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In the last lecture, we stated Shannon’s capacity theorem for the BSC, which we restate here:

Theorem 0.1. Let 0 ≤ p < 1/2 be a real number. For every 0 < ε ≤ 1/2 − p, the following
statements are true for large enough integer n:

(i) There exists a real δ > 0, an encoding function E : {0, 1}k → {0, 1}n, and a decoding
function D : {0, 1}n → {0, 1}k, where k ≤ b(1−H(p + ε))nc such that the following
holds for every m ∈ {0, 1}k:

Pr
noise e of BSCp

[D(E(m) + e) 6= m] ≤ 2−δn.

(ii) If k ≥ d(1−H(p) + ε)ne then for every encoding and decoding functions E : {0, 1}k →
{0, 1}n and D : {0, 1}n → {0, 1}k the following is true for some m ∈ {0, 1}k:

Pr
noise e of BSCp

[D(E(m) + e) 6= m] ≥ 1/2.

In today’s lecture, we will prove part (ii) of Theorem 0.1.

1 Preliminaries
Before we begin with the proof we will need a few results, which we discuss first.

1.1 Chernoff Bound
Chernoff bound states a bound on the tail of a certain distribution that will be useful for us. Here
we state the version of the Chernoff bound that we will need.

Proposition 1.1. For i = 1, · · · , n, let Xi be a binary random variable that takes a value of 1 with
probability p and a value of 0 with probability 1− p. Then the following bounds are true:

(i) Pr [
∑n

i=1 Xi ≥ (1 + ε)pn] ≤ e−ε2pn/3

(ii) Pr [
∑n

i=1 Xi ≤ (1− ε)pn] ≤ e−ε2pn/3

Note that the expectation of the sum
∑n

i=1 Xi is pn. The bound above states that the probability
mass is tightly concentrated around the mean.
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1.2 Volume of Hamming Balls
We will also need good upper and lower bounds on the volume of a Hamming ball. Recall that
V olq(0, pn) = |Bq(0, ρn)| =

∑pn
i=0

(
n
i

)
(q − 1)i. We will prove the following result:

Proposition 1.2. Let q ≥ 2 be an integer and 0 ≤ p ≤ 1− 1
q

be a real. Then for large enough n:

(i) V olq(0, pn) ≤ qHq(p)n

(ii) V olq(0, pn) ≥ qHq(p)n−o(n)

where recall that Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

Proof. We start with the proof of (i). Consider the following sequence of relations:

1 = (p + (1− p))n

=
n∑

i=0

(
n

i

)
pi(1− p)n−i (1)

≥
pn∑
i=0

(
n

i

)
pi(1− p)n−i (2)

=

pn∑
i=0

(
n

i

)
(q − 1)i

(
p

q − 1

)i

(1− p)n−i

=

pn∑
i=0

(
n

i

)
(q − 1)i(1− p)n

(
p

(q − 1)(1− p)

)i

≥
pn∑
i=0

(
n

i

)
(q − 1)i(1− p)n

(
p

(q − 1)(1− p)

)pn

(3)

=

pn∑
i=0

(
n

i

)
(q − 1)i

(
p

q − 1

)pn

(1− p)(1−p)n. (4)

In the above, (1) follows from the binomial expansion. (2) follows by dropping some terms from
the summation and (3) follows from that facts that p

(q−1)(1−p)
≤ 1 (as q ≥ 2 and p ≤ 1/2) and

pn ≥ 1 (for large enough n). Rest of the steps follow from rearranging the terms.
As q−Hq(p)n =

(
p

q−1

)pn

(1− p)(1−p)n, (4) implies that

1 ≥ V olq(0, pn)q−Hq(p)n,

which proves (i).
We now turn to the proof of part (ii). For this part, we will need Stirling’s approximation for n!

√
2πn

(n

e

)n

eλ1(n) < n! <
√

2πn
(n

e

)n

eλ2(n),
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where
λ1(n) =

1

12n + 1
and λ2(n) =

1

12n
.

By the Stirling’s approximation, we have the following inequality:(
n

pn

)
=

n!

(pn)!((1− p)n)!

>
(n/e)n

(pn/e)pn((1− p)n/e)(1−p)n
· 1√

2πp(1− p)n
· eλ1(n)−λ2(pn)−λ2((1−p)n)

=
1

ppn(1− p)(1−p)n
· `(n), (5)

where `(n) = eλ1(n)−λ2(pn)−λ2((1−p)n)
√

2πp(1−p)n
.

Now consider the following sequence of relations that complete the proof:

V olq(0, pn) ≥
(

n

pn

)
(q − 1)pn (6)

>
(q − 1)pn

ppn(1− p)(1−p)n
· `(n) (7)

≥ qHq(p)n−o(n). (8)

In the above (6) follows by only looking at one term. (7) follows from (5) while (8) follows from
the definition of Hq(·) and the fact that for large enough n, `(n) is q−o(n).

2 Converse of Shannon’s Capacity Theorem for BSC
We will now prove part (ii) of Theorem 0.1: the proof of the other part will be done in the next
lecture.

First, we note that there is nothing to prove if p = 0, so for the rest of the proof we will assume
that p > 0. For the sake of contradiction, assume that the following holds for every m ∈ {0, 1}k:

Pr
noise e of BSCp

[D(E(m) + e) 6= m] ≤ 1/2.

Fix an arbitrary message m ∈ {0, 1}k. Define Dm to be the set of received words that are
decoded to m by D, that is,

Dm = {y|D(y) = m}.

Note that by our assumption, the following is true (where from now on we omit the explicit
dependence of the probability on the BSCp noise for clarity):

Pr [E(m) + e 6∈ Dm] ≤ 1/2. (9)
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Further, by the Chernoff bound,

Pr[E(m) + e 6∈ Sm] ≤ 2−Ω(γ2n), (10)

where Sm is the shell of radius [(1−γ)pn, (1+γ)pn] around E(m), that is, Sm = B2(E(m), (1+
γ)pn) \B2(E(m), (1− γ)pn). (We will set γ > 0 in terms of ε and p at the end of the proof.)

(9) and (10) along with the union bound imply the following:

Pr [E(m) + e ∈ Dm ∩ Sm] ≥ 1

2
− 2−Ω(γ2n) ≥ 1

4
, (11)

where the last inequality holds for large enough n. Next we upper bound the probability above to
obtain a lower bound on |Dm ∩ Sm|.

It is easy to see that

Pr [E(m) + e ∈ Dm ∩ Sm] ≤ |Dm ∩ Sm| · pmax,

where
pmax = max

y∈Sm

Pr[E(m) + e = y] = max
d∈[(1−γ)pn,(1+γ)pn]

pd(1− p)n−d.

It is easy to check that pd(1− p)n−d is decreasing in d for p ≤ 1/2. Thus, we have

pmax = p(1−γ)pn(1− p)n−(1−γ)pn =

(
1− p

p

)γpn

· ppn(1− p)(1−p)n =

(
1− p

p

)γpn

2−nH(p).

Thus, we have shown that

Pr [E(m) + e ∈ Dm ∩ Sm] ≤ |Dm ∩ Sm| ·
(

1− p

p

)γpn

2−nH(p),

which by (11) implies that

|Dm ∩ S| ≥ 1

4
·
(

1− p

p

)−γpn

2nH(p). (12)

Next, we consider the following sequence of relations:

2n =
∑

m∈{0,1}k

|Dm| (13)

≥
∑

m∈{0,1}k

|Dm ∩ S|

≥ 1

4

(
1− p

p

)−γpn ∑
m∈{0,1}k

2H(p)n (14)

= 2k−22H(p)n−γp log(1/p−1)n

> 2k+H(p)n−εn. (15)
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In the above (13) follows from the fact that for m1 6= m2, Dm1 and Dm2 are disjoint. (14)
follows from (12). (15) follows for large enough n and if we pick γ = ε

2p log( 1
p
−1)

. (Note that as

0 < p < 1/2, γ = Θ(ε).)
(15) implies that k < (1 − H(p) + ε)n, which is a contradiction. The proof of part (ii) of

Theorem 0.1 is complete.

Remark 2.1. It can be verified that the proof above can also work if the decoding error probability
is bounded by 2−βn (instead of the 1/2 in part (ii) of Theorem 0.1) for small enough β = β(ε) > 0.
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