
Using HTTP Link: Header for
Gateway Cache Invalidation

Mike Kelly <mike@mykanjo.co.uk>
Michael Hausenblas <michael.hausenblas@deri.org>

What is a gateway cache?

"reverse proxy cache"
A layer between all clients and destination server

Objective:
Minimize demand on destination server
Not so concerned with reducing bandwith

How do they work?

They can leverage the 3 principal caching mechanisms:

• Expiration
• Validation
• Invalidation

HTTP has mechanisms for each of these

Expiration-based caching

< 200 OK
< Content-Type: text/html
< Cache-Control: public, s-maxage=600
<

Pros:
+ Simple
+ No contact with server until expiration

Cons:
- Inefficient
- Difficult to manage

Validation-based caching

< 200 OK
< ETag: "686897696a7c876b7e"
> GET /example
> If-None-Match: "686897696a7c876b7e"
< 304 Not Modified

Pros:
+ Reduces bandwidth
+ Ensures freshness

Cons:
- Server handling every request
- Generating 304 still costs processing and I/O

Expiration+Validation caching

< 200 OK
< ETag: "686897696a7c876b7e"
< Cache-Control: public, s-maxage=600

Pros:
+ Expiration reduces contact with server
+ Validation reduces bandwidth

Cons:
- "Worst case" inefficiency
- Still managing caching rules

Invalidation-based caching

- Responses fresh until invalidated

(by non-safe requests)

In HTTP:

PUT
POST
PATCH
DELETE
(PURGE?)

How is this possible?

Product of adhering to constraints of REST, particularly:

Uniform Interface
+ Self-descriptive messages

Intermediaries can make assertions about client-server
interactions.

Invalidation-based caching

Pros:
+ Caches have self-control
+ "Best case" efficiency
+ Ensured freshness*

Cons:
- Only reliable for gateway caches
- Impractical*

* (sort of)

Cache invalidation in practice

Two main problems for cache invalidation arise from
pragmatism and trade-offs in resource granularity and
identification:

• The "Composite Problem"

• The "Split-resource Problem"

Composite Problem

Perfect World:
<collection>

<item rel="item" href="/items/123" />
<item rel="item" href="/items/asdf" />
<item rel="item" href="/items/foobar" />

</collection>

Real World:
<collection>

<item rel="item" href="/items/123">
<title>Item 123</title>
<content>Content for item 123 - an example of embedded state</content>

</item>
<item rel="item" href="/items/asdf">

<title>Item asdf</title>
<content>This state is also embedded</content>

</item>
<item rel="item" href="/items/foobar">

<title>FooBar</title>
<content>Yet more embedded state!! :(</content>

</item>
</collection>

Composite Problem

What effect would the following interaction have on the
composite collection it belongs to?

> PUT /composite-collection/item123
< 200 OK

The Split-resource Problem

Given /document resource with representations:

/document.html
/document.xml
/document.json

When a client does this:

PUT /document

Then invalidation of each representation is invisible to
intermediaries

What's the Problem?

.. The Solution

Beef up the uniform interface:

Express these common types of resource dependency as
control data using Link header and standard link relations

This increases:

- Self-descriptiveness of messages

- Visibility

"Link Header-based Invalidation of Caches" (LHIC)

LHIC-I

Express dependency in response to an invalidating request

> PUT /composite-collection/item123

< 200 OK
< Link: </composite-collection>;
< rel="http://example.org/rels/dependant"

LHIC-II

Express dependencies in initial cacheable responses
> GET /document.html
< 200 OK
< Link: </document>;
< rel="http://example.org/rels/dependsOn"

> GET /document.xml
< 200 OK
< Link: </document>;
< rel="http://example.org/rels/dependsOn"

> GET /document.json
< 200 OK
< Link: </document>;
< rel="http://example.org/rels/dependsOn"

> PUT /document
< 200 OK

Comparison

LHIC-I
+ More dynamic control of invalidation

- DoS risk
- Invalidation does not cascade

LHIC-II
+ No DoS risk
+ Cascading invalidation

- Complexity

Conclusion

LHIC injects lost visibility. Resulting mechanism:

+ Very efficient
+ Ensures freshness
+ Easily managed
+ Leverages existing specs

- Only for gateway caching
+ Combine Invalidation (gateway) & Validation (client)

Considerations

Resource state altered outside of uniform interface
- Don't do that
- Reintroduce expiration and validation

Peering
- Further research

Size limits for HTTP headers

	Using HTTP Link: Header for Gateway Cache Invalidation
	What is a gateway cache?
	How do they work?
	Expiration-based caching
	Validation-based caching
	Expiration+Validation caching
	Invalidation-based caching
	How is this possible?
	Invalidation-based caching
	Cache invalidation in practice
	Composite Problem
	Composite Problem
	The Split-resource Problem
	What's the Problem?
	.. The Solution
	LHIC-I
	LHIC-II
	Comparison
	Conclusion
	Considerations

