
Efficient Broadcast in Structured P2P Networks

Sameh El-Ansary1, Luc Onana Alima2, Per Brand1, Seif Haridi2

1Swedish Institute of Computer Science, Kista, Sweden
2IMIT-Royal Institute of Technology, Kista, Sweden

{sameh, perbrand}@sics.se, {onana, seif}@it.kth.se ∗

Abstract

In this position paper, we present an efficient algorithm
for performing a broadcast operation with minimal cost
in structured DHT-based P2P networks. In a system of
N nodes, a broadcast message originating at an arbitrary
node reaches all other nodes after exactlyN−1 messages.
We emphasize the perception of a class of DHT systems
as a form of distributed k-ary search and we take ad-
vantage of that perception in constructing a spanning
tree that is utilized for efficient broadcasting. We con-
sider broadcasting as a basic service that adds to existing
DHTs the ability to search using arbitrary queries as well
as dissiminate/collect global information.

1 Introduction

Research in P2P systems resulted in the creation of many
Data/Resource- location systems. Two approaches were
used to tackle this problem; the flooding approach and
the Distributed Hash Table approach approach. The
common characteristic of both approaches is the con-
struction of an application-level overlay network. Table
1 includes some of the major differences between the two
approaches.

Flooding DHT
Queries Arbitrary Key Lookup

Query-Induced Traffic O(N) O(log(N))
Hit Guarantees Low High

Connectivity Graph Random Structured

Table 1: Flooding Approach vs. DHT Approach

The DHT approach with a structured overlay network,
determinism, relatively low traffic and high guarantees
is currently perceived in the P2P research community
as the ”reasonable” approach. Many systems were con-
structed based on that approach such as Tapestry [15],
Pastry [11], CAN [8], Chord [12], Kademlia [7]. In con-
trast, the flooding-based approach represented by [4, 3]

∗This work is funded by the Swedish funding agency VIN-
NOVA, PPC project and by the European IST-FET PEPITO
project.

is mainly considered as unscalable based on a number of
traffic analyses such as [6, 10].
A missing feature in most DHTs is the ability to per-

form search based on an arbitrary query rather than
key lookups. Extensions to existing DHTs are needed
to supply this feature. Arbitrary querying is realized in
flooding-based systems via broadcasting. However, the
random nature of the overlay network renders the solu-
tion costly and with low guarantees.
In this position paper, we show the status of our work

on extending DHTs with an efficient broadcast layer. We
are primarily investigating how to take advantage of the
structured nature of the DHT overlay network in per-
forming efficient broadcasts. We provide broadcasting
as a basic service in DHTs that should be be deployed
for any kind of global dissemination/collection of data.
In the next section, we describe related work. In sec-

tion 3, we explain our approach based on the perception
of a class of DHTs as systems performing distributed
k-ary search. In section 4, we present a broadcast algo-
rithm for one of the DHTs, namely Chord. Some pre-
liminary simulations results are presented in section 6.
Finally, we conclude and show intented future work in 7.

2 Related Work

Our work can be classified as an arbitrary-search-
supporting extension to DHTs. From that perspective,
the following research shares the same goal:
Complex Queries in DHT. In [5], an extension to ex-
isting DHT systems was suggested to add the ability of
performing complex queries. The approach constructs
search indices that enable the performance of database-
like queries. This approach differs from ours in that we
do not add extra indexing to the DHT. The analysis of
the cost of construction, maintenance, and performing
join operations is not present at the time of writing of
this paper.
As broadcast is a form of group communication, one

can classify this work as group communication support
for DHTs, in that case the following research is of rele-
vance:
Multicast. The work in [13, 9] addressed the issue of
multicast in structured P2P networks. We are not aware,

1

Figure 1: (a) Decision tree for a query originat-
ing at node 0 in a fully-populated 8-node Chord
network (binary search). (b) The same decision
tree without virtual hops, also a spanning tree
covering the whole system

though, of any research that tackles the issue of broad-
cast in DHT-based, sturcuted P2P networks.

3 Our Approach

3.1 DHTs as distributed k-ary search

By looking at the class of DHT systems that have log-
arithmic performance bounds such as Chord, Tapestry,
Pastry, and Kademlia, one can observe that the basic
principle behind their operation is performing a form
of distributed k-ary search. In the case of Chord, bi-
nary search is performed. For other systems like, e.g.,
Tapestry and Pastry, the search arity is higher.

In this paper, we explain the perception of the Chord
system as a special case of distributed k-ary search The
arguments apply to higher search arities as well.

The familiarity of the reader to the Chord system and
its terminology is assumed. However, we restate the
structure of the routing tables. Every Chord node has an
identifier that represents its position in a cirular identi-
fier space of size N . A node keeps M = log2(N) routing
entries, called the fingers. A Finger[i] of node n contains
the address of a node whose identifier equals n+2i−1. If
such a node does not exist, then its first succesor in the
circular space, moving in a clock-wise direction, is saved
instead.

To illustrate the idea of k-ary search, without loss
of generality, we assume a Chord system with identifier
space of size N = 8. The system is fully populated, i.e., a
node is present for every identifier in the space. In figure
1.a, we show the decision tree of a lookup query originat-
ing at node 0. Given a query for a key whose identifier is
x, node 0, starts to lookup for the node responsible for
x by considering all the identifier as candidates. Based

on the interval to which x belongs (arc labels in figure
1.a), the query is forwarded and the process is repeated
with the search scope reduced to a half of the previous
scope. Hence, all nodes are reachable by a query-guided
path of at most H = log2(N) hops.
Notice that some of the hops are made from one node

to itself, i.e, virtual hops. Figure 1.b shows the same tree
decision tree without virtual hops. A more elaborate
explanation on the perception of Chord as k-ary search
is presented in [2].

3.2 Problem Definition

Having highlighted the idea of distributed k-ary search,
we give the following problem definition and then provide
a solution for that problem based on the k-ary search
perception.
Problem. Given an overlay network constructed by a
P2P DHT system, find an efficient algorithm for broad-
casting messages. The algorithm must not depend on
global knowledge of membership and must be of equal cost
for any member in the system.
Note that in the problem definition, we emphasize the

P2P assumptions, i.e. the absence of central coordina-
tion and where every peer endures the same cost for run-
ning the algorithm.

3.3 Our Solution

We base our solution on the fact that the k-ary search
decision tree is actually a spanning tree. covering all
the nodes in the system. Figure 1.b shows the k-ary
search decision tree for the 8 nodes system, which is also
a spanning tree of the system. In the next section, we
show how to construct this tree in a distributed fashion.

4 The Broadcast Algrotihm

4.1 System Model & Notation

We assume a distributed system modeled by a set of
nodes communicating by message passing through a
communication network that is: (i) Connected, (ii)
Asynchronous, (ii) Reliable, and (iii) providing FIFO
communication.
A distributed algorithm running on a node of the sys-

tem is described using rules of the form:

receive(Sender : Receiver : Message(arg1, .., argn))

Action(s)

The rule describes the event of receiving a message
Message at the Receiver node and the action(s)
taken to handle that event. A Sender of a mes-
sage executes the statement send(Sender : Receiver :
Message(arg1, .., argn)) to send a message to Receiver.

2

4.2 Rules

Initiating a broadcast. A broadcast is initiated at
any node as a result of a user-level request. That is, a
user-level layer entity P can send to a node Q a message
InitBroadcast(Info) where Info is a a piece of infor-
mation that must be broadcast e.g. an arbitrary search
query, a statistics gathering query, a notification, etc..

The role of the node Q is to act as a root for a span-
ning tree. As shown in the rule in figure 2, Q does that
by sending a Broadcast message to all its neighbors.
Note that, unless the identifier space is fully populated,
a Chord Finger table contains many redundant fingers.
For a sequence of redundant fingers, the last one is used
for forwarding while the others are skipped.

A Broadcast message contains the Info to be
broadcast and a Limit argument. A Limit is used to
restrict the forwarding space of a receiving node. The
Limit of a Finger[i] is Finger[i+ 1], (1 ≤ i ≤ M − 1)
where M is the number of entries of the routing table.
The last finger’s limit is a special case where the Limit

is set to the forwarder’s identifier. To give an example,
we use the sample Chord network given in section 3.1.
When node 0 initiates a broadcast, it wants to spread
it in the whole identifier space. It sends to nodes 1, 2,
and 4. Giving them the limits of 2, 4, and 0 respectively.
By doing that it is actually telling node 4 to cover the
interval [4, 0[, i.e. half of the space. It is telling node 4 to
cover the interval [2, 4[, i.e., quarter of space and finally,
telling node 1 to cover the interval [1, 2[, i.e. an eighth
of the space.

receive(P : Q : InitBroadcast(Info))

for i in 1 to M − 1 do
//Skip a redundant finger
if Finger[i] 6= Finger[i+ 1]

R := Finger[i]
Limit := Finger[i+ 1]
send(Q:R:Broadcast(Info, Limit))
end

end
//Process the last finger
send(Q:Finger[M]:Broadcast(Info, Q))

Figure 2: Initiating a broadcast message

Processing a broadcast. A node Q receiving a
Broadcast(Info, Limit) message is responsible for the
broadcast in a subtree confined in the interval]Q,Limit[.
In addition to skipping the redundant fingers, Q for-
wards to every finger whose identifier is before the Limit.
Moreover, when forwarding to any finger, it supplies it
with a NewLimit, defining a smaller subtree. Note that,
this will only happen if NewLimit ∈]Q,Limit[, i.e., the

NewLimit is not exceeding the Limit given by the par-
ent. If the NewLimit exceeds Limit, the Limit given by
the parent is used instead. The following figure contains
the rule for processing a broadcast message.

receive(P : Q : Broadcast(Info, Limit))

for i in 1 to M − 1 do
//Skip a redundant finger
if Finger[i] 6= Finger[i+ 1] then
//Forward while within ”Limit”
if Finger[i] ∈]Q,Limit[then
R := Finger[i]
//NewLimit must not exceed Limit
if Finger[i+ 1] ∈]Q,Limit[then

NewLimit := Finger[i+ 1]
else

NewLimit := Limit

fi
send(Q:R:Broadcast(Info,NewLimit))
fi
else
exit for
fi
fi

end
//Process the last finger
if Finger[M] ∈]Q,Limit[then
send(Q:Finger[M]:broadcast(Info, Q))
fi

Figure 3: Processing a Broadcast Message

Replies. We are considering the issue of replying to
the broadcast source to be an orthogonal issue that de-
pends on the Info argument of the Broadcast mes-
sage. Several strategies could be considered for replying,
for example : (i) Sending the broadcast source with ev-
ery broadcast message and it is contacted directly by a
node willing to reply (ii) The reply is propagated to the
root over the same spanning tree.

4.3 Correctness Argument

Coverage of all nodes. As a DHT system constructs a
connected graph of nodes and as every node that receives
a broadcast message forwards it to all of its neighbors
(except those it knows by DHT construction properties
that they are going to be contacted by other nodes),
therefore, eventually every node in the system receives
the broadcast message.
No redundancy. Since the algorithm ensures that

disjoint (non-overlapping) intervals are considered for
forwarding. Consequently every node receives the broad-
cast message exactly once.

3

Figure 4: Number of messages needed to cover
every node in the system using the efficient
broadcast and the Gnutella algorithms.

5 Cost Versus Guarantees

While presenting an efficient algorithm for broadcast in
DHT-based P2P networks, we are aware that the cost
of N -1 messages, especially in large P2P systems can
be prohibitive for many applications. The point is that
we offer broadcasting as a basic service available for a
Peer who is willing to endure its cost. Our algorithm
offers strong guarantees and utilization of traffic for that
endured cost. In order to offer the same guarantees on a
network, of the same size, in a Gnutella-like broadcast,
a substantially higher cost is paid. The next section
elaborates more on this comparison.
Predictable Guarantees. The broadcast as pre-

sented in section 4, offers strong guarantees as it explores
every node in the network. Minor modifications to the
algorithm could be applied to, deterministically, reduce
the scope of the broadcast, and thus offering weaker, yet
predictable guarantees. For example, by sending only
to the last (or all but the last) finger while initiating
a broadcast, only 50% of the network is covered in the
broadcast. Similar pruning policies could be applied to
achieve different coverage percentages.
Different Traversal Policies. The algorithm could

also be modified to support and iterative deepening pol-
icy. This policy was suggested in [14] for use in unstruc-
tured overlay networks. We believe that combining this
policy with our algorithm can decrease the messaging
cost, especially, when one query hit suffices as a result.

6 Simulation Results

In this section, we show preliminary simulation results
for the presented broadcast algorithm. We are primar-
ily interested to see that all nodes are covered in the
broadcast process and that no redundant messages are
sent. Additionally, we want to compare the messaging
cost of the efficient broadcast algorithm with that of the

Figure 5: Percentage of redundant messages gen-
erated by the efficient broadcast and the Gnutella
algorithms.

Gnutella broadcast algorithm over the same size of the
network and with the same guarantees offered. The ex-
periments were conducted on a distributed algorithms
simulator developed at the Swedish Institute of Com-
puter Science and using the Mozart [1] programming
platform.

Experiments Setting. To study the messaging cost,
we create an identifier space of size 216and we vary the
number of nodes in the space, from 23 up to 214 with
increasing powers of 2. For each network size, after all
the nodes join the system, we initiate a broadcast process
starting at a randomly-chosen node. We wait until the
broadcast process ends and, then, analyze the messages
to see if all the nodes are covered and count the amount
of redundant messages. We repeat the same experiment
a number of times, initiating the broadcast from different
sources.

Both the efficient and the Gnutella algorithms are
evaluated in the same way. We use the basic Gnutella al-
gorithm except that we deploy it on a structured rather
than a randomly-connected overlay network. That is,
the unique fingers of the Chord nodes are used as neigh-
bors. Moreover, we set the Time-To-Live (TTL) param-
eter of the Gnutella broadcast to the diameter of the
network , i.e. log2(N) which should be just enough to
guarantee that all the nodes of the network are covered.

Results. For the number of messages, the efficient
broadcast algorithm constantly produces N -1 messages
for the different network sizes. The Gnutella algorithm
succeeds to cover all the nodes, thanks, to the TTL
parameter, but does that with a substantially larger
amount of messages. The comparison is shown in figure
4. The reason for that difference is the redundant mes-
sage that are sent in the Gnutella case and are eliminated
in the efficient broadcast case. It is worth noting that
the amount of redundancy increases with system size,
strongly affecting scalability if the strong guarantees are
to be maintained. Figure 5 shows the percentage of re-

4

dundant messages from the total number of messages
generated by both algorithms.

7 Conclusion and Future Work

In this paper, we showed the status of our work in ex-
tending the functionality of DHTs with the ability to
perform efficient broadcasts. Our approach depended
mainly on the perception of systems such as Chord,
Tapestry, Pastry, and Kademlia as implementations of
distributed k-ary search. We showed how to traverse
search tree and thus, constructing a spanning tree con-
taining all nodes in an overlay network formed by a DHT.
We based all our explanation on Chord as a simple

system implementing binary search. In future papers,
we intend to elaborate more on how to construct the
spanning tree in systems with higher arities.
We suggested a number of strategies by which a peer

deploying the efficient broadcast algorithm can reduce
its scope by pruning the spanning tree in order to gen-
erate less traffic, yet with the ability to deterministi-
cally decide the percentage of network members that are
covered in the broadcast and thus offering predictable
guarantees. More experiments need to be done for the
evaluation of those strategies.
For the issue of dynamic network (Joins/Leaves), we

consider that our algorithm, will perform as good as the
underlying DHT system. Knowing that the routing ta-
bles of nodes in a DHT are constantly changing, more
experimental results are needed to quantify the effect of
outdated routing tables on the properties offered by the
efficient broadcast algorithm.

References

[1] Mozart Consotium, http://www.mozart-oz.org.

[2] Sameh El-Ansary, Luc Onana Alima, Per Brand,
and Seif Haridi, A framework for peer-to-peer lookup
services based on k-ary search, Tech. Report TR-
2002-06, SICS, May 2002.

[3] FreeNet, http://freenet.sourceforge.net.

[4] Gnutella, http://www.gnutella.com.

[5] Matthew Harren, Joseph M. Hellerstein, Ryan
Huebsch, and Boon Thau Loo, Complex queries
in dht-based peer-to-peer networks, The 1st In-
terational Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[6] E. P. Markatos, Tracing a large-scale peer to peer
system: An hour in the life of gnutella, Second In-
ternational Symposium on Cluster Computing and
the Grid, 2002.

[7] Petar Maymounkov and David Mazires, Kademlia:
A peer-to-peer information system based on the xor
metric, The 1st Interational Workshop on Peer-to-
Peer Systems (IPTPS’02), 2002.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker, A scalable con-
tent addressable network, Tech. Report TR-00-010,
Berkeley, CA, 2000.

[9] Sylvia Ratnasamy, Mark Handley, Richard Karp,
and Scott Shenker, Application-level multicast us-
ing content-addressable networks, Third Interna-
tional Workshop on Networked Group Communi-
cation (NGC ’01), 2001.

[10] M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping
the gnutella network: Properties of large-scale peer-
to-peer systems and implications for system design,
2002.

[11] Antony Rowstron and Peter Druschel, Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems, Lecture Notes in
Computer Science 2218 (2001).

[12] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan, Chord: A scalable peer-to-peer
lookup service for internet applications, Tech. Re-
port TR-819, MIT, January 2002.

[13] Ion Stoica, Dan Adkins, Sylvia Ratnasamy, Scott
Shenker, Sonesh Surana, and Shelley Zhuang, Inter-
net indirection infrastructure, The 1st Interational
Workshop on Peer-to-Peer Systems (IPTPS’02),
2002.

[14] Beverly Yang and Hector Garcia-Molina, Efficient
search in peer-to-peer networks, The 22nd Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS 2002), 2001.

[15] Ben Y. Zhao, John D. Kubiatowicz, and An-
thony D. Joseph., Tapestry: An infrastructure for
fault-tolerant wide-area location and routing, U.
C. Berkeley Technical Report UCB//CSD-01-1141,
April 2000.

5

