource count, and by implication the scaling of the error,
would be ill-defined. By contrast, the expectation value of
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Queries and resources

• The number of queries Q is equal to the number of terms in the Hamiltonian:

• The proper resource count that compares to Q is expectation value:           .

• We must choose 

• Alternatively, we can evaluate                           , where           is the smallest 
eigenvalue of       .    
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FIG. 1: a) General parameter estimation procedure involving state
preparation P, evolutionU(!) and generalized measurement M with
outcomes x, which produces a probability distribution p(x|!). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameter ! . b) Example for N = 4 of the usual
situation described by HGLM, where each system performs a single
query, and the number of queries equals the number of systems (the
grey box represents Oj(!)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) for HRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

where (#!)2 is the mean square error in the parameter ! ,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect to T , and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. The SQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities, T and F , respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.
To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to
probe for the parameter ! . The couplings that introduce !
into the network can be considered queries, and the scaling of
the error in ! is then determined by the query complexity of
the network. The number of queries Q is not always identical
to the number of physical systems N in the network.

As an example, consider the quantum networks presented
in Fig. 1. The quantum network in b) was analysed by Gio-
vannetti, Lloyd, and Maccone [10]. Suppose that each grey
box in Fig. 1 is a unitary gate Oj(!) = exp(−i!Hj), where
j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-
tian operator. It is convenient to define the generator of the
joint queries as HGLM = $ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),
where each query consists of a joint interaction on two modes.
In other words, the queries are given by the unitary gates
Oi j = exp(−i!Hi⊗Hj) where i �= j. Since all Hi commute
with each other, the generator of the joint queries can be writ-
ten as

HBFCG =$
i> j
Hi⊗Hj . (3)

The number of terms inHBFCG, and therefore the query com-
plexity with respect to the number of systems, is given by
Q = 1

2N(N − 1) = O(N2). Finally, the network correspond-
ing to the protocol of Roy and Braunstein is given in Fig. 1d).
It is easy to see that the number of terms in the corresponding
generatorHRB is given by 2N − 1, and the number of queries
is therefore Q = 2N − 1. Since we have a systematic method
for increasing N (and Q) given the gate Oj, this defines an
asymptotic query complexity of the network. Since both T
andQ count the number of queries, this allows us to meaning-
fully compare the SQL with the Heisenberg limit.
From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-
lated to the generator of the joint queriesH . The most natu-
ral way to map this operator to a number (i.e., the count) is by
taking the expectation value �H �. However, we have to ad-
dress an important subtlety. WhenH corresponds to a proper
Hamiltonian, the fact that the origin of the energy scale has no
physical meaning means that the actual value of �H � can be
changed arbitrarily. Hence, we must fix the scale such that
the ground state (which may be degenerate) has zero energy.
In most cases, this is an intuitive choice. For example, most
people would agree that it is natural to associate zero energy
to the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a GHZ state
(|↑�⊗N+ |↓�⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between |↑� and |↓�.
For more general interactionsU(!)where we include feed-

forward and arbitrary unitary gates between queries in Fig. 1,
we can use an argument by Giovannetti et al. [10] to show that
�H �= �i(%U(!)/%!)U†(!)� is unaffected by the intermedi-
ate unitary gates, and the scaling is therefore still determined
by Q.
Finally, one may argue that the resource count should be

defined in terms of the variance or semi-norm ofH . Indeed,

FIG. 1: a) General parameter estimation procedure involving state

preparation P, evolution U(ϕ) and generalized measurement M with

outcomes x, which produces a probability distribution p(x|ϕ). In

terms of quantum networks, the evolution can be written as a number

of queries of the parameter ϕ . b) Example for N = 4 of the usual

situation described by HGLM, where each system performs a single

query, and the number of queries equals the number of systems (the

grey box represents O j(ϕ)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can

jointly perform a single query, and the number of queries then scales

quadratically with the number of systems; d) for HRB all possible

subsets of systems perform a single query. The number of queries

scales exponentially with the number of systems.

where (δϕ)2
is the mean square error in the parameter ϕ ,

and T is the number of times the procedure is repeated. The

SQL is obtained when the Fisher information is a constant

with respect to T , and the Heisenberg limit is obtained in a

single-shot experiment (T = 1) when the Fisher information

scales quadratically with the resource count. The SQL and the

Heisenberg limit therefore relate to two fundamentally differ-

ent quantities, T and F , respectively. We need to reconcile the

meaning of these two limits if we want to compare them in a

meaningful way.

To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a

quantum parameter estimation protocol can be written as a

quantum network acting on a set of quantum systems, with

repeated couplings of the network to the system we wish to

probe for the parameter ϕ . The couplings that introduce ϕ
into the network can be considered queries, and the scaling of

the error in ϕ is then determined by the query complexity of

the network. The number of queries Q is not always identical

to the number of physical systems N in the network.

As an example, consider the quantum networks presented

in Fig. 1. The quantum network in b) was analysed by Gio-

vannetti, Lloyd, and Maccone [10]. Suppose that each grey

box in Fig. 1 is a unitary gate O j(ϕ) = exp(−iϕHj), where

j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-

tian operator. It is convenient to define the generator of the

joint queries as HGLM = ∑ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.

Next, the quantum network corresponding to the procedure

of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),

where each query consists of a joint interaction on two modes.

In other words, the queries are given by the unitary gates

Oi j = exp(−iϕHi ⊗Hj) where i �= j. Since all Hi commute

with each other, the generator of the joint queries can be writ-

ten as

HBFCG = ∑
i> j

Hi ⊗Hj . (3)

The number of terms in HBFCG, and therefore the query com-

plexity with respect to the number of systems, is given by

Q = 1

2
N(N − 1) = O(N2). Finally, the network correspond-

ing to the protocol of Roy and Braunstein is given in Fig. 1d).

It is easy to see that the number of terms in the corresponding

generator HRB is given by 2
N −1, and the number of queries

is therefore Q = 2
N − 1. Since we have a systematic method

for increasing N (and Q) given the gate O j, this defines an

asymptotic query complexity of the network. Since both T
and Q count the number of queries, this allows us to meaning-

fully compare the SQL with the Heisenberg limit.

From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-

lated to the generator of the joint queries H . The most natu-

ral way to map this operator to a number (i.e., the count) is by

taking the expectation value �H �. However, we have to ad-

dress an important subtlety. When H corresponds to a proper

Hamiltonian, the fact that the origin of the energy scale has no

physical meaning means that the actual value of �H � can be

changed arbitrarily. Hence, we must fix the scale such that

the ground state (which may be degenerate) has zero energy.

In most cases, this is an intuitive choice. For example, most

people would agree that it is natural to associate zero energy
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FIG. 1: a) General parameter estimation procedure involving state
preparation P, evolutionU(!) and generalized measurement M with
outcomes x, which produces a probability distribution p(x|!). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameter ! . b) Example for N = 4 of the usual
situation described by HGLM, where each system performs a single
query, and the number of queries equals the number of systems (the
grey box represents Oj(!)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) for HRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

where (#!)2 is the mean square error in the parameter ! ,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect to T , and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. The SQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities, T and F , respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.
To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to
probe for the parameter ! . The couplings that introduce !
into the network can be considered queries, and the scaling of
the error in ! is then determined by the query complexity of
the network. The number of queries Q is not always identical
to the number of physical systems N in the network.

As an example, consider the quantum networks presented
in Fig. 1. The quantum network in b) was analysed by Gio-
vannetti, Lloyd, and Maccone [10]. Suppose that each grey
box in Fig. 1 is a unitary gate Oj(!) = exp(−i!Hj), where
j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-
tian operator. It is convenient to define the generator of the
joint queries as HGLM = $ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),
where each query consists of a joint interaction on two modes.
In other words, the queries are given by the unitary gates
Oi j = exp(−i!Hi⊗Hj) where i �= j. Since all Hi commute
with each other, the generator of the joint queries can be writ-
ten as

HBFCG =$
i> j
Hi⊗Hj . (3)

The number of terms inHBFCG, and therefore the query com-
plexity with respect to the number of systems, is given by
Q = 1

2N(N − 1) = O(N2). Finally, the network correspond-
ing to the protocol of Roy and Braunstein is given in Fig. 1d).
It is easy to see that the number of terms in the corresponding
generatorHRB is given by 2N − 1, and the number of queries
is therefore Q = 2N − 1. Since we have a systematic method
for increasing N (and Q) given the gate Oj, this defines an
asymptotic query complexity of the network. Since both T
andQ count the number of queries, this allows us to meaning-
fully compare the SQL with the Heisenberg limit.
From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-
lated to the generator of the joint queriesH . The most natu-
ral way to map this operator to a number (i.e., the count) is by
taking the expectation value �H �. However, we have to ad-
dress an important subtlety. WhenH corresponds to a proper
Hamiltonian, the fact that the origin of the energy scale has no
physical meaning means that the actual value of �H � can be
changed arbitrarily. Hence, we must fix the scale such that
the ground state (which may be degenerate) has zero energy.
In most cases, this is an intuitive choice. For example, most
people would agree that it is natural to associate zero energy
to the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a GHZ state
(|↑�⊗N+ |↓�⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between |↑� and |↓�.
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we can use an argument by Giovannetti et al. [10] to show that
�H �= �i(%U(!)/%!)U†(!)� is unaffected by the intermedi-
ate unitary gates, and the scaling is therefore still determined
by Q.
Finally, one may argue that the resource count should be
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Expectation versus variance

• For any       , the expectation value scales as:

• This has the same asymptotic scaling behaviour as the variance:

• The expectation value is always well-defined, but the variance is not (for 
example in Lorentzian or Breit-Wigner spectra).

δϕSQL ≥ 1√
T

δϕHL ≥ 1

N

�H −hminI�

1

3

this is how the resource count is performed to date. However,

there are important classes of quantum systems for which the

variance of the energy diverges, such as systems with a Breit-

Wigner (or Lorentzian) spectrum [11, 12]. In these cases the

resource count, and by implication the scaling of the error,

would be ill-defined. By contrast, the expectation value of

H always exists and is always positive. Moreover, when the

variance exists, both expressions can be bounded by a linear

function in the number of queries Q. Let H = ∑Q

j
A j. The

variance can then be written as

(∆H )2 =

��
Q

∑
j

A j

�
2
�
−
�

Q

∑
j

A j

�
2

=
Q

2

∑
j

�L j�−
Q

∑
j,k

�A j��Ak� ≤ cQ
2

(4)

for some positive number c and positive operator L j, which

gives ∆H ≤ O(Q) [7]. Similarly, �H � = ∑Q

j
�A j� ≤ O(Q)

since all expectation values are positive and finite. In other

words, in terms of the scaling behaviour with Q, we can use

either the variance or the expectation value.

Sometimes, it is unclear how the query complexity is de-

fined, for example when the estimation procedure does not

involve repeated applications of the gates O j(ϕ), or when an

indeterminate number of identical particles, such as photons,

are involved. Nevertheless, the generator H is always well-

defined in any estimation procedure, and we can always use

its expectation value to define the relevant resource count.

After establishing the appropriate resource count, we are fi-

nally in a position to prove the optimality of the Heisenberg

limit for quantum parameter estimation in its most general

form. The Fisher information can be related to a statistical

distance s on the probability simplex spanned by p(x|ϕ). Con-

sider two probability distributions p(x) and p(x)+d p(x). The

infinitesimal statistical distance between these distributions is

given by [13, 14]

ds
2 =

�
dx

1

p(x)
[d p(x)]2 . (5)

Dividing both sides by (dϕ)2
and including the dependence

on ϕ in p(x), we obtain

�
ds

dϕ

�
2

=
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�
2

= F(ϕ) , (6)

which relates the Fisher information to the rate of change of

the statistical distance (i.e., the speed of dynamical evolution).

When we count the resources that are used in a parame-

ter estimation procedure, we must make sure that we do not

leave anything out, and this can be guaranteed by including in

our description the environment that the estimation procedure

couples to. This reduces the quantum states to pure states,

which means that we can use Wootters’ distance [14] between

quantum states as the statistical distance:

s(ψ,φ) = arccos(|�ψ|φ�|) , (7)

where |ψ� and |φ� are two pure states in the larger Hilbert

space, and s(ψ,φ) is the angle between them. The distance

between the probe state ρ(0) and the evolved state ρ(ϕ) can

then be represented by the pure states |ψ(0)� and |ψ(ϕ)�, re-

spectively, and the unitary evolution is given by

|ψ(ϕ)�= exp(−iϕH ) |ψ(0)� . (8)

Here, we place no restriction on H , other than fixing the en-

ergy scale if necessary. We can place an upper bound on the

derivative of Wootters’ distance by evaluating the differential

of s in Eq. (7) and using the Schrödinger equation implicit in
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Combining this with Eq. (6) and Eq. (2) leads to the Cramér-

Rao bound

(δϕ)2 ≥ 1

T

�
ds

dϕ

�−2

=
1

T �H �2
. (10)

When all resources are used in a single-shot (T = 1) experi-

ment, the error in ϕ is bounded by

δϕ ≥ 1

�H � . (11)

Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound
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2∆H
. (13)

However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Eq. (11) may not

be attained, even in principle, because the bound in Eq. (13)

prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and

the subsequent discussion indicate, the Heisenberg limit is not
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Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound

δϕ ≥ 1
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. (13)

However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Eq. (11) may not

be attained, even in principle, because the bound in Eq. (13)

prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and

the subsequent discussion indicate, the Heisenberg limit is not
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The resource count in parameter estimation

• In conclusion, when the parameter estimation procedure is described by

with                                     , the proper resource count is given by            .

This is always well-defined, even when the query complexity itself may not 
be.
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FIG. 1: a) General parameter estimation procedure involving state
preparation P, evolutionU(!) and generalized measurement M with
outcomes x, which produces a probability distribution p(x|!). In
terms of quantum networks, the evolution can be written as a number
of queries of the parameter ! . b) Example for N = 4 of the usual
situation described by HGLM, where each system performs a single
query, and the number of queries equals the number of systems (the
grey box represents Oj(!)); c) for HBFCG the number of queries Q
does not always equal the number of systems: any two systems can
jointly perform a single query, and the number of queries then scales
quadratically with the number of systems; d) for HRB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.

where (#!)2 is the mean square error in the parameter ! ,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant
with respect to T , and the Heisenberg limit is obtained in a
single-shot experiment (T = 1) when the Fisher information
scales quadratically with the resource count. The SQL and the
Heisenberg limit therefore relate to two fundamentally differ-
ent quantities, T and F , respectively. We need to reconcile the
meaning of these two limits if we want to compare them in a
meaningful way.
To solve this problem, we can define an unambiguous re-

source count for parameter estimation by recognising that a
quantum parameter estimation protocol can be written as a
quantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to
probe for the parameter ! . The couplings that introduce !
into the network can be considered queries, and the scaling of
the error in ! is then determined by the query complexity of
the network. The number of queries Q is not always identical
to the number of physical systems N in the network.

As an example, consider the quantum networks presented
in Fig. 1. The quantum network in b) was analysed by Gio-
vannetti, Lloyd, and Maccone [10]. Suppose that each grey
box in Fig. 1 is a unitary gate Oj(!) = exp(−i!Hj), where
j = 1, . . . ,N denotes the system, and Hj is a positive Hermi-
tian operator. It is convenient to define the generator of the
joint queries as HGLM = $ j Hj. The number of queries Q
is then equal to the number of terms in HGLM, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in Fig. 1c),
where each query consists of a joint interaction on two modes.
In other words, the queries are given by the unitary gates
Oi j = exp(−i!Hi⊗Hj) where i �= j. Since all Hi commute
with each other, the generator of the joint queries can be writ-
ten as

HBFCG =$
i> j
Hi⊗Hj . (3)

The number of terms inHBFCG, and therefore the query com-
plexity with respect to the number of systems, is given by
Q = 1

2N(N − 1) = O(N2). Finally, the network correspond-
ing to the protocol of Roy and Braunstein is given in Fig. 1d).
It is easy to see that the number of terms in the corresponding
generatorHRB is given by 2N − 1, and the number of queries
is therefore Q = 2N − 1. Since we have a systematic method
for increasing N (and Q) given the gate Oj, this defines an
asymptotic query complexity of the network. Since both T
andQ count the number of queries, this allows us to meaning-
fully compare the SQL with the Heisenberg limit.
From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-
lated to the generator of the joint queriesH . The most natu-
ral way to map this operator to a number (i.e., the count) is by
taking the expectation value �H �. However, we have to ad-
dress an important subtlety. WhenH corresponds to a proper
Hamiltonian, the fact that the origin of the energy scale has no
physical meaning means that the actual value of �H � can be
changed arbitrarily. Hence, we must fix the scale such that
the ground state (which may be degenerate) has zero energy.
In most cases, this is an intuitive choice. For example, most
people would agree that it is natural to associate zero energy
to the vacuum state, and add the corresponding amount of en-
ergy for each added photon. Technically, this corresponds to
the normal ordering of the Hamiltonian of the radiation field
in order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a GHZ state
(|↑�⊗N+ |↓�⊗N)/

√
2 is no longer taken to be zero, but rather

N/2 times the energy splitting between |↑� and |↓�.
For more general interactionsU(!)where we include feed-

forward and arbitrary unitary gates between queries in Fig. 1,
we can use an argument by Giovannetti et al. [10] to show that
�H �= �i(%U(!)/%!)U†(!)� is unaffected by the intermedi-
ate unitary gates, and the scaling is therefore still determined
by Q.
Finally, one may argue that the resource count should be

defined in terms of the variance or semi-norm ofH . Indeed,
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is the mean square error in the parameter ϕ ,
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Next, the quantum network corresponding to the procedure
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In other words, the queries are given by the unitary gates
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fully compare the SQL with the Heisenberg limit.

From our arguments about the query complexity of quan-

tum networks, it is clear that the resource count must be re-

lated to the generator of the joint queries H . The most natu-

ral way to map this operator to a number (i.e., the count) is by

taking the expectation value �H �. However, we have to ad-

dress an important subtlety. When H corresponds to a proper

Hamiltonian, the fact that the origin of the energy scale has no

physical meaning means that the actual value of �H � can be

changed arbitrarily. Hence, we must fix the scale such that

the ground state (which may be degenerate) has zero energy.

In most cases, this is an intuitive choice. For example, most

people would agree that it is natural to associate zero energy

to the vacuum state, and add the corresponding amount of en-

ergy for each added photon. Technically, this corresponds to
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Parameter estimation is a fundamental pillar of science and technology, and improved measurement tech-
niques for parameter estimation have often led to scientific breakthroughs and technological advancement. It
has long been known that quantum metrology promises improved sensitivity in parameter estimation over clas-
sical procedures. However, there is an extensive debate over the question how the sensitivity scales with the
resources (such as the average photon number) and number of phase gates that are used in estimation proce-
dures. Here, we reconcile the physical definition of the relevant resources used in parameter estimation with
the information-theoretical scaling in terms of the query complexity of a quantum network. This leads to a
completely general optimality proof of the Heisenberg limit for quantum metrology. We give an example how
our proof resolves paradoxes that suggest sensitivities beyond the Heisenberg limit, and we clarify the precise
relationship between the Heisenberg limit and Heisenberg’s uncertainty principle.

The field of quantum metrology started with the work of Hel-
strom [1, 2], who derived the minimum value for the mean
square error in a parameter in terms of the density matrix of
the quantum system and a measurement procedure. This was
a generalisation of a known result in classical parameter esti-
mation, called the Cramér-Rao bound. Braunstein and Caves
[3] showed how this bound can be formulated for the most
general state preparation and measurement procedures. While
it is generally a hard problem to show that the Cramér-Rao
bound can be attained in a given setup, at least it gives an up-
per limit to the precision of quantum parameter estimation.
Caves [4] showed that quantum mechanical systems can in
principle produce greater sensitivity over classical methods.

A second, related problem is to find an expression for the
mean square error in terms of the resources used in the param-
eter estimation procedure. In other words, is there a general
optimal scaling of the quantum Cramér-Rao bound? We usu-
ally consider two scaling regimes: (i) the standard quantum

limit (SQL) [5] or shot-noise limit, which is typically given by
the inverse square root of the number of times T we make a
measurement, and (ii) the Heisenberg limit [6], in which the
mean error scales linearly inversely with the resource count.
Often the standard quantum limit and the Heisenberg limit
can be compared directly in terms of e.g., the average pho-
ton number. However, as we will see shortly, they refer to two
fundamentally different quantities.

The question is now twofold: First, what is the appropriate
resource count for the Cramér-Rao bound? And second, is the
Heisenberg limit (i.e., linear scaling) also the ultimate limit
of the quantum Cramér-Rao bound? For many common cases
the first question is easily answered: when in an optical pa-
rameter estimation procedure each photon probes the system
of interest once, the appropriate resource count is the pho-
ton number. In most cases the Heisenberg limit is then given
by the inverse photon number N

−1, as expected. However,
there are cases where the error in a parameter can scale much
more favourably with respect to the average photon number.
For example, Boixo et al. [7] devised a parameter estimation
procedure that sees the error scale with N

−2, and Roy and
Braunstein [8] construct a procedure that achieves an error

that scales with 2−N . In the case of continuous variables, Bel-
trán and Luis [9] showed that the use of classical optical non-
linearities can lead to an error with average photon number
scaling N

−3/2. It is tempting to conclude that these protocols
beat the Heisenberg limit, but this is not the case. To see this,
we first need to establish the exact nature of the resource count
that is to be used. We will see that in some cases this is not

the photon number or average energy used in the procedure.
This paper is organized as follows: First, we will argue that

the proper resource count is given by the expectation value of
the generator of translations in the parameter ϕ . Second, we
prove that the mean error in ϕ is bounded by the inverse of this
resource count. This will shed light on the precise relation be-
tween the Heisenberg limit and Heisenberg’s uncertainty prin-
ciple. Finally, we show how the proposal by Beltrán and Luis
is reconciled with our proof.

The most general parameter estimation procedure is shown
in Fig. 1a). Consider a probe system prepared in an ini-
tial quantum state ρ(0) that is evolved to a state ρ(ϕ) by
U(ϕ) = exp(−iϕH ). This is a unitary evolution when we in-
clude the relevant environment into our description, and it in-
cludes feed-forward procedures. The Hermitian operator H

is the generator of translations in ϕ , the parameter we wish
to estimate. The system is subjected to a generalized mea-
surement M, described by a Positive Operator Valued Mea-
sure (POVM) that consists of elements Êx, where x denotes
the measurement outcome. These can be discrete or con-
tinuous (or a mixture of both). The probability distribution
that describes the measurement data is given by the Born rule
p(x|ϕ) = Tr[Êx ρ(ϕ)], and the maximum amount of informa-
tion about ϕ that can be extracted from this measurement is
given by the Fisher information

F(ϕ) =
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�2
. (1)

This leads to the quantum Cramér-Rao bound [1, 3]

δϕ ≥ 1�
T F(ϕ)

, (2)

3

this is how the resource count is performed to date. However,

there are important classes of quantum systems for which the

variance of the energy diverges, such as systems with a Breit-

Wigner (or Lorentzian) spectrum [11, 12]. In these cases the

resource count, and by implication the scaling of the error,

would be ill-defined. By contrast, the expectation value of

H always exists and is always positive. Moreover, when the

variance exists, both expressions can be bounded by a linear
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for some positive number c and positive operator L j, which

gives ∆H ≤ O(Q) [7]. Similarly, �H � = ∑Q
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since all expectation values are positive and finite. In other

words, in terms of the scaling behaviour with Q, we can use

either the variance or the expectation value.

Sometimes, it is unclear how the query complexity is de-

fined, for example when the estimation procedure does not

involve repeated applications of the gates O j(ϕ), or when an

indeterminate number of identical particles, such as photons,

are involved. Nevertheless, the generator H is always well-

defined in any estimation procedure, and we can always use

its expectation value to define the relevant resource count.

After establishing the appropriate resource count, we are fi-

nally in a position to prove the optimality of the Heisenberg

limit for quantum parameter estimation in its most general

form. The Fisher information can be related to a statistical

distance s on the probability simplex spanned by p(x|ϕ). Con-

sider two probability distributions p(x) and p(x)+d p(x). The

infinitesimal statistical distance between these distributions is

given by [13, 14]
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which relates the Fisher information to the rate of change of

the statistical distance (i.e., the speed of dynamical evolution).

When we count the resources that are used in a parame-

ter estimation procedure, we must make sure that we do not

leave anything out, and this can be guaranteed by including in

our description the environment that the estimation procedure

couples to. This reduces the quantum states to pure states,

which means that we can use Wootters’ distance [14] between

quantum states as the statistical distance:

s(ψ,φ) = arccos(|�ψ|φ�|) , (7)

where |ψ� and |φ� are two pure states in the larger Hilbert

space, and s(ψ,φ) is the angle between them. The distance

between the probe state ρ(0) and the evolved state ρ(ϕ) can
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spectively, and the unitary evolution is given by
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of s in Eq. (7) and using the Schrödinger equation implicit in

Eq. (8) [15]:
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When all resources are used in a single-shot (T = 1) experi-

ment, the error in ϕ is bounded by
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Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound
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However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Eq. (11) may not

be attained, even in principle, because the bound in Eq. (13)

prevents it from doing so.
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Fisher information and statistical distance

• We can define a distance between two probability distributions:

• This is directly related to the Fisher information: 

• In Hilbert space, the natural statistical distance is the Wootters distance: 
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indeterminate number of identical particles, such as photons,

are involved. Nevertheless, the generator H is always well-

defined in any estimation procedure, and we can always use

its expectation value to define the relevant resource count.
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form. The Fisher information can be related to a statistical
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Bound on the derivative of s

• Include all relevant systems in parameter estimation procedure: pure states.

• The evolution can be written as

• and the statistical distance is evaluated as

• It can then be shown that (Jones and Kok, arXiv:1003.4870)
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Bound on the derivative of s (           and             )

• To prove this last bound, we attempt to take the derivative directly.

• This means                                    , which gives

• The final step is then

• which proves the inequality (see Jones & Kok, PRA 82, 022107, 2010).
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where δK ≡ |
�

�(∆K)2�|. Separating the variables and inte-

grating yields

� θ
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dθ � ≥ 1

2

h̄

δK

� π

0
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. (24)

In the case where θ is the time parameter generated by

the Hamiltonian H, the inequality reduces to the famous

Mandelstam-Tamm inequality

t ≥ π
2

h̄

∆E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to π ,

instead of π/2. This is due to the factor 4 in Eq. (8). Alter-

natively, this can be seen in the Bloch sphere, were the angle

between orthogonal qubit states is π , rather than π/2. Note

that the Mandelstam-Tamm inequality in Eq. (25) was derived

for unitary evolution of arbitrary mixed states. We will see

in Section IV that this bound can be violated by non-unitary

evolutions of density operators.

B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information directly

to derive the Mandelstam-Tamm inequality, we can use the ex-

pression for the statistical distance and carry out the differen-

tiation with respect to θ explicitly. Remarkably, this will yield

the Margolus-Levitin inequality. We will proceed by first de-

riving the inequality for pure states, followed by an extension
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The Wootters distance between two pure states is given by the

angle between the states and the rate of change of the statisti-

cal distance can therefore be written as
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the inequality
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where we agian used the generalized Schrödinger equation,
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Since arccos(x) is a monotonically decreasing function in the

interval 0 ≤ x ≤ 1, the derivative of |�ψ0|ψθ ��| with respect to

θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-

ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
≤
����

d

dθ
�ψ0|ψθ �

����≤
|�ψ0|K|ψθ �|

h̄
≤ |�ψ0|K|ψ0�|

h̄
≡ |�K�|

h̄
.

(35)

Separating the variables s and θ , we obtain

� θ

0

dθ � ≥ h̄

|�K�|

� π
2

0

ds , (36)

and integrating both sides gives

θ ≥ π
2

h̄

|�K�| . (37)

In the case where K is the Hamiltonian and θ the time, the

inequality becomes the Margolus-Levitin inequality

t ≥ π
2

h̄

E
, (38)

with E the average energy of the system.
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where δK ≡ |
�

�(∆K)2�|. Separating the variables and inte-

grating yields

� θ

0

dθ � ≥ 1

2

h̄

δK

� π

0

ds ⇒ θ ≥ π
2

h̄

δK
. (24)

In the case where θ is the time parameter generated by

the Hamiltonian H, the inequality reduces to the famous

Mandelstam-Tamm inequality

t ≥ π
2

h̄

∆E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to π ,

instead of π/2. This is due to the factor 4 in Eq. (8). Alter-

natively, this can be seen in the Bloch sphere, were the angle

between orthogonal qubit states is π , rather than π/2. Note

that the Mandelstam-Tamm inequality in Eq. (25) was derived

for unitary evolution of arbitrary mixed states. We will see

in Section IV that this bound can be violated by non-unitary

evolutions of density operators.

B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information directly

to derive the Mandelstam-Tamm inequality, we can use the ex-

pression for the statistical distance and carry out the differen-

tiation with respect to θ explicitly. Remarkably, this will yield

the Margolus-Levitin inequality. We will proceed by first de-

riving the inequality for pure states, followed by an extension

to mixed states via a standard purification procedure.

We again consider the evolution parameterized by θ , which

is generated by the Hermitian operator K. In this case, a sys-

tem initially described by the pure state |ψ0� at θ = 0 will

evolve to

|ψθ �= exp

�
− i

h̄
Kθ

�
|ψ0� . (26)

The Wootters distance between two pure states is given by the

angle between the states and the rate of change of the statisti-

cal distance can therefore be written as

ds

dθ
=

d

dθ
arccos(|�ψ0|ψθ �|)

= − 1�
1− |�ψ0|ψθ �|2

d

dθ
|�ψ0|ψθ �| . (27)

Since the pre-factor 1/
�

(1− x2)≥ 1 for all real x, we obtain

the inequality

ds

dθ
≤− d

dθ
|�ψ0|ψθ �| . (28)

Next, we prove that

− d

dθ
|�ψ0|ψθ �|≤

����
d

dθ
�ψ0|ψθ �

���� . (29)

To this end, we rewrite the derivative on the left-hand side of

Eq. (29) as

d

dθ
|�ψ0|ψθ �|=

d

dθ
�
�ψ0|ψθ ��ψθ |ψ0� , (30)

and using the generalised Schrödinger equation

ih̄
d

dθ
|ψθ �= K|ψθ � , (31)

this becomes

d

dθ
|�ψ0|ψθ �| =

−i�ψ0|K|ψθ ��ψθ |ψ0�+ i�ψ0|ψθ ��ψθ |K|ψ0�
2h̄|�ψ0|ψθ �|

=
Im(�ψ0|K|ψθ ��ψθ |ψ0�)

h̄|�ψ0|ψθ �|

≤ |�ψ0|K|ψθ ��ψθ |ψ0�|
h̄|�ψ0|ψθ �|

. (32)

The right-hand side of Eq. (29) becomes

����
d

dθ
�ψ0|ψθ �

���� =
1

h̄
|�ψ0|K|ψθ �|=

|�ψ0|K|ψθ �|.|�ψ0|ψθ �|
h̄|�ψ0|ψθ �|

≥ |�ψ0|K|ψθ ��ψ0|ψθ �|
h̄|�ψ0|ψθ �|

, (33)

where we agian used the generalized Schrödinger equation,

and in the last line we used the Cauchy-Schwarz inequality.

Finally, we combine Eq. (33) and Eq. (32) to obtain

d

dθ
|�ψ0|ψθ �|≤

Im(�ψ0|K|ψθ ��ψθ |ψ0�)
h̄|�ψ0|ψθ �|

≤
����

d

dθ
�ψ0|ψθ �

���� .

(34)

Since arccos(x) is a monotonically decreasing function in the

interval 0 ≤ x ≤ 1, the derivative of |�ψ0|ψθ ��| with respect to

θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-

ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
≤
����

d

dθ
�ψ0|ψθ �

����≤
|�ψ0|K|ψθ �|

h̄
≤ |�ψ0|K|ψ0�|

h̄
≡ |�K�|

h̄
.

(35)

Separating the variables s and θ , we obtain

� θ

0

dθ � ≥ h̄

|�K�|

� π
2

0

ds , (36)

and integrating both sides gives

θ ≥ π
2

h̄

|�K�| . (37)

In the case where K is the Hamiltonian and θ the time, the

inequality becomes the Margolus-Levitin inequality

t ≥ π
2

h̄

E
, (38)

with E the average energy of the system.
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where δK ≡ |
�

�(∆K)2�|. Separating the variables and inte-

grating yields

� θ

0

dθ � ≥ 1

2

h̄

δK

� π

0

ds ⇒ θ ≥ π
2

h̄

δK
. (24)

In the case where θ is the time parameter generated by

the Hamiltonian H, the inequality reduces to the famous

Mandelstam-Tamm inequality

t ≥ π
2

h̄

∆E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to π ,

instead of π/2. This is due to the factor 4 in Eq. (8). Alter-

natively, this can be seen in the Bloch sphere, were the angle

between orthogonal qubit states is π , rather than π/2. Note

that the Mandelstam-Tamm inequality in Eq. (25) was derived

for unitary evolution of arbitrary mixed states. We will see

in Section IV that this bound can be violated by non-unitary

evolutions of density operators.

B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information directly

to derive the Mandelstam-Tamm inequality, we can use the ex-

pression for the statistical distance and carry out the differen-

tiation with respect to θ explicitly. Remarkably, this will yield

the Margolus-Levitin inequality. We will proceed by first de-

riving the inequality for pure states, followed by an extension

to mixed states via a standard purification procedure.

We again consider the evolution parameterized by θ , which

is generated by the Hermitian operator K. In this case, a sys-

tem initially described by the pure state |ψ0� at θ = 0 will

evolve to

|ψθ �= exp

�
− i

h̄
Kθ

�
|ψ0� . (26)

The Wootters distance between two pure states is given by the

angle between the states and the rate of change of the statisti-

cal distance can therefore be written as

ds

dθ
=

d

dθ
arccos(|�ψ0|ψθ �|)

= − 1�
1− |�ψ0|ψθ �|2

d

dθ
|�ψ0|ψθ �| . (27)

Since the pre-factor 1/
�

(1− x2)≥ 1 for all real x, we obtain

the inequality

ds

dθ
≤− d

dθ
|�ψ0|ψθ �| . (28)

Next, we prove that

− d

dθ
|�ψ0|ψθ �|≤

����
d

dθ
�ψ0|ψθ �

���� . (29)

To this end, we rewrite the derivative on the left-hand side of

Eq. (29) as

d

dθ
|�ψ0|ψθ �|=

d

dθ
�
�ψ0|ψθ ��ψθ |ψ0� , (30)

and using the generalised Schrödinger equation

ih̄
d

dθ
|ψθ �= K|ψθ � , (31)

this becomes

d

dθ
|�ψ0|ψθ �| =

−i�ψ0|K|ψθ ��ψθ |ψ0�+ i�ψ0|ψθ ��ψθ |K|ψ0�
2h̄|�ψ0|ψθ �|

=
Im(�ψ0|K|ψθ ��ψθ |ψ0�)

h̄|�ψ0|ψθ �|

≤ |�ψ0|K|ψθ ��ψθ |ψ0�|
h̄|�ψ0|ψθ �|

. (32)

The right-hand side of Eq. (29) becomes

����
d

dθ
�ψ0|ψθ �

���� =
1

h̄
|�ψ0|K|ψθ �|=

|�ψ0|K|ψθ �|.|�ψ0|ψθ �|
h̄|�ψ0|ψθ �|

≥ |�ψ0|K|ψθ ��ψ0|ψθ �|
h̄|�ψ0|ψθ �|

, (33)

where we agian used the generalized Schrödinger equation,

and in the last line we used the Cauchy-Schwarz inequality.

Finally, we combine Eq. (33) and Eq. (32) to obtain

d

dθ
|�ψ0|ψθ �|≤

Im(�ψ0|K|ψθ ��ψθ |ψ0�)
h̄|�ψ0|ψθ �|

≤
����

d

dθ
�ψ0|ψθ �

���� .

(34)

Since arccos(x) is a monotonically decreasing function in the

interval 0 ≤ x ≤ 1, the derivative of |�ψ0|ψθ ��| with respect to

θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-

ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
≤
����

d

dθ
�ψ0|ψθ �

����≤
|�ψ0|K|ψθ �|

h̄
≤ |�ψ0|K|ψ0�|

h̄
≡ |�K�|

h̄
.

(35)

Separating the variables s and θ , we obtain

� θ

0

dθ � ≥ h̄

|�K�|

� π
2

0

ds , (36)

and integrating both sides gives

θ ≥ π
2

h̄

|�K�| . (37)

In the case where K is the Hamiltonian and θ the time, the

inequality becomes the Margolus-Levitin inequality

t ≥ π
2

h̄

E
, (38)

with E the average energy of the system.
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where δK ≡ |
�

�(∆K)2�|. Separating the variables and inte-

grating yields

� θ

0

dθ � ≥ 1

2

h̄

δK

� π

0

ds ⇒ θ ≥ π
2

h̄

δK
. (24)

In the case where θ is the time parameter generated by

the Hamiltonian H, the inequality reduces to the famous

Mandelstam-Tamm inequality

t ≥ π
2

h̄

∆E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to π ,

instead of π/2. This is due to the factor 4 in Eq. (8). Alter-

natively, this can be seen in the Bloch sphere, were the angle

between orthogonal qubit states is π , rather than π/2. Note

that the Mandelstam-Tamm inequality in Eq. (25) was derived

for unitary evolution of arbitrary mixed states. We will see

in Section IV that this bound can be violated by non-unitary

evolutions of density operators.

B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information directly

to derive the Mandelstam-Tamm inequality, we can use the ex-

pression for the statistical distance and carry out the differen-

tiation with respect to θ explicitly. Remarkably, this will yield

the Margolus-Levitin inequality. We will proceed by first de-

riving the inequality for pure states, followed by an extension

to mixed states via a standard purification procedure.

We again consider the evolution parameterized by θ , which

is generated by the Hermitian operator K. In this case, a sys-

tem initially described by the pure state |ψ0� at θ = 0 will

evolve to

|ψθ �= exp

�
− i

h̄
Kθ

�
|ψ0� . (26)

The Wootters distance between two pure states is given by the

angle between the states and the rate of change of the statisti-

cal distance can therefore be written as

ds

dθ
=

d

dθ
arccos(|�ψ0|ψθ �|)

= − 1�
1− |�ψ0|ψθ �|2

d

dθ
|�ψ0|ψθ �| . (27)

Since the pre-factor 1/
�

(1− x2)≥ 1 for all real x, we obtain

the inequality

ds

dθ
≤− d

dθ
|�ψ0|ψθ �| . (28)

Next, we prove that

− d

dθ
|�ψ0|ψθ �|≤

����
d

dθ
�ψ0|ψθ �

���� . (29)

To this end, we rewrite the derivative on the left-hand side of

Eq. (29) as

d

dθ
|�ψ0|ψθ �|=

d

dθ
�
�ψ0|ψθ ��ψθ |ψ0� , (30)

and using the generalised Schrödinger equation

ih̄
d

dθ
|ψθ �= K|ψθ � , (31)

this becomes

d

dθ
|�ψ0|ψθ �| =

−i�ψ0|K|ψθ ��ψθ |ψ0�+ i�ψ0|ψθ ��ψθ |K|ψ0�
2h̄|�ψ0|ψθ �|

=
Im(�ψ0|K|ψθ ��ψθ |ψ0�)

h̄|�ψ0|ψθ �|

≤ |�ψ0|K|ψθ ��ψθ |ψ0�|
h̄|�ψ0|ψθ �|

. (32)

The right-hand side of Eq. (29) becomes

����
d

dθ
�ψ0|ψθ �

���� =
1

h̄
|�ψ0|K|ψθ �|=

|�ψ0|K|ψθ �|.|�ψ0|ψθ �|
h̄|�ψ0|ψθ �|

≥ |�ψ0|K|ψθ ��ψ0|ψθ �|
h̄|�ψ0|ψθ �|

, (33)

where we agian used the generalized Schrödinger equation,

and in the last line we used the Cauchy-Schwarz inequality.

Finally, we combine Eq. (33) and Eq. (32) to obtain

d

dθ
|�ψ0|ψθ �|≤

Im(�ψ0|K|ψθ ��ψθ |ψ0�)
h̄|�ψ0|ψθ �|

≤
����

d

dθ
�ψ0|ψθ �

���� .

(34)

Since arccos(x) is a monotonically decreasing function in the

interval 0 ≤ x ≤ 1, the derivative of |�ψ0|ψθ ��| with respect to

θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-

ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
≤
����

d

dθ
�ψ0|ψθ �

����≤
|�ψ0|K|ψθ �|

h̄
≤ |�ψ0|K|ψ0�|

h̄
≡ |�K�|

h̄
.

(35)

Separating the variables s and θ , we obtain

� θ

0

dθ � ≥ h̄

|�K�|

� π
2

0

ds , (36)

and integrating both sides gives

θ ≥ π
2

h̄

|�K�| . (37)

In the case where K is the Hamiltonian and θ the time, the

inequality becomes the Margolus-Levitin inequality

t ≥ π
2

h̄

E
, (38)

with E the average energy of the system.
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where δK ≡ |
�

�(∆K)2�|. Separating the variables and inte-

grating yields

� θ

0

dθ � ≥ 1

2

h̄

δK

� π

0

ds ⇒ θ ≥ π
2

h̄

δK
. (24)

In the case where θ is the time parameter generated by

the Hamiltonian H, the inequality reduces to the famous

Mandelstam-Tamm inequality

t ≥ π
2

h̄

∆E
. (25)

Note that the integral over ds in Eq. (24) runs from 0 to π ,

instead of π/2. This is due to the factor 4 in Eq. (8). Alter-

natively, this can be seen in the Bloch sphere, were the angle

between orthogonal qubit states is π , rather than π/2. Note

that the Mandelstam-Tamm inequality in Eq. (25) was derived

for unitary evolution of arbitrary mixed states. We will see

in Section IV that this bound can be violated by non-unitary

evolutions of density operators.

B. Margolus-Levitin inequality

Instead of using the bound on the Fisher information directly

to derive the Mandelstam-Tamm inequality, we can use the ex-

pression for the statistical distance and carry out the differen-

tiation with respect to θ explicitly. Remarkably, this will yield

the Margolus-Levitin inequality. We will proceed by first de-

riving the inequality for pure states, followed by an extension

to mixed states via a standard purification procedure.

We again consider the evolution parameterized by θ , which

is generated by the Hermitian operator K. In this case, a sys-

tem initially described by the pure state |ψ0� at θ = 0 will

evolve to

|ψθ �= exp

�
− i

h̄
Kθ

�
|ψ0� . (26)

The Wootters distance between two pure states is given by the

angle between the states and the rate of change of the statisti-

cal distance can therefore be written as

ds

dθ
=

d

dθ
arccos(|�ψ0|ψθ �|)

= − 1�
1− |�ψ0|ψθ �|2

d

dθ
|�ψ0|ψθ �| . (27)

Since the pre-factor 1/
�

(1− x2)≥ 1 for all real x, we obtain

the inequality

ds

dθ
≤− d

dθ
|�ψ0|ψθ �| . (28)

Next, we prove that

− d

dθ
|�ψ0|ψθ �|≤

����
d

dθ
�ψ0|ψθ �

���� . (29)

To this end, we rewrite the derivative on the left-hand side of

Eq. (29) as

d

dθ
|�ψ0|ψθ �|=

d

dθ
�
�ψ0|ψθ ��ψθ |ψ0� , (30)

and using the generalised Schrödinger equation

ih̄
d

dθ
|ψθ �= K|ψθ � , (31)

this becomes

d

dθ
|�ψ0|ψθ �| =

−i�ψ0|K|ψθ ��ψθ |ψ0�+ i�ψ0|ψθ ��ψθ |K|ψ0�
2h̄|�ψ0|ψθ �|

=
Im(�ψ0|K|ψθ ��ψθ |ψ0�)

h̄|�ψ0|ψθ �|

≤ |�ψ0|K|ψθ ��ψθ |ψ0�|
h̄|�ψ0|ψθ �|

. (32)

The right-hand side of Eq. (29) becomes

����
d

dθ
�ψ0|ψθ �

���� =
1

h̄
|�ψ0|K|ψθ �|=

|�ψ0|K|ψθ �|.|�ψ0|ψθ �|
h̄|�ψ0|ψθ �|

≥ |�ψ0|K|ψθ ��ψ0|ψθ �|
h̄|�ψ0|ψθ �|

, (33)

where we agian used the generalized Schrödinger equation,

and in the last line we used the Cauchy-Schwarz inequality.

Finally, we combine Eq. (33) and Eq. (32) to obtain

d

dθ
|�ψ0|ψθ �|≤

Im(�ψ0|K|ψθ ��ψθ |ψ0�)
h̄|�ψ0|ψθ �|

≤
����

d

dθ
�ψ0|ψθ �

���� .

(34)

Since arccos(x) is a monotonically decreasing function in the

interval 0 ≤ x ≤ 1, the derivative of |�ψ0|ψθ ��| with respect to

θ is strictly positive and we have therefore proved Eq. (29).

Continuing the derivation of the Margolus-Levitin inequal-

ity, we use Eq. (34) in Eq. (28) and find that

ds

dθ
≤
����

d

dθ
�ψ0|ψθ �

����≤
|�ψ0|K|ψθ �|

h̄
≤ |�ψ0|K|ψ0�|

h̄
≡ |�K�|

h̄
.

(35)

Separating the variables s and θ , we obtain

� θ

0

dθ � ≥ h̄

|�K�|

� π
2

0

ds , (36)

and integrating both sides gives

θ ≥ π
2

h̄

|�K�| . (37)

In the case where K is the Hamiltonian and θ the time, the

inequality becomes the Margolus-Levitin inequality

t ≥ π
2

h̄

E
, (38)

with E the average energy of the system.
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The Heisenberg limit is optimal

• We can use this bound in the Fisher information:

• This is the Heisenberg limit (for T = 1):

• This reconciles the number of queries with the physical resource count, and 
allows us to compare T and F.

3

this is how the resource count is performed to date. However,

there are important classes of quantum systems for which the

variance of the energy diverges, such as systems with a Breit-

Wigner (or Lorentzian) spectrum [11, 12]. In these cases the

resource count, and by implication the scaling of the error,

would be ill-defined. By contrast, the expectation value of

H always exists and is always positive. Moreover, when the

variance exists, both expressions can be bounded by a linear

function in the number of queries Q. Let H = ∑Q

j
A j. The

variance can then be written as

(∆H )2 =

��
Q

∑
j

A j

�
2
�
−
�

Q

∑
j

A j

�
2

=
Q

2

∑
j

�L j�−
Q

∑
j,k

�A j��Ak� ≤ cQ
2

(4)

for some positive number c and positive operator L j, which

gives ∆H ≤ O(Q) [7]. Similarly, �H � = ∑Q

j
�A j� ≤ O(Q)

since all expectation values are positive and finite. In other

words, in terms of the scaling behaviour with Q, we can use

either the variance or the expectation value.

Sometimes, it is unclear how the query complexity is de-

fined, for example when the estimation procedure does not

involve repeated applications of the gates O j(ϕ), or when an

indeterminate number of identical particles, such as photons,

are involved. Nevertheless, the generator H is always well-

defined in any estimation procedure, and we can always use

its expectation value to define the relevant resource count.

After establishing the appropriate resource count, we are fi-

nally in a position to prove the optimality of the Heisenberg

limit for quantum parameter estimation in its most general

form. The Fisher information can be related to a statistical

distance s on the probability simplex spanned by p(x|ϕ). Con-

sider two probability distributions p(x) and p(x)+d p(x). The

infinitesimal statistical distance between these distributions is

given by [13, 14]

ds
2 =

�
dx

1

p(x)
[d p(x)]2 . (5)

Dividing both sides by (dϕ)2
and including the dependence

on ϕ in p(x), we obtain

�
ds

dϕ

�
2

=
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�
2

= F(ϕ) , (6)

which relates the Fisher information to the rate of change of

the statistical distance (i.e., the speed of dynamical evolution).

When we count the resources that are used in a parame-

ter estimation procedure, we must make sure that we do not

leave anything out, and this can be guaranteed by including in

our description the environment that the estimation procedure

couples to. This reduces the quantum states to pure states,

which means that we can use Wootters’ distance [14] between

quantum states as the statistical distance:

s(ψ,φ) = arccos(|�ψ|φ�|) , (7)

where |ψ� and |φ� are two pure states in the larger Hilbert

space, and s(ψ,φ) is the angle between them. The distance

between the probe state ρ(0) and the evolved state ρ(ϕ) can

then be represented by the pure states |ψ(0)� and |ψ(ϕ)�, re-

spectively, and the unitary evolution is given by

|ψ(ϕ)�= exp(−iϕH ) |ψ(0)� . (8)

Here, we place no restriction on H , other than fixing the en-

ergy scale if necessary. We can place an upper bound on the

derivative of Wootters’ distance by evaluating the differential

of s in Eq. (7) and using the Schrödinger equation implicit in

Eq. (8) [15]:

ds
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≤ �H � . (9)

Combining this with Eq. (6) and Eq. (2) leads to the Cramér-

Rao bound
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When all resources are used in a single-shot (T = 1) experi-

ment, the error in ϕ is bounded by

δϕ ≥ 1

�H � . (11)

Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound
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However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Eq. (11) may not

be attained, even in principle, because the bound in Eq. (13)

prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and

the subsequent discussion indicate, the Heisenberg limit is not
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procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound

δϕ ≥ 1
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However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect
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be attained, even in principle, because the bound in Eq. (13)
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The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and
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Can nonlinear optics beat the Heisenberg limit?

• A very interesting proposal by Beltran and Luis suggests that the Heisenberg 
limit can be beaten when we used nonlinear optics:

• A straightforward calculation then shows that 

which beats the             limit. 
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an uncertainty relation, since it relates the uncertainty of the
parameter to the first moment of the conjugate observable H ,
rather than the second. It turns out instead that the Heisenberg
limit is intimately connected to the Margolus-Levitin bound
on the time it takes for a quantum system to evolve to an or-
thogonal state [15, 18]. To see this, we can formally solve
Eq. (9) by separation of variables, yielding

� ϕ

0
dϕ � ≥ 1

�H �

� π/2

0
ds ⇒ ϕ ≥ π

2
1

�H � . (14)

We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolution
of quantum systems when H is the Hamiltonian. The (gener-
alized) uncertainty principle, on the other hand, can be iden-
tified with the Mandelstam-Tamm bound [15]. Both limits
are completely general (assuming the existence of ∆H ) and
complement each other.

Finally, we demonstrate that our proof applies to continu-
ous variable systems as well as discrete systems, by consid-
ering the procedure of Beltrán and Luis [9]. The construc-
tion is as follows: The evolution O(ϕ) is generated by an
optical nonlinearity proportional to the square of the photon
number operator n̂

2 acting on a single-mode coherent state
|ψ(0)� = |α�. The evolved state before detection is given by
|ψ(ϕ)� = exp(−iϕ n̂

2)|α�, and the mean square error in ϕ is
calculated as

δϕ � 1
4�n̂�3/2 =

1
4|α|3 , (15)

to leading order in the average photon number �n̂�. Since here
the average energy is directly proportional to the average pho-
ton number, this procedure seems to surpass the Heisenberg
limit. To resolve this paradox, we note that the generator
of translations in ϕ is not the photon number operator n̂, but
rather the higher-order nonlinearity H = n̂

2. The appropriate
resource count is therefore �H � = �n̂2�, instead of the aver-
age photon number �n̂�. It is easily verified that to leading
order δϕ is theoretically bounded by 1/�n̂2�= 1/|α|4. Hence
the parameter estimation procedure not only does not beat the
Heisenberg limit, it does not attain it!

Formally, we can attain the Heisenberg limit in this setup
with the following modification of the input state and the
measurement. Consider the single-mode input state |ψ0� =
(|0�+ |N�)/

√
2, where |0� denotes no photons, and |N� de-

notes N photons. The state of the probe before detection is
then given by

|ψ(ϕ)�= exp(−iϕ n̂
2)|ψ(0)�= |0�+ e

−iϕN
2 |N�√

2
. (16)

We define the measurement observable X = |0��N|+ |N��0|.
Hence, for the final state |ψ(ϕ)� we calculate �X� =
�ψϕ |X |ψϕ�= cos(N2ϕ) and ∆X = sin(N2ϕ). Using the stan-
dard expression for the mean squared error, we find that

δϕ =
∆X

|d�X�/dϕ| =
1

N2 . (17)

Since �H �= �n̂2�= O(N2), this procedure exactly attains the
Heisenberg limit. Note that this is a formal demonstration
that the Heisenberg limit can be attained according to quan-
tum mechanics, even though we currently do not know how to
implement it.

In conclusion, we demonstrated that the Heisenberg limit
is optimal for all parameter estimation procedures in quantum
metrology, but it requires careful consideration as to which re-
source is appropriate for expressing the scaling behaviour of
the mean square error. The correct resource to take into ac-
count is (the expectation value of) the generator of the trans-
lations in the parameter. In the case of most optical phase
estimation protocols this reduces to the average photon num-
ber. Contrary to the origin of the term “Heisenberg limit”, it
is not a generalised uncertainty relation, but rather an expres-
sion of the Margolus-Levitin bound on the speed of dynamical
evolution for quantum states.
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an uncertainty relation, since it relates the uncertainty of the
parameter to the first moment of the conjugate observable H ,
rather than the second. It turns out instead that the Heisenberg
limit is intimately connected to the Margolus-Levitin bound
on the time it takes for a quantum system to evolve to an or-
thogonal state [15, 18]. To see this, we can formally solve
Eq. (9) by separation of variables, yielding

� ϕ

0
dϕ � ≥ 1
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� π/2

0
ds ⇒ ϕ ≥ π
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�H � . (14)

We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolution
of quantum systems when H is the Hamiltonian. The (gener-
alized) uncertainty principle, on the other hand, can be iden-
tified with the Mandelstam-Tamm bound [15]. Both limits
are completely general (assuming the existence of ∆H ) and
complement each other.

Finally, we demonstrate that our proof applies to continu-
ous variable systems as well as discrete systems, by consid-
ering the procedure of Beltrán and Luis [9]. The construc-
tion is as follows: The evolution O(ϕ) is generated by an
optical nonlinearity proportional to the square of the photon
number operator n̂

2 acting on a single-mode coherent state
|ψ(0)� = |α�. The evolved state before detection is given by
|ψ(ϕ)� = exp(−iϕ n̂

2)|α�, and the mean square error in ϕ is
calculated as

δϕ � 1
4�n̂�3/2 =

1
4|α|3 , (15)

to leading order in the average photon number �n̂�. Since here
the average energy is directly proportional to the average pho-
ton number, this procedure seems to surpass the Heisenberg
limit. To resolve this paradox, we note that the generator
of translations in ϕ is not the photon number operator n̂, but
rather the higher-order nonlinearity H = n̂

2. The appropriate
resource count is therefore �H � = �n̂2�, instead of the aver-
age photon number �n̂�. It is easily verified that to leading
order δϕ is theoretically bounded by 1/�n̂2�= 1/|α|4. Hence
the parameter estimation procedure not only does not beat the
Heisenberg limit, it does not attain it!

Formally, we can attain the Heisenberg limit in this setup
with the following modification of the input state and the
measurement. Consider the single-mode input state |ψ0� =
(|0�+ |N�)/

√
2, where |0� denotes no photons, and |N� de-

notes N photons. The state of the probe before detection is
then given by

|ψ(ϕ)�= exp(−iϕ n̂
2)|ψ(0)�= |0�+ e

−iϕN
2 |N�√

2
. (16)

We define the measurement observable X = |0��N|+ |N��0|.
Hence, for the final state |ψ(ϕ)� we calculate �X� =
�ψϕ |X |ψϕ�= cos(N2ϕ) and ∆X = sin(N2ϕ). Using the stan-
dard expression for the mean squared error, we find that

δϕ =
∆X

|d�X�/dϕ| =
1

N2 . (17)

Since �H �= �n̂2�= O(N2), this procedure exactly attains the
Heisenberg limit. Note that this is a formal demonstration
that the Heisenberg limit can be attained according to quan-
tum mechanics, even though we currently do not know how to
implement it.

In conclusion, we demonstrated that the Heisenberg limit
is optimal for all parameter estimation procedures in quantum
metrology, but it requires careful consideration as to which re-
source is appropriate for expressing the scaling behaviour of
the mean square error. The correct resource to take into ac-
count is (the expectation value of) the generator of the trans-
lations in the parameter. In the case of most optical phase
estimation protocols this reduces to the average photon num-
ber. Contrary to the origin of the term “Heisenberg limit”, it
is not a generalised uncertainty relation, but rather an expres-
sion of the Margolus-Levitin bound on the speed of dynamical
evolution for quantum states.
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an uncertainty relation, since it relates the uncertainty of the
parameter to the first moment of the conjugate observable H ,
rather than the second. It turns out instead that the Heisenberg
limit is intimately connected to the Margolus-Levitin bound
on the time it takes for a quantum system to evolve to an or-
thogonal state [15, 18]. To see this, we can formally solve
Eq. (9) by separation of variables, yielding
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We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolution
of quantum systems when H is the Hamiltonian. The (gener-
alized) uncertainty principle, on the other hand, can be iden-
tified with the Mandelstam-Tamm bound [15]. Both limits
are completely general (assuming the existence of ∆H ) and
complement each other.

Finally, we demonstrate that our proof applies to continu-
ous variable systems as well as discrete systems, by consid-
ering the procedure of Beltrán and Luis [9]. The construc-
tion is as follows: The evolution O(ϕ) is generated by an
optical nonlinearity proportional to the square of the photon
number operator n̂

2 acting on a single-mode coherent state
|ψ(0)� = |α�. The evolved state before detection is given by
|ψ(ϕ)� = exp(−iϕ n̂

2)|α�, and the mean square error in ϕ is
calculated as

δϕ � 1
4�n̂�3/2 =

1
4|α|3 , (15)

to leading order in the average photon number �n̂�. Since here
the average energy is directly proportional to the average pho-
ton number, this procedure seems to surpass the Heisenberg
limit. To resolve this paradox, we note that the generator
of translations in ϕ is not the photon number operator n̂, but
rather the higher-order nonlinearity H = n̂

2. The appropriate
resource count is therefore �H � = �n̂2�, instead of the aver-
age photon number �n̂�. It is easily verified that to leading
order δϕ is theoretically bounded by 1/�n̂2�= 1/|α|4. Hence
the parameter estimation procedure not only does not beat the
Heisenberg limit, it does not attain it!
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with the following modification of the input state and the
measurement. Consider the single-mode input state |ψ0� =
(|0�+ |N�)/

√
2, where |0� denotes no photons, and |N� de-

notes N photons. The state of the probe before detection is
then given by
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2)|ψ(0)�= |0�+ e
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We define the measurement observable X = |0��N|+ |N��0|.
Hence, for the final state |ψ(ϕ)� we calculate �X� =
�ψϕ |X |ψϕ�= cos(N2ϕ) and ∆X = sin(N2ϕ). Using the stan-
dard expression for the mean squared error, we find that

δϕ =
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|d�X�/dϕ| =
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Since �H �= �n̂2�= O(N2), this procedure exactly attains the
Heisenberg limit. Note that this is a formal demonstration
that the Heisenberg limit can be attained according to quan-
tum mechanics, even though we currently do not know how to
implement it.

In conclusion, we demonstrated that the Heisenberg limit
is optimal for all parameter estimation procedures in quantum
metrology, but it requires careful consideration as to which re-
source is appropriate for expressing the scaling behaviour of
the mean square error. The correct resource to take into ac-
count is (the expectation value of) the generator of the trans-
lations in the parameter. In the case of most optical phase
estimation protocols this reduces to the average photon num-
ber. Contrary to the origin of the term “Heisenberg limit”, it
is not a generalised uncertainty relation, but rather an expres-
sion of the Margolus-Levitin bound on the speed of dynamical
evolution for quantum states.

Acknowledgements. We thank Jonathan Dowling for es-
tablishing the etymology of the term “Heisenberg limit”, and
Sam Braunstein for valuable comments on the manuscript.
This research was funded by the White Rose Foundation.

∗ Electronic address: p.kok@sheffield.ac.uk
[1] C. W. Helstrom, Phys. Letters 25A, 101 (1967).
[2] C. W. Helstrom, Quantum detection and estimation theory

(Academic Press, 1976).
[3] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[4] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[5] C. W. Gardiner and P. Zoller, Quantum Noise, p. 322 (Springer-

Verlag, 2004), 3rd ed.
[6] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).
[7] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys.

Rev. Lett. 98, 090401 (2007).
[8] S. Roy and S. L. Braunstein, Phys. Rev. Lett. 100, 220501

(2008).
[9] J. Beltrán and A. Luis, Phys. Rev. A 72, 045801 (2005).

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
10401 (2006).

[11] G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
[12] J. Uffink, Am. J. Phys. 61, 935 (1993).
[13] A. Bhattacharyya, Bulletin of the Calcutta Mathematical Soci-

ety 35, 99 (1943).
[14] W. K. Wootters, Phys. Rev. D 23, 357 (1981).
[15] P. J. Jones and P. Kok, arXiv:1003:4870 (2010).
[16] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys.

247, 135 (1996).
[17] W. Heitler, The Quantum Theory of Radiation, p. 65 (Clarendon

Press, Oxford, 1954), 3rd ed.
[18] N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).

4

an uncertainty relation, since it relates the uncertainty of the
parameter to the first moment of the conjugate observable H ,
rather than the second. It turns out instead that the Heisenberg
limit is intimately connected to the Margolus-Levitin bound
on the time it takes for a quantum system to evolve to an or-
thogonal state [15, 18]. To see this, we can formally solve
Eq. (9) by separation of variables, yielding
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We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolution
of quantum systems when H is the Hamiltonian. The (gener-
alized) uncertainty principle, on the other hand, can be iden-
tified with the Mandelstam-Tamm bound [15]. Both limits
are completely general (assuming the existence of ∆H ) and
complement each other.

Finally, we demonstrate that our proof applies to continu-
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ering the procedure of Beltrán and Luis [9]. The construc-
tion is as follows: The evolution O(ϕ) is generated by an
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2 acting on a single-mode coherent state
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the average energy is directly proportional to the average pho-
ton number, this procedure seems to surpass the Heisenberg
limit. To resolve this paradox, we note that the generator
of translations in ϕ is not the photon number operator n̂, but
rather the higher-order nonlinearity H = n̂

2. The appropriate
resource count is therefore �H � = �n̂2�, instead of the aver-
age photon number �n̂�. It is easily verified that to leading
order δϕ is theoretically bounded by 1/�n̂2�= 1/|α|4. Hence
the parameter estimation procedure not only does not beat the
Heisenberg limit, it does not attain it!

Formally, we can attain the Heisenberg limit in this setup
with the following modification of the input state and the
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Since �H �= �n̂2�= O(N2), this procedure exactly attains the
Heisenberg limit. Note that this is a formal demonstration
that the Heisenberg limit can be attained according to quan-
tum mechanics, even though we currently do not know how to
implement it.

In conclusion, we demonstrated that the Heisenberg limit
is optimal for all parameter estimation procedures in quantum
metrology, but it requires careful consideration as to which re-
source is appropriate for expressing the scaling behaviour of
the mean square error. The correct resource to take into ac-
count is (the expectation value of) the generator of the trans-
lations in the parameter. In the case of most optical phase
estimation protocols this reduces to the average photon num-
ber. Contrary to the origin of the term “Heisenberg limit”, it
is not a generalised uncertainty relation, but rather an expres-
sion of the Margolus-Levitin bound on the speed of dynamical
evolution for quantum states.
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Heisenberg limit and the uncertainty principle

• Holland and Burnett introduced the term Heisenberg limit, and referred to the 
uncertainty principle in the book by Heitler.

• However, we argued that the Heisenberg limit is given in terms of the 
expectation value, and not the variance.

• Formally integrate the bound on the derivative of the statistical distance:

• This is the Margolus-Levitin bound!                                                               
(see Jones & Kok, Physical Review A 82, 022107, 2010).
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Heisenberg limit and the uncertainty principle

• We can also bound the Fisher information by the variance:

• This leads to the famous Mandelstam-Tamm bound:

• This is a form of Heisenberg’s Uncertainty Principle.

• So the Heisenberg limit is really an example of the Margolus-Levitin bound, 
rather than Heisenberg’s uncertainty principle.
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this is how the resource count is performed to date. However,

there are important classes of quantum systems for which the
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for some positive number c and positive operator L j, which

gives ∆H ≤ O(Q) [7]. Similarly, �H � = ∑Q
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since all expectation values are positive and finite. In other

words, in terms of the scaling behaviour with Q, we can use

either the variance or the expectation value.

Sometimes, it is unclear how the query complexity is de-
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After establishing the appropriate resource count, we are fi-

nally in a position to prove the optimality of the Heisenberg

limit for quantum parameter estimation in its most general

form. The Fisher information can be related to a statistical

distance s on the probability simplex spanned by p(x|ϕ). Con-

sider two probability distributions p(x) and p(x)+d p(x). The

infinitesimal statistical distance between these distributions is

given by [13, 14]

ds
2 =

�
dx

1

p(x)
[d p(x)]2 . (5)

Dividing both sides by (dϕ)2
and including the dependence

on ϕ in p(x), we obtain

�
ds

dϕ

�
2

=
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�
2

= F(ϕ) , (6)

which relates the Fisher information to the rate of change of

the statistical distance (i.e., the speed of dynamical evolution).
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ter estimation procedure, we must make sure that we do not

leave anything out, and this can be guaranteed by including in
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space, and s(ψ,φ) is the angle between them. The distance
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When all resources are used in a single-shot (T = 1) experi-

ment, the error in ϕ is bounded by
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Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-
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pletes the proof of the optimality of the Heisenberg limit in
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The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and

the subsequent discussion indicate, the Heisenberg limit is not
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for some positive number c and positive operator L j, which

gives ∆H ≤ O(Q) [7]. Similarly, �H � = ∑Q

j
�A j� ≤ O(Q)

since all expectation values are positive and finite. In other

words, in terms of the scaling behaviour with Q, we can use

either the variance or the expectation value.

Sometimes, it is unclear how the query complexity is de-

fined, for example when the estimation procedure does not

involve repeated applications of the gates O j(ϕ), or when an

indeterminate number of identical particles, such as photons,

are involved. Nevertheless, the generator H is always well-

defined in any estimation procedure, and we can always use

its expectation value to define the relevant resource count.

After establishing the appropriate resource count, we are fi-

nally in a position to prove the optimality of the Heisenberg

limit for quantum parameter estimation in its most general

form. The Fisher information can be related to a statistical

distance s on the probability simplex spanned by p(x|ϕ). Con-

sider two probability distributions p(x) and p(x)+d p(x). The

infinitesimal statistical distance between these distributions is

given by [13, 14]

ds
2 =

�
dx

1

p(x)
[d p(x)]2 . (5)

Dividing both sides by (dϕ)2
and including the dependence

on ϕ in p(x), we obtain

�
ds

dϕ

�
2

=
�

dx
1

p(x|ϕ)

�
∂ p(x|ϕ)

∂ϕ

�
2

= F(ϕ) , (6)

which relates the Fisher information to the rate of change of

the statistical distance (i.e., the speed of dynamical evolution).

When we count the resources that are used in a parame-

ter estimation procedure, we must make sure that we do not

leave anything out, and this can be guaranteed by including in

our description the environment that the estimation procedure

couples to. This reduces the quantum states to pure states,

which means that we can use Wootters’ distance [14] between

quantum states as the statistical distance:

s(ψ,φ) = arccos(|�ψ|φ�|) , (7)

where |ψ� and |φ� are two pure states in the larger Hilbert

space, and s(ψ,φ) is the angle between them. The distance

between the probe state ρ(0) and the evolved state ρ(ϕ) can

then be represented by the pure states |ψ(0)� and |ψ(ϕ)�, re-

spectively, and the unitary evolution is given by

|ψ(ϕ)�= exp(−iϕH ) |ψ(0)� . (8)

Here, we place no restriction on H , other than fixing the en-

ergy scale if necessary. We can place an upper bound on the

derivative of Wootters’ distance by evaluating the differential

of s in Eq. (7) and using the Schrödinger equation implicit in

Eq. (8) [15]:

ds

dϕ
≤ �H � . (9)

Combining this with Eq. (6) and Eq. (2) leads to the Cramér-

Rao bound

(δϕ)2 ≥ 1

T

�
ds

dϕ

�−2

=
1

T �H �2
. (10)

When all resources are used in a single-shot (T = 1) experi-

ment, the error in ϕ is bounded by

δϕ ≥ 1

�H � . (11)

Since �H � is the resource count in the parameter estimation

procedure, this is the Heisenberg limit. It is always positive

and finite, and in the limit where �H � → 0 there are no re-

sources available to estimate ϕ , and δϕ cannot be bounded.

In general, the bound is not tight. Indeed, only carefully cho-

sen entangled systems can achieve this bound [10]. This com-

pletes the proof of the optimality of the Heisenberg limit in

the most general case.

In addition to Eqs. (6) and (9), the Fisher information is also

bounded by the variance of H [16]:

F(ϕ)≤ 4(∆H )2 . (12)

This leads to a (single-shot) quantum Cramér-Rao bound

δϕ ≥ 1

2∆H
. (13)

However, since ∆H is not a resource count, such as the av-

erage photon number, but rather a variance (or uncertainty)

this is not the Heisenberg limit. In fact, it is Heisenberg’s Un-

certainty Principle for the parameter ϕ and its conjugate op-

erator H . Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Eq. (11) may not

be attained, even in principle, because the bound in Eq. (13)

prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland

and Burnett [6], who referred to the number-phase uncertainty

relation in Heitler [17]. However, as our optimality proof and

the subsequent discussion indicate, the Heisenberg limit is not

General optimality of the Heisenberg limit in quantum metrology, arXiv:1004.3944

Thursday, 19 August 2010



Conclusions

• We reconciled the physical resources in a parameter estimation procedure 
with the query complexity of the corresponding quantum network.

• Using this definition of the resources, we proved that the Heisenberg limit is 
optimal.

• Quantum mechanical procedures beat nonlinear optical procedures.

• The Heisenberg limit is not a form of the Uncertainty Principle, but rather a 
manifestation of the Margolus-Levitin bound.
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