Advanced Vanadium Flow Batteries and Applications for Renewable Integration

Vanadis Power GmbH

July 5th, 2013

Personal data

44 years old

Education

Dr. rer. nat (PhD) in Physics

Professional experience

- 1994-1996: Research Associate Laser Laboratory Goettingen
- 1996-1999: Software Engineering Siemens Power Generation
- 1999-2003: Innovation Manager Siemens Industrial Services
- 2003-2008: Head of R&D group Siemens Automotive Projects
- 2008-2012: Business Development & Project Management Siemens PV Inverters
- 2012-2013: Head of Siemens Energy Storage Solutions

Since 2013: Managing Director of Vanadis Power GmbH

Vanadis was founded end of 2012 to bring to the European market Advanced Vanadium Flow Batteries for integration of renewable energy & other applications.

Through innovation, expertise and global strategic partnerships, **Vanadis' mission** is to become a leader in large- and medium-scale energy storage in Europe.

Our activities are sales, project management, system deployment (focus on PCS and grid integration) and services.

Origin of the company name:

"Vanadis" is the name of a goddess associated with beauty.

Vanadium was called after this goddess due to the many beautifully colored chemical compounds it produces.

Vanadis' strategic partnerships

Conventional vanadium redox flow battery (VRFB) – Basic electro-chemistry

 $VO_2^+ + 2H^+ + e^- \leftrightarrow VO^{2+} + H_2O$

 $V^{2+} \leftrightarrow V^{3+} + e^{-}$

Conventional VRFB's have many advantages

- Separation of power (KW) -stacks and energy (KWh) electrolytes -> each can be individually sized according to application needs
- Adding additional energy just requires bigger electrolyte tanks which is simple and quite cheap
- No self discharge in electrolyte tanks
- "Inert" electrodes no structural changes or stress buildup
 - long cycle life & shelf life, independent of state of charge/depth of discharge
- Inherent active heat management flowing electrolytes carry away heat generated from electro-chemical reactions -> Uncontrollable fire known with NaS, Lead Acid and Li-Ion applications not possible
- Environmentally friendly since electrolyte only changes the ion valence during operation and can be virtually be reused forever
- Highly dynamic in the millisecond range with high overload capacity
- Capable of storing large quantities of energy (MWh's) for long periods and discharging upon need

Modular system architecture enables high scalability

Cells with optimized design & materials, in powerful reliable & efficient stacks

- Standard stack subsystems for ease of installation and operation
- Turn-key Multi MW and Container solutions

One of R&D focus is to increase stack power rating to reduce costs

Stable 22kW stack performance over 10,000 cycles

RONGKE POWER

The mature production hardware provides solid stability over extended cycling, requiring no electrical balancing procedures

Test parameters:

320A
22-25°C
Liquid
<40°C
10,000

VANADIS POWER

Application	Output Capacity	Year of Installation	Country
Wind farm operation support	5MW/ 10MWh	2012	China
Wind farm operation support	4MW/6MWh	2005	Japan
Wind farm operation support	3MW/6MWh	2013 (in progress)	China
Demonstration project in conjunction with CPV	1MW/5MWh	2012	Japan
Load leveling at university	0,5MW/5MWh	2001	Japan
Wind farm operation support	1MW/4MWh	2013 (in progress)	Germany
Industrial Peak Shaving	0,6MW/3,6MWh	2012	USA
Demonstration with Wind/PV	0,2MW/1,2MWh	2013	Germany

Field Deployed Systems (Rongke Power)

<u>#</u>	<u>Year</u>	<u>Projects</u>	Applications	<u>Power</u>	<u>Energy</u>
1	2008	China Electric Power Res. Inst.	Distributed energy storage	100kW	200kWh
2	2008	Tibet Electric Energy Res. Inst.	PV integration	5kW	50kWh
3	2009	Green Residential House	Off grid storage	3.5kW	50kWh
4	2010	Green Office Building	Off grid storage	60kW	300kWh
5	2010	EV Charging Station	Peaking capacity, power quality	60kW	600kWh
6	2010	Telecom Station	Remote Area Power Supply	3.5kW	54kWh
7	2011	Island Keeper House	Off grid storage	10kW	200kWh
8	2011	Telecom Station	Remote Area Power Supply	3.5kW	48kWh
9	2011	Ningxia Electric Power Group	Off grid storage	3.5kW	14kWh
10	2012	Wind Turbine Supplier	Smart microgrid storage	200kW	800kWh
11	2013	Wind Farm near Shenyang	Wind smoothing	5MW	10MWh
12	2013	Wind Farm	Wind smoothing	3MW	6MWh
13	2013	Wind Farm	2013 installation pending	7MW	14MWh
			TOTALS	15.5MW	32.3MWh

Rongke Power has built the most powerful and mature electrode stack in the world. Integration with **UET**'s electrolyte technology and packaging yields a highly compelling MW-class energy storage solution.

Example: 5MW/10MWh system at Longyuan wind farm

Time	August, 2012
Location	Faku County, Liaoning Province
Owner	Longyuan Group
Function	Scheduled operation following; Wind output smoothing; Voltage support, etc.

Main parameters of energy storage system

Power	5 MW
Capacity	10 MWh
Voltage Range	DC 400-620V
Rated Current	DC 640A
Ambient Temperature	5-35°C

VANADIS POWER

5MW/10MWh system layout

Time	October, 2011	Beijing
Location	Yizhuang, Beijing	Tangshan
Owner	Goldwind Corporation	Canglang
Function	Smooth wind output; Improve power quality; Increase grid reliability, etc.	Dalian

Main parameters of energy storage system		
Power	200 kW	
Capacity	800 kWh	
Voltage Range	DC 250-388V	
Rated Current	DC 640A	
Ambient Temperature	5-35°C	

Site Design Overview

VANADIS POWER

Challenges of conventional VRFB's

Fundamental chemistry challenge:

- Limited stability of conventional VRFB electrolyte chemistry
- $>\sim 35^{\circ}$ C or $<\sim 10^{\circ}$ C, Vⁿ⁺ compounds precipitate out
- Limited Vanadium concentration: <1.5 M vanadium

Consequences:

- Low energy density ~15Wh/L, limiting battery design and siting
- Operation limited to ~10°C ~35°C, requiring strict heat management and associated cost and efficiency loss
- Low current densities (≤80 mA/cm²), limiting stack power and reduction in \$/kW

UET Technology: New Generation Chemistry

- New gen vanadium electrolyte chemistry substantially improved performance and economics:
 - Doubled energy & power density
 - Wide operating temperature, -10 to +60°C
 - Improved efficiency, durability, and reliability
 - Simplified system and reduced cost

- Won U.S. Federal Lab Consortium Award
- World-wide license from PNNL
- Improved by UET, protected by patents and trade secrets

Li et al, Advanced Energy Materials, 2011

New electrolyte chemistry - vanadium mixed acid

 V^{5+} in sulfuric acid -- $[VO_2(H_2O)_3]^+$

 V^{5+} in mixed acids -- $VO_2Cl(H_2O)_2$

- Substantially improved chemical stability
- Vⁿ⁺ up to 2.5M, practically double energy capacity (30Wh/L, due to a higher utilization as well)
- □ Stable ~-5°C↔~60°C without irreversible solid phase precipitation, minimizing thermal management
- Improved performance, durability, and reliability with reduced capital and levelized costs

Advanced VRFB's

- Vⁿ⁺ concentration ~2.5M;
 2x increase in energy and power density
- Stability window extended to ~-5°C - ~60°C, minimizing heat management
- Stable operation without frequent balancing
- Reduction in capital and levelized cost by factor of 2 or even 3

VANADIS POWER

Validation of advanced chemistry by UET

Two 2kW systems operating in series at UET's facilities in Seattle

2kW systems in series testing – capacity analysis

2kW systems in series testing – efficiency analysis

22

Full-scale advanced VRFB testing at UET

33 kW system operating at UET's facilities in Seattle

UET's Modular Container: 100 kW_{AC}, 4 hours

- Excellent safety no thermal runaway
- >95% availability minimal downtime
- SOC agnostic full operational flexibility
- Factory integration precision assembly & QC
- Plug & Play rapid deployment
- 15-year design life unlimited cycles
- 100% recyclable disposal contract included

VANADIS POWER

UET's Modular System, 500 kW_{AC}, 4 hours

- Systems scalable to multiple MW's
- Grid interconnection ready power interface and controls

Representative Data for 500 kW_{AC} System

Parameter	Value
Power	500 kW continuous, 750 kW peak
Energy	4 hours duration
Efficiency	~70%, AC round trip at the inverter
Self-Discharge	<5%/year, in standby mode
Cycle Life	Unlimited cycles within system design life
System Design Life	15 years
DC Voltage Range	750V-1200V DC
AC Voltage Output	480V AC 3-phase
Power Factor Range	Available option
Power Control Modes	Dispatch and Autonomous, 50ms system response time
Standards Compliance includes	IEEE 519 IEEE 1547 available
Communications & Data Protocols	Modbus DNP3.0 IEC 61850, available
Ambient Temperature	-20°C to 50°C, active cooling for extended operation >35°C
Footprint	960 ft ² , double stacked, 15' aisle

Advanced electrolyte allows better packaging with less cooling

Example of 1MW/4MWh with electrolyte integrated in container

U-T UniEnergy

195m² footprint (5kW/m²)

Can be further increased by stacking

Standard 20' containers

8 x 125kW/500kWh battery modules (no step-in, side or rear access needed)

500kW power & control module

a Pro

Footprint of containerized solution with advanced electrolyte is significantly smaller than previous installations

1MW/5h "classic" System

VANADIS POWER

UET UniEnergy Technologies

Dr. Andreas Luczak Vanadis Power GmbH ⊡: Zeltnerstr. 3 90443 Nuremberg, Germany

- *****: +49 911 8819 7218
- @: andreas.luczak@vanadispower.com

融科储能 RONGKE POWER BNN BOLONG NEW MATERIALS

Thank you!