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A non-linear transformation

The transformations of the Euclidean plane that we 
have studied so far have all had the property that 
lines have been mapped to lines. Transformations 
with this property are called linear.

We will now investigate a specific transformation 
which is not linear, that is, sometimes lines are 
mapped to point sets which are not lines.



  

Inversion 
Let O be a fixed circle whose center will also be called O 
with radius r. 

For every point P other than O we define a unique point 
called P' on the ray OP with the property that:
                               OP·OP' = r2.

We refer to the mapping P → P' as inversion with 
respect to the circle O. 

Note that if P is inside the circle then P' will be outside 
the circle and vice versa.



  

Examples
Let O be the circle with center at the origin and radius 1. 
   Inversion with respect to this circle gives:
     P = (0,½) → P' = (0,2)
     P = (-3,0) → P' = (-⅓,0)
     P = (0,1) → P' = (0,1)
     P = (3,4) → P' = (3/25, 4/25)

Let O be the circle with center at the origin and radius 2.
    Inversion with respect to this circle gives:
        P = (0,1) →  P' = (0, 4)
        P = (2,0) →  P' = (2,0)
        P = (2,2) →  P' = (1,1)



  

Invariants & an Ideal Point
Inversion is “almost” an involution, that is, when repeated 
it results in the identity transformation. 

A true involution pairs the points of the plane. A point 
could be paired with itself, such points are called 
invariant points of the transformation.

The problem with inversion is that the center of the 
circle of inversion is not paired with any point. To fix the 
problem, we will need to add a point to the plane, called 
an ideal point, to pair with the center. Such a point would 
need to be on every line through the center … but only 
one point can be used, or else the pairing will not be 
unique.



  

The Circle & Lines thru Center
Every point on the circle of inversion is an invariant point 
of inversion. 

The inverse of a line through the center of inversion is the 
same line.
    However, only two points on such a line are invariant 
points … the points where the line meets the circle of 
inversion. 

Notice that we have two situations where the set is 
transformed into itself, but in different ways. The circle of 
inversion is transformed into self in a pointwise manner 
(each point is invariant), while a line through the center 
only has some invariant points and other points are 
moved around. 



  

The Circle & Lines thru Center

We normally would have two different terms to express 
these two situations.

   In other situations the terms used would be fixed and 
invariant. But as we have seen, the term invariant has 
been used to mean what elsewhere would be called fixed.

A possible solution to this terminology problem would 
be to use the terms invariant and stable. 



  

Lines not thru the Center

Theorem 6.3: The image under inversion of a line not 
through the center of inversion is a circle passing 
through the center of inversion.

P'P

Q'

Q

O

Let O be the center of inversion, 
OP the perpendicular from O to the 
given line, Q any other point on 
that line and P' and Q' the images 
of P and Q under this inversion.

Since OP·OP' = OQ·OQ', ∆OPQ ∼ ∆OQ'P' (with right angle 
at Q'). As Q varies on the line, Q' traces a circle with 
diameter OP'.                                                   ▌



  

Circles thru the Center

The converse of this theorem is also valid, namely, 

Circles through the center of inversion are mapped to 
lines not through the center of inversion by the inversion 
transformation.

The proof is essentially the reverse of the proof of the 
last theorem.



  

Circles not thru Center
Theorem 6.4: The image under inversion of a circle not 
passing through the center of inversion is a circle not 
passing through the center of inversion.

(Proof skipped)



  

Conformal Map
Theorem 6.5: The measure of an angle between two 
intersecting curves is an invariant under inversion.

Pf:

O
P

P'

Q

Q' As we have seen, ∆OPQ ∼ ∆OQ'P' 
and so, ∠OPQ = ∠OQ'P'. Also, 
∠OQP = ∠OP'Q'. 



  

Conformal Map
Theorem 6.5: The measure of an angle between two intersecting curves is an invariant 
under inversion.

Pf: (cont)
With P fixed, as Q varies along 
its curve approaching P, the 
secant PQ approaches the 
tangent at P, which is PA. Thus  
∠QPO approaches ∠APO. 
Similarly, ∠ΟQ'P', which is 
always congruent to ∠QPO,  
approaches ∠ΟP'B. Thus, 
∠APO = ∠AP'O as 
supplements of congruent 
angles.
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Conformal Map
Theorem 6.5: The measure of an angle between two intersecting curves is an invariant 
under inversion.

Pf: (cont)

O
P

P'
As, at the point of intersection of 
the two intersecting curves, P 
and its inversive image P', the 
tangent lines meet PP' in the 
same angles, the angle between 
the tangent lines must be the 
same at both P and P'.  ▌



  

Orthogonal Circles
Theorem 6.6: A circle orthogonal to the circle of inversion 
is stabilized under the inversion transformation.

Pf:
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E
O'

C F

O is the circle of inversion, 
O' a circle orthogonal to it, 
meeting at points E and F. 
Since O and O' are 
orthogonal, OE is a tangent 
line. Thus, for any line 
through O meeting O' at C 
and D, we have:

OC·OD = (OE)2 so C and D are inverses with respect to circle O. 
The points of O' are thus stabilized by inversion with E and F 
invariant points.                                                          ▌



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to 
the incircle and each of the three excircles of the 
triangle.

Pf: Let I be the incenter, I' an 
excenter, A' the midpoint of 
side BC. Draw radii ID and I'E 
which are perpendicular to 
BC. Note that BC is a 
common tangent to the 
incircle and this excircle.

A' is also the midpoint of DE, 
since BD = EC. 



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf:

x

x

u
u

v
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Semiperimeter s = x + u + v
so 
  BD =  x = s – u – v = s - AC.

s = ½(t – r + r + x + t – x) = t
so
   EC = x = t – (t – x) = s – AC
    Hence,   BD = EC.

With BC = a,  AC = b and s the 
semiperimeter = ½(a+b+c) we 
have 
  DE = a – 2(s – b) = b – c. 



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf:
We will take A' as the center of 
inversion with circle having 
diameter DE. As both the incircle 
and excircle are orthogonal to 
the circle of inversion, they are 
stabilized by inversion.
 There is a second common 
tangent, JH. Let G be the 
intersection of JH and BC. The 
point G lies on the angle bisector 
at A, which is the line II'. 



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf:
This follows since the reflection 
with axis II' stabilizes the two 
circles and interchanges the 
common tangents BC and HJ. It 
follows that  AC = AJ and AH = 
AB. 
 Since G is on the angle 
bisector at A in ∆ABC, the 
segments GB and GC are in the 
ratio of the sides b/c, so 

GC= ab
bc

 and GB= ac
bc

.



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf: Now, BG + GA' = ½a, so we get:

GA'= a b−c
2 bc 

.

BJ = AJ – AB = AJ – c = AC – c 
    so BJ = b – c.

Similarly, 
CH = AC – AH = b – AH = b – AB
   and  HC = b - c. 



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf: Let B'' = A'B' ∩ HJ and 
C'' = A'C'  ∩  HJ

∆GA'B'' ∼ ∆GBJ  and

∆GA'C'' ∼ ∆GCH.

A' B ' '
BJ

=GA'
GB

 and

A' C ' '
CH =GA'GC



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf:

We can now calculate:
A' B ' '=b−c2

2c
  and 

A' C ' '=b−c2

2b
.

Which gives us:
A' B '×A' B ' '= c2 b−c 

2

2c =b−c2 
2

and   A' C '×A' C ' '= b2  b−c
2

2b = b−c2 
2

.



  

Feuerbach's Theorem
Theorem: The nine-point circle of a triangle is tangent to the incircle and each of the 
three excircles of the triangle.

Pf:

Thus, B' and B'' as well as C' and C'' are inverse images 
with respect to our inversion transformation. Since B' and 
C' are on the 9-points circle, and the 9-pts circle passes 
through the center of inversion (A'), it is mapped to the 
line containing B'' and C'', which is HJ. 
     Since HJ is a common tangent to the incircle and this 
excircle, applying inversion again gives us that the 9-
points circle is tangent to the incircle and this excircle 
since they are stabilized by inversion. 
    The argument can be repeated for the other excircles.▌
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