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Abstract

The CoreASM project, an attempt to make abstract state machines (ASMs) exe-
cutable, was first introduced in [16, 15]. The aim of this project is to specify and
implement an extensible ASM execution engine for an extensible language that
is as close as possible to the mathematical definition of pure ASMs. This doc-
ument focuses on the design of the Kernel of the CoreASM engine and the bare
essential structures of the CoreASM language and provides an update on the latest
achievements and improvements.
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Chapter 1

Introduction

Abstract state machines are well known for their versatility in modeling complex
architectures, languages, protocols and virtually all kinds of sequential and dis-
tributed systems with an orientation toward practical applications. The particular
strength of this approach is the flexibility and universality it provides as an abstract
mathematical framework for semantic modeling of functional requirements. This is
invaluable when used to bridge the gap between informal requirements and precise
specifications, for instance, in the earlier phases of system design and during re-
verse engineering of requirements from implementations. This usage of ASMs has
extensively been studied by researchers and developers in academia and industry,
leading to the establishment of a solid methodological foundation providing prac-
tical guidelines for building ASM ground models. Widely recognized applications
include semantic foundations of industrial system design languages like the ITU-T
standard for SDL [22], the IEEE language VHDL [6], programming languages like
JAVA [28] and C# [5], communication architectures, etc.

The research project we describe here focuses on the design of a lean, executable
ASM language, called CoreASM, in combination with a supporting tool environ-
ment for high-level design, experimental validation and formal verification (where
appropriate) of abstract system models. We concentrate on control-intensive soft-
ware systems, especially, distributed and embedded systems and related system
design languages; we also consider sequential languages and synchronous systems,
and, to some extent, hardware related aspects. Specifically, we are developing a
platform-independent engine for executing the CoreASM language and a graphical
user interface (GUI) for interactive visualization and control of CoreASM simula-
tion runs. The engine comes with a sophisticated and well defined interface and
thereby enables future development and integration of complementary tools (e.g.,
for symbolic model checking and automated test case generation).

Exploring the problem space for the purpose of writing an initial specification
calls for a language that emphasizes freedom of experimentation and supports easy
modifiability. Moreover, such a language must support writing highly abstract and
concise specifications by minimizing the need for encoding in mapping the problem
space to a formal model. In our work we address the needs of that part of the
software development process that is closest to the problem space, as illustrated in
Figure 1.1.

Model-based systems engineering naturally demands for abstract executable
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Figure 1.1: Background and Motivation

specifications as a basis for experimental validation through simulation and testing.
Thus it is not surprising that there is a considerable variety of executable ASM
languages (see [9], Section 8.3) that have been developed over the years. The
most prominent one is AsmL (ASM Language)[25], developed by the FSE group
at Microsoft Research. AsmL is an executable language based on the concept of
ASMs but also incorporates numerous object oriented features, thus departing in
this respect from the theoretical model of ASMs, and comes with the richness
of a fully fletched programming language. It also lacks any built-in support for
dealing with distributed systems. Its design was shaped by the practical needs of
dealing with fairly complex requirements and design specifications for the purpose
of software testing; it can be thus said that its primary concerns are toward the
world of code. This has made it less suitable for initial modeling at the peak of the
problem space and also reduces the freedom of experimentation.

The CoreASM language and tool architecture focus on early phases of the soft-
ware design process, and CoreASM primary concerns are toward the world of prob-
lems. In particular, we want to encourage rapid prototyping with ASMs, starting
with mathematically-oriented, abstract and untyped models and gradually refining
them down to more concrete versions — a powerful specification technique that
has been exploited in [9]. In this process, we aim at maintaining executability of
even fairly abstract models. Another important characteristic that differentiate our
endeavor from previous experiences is the emphasis that we are placing on extensi-
bility of the language. Historical developments have shown how the original, basic
definition of ASMs from the Lipari Guide [18] has been extended many times by
adding new rule forms (e.g., choose) or syntactic sugar (e.g., case). At the same
time, many significant specifications need to introduce special backgrounds1, often
with non-standard operations. We want to preserve in our language the freedom of
experimentation that has proved so fruitful in the development of ASM concepts,
and to this end we designed our architecture around the concept of plug-ins that
allows to customize the language to specific needs.

An extensible, platform independent tool package (the language, its engine,

1We call background a collection of related domains and relations packaged together as a single
unit.
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and the GUI) will be an asset both for industrial engineering of complex software
systems by making software specifications and designs more robust and reliable,
and for research by providing facilities for the testing of proposed extensions to the
basic ASM language.
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Chapter 2

Architecture Overview

The CoreASM engine consists of four components: a parser, an interpreter, a sched-
uler, and an abstract storage (Figure 2.1). The interpreter, the scheduler, and the
abstract storage work together to simulate an ASM run. The engine interacts with
the environment through a single interface, called the control API, which provides
various operations such as loading a CoreASM specification, starting an ASM run,
or performing a single step.

 Applications 

Testing  
Environment 

Graphical UI 
Verification 
Environment 

 

Control API 

Abstract 
Storage 

Interpreter 

Scheduler 

Parser 

CoreASM Engine 

Figure 2.1: Overall Architecture of CoreASM

The parser reads a CoreASM specification and provides the interpreter with
an annotated parse tree for each program. The interpreter then evaluates the
programs in the specification by examining all the rules and generating update
sets. The abstract storage manages the data model for the abstract state. In
particular, it stores the current state of the simulated machine along with the
history of its previous states, which can be used to examine the run traces or to
rollback to a previous state and resume the computation. The number of possible
rollbacks is configurable.1 To evaluate a program, the interpreter interacts with
the abstract storage in order to obtain values from the current state and generates
updates for the next state. The role of the scheduler is to orchestrate the whole

1It is important to mention that the rollback mechanism does not rollback the environment.
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execution process. In particular, for distributed ASMs the scheduler is responsible
for selecting the set of agents that will contribute to the next computation step
and coordinating the execution of those agents. The scheduler also manages cases
of inconsistency of update sets generated in a step.

The execution process of a single step in the CoreASM engine is as follows (refer
also to Figures 2.6 to 2.9 in Section 2.2):

1. The Control API sends a STEP command to the scheduler.

2. The scheduler gets the whole set of agents from the abstract storage (from
the special set agents).

3. The scheduler selects a subset of these agents, which will perform computation
in the next step.

4. The scheduler selects a single agent from this set and assigns it to the special
variable self in the abstract storage.

5. The scheduler then calls the interpreter to run the program of the current
agent (retrieved by accessing program(self) in the current state).

6. The interpreter evaluates the program.2

7. When evaluation is complete, the interpreter notifies the scheduler that the
interpretation is finished.

8. The scheduler then selects another agent in the selected set of agents. If there
are no more agents left in the set, the scheduler calls the abstract storage to
fire the accumulated updates.

9. The abstract storage notifies the scheduler whether the update set has any
conflicts or it was successfully fired. This notification can lead to selection of
a different subset of agents to be executed in the step, or can be sent back to
the Control API.

2.1 CoreASM Components

In this section we present in more detail the basic components of the CoreASM en-
gine, together with their extensibility mechanisms. The architecture is partitioned
along two dimensions (see Figure 2.2). The first one, that we already presented,
identifies the four main modules (parser, interpreter, scheduler, abstract storage)
and their relationships. The second dimension, that we will discuss in Section 2.3,
distinguishes between what is in the kernel of the system — thus implicitly defining
the extreme bare bones ASM model — and what is instead provided by extension
plug-ins.

The reader may notice that these two dimensions correspond to what in the
ASM literature have been called modular decomposition and conservative refine-
ment respectively. In particular, our plug-ins progressively extend in a conservative
way the capabilities of the language accepted by the CoreASM engine, in the same

2This may include a series of interactions between the interpreter and the abstract storage to
get values from the current state, which in turn may require interpreting other code fragments,
e.g., for derived functions.
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Figure 2.2: Layers and Modules of the CoreASM Engine

spirit in which successive layers of the Java [28] and C# [5] languages have been
used to structure the language definition into manageable parts.

The first module in our architecture is the parser. The parser generates anno-
tated abstract syntax trees for rules and programs of a given CoreASM specification.
Each node in these trees may have a reference to the plug-in where the correspond-
ing syntax is defined. For example in Figure 2.3, there are nodes that belong to the
backgrounds of sets and Booleans; this information will be used by the interpreter
and the abstract storage to perform operations on these nodes with respect to the
background each node comes from.

The second module, the interpreter, executes programs and rules, possibly call-
ing upon background plug-ins to perform expression evaluation, and upon rules
plug-ins to interpret certain rules. It obtains an annotated parse tree from the
parser and generates a multiset of update instructions, each of which represents ei-
ther an update, or an arbitrary instruction which will be processed at a later stage
by plug-ins to generate the actual updates (as will be described in more detail on
page 17)3. The interpreter interacts with the abstract storage to retrieve data from
the current state and by executing statements it gradually creates the update set
leading to the next state.

The abstract storage maintains a representation of the current state of the
machine that is being simulated. The state is modeled as a map from locations
to opaque elements from a universe Element. The abstract storage also provides
interfaces to retrieve values from a given location in the current state and to apply
updates.

In addition, it also provides other auxiliary information about the locations of
current state, such as the ranges and domains of functions or the background to
which a particular function or value belongs to.

Finally, the scheduler orchestrates every computation step of an ASM run. In a

3Where no confusion can arise, in the following we use the generic term “updates” to refer
both to actual updates and to update instructions.
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Figure 2.3: Sample Annotated Parse Tree

sequential ASM, the scheduler merely arranges the execution of a step: it receives
a STEP command from the control API, invokes the interpreter, and instructs the
abstract storage to aggregate the update instructions and fire the resulting update
set (if consistent) when the interpreter finishes the evaluation of the program. It
then notifies the environment through the Control API of the results of the step.

For distributed ASMs [9], the scheduler also organizes the execution of agents
in each computation step. At the beginning of each DASM computation step, the
scheduler chooses a subset of agents which will contribute to the computation of
the next update set. The scheduler directly interacts with the abstract storage to
retrieve the current set of DASM agents, to assign the current executing agent, and
to collect the update set generated by the interpretation of all the agents’ programs.
Updates are then fired and the environment is notified as for the previous case.

2.2 Engine Life-cycle

The whole process of executing a CoreASM specification using the CoreASM engine
consists of the following steps:

1. Initializing the engine (Figure 2.4)

(a) Initializing the kernel

(b) Loading the plug-ins library catalogue

(c) Loading and activating plug-ins from a standard library

2. Loading a CoreASM specification (Figure 2.5)

(a) Parsing the specification header

(b) Loading further needed plug-ins as declared in the header

(c) Parsing the specification body

(d) Initializing the abstract storage

(e) Setting up the initial state

12
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Figure 2.4: Control State ASM of Initializing CoreASM Engine

Figure 2.5: Control State ASM of Loading a CoreASM Specification

3. Execution of the specification

(a) Execute a single step

(b) If termination condition not met, repeat from 3a

At the end of the execution of each step, the resulting state is optionally made
available by the abstract storage module for inspection through the Control API.
The termination condition can be set through the user interface of the CoreASM

engine, choosing between a number of possibilities (e.g., a given number of steps
are executed; no updates are generated; the state does not change after a step;
an interrupt signal is sent through the user interface). See Appendix A for the
definition of macros in Figures 2.4 and 2.5.

In the following we present a high-level but precise specification of the execu-
tion process (step 3a above) which was presented informally at the beginning of
this section. The structure of the specification is that of a control state ASM, as
shown in Figures 2.6 to 2.9. The current state of such ASM is given by the vari-
able engineMode that controls the execution of rules at any step. The ASM rules
corresponding to the control state ASM are also presented.

The engine starts its execution in the Idle state of the Control API module
(Figure 2.6). In this state, the engine simply waits for a STEP command from

13



2. Architecture Overview CoreASM Execution Engine – Phase 1

Scheduler 

Step 

Failed 

Idle 

Step 

Succeeded 

 
stepCommand Starting Step 

NotifyFailure 

NotifySuccess 

CONTROL API 

Figure 2.6: Control State ASM of a STEP command: Control API Module

the environment4 (e.g., an interactive GUI or a debugger), to start the actual
computation; this is performed by changing the state to Starting Step which then
transfers the control flow to the scheduler.

The StartStep rule in the scheduler simply initializes updateInstructions (the mul-
tiset of accumulated update instructions for the step), agentSet (the current set of
agents of the simulated machine), and selectedAgentsSet (the set of agents selected
to perform computation in the current step). The latter is then assigned a value
in the RetrieveAgents rule by querying the abstract storage module for the current
value of agents in the simulated machine. We model the query process through
the abstract function getValue(l) which takes a location l and retrieves the value
of the location from the simulated state. We use the notation “term” to denote the
quoted variable or literal term term in the simulated machine. The state is then
changed to Selecting Agents.

Scheduler

StartStep ≡
updateInstructions := {||}
agentSet := undef
selectedAgentsSet := {}

RetrieveAgents ≡
agentSet := getValue((“agents”, 〈〉))

In the Selecting Agents state, if no agent is available to perform computation,
the step is considered complete; otherwise, the SelectAgents rule chooses a set of
agents to execute in the current step. The ChooseAgent rule chooses an agent from
this set and changes the state to Initializing SELF which leads to the execution of
the SetChosenAgent rule in the abstract storage module. After the execution of the
agent, the computed updates are accumulated by AccumulateUpdates rule in the
Choosing Next Agent state, and control is moved back to Choosing Agent until all
selected agents have been executed.

4The Control API provides several other commands that are needed to implement a complete
execution environment; we restrict ourselves to the most basic STEP command here to keep the
presentation manageable.
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Figure 2.7: Control State ASM of a STEP command : Scheduler

Figure 2.8: Control State ASM of a STEP command : Abstract Storage
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Scheduler

SelectAgents ≡
choose s with s ⊆ agentSet ∧ |s| ≥ 1 do

selectedAgentsSet := s

ChooseAgent ≡
choose a in selectedAgentsSet do

remove a from selectedAgentsSet
chosenAgent := a

ifnone

chosenAgent := undef

AccumulateUpdates ≡
add updates(root(chosenProgram)) to updateInstructions

Two rules in the abstract storage module take care of setting the chosen agent
(by assigning it to the special variable self in the simulated state) and of retriev-
ing the program associated with the chosen agent (by accessing program(self ) in
the simulated state). Control then moves back to the scheduler at the Initiating
Execution state.

Abstract Storage

SetChosenAgent ≡
SetValue((“self”, 〈〉), chosenAgent)

GetChosenProgram ≡
chosenProgram := getValue((“program”, 〈“self”〉))

The execution of the program of the chosen agent is initiated in the Initiating
Execution state in the scheduler and then starts in the Program Execution state in
the interpreter. During the execution, computed update instructions are progres-
sively added to updateInstructions, and when all selected agents have performed their
computation, control moves to Aggregation state in the abstract storage, where the
final update set is calculated and then applied to the current state.

Extending the basic idea presented in [28], we interpret a program by associating
values, updates and locations to nodes in the abstract syntax tree of the program.
Before actually starting the interpreter, previously computed values are removed
by the InitiateExecution rule, and the current position in the tree (denoted by the
nullary function pos) is initialized to the root node of the tree that represents the
current program (that is, the program of the current agent, as established above).

16
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Scheduler

InitiateExecution ≡
pos := root(chosenProgram)
InitProgramExecution // in the interpreter

The specification of the interpreter is explored in more detail in Section 3.5. We
do not include here the full specification for the interpreter; we show instead its
most interesting feature, that is the way it interacts with rule and background plug-
ins to delegate interpretation of the associated extensions. As already discussed
earlier, nodes of the parse tree corresponding to grammar rules provided by a plug-
in are annotated with the plug-in identifier; here we abstract from the details of how
this annotation is implemented, and use instead an oracle function plugin(node) for
this purpose. If a node is found to refer to a plug-in, rules provided by that plug-in
are obtained through the pluginRule function and executed; otherwise, the kernel
interpreter rules (see Section 3.5) are used. Results of the interpretation of node pos

are stored alongside the node, and accessed by three functions, namely value(pos)
will return the computed value for an expression node, updates(pos) will return
the set of updates generated by a rule node, and loc(pos) will return the location
denoted by the node (which is used as lhs-value for assignments). Section 3.5.2
presents a more precise definition of these functions.

Interpreter

InitProgramExecution ≡
ClearTree(root(chosenProgram))
ClearEnvironmentVariable

ExecuteTree ≡
if ¬evaluated(pos) then

if plugin(pos) 6= undef then

let R = pluginRule(plugin(pos)) in

R

else

KernelInterpreter

else

if parent(pos) 6= undef then

pos := parent(pos)

After executing the programs of all the agents selected in the Selecting Agents
state, all the update instructions will have been accumulated in updateInstructions.
Control will move from Choosing Agent in the scheduler to Aggregation in the
abstract storage module. In the Aggregation state, the abstract storage aggregates
update instructions to compute updates on the locations of the state (through the
AggregateUpdates rule), checks the consistency of the computed updates (possibly
interacting with the relevant background plug-ins to evaluate equality), and either
applies the updates to the current state by FireUpdateSet (thus obtaining the next
state), or provides an indication of failure by changing the state to Update Failed.

17



2. Architecture Overview CoreASM Execution Engine – Phase 1

Abstract Storage

AggregateUpdates ≡
let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

updateSet :=
S

p∈ap
InvokeAggregation(p, updateInstructions)

FireUpdateSet ≡
forall (l, v) ∈ updateSet do

SetValue(l, v)

If an inconsistent set of updates is generated in a step, the HandleFailedUpdate

rule in the scheduler module selects a different subset of agents for execution, and
the step is re-initiated. The process is iterated until a consistent set of updates is
generated, in which case the computation proceeds in the Step Succeeded state of
the Control API, or all possible combinations have been exhausted, in which case
the Step Failed state is entered instead. It should be noted that the selection will
also consider subsets containing a single agent, so the process fails only when no
agent can successfully perform a step.

Depending on the outcome of the previous stage, either the NotifySuccess or
the NotifyFailure rule in the Control API notify the environment of the success or
failure of the step, and return to the Idle state awaiting further commands from
the environment (e.g., another STEP command to continue the computation).

2.3 Plug-ins

In keeping with the micro-kernel spirit of the CoreASM approach, most of the
functionality of the engine is implemented through plug-ins to a minimal kernel.
The architecture supports three classes of plug-ins: backgrounds, rules and policies,
whose function is described in the following.

• Background plug-ins provide all that is needed to define and work with new
backgrounds, namely (i) an extension to the parser defining the concrete
syntax (operators, literals, static functions, etc.) needed for working with
elements of the background; (ii) an extension to the abstract storage providing
encoding and decoding functions for representing elements of the background
for storage purposes, and (iii) an extension to the interpreter providing the
semantics for all the operations defined in the background.

• Rule plug-ins are used to implement specific rule forms, with the understand-
ing that the execution of a rule always results in a (possibly empty) set of
updates. Thus, they include (i) an extension to the parser defining the con-
crete syntax of the rule form; (ii) an extension to the interpreter defining the
semantics of the rule form.

• Policy plug-ins are used to implement specific scheduling policies for multi-
agent ASMs. They provide an extension to the scheduler, that is used to
determine at each step the next set of agents to execute5. It is worthwhile to
note that only a single scheduling policy can be in force at any given time,

5The policies in these plug-ins can also be called upon for implementing the choose-rule; an
extension plug-in provides an enhanced version of choose that allows the specifier to explicitly
state which policy to use.
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whereas an arbitrary number of background and rule plug-ins can be all in
use at the same time.

The plug-in framework is further discussed in Section 3.6. Plug-ins are character-
ized by an abstract interface which is used by the CoreASM engine to communicate
with the plugin (see Section 3.6).

In CoreASM, the kernel (see Figure 2.2) only contains the bare essentials, that
is, all that is needed to execute only the most basic ASM. As the state of an
ASM machine is defined by functions and universes, the two domains of functions
and universes are included in the kernel. Universes are represented through their
characteristic functions, hence booleans are also included in the kernel. As an ASM
program is defined by a finite number of rules, the domain of rules is also included
in the kernel. It should be noted that the kernel includes the above mentioned
domains, but not all of the expected corresponding backgrounds. For example,
while the domain of booleans (that is, true and false) is in the kernel, boolean
algebra (∧, ∨, ¬, etc.) is not, and is instead provided through a background plug-
in. In the same vein, while universes are represented in the kernel through set
characteristic functions, the background of finite sets is implemented in a plug-in,
which provides expression syntax for defining them (see the example in Figure 2.3),
as well as an implicit representation for storing sets in the abstract state, and
implementations of the various set theoretic operations (e.g., ∈) that work on such
implicit representation.

The kernel includes only two types of rules: assignment and import. This
particular choice is motivated by the fact that without updates established by
assignments there would be no way of specifying how the state should evolve, and
that import has a special status due to its privileged access to the Reserve. All
other rule forms (e.g., if, choose, forall), as well as sub-machine calls and macros,
are implemented as plug-ins in a standard library, which is implicitly loaded with
each CoreASM specification.

Finally, there is a single scheduling policy implemented in the kernel, namely the
pseudo-random selection of an arbitrary set of agents at a time, which is sufficient
for multi-agent ASMs where no assumptions are made on the scheduling policy.

In addition to modular extensions of the engine, plug-ins can also register them-
selves for Extension Points. Each mode transition in the execution engine is associ-
ated to an extension point. At any extension point, if there is any plug-in registered
for that point, the rule provided by the plug-in at registration time is executed be-
fore the engine proceeds into the new mode. Such a mechanism enables extensions
to the engine’s life-cycle which facilitates implementing various practically rele-
vant features such as adding debugging support, adding a C-like preprocessor, or
performing statistical analysis of the behavior of the simulated machine (e.g., cov-
erage analysis or profiling). A plug-in, for example, could monitor the updates
that are generated by a step before they are actually applied to the current state
of the simulated machine, possibly checking conditions on these updates and thus
implementing a kind of watches (i.e., displaying updates to certain locations) or
watch-points (i.e., suspending execution of the engine when certain updates are
generated), which are useful for debugging purposes.

As already mentioned, the CoreASM engine is accompanied by a standard li-
brary of plug-ins including the most common backgrounds and rule forms (i.e.,
those defined in [9]), an extension library including a small number of specialized
backgrounds and rules, and by a set of specifications for writing new plug-ins that
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can easily be integrated in the environment. Extension plug-ins must be explicitly
imported into an ASM specification by an explicit use directive.

2.4 Control API

Code Reference:

- org.coreasm.engine.CoreASMEngine

- org.coreasm.engine.ControlAPI

The following functions and rules define the interface of the engine to its external
environment:

• Engine initialization

– rule Initialize

initializes the engine as presented in Figure 2.4.

– rule LoadSpecification(spec)
loads a new CoreASM specification into the engine (see Figure 2.5).

– spec : Spec

returns the current CoreASM spec that the engine is working on.

• State of the engine

– state : State

returns the current state (after last computation step) of the engine.

– prevState : Integer → State

returns the last i’th state of the engine. For i = 0, this function returns
the current state.

– updateSet : Integer → UpdateSet

returns the last i’th update set of the engine. For i = 0 this function
returns the last update set.

– updateInstructions : UpdateInst-multiset

returns the update instructions computed in the last step of the engine.

– rule SetState(newState : State)
assigns newState as the current state of the engine. After a successful
execution of this rule, state returns the newState.

– rule UpdateState(update : UpdateSet)
updates the current state by applying the given set of updates.

• engineProperties : Name → Name

holds all the defined engine properties and their values. The behaviour of the
engine can be customized by these properties. An example of such properties
could be:

– engineProperties(“TypeChecking”) ∈ {“Ignore”, “Warning”, “Error”}
default is “Ignore”
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• engineMode : EngineMode

returns the current execution mode of the engine.

• rule HardInterrupt

sends a hard interrupt signal to the engine (changes a flag). If the engine
is computing a step, it will try to interrupt the current computation. The
engine then goes to an interrupted mode. If the engine is not running (not
computing a step), this rule does nothing.

• rule SoftInterrupt

sends a soft interrupt signal to the engine (like changing a flag). If the engine
is computing a series of steps, it will stop after computation of the current
step. The engine stops normally. This rule is meant to stop a series of
computations triggered by executing Run. If the engine is not running (not
computing a step), this method does nothing.

• rule Step

performs one computation step. As a result of the execution of this rule, the
values of state, prevState, updateSet, and engineMode may be changed.

• rule Run(i : INT)
performs a specified number of computation steps. For i equal to zero, the
engine runs until it is interrupted or an error occurs. As a result of the
execution of this rule, the values of state, prevState, updateSet, and engineMode

may be changed.

• eventObservers : EventObserver-set

is a set of event observers (see the Observer design pattern in [17]) that will
be notified by the engine in case of the occurrence of the following events6:

– Error messages generated

– Warning messages generated

– Standard output generated (after a step)

– Standard input required

– Computation events (e.g., engine interrupted or completed a step)

Applications are supposed to add or remove observers to this set.

The CoreASM engine also provides internal services to engine components. The Not fully

implemented yet.following rules define the internal interface of the engine (Control API):

• rule Error(msg : Name)
reports an internal error to the outside environment. The Error rule used in
the ASM specification of the interpreter may use this rule.

Error

Error(msg : Name) ≡
forall observer in eventObservers(self ) with isErrorObserver(observer)

observer.errorOccured(msg)

6We may think of more events in the future.
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• rule Warning(msg : Name)
sends a warning message to the environment. The Warning rule used in the
ASM specification of the interpreter may use this rule.

Warning

Warning(msg : Name) ≡
forall observer in eventObservers(self ) with isWarningObserver(observer)

observer.warningOccured(msg)

• rule StdOutput(text : Name)
basically informs the environment of the engine of a change to the value of
output. The idea is to let the environment monitor the output of the simulated
machine while the engine is performing a sequence of steps.

StdOutput

StdOutput(text : Name) ≡
forall observer in eventObservers(self ) with isOutputObserver(observer)

observer.outputGenerated(msg)

• rule StdInputRequest

informs the environment of the engine that the simulated machine needs an
input from the environment. The input value then can be assigned to the
standard input variable (input) in the state of the machine.

StdOutput

StdInputRequest ≡
forall observer in eventObservers(self ) with isInputObserver(observer)

observer.inputRequested
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Chapter 3

The Kernel

This chapter explores the kernel of the CoreASM engine. We first focus on special
updates and the aggregation mechanisms. We then look into the four components
of the kernel and reveal their underlying architecture. We then revisit special
updates and introduce update composition mechanisms which are useful in Turbo
ASM constructs. An overview of the plug-in framework of the engine concludes
this chapter.

3.1 Aggregation and Special Updates

In this section, we introduce special updates and aggregation as part of the Core-

ASM engine architecture. In particular we discuss how the embodiment of aggre-
gation affects the engine architecture and a CoreASM step as a whole.

3.1.1 Rules and Their Side Effects

As each rule of a CoreASM specification is executed by the Interpreter, it is expected
to produce a (potentially empty) set of updates, each update being viewed as a 2-
tuple expected to consist of a location and a value:

〈Loc,Element〉

The union of all of these sets returned by rules during a single step of the simulated
machine constitute the update set for a CoreASM step.

However, the possibility of having elements within the simulated machine which
are themselves based on axioms and structure (e.g. sets, maps, trees) and whose
internal structures may also be updated by rules, requires the CoreASM have facil-
ities to handle such incremental updates. Recall that Gurevich’s partial updates
consist of a location and a particle. The particle represents the partial modifica-
tion to be made to the element at the given location; the particle is a mathematical
function in which the entire incremental change is encoded. Notice that the essen-
tial function of a particle in a partial update is to represent the type of incremental
change to perform, and a value associated to that change.

To accommodate the representation of incremental change into CoreASM, we
allow rules to return update instructions , rather than updates; like updates, they
consist of location and value, but they also include an action to be performed on
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the element at the the given location. Update instructions are viewed as a 3-tuple
of the form:

〈Loc,Element,Action〉

The combination of the value and action represent the intended incremental modifi-
cation to be made to the element residing at the given location. Update instructions
containing incremental modification actions are referred to as special updates. Go-
ing back to our example, the special update resulting in the addition of element
msgx to a set at location l would produce an update instruction of the form:

〈l, msgx, setAddAction〉

where setAddAction ∈ Action and Action is the domain of all actions supported
by the simulated machine.

Regular Updates

For the sake of homogeneity we require the update-rule to return update instruc-
tions as well. However the action for such regular updates is always updateAction ∈
Action.1

〈Loc,Element, updateAction〉

Update and Update Instruction

When discussing ASMs, the term update is typically used to refer to both the act
of modifying a location, as well as the data structure representing an update. With
the introduction of the update instruction, when discussing the CoreASM machine
we use the term update to refer to the act of modifying a location, whereas the term
update instruction is used to refer to the data structure representing an update of
any kind (i.e. regular or special update); however, at times we also use these terms
interchangeably when the difference between them is irrelevant.

3.1.2 Update Instruction Notation

All update instructions have the following functions defined over them:

• 〈〈·〉〉 : UpdateInst → Loc × Element × Action holds the constituents of
the update instruction given by a triple formed by a location, a value, and an
action to be performed. We access elements and establish properties of such
triples through the following derived functions:

– uiLoc : UpdateInst → Loc returns the location associated with the
given update instruction, i.e. uiLoc(ui) ≡ 〈〈ui〉〉 ↓ 1.

– uiVal : UpdateInst → Element returns the value associated with the
given update instruction, i.e. uiVal(ui) ≡ 〈〈ui〉〉 ↓ 2.

– uiAction : UpdateInst → Action returns the action associated with the
given update instruction, i.e. uiAction(ui) ≡ 〈〈ui〉〉 ↓ 3.

1This follows Gurevich’s approach, where a total update to a location results in a partial
update containing an overwrite particle.
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• aggStatus : UpdateInst×Plugin → Flag indicates the aggregation status
of an update instruction, as set by a given aggregator plug-in; Flag =
{successful, failed}. If an update instruction has not been processed by a
plug-in, undef is returned. Note that the purpose this function will become
more clear in subsequent sections.

3.1.3 A CoreASM Step

The computation of a single step of an ASM program can be summarized very
simply as follows:

1. Execute the program rule and collect the updates into a set.

2. If update set is consistent, apply the updates.

However, with the introduction of special updates, the process of creating the
final update set requires additional work. Update instructions are collected into an
update multiset stored in the function updateInstructions. Once the execution of the
program rule is complete, all update instructions pertaining to a particular location
are aggregated into one single update per location. Aggregation is the process of
combining all update instructions affecting a single location of a machine into one
single update called the resultant update. The aggregation phase of a CoreASM

step performs aggregation on all locations affected by the step. Note that resultant
updates cannot and should not depend on the order in which all update instructions
for a location are combined, as all updates producing them occur simultaneously
according to ASM semantics; we shall explain this further in Section 3.1.6.

It is important to highlight the difference between regular, resultant, and basic
updates. A regular update is a typical ASM update produced by an update-rule,
whereas a resultant update is an ASM update produced by aggregating all special
update instructions and all regular updates into one unified change affecting a single
location of the machine. The word “resultant”, “regular” will be dropped when
its’ meaning is obvious from context. An update is basic if every update operating
on its location is regular, thus implying no aggregation need be performed on its
location.

The aggregation phase results in an update set, consisting of basic updates
and resultant updates. The traditional ASM step augmented with the aggregation
phase is summarized as follows:

1. Execute the program rule and collect the update instructions into a multiset.

2. Aggregate the update instructions in the multiset, producing the update set.

3. If the aggregation phase is successful and update set is consistent, apply the
updates.

When control is in the Scheduler (in the Choosing Agents mode) and all agents
selected to execute in a step have been executed, control now moves to the Ag-
gregation mode in Abstract Storage. Here the rule AggregateUpdates (which is
formally defined in the next section) performs the aggregation of the multiset up-

dateInstructions. When aggregation is complete, control moves to the Firing Updates
mode where both update set consistency and aggregation consistency are confirmed
before application of the update set (see Figures 2.7 and 2.8).
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3.1.4 Responsibility for Aggregation

Background plug-ins, which extend CoreASM with a background class should pro-
vide all that is necessary to manipulate elements which originate from their back-
ground2. For backgrounds that consist of elements with internal structure that
can be manipulated, background plug-ins provide rule forms that result in special
update instructions, as well as provide an algorithm for aggregation. We call these
plug-ins aggregators or aggregator plug-ins .

We say that an aggregator plug-in is responsible for:

• An action other than the updateAction action (see Section 3.1.5), if it is
equipped to handle its aggregation.

• Aggregation of a given update instruction if the update instruction:

– Contains an action for which the plug-in is responsible.

– Contains an updateAction (making it a regular update) and there is an-
other update instruction which it is responsible for that also operates
on the the same location.

• A location if update instructions operating on that location are its responsi-
bility.

Upon being called for aggregation, a plug-in will aggregate all update instruc-
tions for which it is responsible, flagging those update instructions it has processed.
It is important to note that the order in which plug-ins are called to perform aggre-
gation does not affect the resultant updates produced. Also note that the failure
in aggregation of a single plug-in will not foil the aggregation attempts of other
plug-ins. Upon completion of the aggregation phase, an update set is created from
the union of resultant updates.

Abstract Storage

AggregateUpdates

updateSet ← Aggregate(updateInstructions)

Aggregate(uMset : UpdateMultiset) ≡
let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

forall p ∈ ap do

resultantUpdates(p, uMset) ← InvokeAggregation(p, uMset)
seq

// Results in an update set
result :=

S

p∈ap
resultantUpdates(p,uMset)

InvokeAggregation(p : Plugin, uMset : UpdateMultiset) ≡
let R = aggregatorRule(p) in

result ← R(uMset)

The resultantUpdates function is used to collect resultant updates from plug-ins for
a given multiset of update instructions, and the aggregatorRule function is expected

2While we expect a plug-in providing a background class to provide all that is necessary to
manipulate elements of its background, there may be cases where it is more appropriate for
functionality to be present in different plug-ins. Thus, we do not enforce this expectation.
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to return the rule implementing the aggregation algorithm of the given plug-in.
Note that the parameterized rule for aggregation, Aggregate, may be called on any
update multiset. Also note that in InvokeAggregation, a plug-in aggregator rule is
expected to accept a multiset as an argument, and its invocation should cause the
return of its resultant updates.

3.1.5 Basic Update Aggregator

The keen observer will have noticed that once all aggregator plug-ins have com-
pleted aggregation successfully, the resultant update set will not contain basic up-
dates (i.e. regular updates for locations which do not require aggregation). The
Basic Update Aggregator solves this problem by masquerading as an aggregator
plug-in and returning a set of all regular updates for locations which do not require
any aggregation. It is defined as follows

Abstract Storage

BasicUpdateAggregator(uMset : UpdateMultiset) ≡
result := { }

seq

forall ui ∈ uMset with uiAction(ui) = updateAction do

if 6 ∃ ui′ ∈ uMset, uiLoc(ui) = uiLoc(ui′) ∧ uiAction(ui′) 6= updateAction then

add ui to result

aggStatus(ui, buPlugin) := successful

where buPlugin represents the Basic Update Aggregator as a plug-in, buPlugin ∈
Plugin and aggregator(buPlugin) = true. Evaluation of aggregatorRule(buP lugin)
results in the rule BasicUpdateAggregator. The Basic Update Aggregator is called
by Aggregate along with all aggregator plug-ins. Note that the Basic Update Ag-
gregator flags all update instructions it processes with successful.

3.1.6 Plug-in Aggregation Consistency

While a plug-in is performing its aggregation on the multiset, it may encounter a
situation where the update instructions for a given location that it is responsible
for cannot be aggregated into a regular update. Such a situation occurs when one
of the following holds:

• There are update instructions which make no semantic sense in context3.
(e.g. the addition of an element to a set, on a location which contains no set
element in the current state).

• The result of aggregation of a location depends on the order in which special
update instructions for that location are combined. Recall that since special
updates resulting from a single step of the machine occur the same time
according to ASM semantics, the result of their aggregation must not be
ambiguous for their aggregation to be consistent.

When the aggregation of all update instructions affecting a given location is
deemed inconsistent, the following rule is called by the plug-in to flag all updates
to the location as failed:

3Acceptable semantics of special updates, and the aggregation resulting from their update
instructions, are defined by the aggregation algorithm which processes them.

27



3. The Kernel CoreASM Execution Engine – Phase 1

Abstract Storage

HandleInconsistentAggregation(l : Loc, uMset : UpdateMultiset, p : Plugin) ≡
forall ui ∈ uMset with uiLoc(ui) = l do

aggStatus(ui, p) := failed

Although aggregation for a single location may have failed, the aggregation of
the rest of the update instructions the plug-in is responsible for would continue.

3.1.7 Aggregation Algorithms Provided

There are very few hard-and-fast requirements on the algorithm provided by an
aggregator plug-in. It is expected to:

• Aggregate all update instructions in the update multiset that it is responsible
for, and return the set of all its resultant updates.

• Determine if aggregation on a given location will result in inconsistency, and
handle such inconsistencies appropriately.

• Flag all update instructions considered during its aggregation as either successful
or failed.

The process of aggregation and consistency determination depends largely on
the semantics of special updates for a given background and its elements. Axioms of
the internal structure of the elements guide the plug-in writer in determining what
is considered consistent (i.e. what makes sense), and what is not. In some cases,
the multiplicity of an update instruction performed on a given location is important
in determining the semantics of the special update: [20] gives the example of the
background class of counters to illustrate this point. For this reason, the data
structure used for collecting update instructions is a multiset rather than a set.

The freedom given to plug-ins in determining their own aggregation promotes
the extensibility of the engine with background classes for the widest possible va-
riety of sorts.

3.1.8 Aggregation Phase Consistency

Once the aggregation phase is complete, aggregation consistency can be checked
with the following function:

• derived aggregationConsistent : UpdateMultiset → Boolean

returns true if aggregation was completed with consistency; false is returned
otherwise. It is defined as:

aggregationConsistent(uMset) ≡

allUpdatesProcessed(uMset) ∧ noAggregationFailures(uMset)

There are two conditions which must be met in order to ensure the consistency
of aggregation:

1. All updates in the multiset should have been processed (and should have some
status flag). Every update instruction should have either been processed by
the Basic Update Aggregator, or an aggregator plug-in.
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derived allUpdatesProcessed : UpdateMultiset → Boolean

returns true if all update instructions have been processed; false is returned
otherwise. It is defined as:

allUpdatesProcessed(uMset) ≡

∀ui ∈ uMset, ∃p ∈ Plugin, aggregator(p) ∧ aggStatus(ui, p) 6= undef

2. There should be no update instructions in the multiset which have been
flagged as failed.

derived noAggregationFailures : UpdateMultiset → Boolean

returns true if all locations were aggregated consistently; false is returned
otherwise. It is defined as:

noAggregationFailures(uMset) ≡

∀ui ∈ uMset, 6 ∃p ∈ Plugin, aggregator(p) ∧ aggStatus(ui, p) = failed

When the aggregation phase is considered to be inconsistent, this constitutes a
failed step of the simulated machine (as does an inconsistent update set).

Notice that aggregation is not considered to be inconsistent if update instruc-
tions have been successfully processed more than once, potentially by multiple
plug-ins. In such a situation, each plug-in processing instructions for a location
will produce a resultant update for that location. This will not pose a problem
if the two resultant updates do not conflict. However, if they do indeed conflict,
this problem will be caught during the update set consistency check. Thus, mul-
tiple successfully processed update instructions are not always problematic and so
a check for this situation is not incorporated into aggregationConsistent with the
understanding that, if there is a problem, it will be caught during the update set
consistency check.

3.1.9 Turbo ASMs and Sequential Composition

Aggregation as we have described it thus far gives semantically acceptable results
with Basic ASMs. However for Turbo ASMs, which allow for sequential composition
and iteration of ASMs within one single step of the machine, this is insufficient.
With the introduction of special updates resulting in the modification of elements
at a given location, it is not always desirable for a Turbo ASM rule to return
aggregated resultant updates.

In [24] the author discusses how support for sequential composition of update
multisets is incorporated into the engine.

3.2 Parser

The parser module is used during the CoreASM specification loading step of the
engine life cycle (Section 2.2) and performs two tasks:

1. Parse the specification header to determine the plug-ins required for a given
specification.

2. Parse the entire specification.
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3.2.1 The CoreASM Language Dependance on Specifications

During the initialization stage of the engine, depicted in Figure 2.4, the LoadStd-

Plugins rule loads all standard plugins; these plug-ins contain grammar extensions.
While in the process of loading a specification (depicted in Figure 2.5) in the Pars-
ing Header mode of the engine, the header of the specification is parsed via the
ParseHeader rule of the Parser. The ParseHeader rule looks for use directives which
specify additional plug-ins to be loaded for use in execution of the specification (see
Figure 3.1).

// Header

use Tree

use Map

// Body

...

Figure 3.1: An example use of use directives in a CoreASM specification. While the
standard plug-ins are automatically loaded, the Tree and Map plug-ins are loaded
especially for use with this specification.

The engine mode then becomes Loading Plug-ins, where the loading of these
additional plug-ins is done via the LoadSpecPlugins rule in the Control API. These
additional plug-ins may also contain grammar extensions. Thus the CoreASM lan-
guage syntax is dependent on the plug-in requirements of the specification to be
interpreted, and hence can differ from one specification to another.

Once all plug-ins required by a specification have been loaded, the engine moves
to the Parsing Spec mode of the engine, and executes the ParseSpecification rule:

Parser: Parse Specification

ParseSpecification ≡
BuildGrammar

seq

BuildAST

At a high-level, the act of parsing the specification can be broken down into two
major steps:

1. Building the grammar to use based on all grammar extensions provided by
loaded plug-ins.

2. Using this grammar to building the AST which represents the specification.

Here we concentrate on how the first step is achieved. The second step involves
typical lexical and syntactic analysis which we do not describe here. We direct the
reader to [1] for more information on these stages of interpretation.

3.2.2 Dynamic Grammar

Recall that the kernel contains only the minimum functionality necessary for basic
DASM semantics. The kernel provides a grammar which specifies the syntax for
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rules, operators, and literals to support these semantics. Regardless of which other
plug-ins are required by a specification, the grammar included by the kernel is
guaranteed to be present.

With this in mind, the kernel grammar has been structured in such a way that it
is hierarchically segregated with respect to aspects of the language with extensible
syntax.

Start -> ...

...

Rules -> ...

Operators -> ...

Literals -> ...

Figure 3.2: The kernel grammar structure showing GEPs.

In Figure 3.2 the general structure of the grammar is shown. The grammar is
structured such that all productions describing rule form syntax are reached via
the Rules production and all productions describing literal syntax can be reached
via the Literals production. For each production extending the kernel grammar,
we simply append that production to the RHS of the appropriate kernel grammar
production. Productions which are designed to be extensible in this way are called
grammar extension points (GEP).

For example, the Set Plug-In provides both new rule forms and literals. Assume
that the productions which describe the Set Plug-In specific syntax are as follows:

...

SetRules -> ...

SetLiterals -> ...

Then the kernel grammar is extended at both the Rule and Literal GEPs with
these additional productions:

Start -> ...

...

Rules -> ... | SetRules

Literals -> ... | SetLiterals

...

SetRules -> ...

SetLiterals -> ...

Extending the parser with new operators is a more complicated process that
we describe here at a very high-level. In CoreASM the segment of the grammar
which describes operator syntax is built dynamically with operator classes, prece-
dence levels and associativity in mind. This operator precedence grammar is then
integrated into the grammar via the Operators grammar extension point. Upon
loading plug-ins, the engine is made aware of the operators provided by each plug-
in, as well as operator class (i.e. unary, binary, ternary, etc.), operator associativity
(i.e. LA or RA) and operator precedence (which in the case of CoreASM is specified
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via a number between 0 and 100). Using all this information, the engine dynami-
cally constructs the operator precedence grammar productions required to properly
describe the syntax and characteristics of all operators to be supported.

3.3 Abstract Storage

Abstract storage models the state of the simulated machine in CoreASM. In addi-
tion, it also provides a set of practical operations affiliated to states. This section
explores the architecture of this module and presents its interface to other compo-
nents of the CoreASM engine.

3.3.1 Module Interface
Currently, it is not

fully compatible

with the Java

interface.

Code Reference:

- org.coreasm.engine.absstorage.AbstractStorage

We model the simulated abstract state as a function content : State × Loc →
Element, where locations are defined, as usual, by pairs of function names and
arguments. With this assumption, the following functions and rules define the in-
terface of the Abstract Storage to other components of the engine. All the functions
in this section are controlled functions.

• state : State

is the current state of the simulated machine.

• getValue : Loc → Element

returns the value of a given location. We have,

getValue(l) =

{

content(state, l), if content(state, l) 6= undef;
uu, otherwise.

• rule SetValue(l : Loc, v : Element)
sets the value of the given location to the given value. This rule is defined as
follows:

SetValue

SetValue(l, v) ≡
content(state, l) := v

• rule PushState

copies the current state in the stack. This rule is defined as follows4:

Push

PushState ≡
asStack(asP tr) := state

asPtr := asPtr + 1

4We are assuming asPtr = 0 in the initial state.
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• rule PopState

retrieves the state from the top of the stack (thus discarding the current
state). This routine is defined as follows:

Pop

PopState ≡
state := asStack(asP tr− 1)
asPtr := asPtr − 1

• rule Apply(u : Updates)
applies the updates in the update set u to the current state.

• rule ClearState

Clears the state to an empty state.

• newElement : Element

returns a new element; i.e., imports a new element into the state and returns
the imported element. This function is implemented by the following rule:

New Element

NewElement ≡
return newValue(Element) in skip

• newElementFrom : UniverseElement → Element

returns a new element of the given background or universe. If the argument
is a background (see Section 3.3.3), it asks the given background to provide a
new (perhaps default like 0 or “”) element. Otherwise, it uses the newElement
function (see above) to get a new element and adds it to the universe. This
function can be implemented by the following rule:

New Element From

NewElementFrom(u) ≡
return a in

if u ∈ Background then

a := newValue(u)
else

a := newElement
uMember(u, a) := true

• consistent : Updates → Boolean

holds if the update set is consistent according to [9, Def. 2.4.5].

• rule SetChosenAgent

sets the value of self (see Section 2.2).

• rule GetChosenProgram

loads the program of the current agent (self ) from the state (see Section 2.2).

• rule FireUpdateSet

fires the accumulated update set (see Section 2.2).
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Figure 3.3: Core Elements in the Kernel

3.3.2 Elements of the State

Code Reference:

- org.coreasm.engine.absstorage.Element

The following functions are defined over all elements of the state.

• bkg : Element → Name

is the name of the background of the given element. The default value is
“Element”.

• equalElement : Element × Element → BOOLEAN

returns true if the two elements are equal. We have

∀a1, a2 ∈ Element a1 = a2 ↔ equalElement(a1, a2)

• derived equal : Element × Element → BOOLEAN

returns true if the given elements are equal. This function is defined as

equal(a1, a2) ≡ equalbkg(a1)
(a1, a2) ∨ equalbkg(a2)

(a2, a1)

Element Enumerability

An enumerable element is any element which through some processing, can provide
a collection of all the elements which constitute its internal structure. This general
idea of enumerability can be easily applied to sets, a multisets, trees, records, etc..
The collection provided by these elements is a simple unordered group, which can
contain duplicates.

The enumerable interface is useful as it provides a universal interface for all
elements which can be represented (in albeit a simple form) by collection. The
interface required by all enumerable elements is as follows:

• enumerable : Element → Boolean

holds true if the element is enumerable, and false otherwise. The default
value of this function is false.
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• derived enumerate : Element → ElementCollection

provides a collection of elements contained within the internal structure of
the enumerable element, and is defined by its background:

enumerate(e) ≡ enumeratebkg(e)(e)

Function Elements

Code Reference:

- org.coreasm.engine.absstorage.FunctionElement

- org.coreasm.engine.absstorage.StateFunction

FunctionElement extends Element to provide a core concept for state func-
tions (tables) and custom-defined functions (e.g., functions provided by a plug-in,
such as ‘sin(x)’). The following functions and rule are defined over Functions:

• funcName : FunctionElement → Name

is the name of the function. If not undef, this name must be unique in state.

• signature : FunctionElement → Signature

is the signature of the given function. The default value of this function is
undef.

• fGetValue : FunctionElement × Element-seq → Element

returns the value of this function with respect to the given arguments. The
default value of this function is uu.

• rule FSetValue(f, args, v)
sets a new value for the function, if this is possible. By default, this rule is
defined as follows.

FSetValue

FSetValue(f, args, v) ≡
fGetValue(f, args) := v

• fClass : FunctionElement → FuncClass

is the class of the function, where FuncClass is
{monitored, controlled, out, static, derived}. the default value of this function
is controlled.

• derived fLocations : FunctionElement → Loc-set

if not undef, it is the set of all locations for which this function has a value
other than undef.

• derived equalFunction : FunctionElement × Element → BOOLEAN

where we have,

equalFunction(f1, f2) ≡ ∀a ∈ Element-seq fGetValue(f1, a) = fGetValue(f2, a)

• ∀f ∈ FunctionElement bkg(f) = “Function”
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Universe Element

Code Reference:

- org.coreasm.engine.absstorage.AbstractUniverse

- org.coreasm.engine.absstorage.UniverseElement

UniverseElement extends FunctionElement by introducing the following func-
tions:

• uMember : UniverseElement × Element → Boolean

is the membership function of the universe. If u is a universe, then we may
use the syntactical form u(x) for uMember(u, x).

• derived equalUniverse : UniverseElement × Element → BOOLEAN

where
equalUniverse(a, b) = equalFunction(a, b)

• ∀i ∈ UniverseElement bkg(i) = “Universe”

For all v ∈ Element and u ∈ UniverseElement, we have,

• enumerable(u)

• fGetValue(u, v) ≡ uMember(u, v)

• FSetValue(u, 〈v〉, b) ≡ uMember(u, v) := b

Rule Elements

Code Reference:

- org.coreasm.engine.absstorage.RuleElement

Rule extends Element by introducing the following function

• ruleName : Rule → Name

is the name of the rule. If not undef, this name must be unique in state.

• body : Rule → Node

holds the body (syntax tree) of the rule.

• param : Rule → Token-seq

holds (in order) the parameters of the rule in squence of tokens (or strings).

• derived equalRule : Rule × Element → BOOLEAN

where
equalRule(a, b) = equalElement(a, b)

• ∀i ∈ Rule bkg(i) = “Rule”
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Boolean Elements

Code Reference:

- org.coreasm.engine.absstorage.BooleanElement

BooleanElement has only two elements, tt and ff, which represent boolean
elements of true and false. This domain extends Element by introducing the
following functions:

• static valueOfBool : Boolean → BooleanElement

returns the Boolean element equivalence of the given Boolean value. It is
defined as follows:

valueOfBool(true) = tt

valueOfBool(false) = ff

• derived getBooleanValue : BooleanElement → Boolean

returns the Boolean value of this element.

• derived equalBool : BooleanElement × Element → Boolean

where
equalBool(a, b) ⇔ getValueBool(a) = getValueBool(b)

• ∀b ∈ BooleanElement bkg(b) = “Bool”

Locations

Code Reference:

- org.coreasm.engine.absstorage.Location

Locations within a state are pairs of function names and arguments lists.

• locName : Loc → Name

is the name of the function on which this location is defined.

• locArgs : Loc → Element-seq

is the list of abstract object values, as arguments of the location.

• derived locFunction : Loc → FunctionElement

is the function on which this location is defined.

locFunction(l) = f ⇔ name(f) = locName(l)

3.3.3 Background Element

Code Reference:

- org.coreasm.engine.absstorage.AbstractUniverse

- org.coreasm.engine.absstorage.BackgroundElement

Background extends UniverseElement by introducing the following additional
function and restriction:
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• newValue : Background → Element

returns a pseudo new element of the given background; i.e., most probably
returns a default value like an empty string for strings, or an empty set for
sets. In the actual implementation, each background will implement its own
version of this function. If this function returns undef it indicates that no
new element can be created from this background. What is returned depends
completely on view of a background; it may be seen in such a way that either
elements have internal structure which can be modified (e.g. strings and sets)
or not (e.g. integers, reals). A pseudo new element would be returned in the
former case whereas undef would be returned in the latter.

• ∀ b ∈ Background fClass(b) = static
It is not possible to change the membership function of a background; i.e., it
is not possible to add any element to a background or to remove any element
from it.

• derived equalBackground : Background × Element → BOOLEAN

where
equalBackground(a, b) = equalUniverse(a, b)

• ∀i ∈ Background bkg(i) = “Background”

3.3.4 State

Code Reference:

- org.coreasm.engine.absstorage.State

- org.coreasm.engine.absstorage.TreeState

The state of a simulated machine is represented as an abstract data structure.
The following functions define the interface of such a data structure:

• content : State × Loc → Element

is the value of a given location in the state. This function represents the
interface of the state.

• universes : State → UniverseElement-set

is the set of all the defined universes in the state.

• functions : State → FunctionElement-set

is the set of all the functions defined in the state.

• rules : State → Rule-set

is the set of all the rules defined in the state.

• derived locations : State → Loc-set

is the set of all defined locations (with a value other than undef) in the state.
We have

locations(s) = {l | ∃f (f ∈ functions(s) ∧ l ∈ fLocations(f))}
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3.4 Scheduler

3.4.1 Module Interface

• The following rules directly contribute to one computation step of the engine
(see Section 2.2 for more details):

– rule InitializeState

initializes the program state according to the specification. Rules and
functions are created if they have been specified. Finally, the initial
method of the specification is run.

– rule StartStep

starts a computation step.

– rule RetrieveAgents

gets the set of agents from the abstract storage.

– rule SelectAgents

selects a subset of agents contributing to the current computation step.

– rule ChooseAgent

chooses an agent from the selected agents set (see Section 2.2).

– rule AccumulateUpdates

accumulates the computed updates.

– rule InitiateExecution

clears the tree from previously computed values and points pos (the
current position in the tree) to the root node of the tree that repre-
sents the current program (that is, the program of the current agent, as
established above).

– rule HandleFailedUpdate

records that an inconsistent update was produced by executing the cur-
rent step using the current selected agent set, so in future attempts
to run this step, this selected agent set will not be considered by the
scheduler.

• updateInstructions : Updates

is the multiset of accumulating update instructions in one computation step.

• updateSet : UpdateSet

is the set of computed updates in one computation step. This set is usually
calculated at the end of each step based on the accumulated update instruc-
tions.

• agentSet : Agent-set

is the set of all the available agents in the current state retrieved from the
abstract storage at the beginning of every computation step.

• selectedAgentSet : Agent-set

is the set of selected agents to contribute the computation of the current step.

• chosenAgent : Agent

is the currently running (or to be running) agent.
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• monitored chosenProgram : Program

is the program of the chosenAgent. The value of this function is set by the
abstract storage.

• morePossibleSetsExist : Boolean

returns true if there exist more possible agent sets for execution of the current
computation step; false is returned otherwise.

3.5 Interpreter

3.5.1 Module Interface

The following functions and rules define the interface of the Interpreter component
to other components of the engine.

• rule ExecuteTree

executes the parse tree addressed by pos, if value(pos) is not undef; otherwise
it either switches the engine mode to ChooseNextAgent if pos refers to the top
of the parse tree or moves pos one node up the parse tree. See Section 2.2 for
more details.

3.5.2 Notation

We specify the interpreter as a collection of rules (some embedded in the kernel,
others contributed by plug-ins) which traverse a parse tree while evaluating values,
locations and updates. We state the following assumptions:

1. nodes in the tree are in the domain of the following (mostly partial) functions:

• first : Node → Node, next : Node → Node, parent : Node → Node are
static functions that implement tree navigation; by using these functions,
the interpreter can access all the children nodes of a given node, or go
back to its parent, (see Figure 2.3 for reference);

• class : Node → Class returns the syntactical class of a node (i.e., the
name of the corresponding grammar non-terminal class);

• token : Node → Token returns the syntactical token represented by the
node (e.g., either a keyword, an identifier, or a literal value);

• [[·]] : Node → Loc × Updates × Element holds the result of the in-
terpretation a node, given by a triple formed by a location (that is,
the l-value of an expression, when it is defined), a multiset of update in-
structions, and a value (that is, the r-value of an expression)5. We access
elements and establish properties of such triples through the following
derived functions:

– loc : Node → Loc returns the location (l-value) associated to the
given node, i.e. loc(n) ≡ [[n]] ↓ 1.

– updates : Node → Updates returns the updates associated to the
given node, i.e. updates(n) ≡ [[n]] ↓ 2.

5The structure of the triple is intended to be mnemonic, with the l-value in the leftmost and
the r-value in the rightmost position in the triple.
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– value : Node → Element returns the value (r-value) associated to
the given node, i.e. value(n) ≡ [[n]] ↓ 3.

– evaluated : Node → Boolean indicates if a node has been fully
evaluated. We have,

evaluated(n) ≡ [[n]] 6= undef

• plugin : Node → Plugin is the plug-in associated to expression and
statement nodes, that is, the plug-in responsible for parsing and evalu-
ation of the node.

2. a special variable pos holds at all times the current position in the tree;

3. we use a form of pattern matching which allows us to concisely denote complex
conditions on the nodes. In particular:

• we denote with
e
? a generic node;

• we denote with
e

a generic unevaluated node; as an aid to the reader,
we will also use the semantically equivalent

e
e ,

e
r , and

e
l to denote

unevaluated nodes whose evaluation is expected to result respectively,
in a value (from an expression), a set of updates (from a rule), and a
location;

• we denote with x an identifier node;

• we denote with v (value) an evaluated expression node (that is, a node
whose value is not undef); we denote with u (update set) an evaluated
statement node (a node whose updates is not undef); we denote with l

(location) an evaluated expression for which a location has been com-
puted (a node whose loc is not undef). We will at times add subscripts
to these variables, or use different names for special cases that will be
discussed as appropriate;

• we use prefixed Greek letters to denote positions in the parse tree (typi-
cally children of the current node, as denoted by pos) as in if αe then βr

where α and β denote, respectively, the condition node and the then-part
node of an if statement;

• rules of the form
L pattern M → actions

are to be intended as

if conditions then actions

where the conditions are derived from the pattern according to the con-
ventions above, as more formally specified in Table 3.1; in the action part
of such a rule, an unquoted and unbound occurrence of l is to be inter-
preted as the loc of the corresponding node; an unquoted and unbound
occurrence of v is to be interpreted as the value of the corresponding
node; an unquoted and unbound occurrence of u as the updates of the
corresponding node; and an unquoted and unbound occurrence of x as
the token of the corresponding node.
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Abbreviation Condition part Action part

α, β etc. first(pos), next(first(pos)), etc.
α
e
? class(α) 6= Id

α
e

class(α) 6= Id ∧ ¬evaluated(α)
α
e
e , α

e
r , α

e
l ⋆ class(α) 6= Id ∧ ¬evaluated(α)

αx class(α) = Id token(α)
αv value(α) 6= undef value(α)
αu updates(α) 6= undef updates(α)
αl loc(α) 6= undef loc(α)

⋆ These symbols are semantically equivalent to the
e

symbol; as a visual cue to the reader, the

embedded letters express the intended result of evaluation.

Table 3.1: Abbreviations in syntactic pattern-matching rules.

Table 3.2 exemplifies how our compact notation can be translated into actual
ASM rules.

4. the value of local variables (e.g., those defined in let rules) is maintained by
a global dynamic function of the form env : Token → Element

5. a static function bkg : Element → Background provides, for any arbitrary
value v, the background of the value or undef if the value is native in the
core.

Notice that, according to the rule ExecuteTree previously described in Sec-
tion 2.2, interpreter rules in the kernel or from plug-ins are only executed when
evaluated(pos) does not hold, i.e. when the current node has not been fully eval-
uated yet. Control moves from node to node either by explicitly assigning values
to pos, or by setting [[pos]] to a value that is not undef; in which case, control is
returned to the parent of pos by the ExecuteTree rule (unless an explicit assignment
to pos is also made in the same step). Hence, the general strategy in our rules will
be to evaluate all needed subtrees of a node, if any, by orderly assigning pos accord-
ingly; when all needed subtrees are evaluated, we compute the resulting location,
updates or value and assign it to [[pos]], thus implicitly returning control back to
our parent. As exemplified in Table 3.2, our notation allows us to clearly visualize
this process by the progressive substitution of evaluated u nodes for unevaluatede
r nodes, and of v or l nodes for unevaluated

e
e nodes. Notice that identifiers do

not have to be evaluated, hence we do not need a “boxed” version of x.

3.5.3 Kernel Expression Interpreter

As previously described, kernel rules implement the Boolean domain (but not
Boolean algebra), function evaluation and rule call (which share the same syntactic
pattern), assignment, and import statement. We present in this section rules that
results in values, namely for evaluating literals (true, false, undef) and nullary or
n-ary functions.

Literals are simply lifted to their semantic counterparts:
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Compact notation Actual rule

L if α
e
e then β

e
r M→ pos := α

if class(pos) 6= Id

∧ token(pos) = IfThen

∧ class(first(pos)) 6= Id

∧ ¬evaluated(first(pos))
∧ class(next(first(pos))) 6= Id

∧ ¬evaluated(next(first(pos)))
then

pos := first(pos)

L if αv then β
e
r M→ if v = tt then . . .

if class(pos) 6= Id

∧ token(pos) = IfThen

∧ value(first(pos)) 6= undef
∧ class(next(first(pos))) 6= Id

∧ ¬evaluated(next(first(pos)))
then

if value(first(pos)) = tt then . . .

L if αv then βu M→ . . .

if class(pos) 6= Id

∧ token(pos) = IfThen

∧ value(first(pos)) 6= undef
∧ updates(next(first(pos))) 6= undef

then . . .

Table 3.2: Examples of how pattern matching notation is translated into ASM
rules.

Kernel Expressions: Literals

L true M → [[pos]] := (undef, undef, tt)
L false M → [[pos]] := (undef, undef, ff)
Lundef M → [[pos]] := (undef, undef, uu)

Evaluation of identifiers as expressions depends on whether the identifier refers
to a local variable or a function. To evaluate an identifier as an expression, the
interpreter first checks the set of in-scope local variables for a possible value for the
identifier. If the identifier was not a local variable (i.e., it is not found in the local
environment), the interpreter checks if the identifier refers to a (nullary) function,
in which case the abstract storage is queried for the value of that function in the
current state. If instead the identifier is not defined, the macro HandleUndefine-

dIdentifier (which we will describe later) is called. The rule for n-ary functions is
similar, except that the arguments of the function are evaluated first. The formal
definition is as follows:
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Kernel Expressions

L αx M → if env(x) 6= undef
[[pos]] := (undef, undef, env(x))

else

if isFunctionName(x) then

let l = (x, 〈〉) in

[[pos]] := (l, undef, getValue(l))
if undefined(x) then

HandleUndefinedIdentifier(x, 〈〉)

L αx(λ1
e
? 1, . . . ,

λn

e
? n) M → if isFunctionName(x) then

choose i ∈ [1..n] with ¬evaluated(λi)
pos := λi

ifnone

let l = (x, 〈value(λ1), . . . , value(λn)〉) in

[[pos]] := (l, undef, getValue(l))
if undefined(x) then

HandleUndefinedIdentifier(x, 〈λ1, . . . , λn〉)
where

undefined(x) ≡6 ∃e ∈ Element : name(e) = x
isFunctionName(x) ≡ ∃e ∈ Element : name(e) = x ∧ isFunction(e)

Notice how in the second pattern, the
e
? symbol is used to denote arguments,

both unevaluated and evaluated. If x is bound to a function, the rule specifies
that all arguments must be evaluated, without any specific order, to determine the
location of the node. While there are still unevaluated arguments, the rule sets pos
to the node representing an unevaluated argument; as soon as the evaluation of the
argument is complete, control returns to the parent node (and thus, again to the
same rule), until all arguments are evaluated. At this point (ifnone branch), the
location and values of the function are computed and stored in [[pos]].

Finally, if the interpreter encounters an identifier that is bound to no element
in the state, the HandleUndefinedIdentifier rule will create a new function element
with a default value of undef for the given arguments6:

HandleUndefinedIdentifier

HandleUndefinedIdentifier(x, args) ≡
choose λ ∈ args with ¬evaluated(λ)

pos := λ

ifnone

let f = new(Element) do

isFunction(f) := true
name(f) := x
[[pos]] := ((x, args), undef, uu)

Extending the standard definition, but in keeping with common practice, we
also allow expressions to refer to functions (and rules, as we will see later), which
can thus be treated as first-order objects in the language. The following rules apply
to functions where the function itself is given as an expression. In these cases, we

6The definition of HandleUndefinedIdentifier presented here is for the “liberal” mode of Core-

ASM, which has no strict type checking and allows identifiers to be used without declaration,
which is suited for early analysis and specification. In the “strict” mode, this macro is refined to
cause an error.

44



3. The Kernel CoreASM Execution Engine – Phase 1

first evaluate the expression, and if the result is a function value, we handle it as
in the previous case. Notice though that we do not allow nullary functions to be
accessed directly through an expression, to avoid syntactic ambiguity; in such cases,
an empty pair of parenthesis has to be used to distinguish between the function
value itself (without parenthesis) and the value of the nullary function represented
by the function value (with parenthesis).

Kernel Expressions: Application

L α
e

(λ1
e
? 1, . . . ,

λn

e
? n) M → pos := α

L αv(λ1
e
? 1, . . . ,

λn

e
? n) M → if isFunction(v) then

choose i ∈ [1..n] with ¬evaluated(λi)
pos := λi

ifnone

let x = name(v) in

let l = (x, 〈value(λ1), . . . , value(λn)〉) in

[[pos]] := (l, undef, getValue(l))

3.5.4 Kernel Rule Interpreter

Rule plug-ins provide the semantics of executing of rules. Execution of rules results
in a set of update instructions that is the underlying value for the rule node of the
parse tree. As discussed in Section 2.2, accumulated update instructions are used
by the abstract storage to compute the updates set that will ultimately be applied
to the current state to generate the next state.

To evaluate an identifier as a rule, the interpreter first checks if a rule element
is bound the identifier. If so, the RuleCall macro is called to execute the rule, which
we will describe shortly. Notice that in this case arguments are not evaluated prior
to calling the rule: in fact, the semantics of rule calls in [9] prescribes that the
entire term used as actual argument must be substituted to the formal parameter
in the body of the rule, not its value. Also, note that when the rule to call is
denoted through an expression, the rule L α

e
(λ1

e
? 1, . . . ,

λn

e
? n) M→ pos := α from

functional application above applies, hence we do not need to repeat it here; after
evaluation, the pattern v(

e
? 1, . . . ,

e
? n) applies, for which we provide here another

rule (mutually exclusive with the one for functional application) to handle rule
calls.

Kernel Rules

L αx M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈〉)

L αx(λ1

e
? 1, . . . ,

λn

e
? n) M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈λ1, . . . , λn〉)

L αv(λ1
e
? 1, . . . ,

λn

e
? n) M → if isRule(v) then

RuleCall(v, 〈λ1, . . . , λn〉)
where

isRuleName(x) ≡ ∃e ∈ Element : name(e) = x ∧ isRule(e)

Traditionally, rule calls in ASMs have been used in two form: as macros, or as
sub-machines. The difference between the two forms is that calling a macro simply
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means executing its body (possibly with parameters substitution) and collecting the
resulting updates, whereas running a submachine results in an entire encapsulated
computation of the rule, that is iterated until completion, as defined in [9] Section
4.1.2. Here, we model macro calls, while the effect of submachine calls can simply
be achieved by using the iterate construct.

As we have already noted, ASMs differ from many other languages in that call-
by-substitution is used for parameters instead of the more usual call-by-value. In
other words, actual parameters are evaluated at the point of use (in the callee)
rather than at the point of call (in the caller). Due to the presence of seq-rules,
the difference can be observable, as parameters can be evaluated in different states.
Hence, we have to substitute the whole parse tree denoting an actual parameter
(i.e., an expression) for each occurrence of the corresponding formal parameter in
the body of the callee. Also, we substitute parameters in a copy of the callee body,
to avoid modifying the original definition.

There are several static semantic constraints on valid rule declarations; for
example, it is assumed that the formal parameters of a rule are all pairwise distinct,
and that the formal parameters are the only freely occurring variables in the body
of the rule (see [9], Definition 2.4.18). For simplicity, we do not explicitly check for
such conditions in our specification.

The RuleCall routine, defined below, describes how calls for rules (possibly with
parameters) are handled.

RuleCall

RuleCall(r,args) ≡
if workCopy(pos) = undef then

let b′ = CopyTreeSub(body(r), param(r),args) in

workCopy(pos) := b′

parent(b′) := pos
pos := b′

else

[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))
workCopy(pos) := undef

The rule CopyTreeSub returns a copy of the given parse tree, where every in-
stance of an identifier node in a given sequence (formal parameters) is substituted
by a copy of the corresponding parse tree in another sequence (actual parameters).
We assume that the elements in the formal parameters list are all distinct (i.e., it is
not possible to specify the same name for two different parameters). Also, formal
parameters substitution is applied only to occurrences of formal parameters in the
original tree passed as argument, and not also on the actual parameters themselves.
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CopyTreeSub

CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) ≡
return result in

if α 6= undef then

if class(α) = Id ∧ ∃i s.t. token(α) = xi then

result := CopyTree(λi)
else

let n = new(Node) in

first(n) := CopyTreeSub(first(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
next(n) := CopyTreeSub(next(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
class(n) := class(α)
token(n) := token(α)
plugin(n) := plugin(α)
result := n

else

result := undef

The kernel of the CoreASM engine also includes assignment and import. As-
signment is performed as follows:

Kernel Rules: Assignment

L α
e
? := β

e
? M → choose τ ∈ {α, β} with ¬evaluated(τ )

pos := τ

ifnone

if loc(α) 6= undef
[[pos]] := (undef, {|〈loc(α), value(β)〉|}, undef)

else

Error(‘Cannot update a non-location.’)

It is worthwhile to remark that the rule above does not syntactically constrain
assignment to be performed exclusively to variables or functions: rather, any plug-
in can contribute new forms of expressions which, as long as they result in a location,
are deemed syntactically acceptable in the lhs of an assignment.

The import rule is defined as follows:

KernelInterpreter: import

L import αx do β
e
r M → let e = new(Element) in

env(x) := e

pos := β

L import αx do βu M → env(x) := undef // No nesting
[[pos]] := (undef, u, undef)

To perform an import, a new element is created and it is assigned to the
value of the given identifier (x) in the local environment. The rule part

e
r is then

evaluated in this new environment by assigning pos to the corresponding node. The
local value of the given identifier is then set to undef when the evaluation of the
rule part is complete.
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3.5.5 Operators

Plug-ins can extend the CoreASM language by introducing new expression forms.
One of the most important form of such extension is adding new operators (unary or
binary) to the languge. To avoid lengthy expressions with unnecessary paranthesis,
the engine provide plug-ins with a mechanism to declare a precedence level for their
operators.

Precendence level of an unary or binary operator is defined by a numeric value
p ∈ [0 . . . 10], 10 being the highest. This value should be attached to all patterns
that define a new expression form based on an operator. The following example
introduces a new operator Ω with precedence level 3:

L
e
e Ω

e
e M

[3]
→ . . .

An in-depth discussion of operator evaluation in CoreASM is presented in [24].

3.6 The Plug-in Framework

Plug-ins can extend the engine by

• adding new grammar rules to the Parser,

• adding new semantic rules to the Interpreter,

• adding new backgrounds and operations to the Abstract Storage, and

• adding new policies to the scheduler. how?

In addition to these basic extensions, plug-ins can also register themselves for
a Plug-in Point. A set is assigned to every plug-in point, and the plug-ins register
for this points by adding themselves to the appropriate set. At any plug-in point
in the execution cycle of the engine, if there is any plug-in registered for that point,
the appropriate plug-in rule is executed before the engine continues its execution.

Plug-in Points are transitions of the engine mode from one mode to another.
The execution of plugins registered for these mode transitions is handled in the
Next routine. We have,

Next

Next(newMode : EngineMode) ≡
seq

forall p ∈ registeredPlugins(engineMode,newMode)
FirePluginOnModeTransition(p, engineMode,newMode)

engineMode := newMode

To emphasize that calling plugins will occure in a sequential manner, we can further
refine Next to the following rule:

Next: Refined

Next(newMode : EngineMode) ≡
MarkPlugins(newMode)
seq FirePlugins(newMode)
seq engineMode := newMode
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where the auxiliary routines are defined as follows:

derived registeredPlugins : EngineMode × EngineMode → Plugin-set

registeredPlugins(src, trg) =
{p | p ∈ Plugin ∧ (src ∈ pluginSourceModes(p) ∨ trg ∈ pluginTargetModes(p))}

MarkPlugins(newMode : EngineMode) ≡
forall p ∈ registeredPlugins(engineMode,newMode)

fireFlag(p) := true

FirePlugins(newMode : EngineMode) ≡
iterate

choose p ∈ registeredPlugins(engineMode,newMode) with fireFlag(p)
FirePluginOnModeTransition(p, engineMode,newMode)
fireFlag(p) := false

All the Plug-ins are loaded as the first phase of parsing. There are other possible
options that are not discussed in this paper (see [Issue 108]). Plug-ins that need to
be loaded are listed in the top most section of CoreASM specifications. In Parsing
Header state (see Figure 2.5), the parser will use the interpreter to load the plug-ins.
Plug-ins are listed using the ‘use plugin-name’ syntaxt. In the following rule, The
LoadPlugin rule finds a plugin with the given name, loads the plugin, and intializes
it by calling the InitializePlugin rule defined later in this section.

Loading Plugin

Luse x M → LoadPlugin(x)

3.6.1 Plug-in Background

Code Reference:

- org.coreasm.engine.Plugin

Plugin is the background of all plug-ins that extend the functionality of the
CoreASM engine. The following functions are defined over plugins:

• pluginName : Plugin → Name

is the unique name of a plug-in. The engine cannot load two plug-ins that
share the same name. In practice, this name could be the name of the Java
class that implements the plug-in.

• pluginRule : Plugin → Rule

returns the main rule of the plug-in which is used by by the interpreter (see
routine ExecuteTree in Section 2.2).

• pluginGrammar : Plugin → Grammar

returns the grammar (a set of grammar rules) provided by this plug-in.

• pluginPolicy : Plugin → Rule

returns the scheduling policy provided by this plug-in.
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• pluginSourceModes : Plugin → EngineMode-set

is a set of engine modes; upon transition of the engine mode from any of these
modes, the given plug-in must be notified (see routine Next).

• pluginTargetModes : Plugin → EngineMode-set

is a set of engine modes; upon transition of the engine mode to any of these
modes, the given plug-in must be notified (see routine Next).

• rule InitializePlugin(Plugin)
initializes the plug-in. This rule is called for all the plug-ins that are loaded
by the engine.

• rule FirePluginOnModeTransition(p : Plugin, fromMode : EngineMode, toMode :
EngineMode) is called when the engine mode is switched from a mode or to
a mode that this plug-in is registered for.

A background plug-in can also provide special update instructions and aggre-
gation service for those instructions. Such a plug-in is called an aggregator, and
the following functions and rules are defined for aggregator plug-ins:

• isAggregator : Plugin → Boolean

holds if the plugin is an aggregator plugin.

• updateInstructions : Plugin → Action-set

returns the set of special update instructions associated with this plugin. 7

• aggregateUpdates : Plugin × Updates → Updates

aggregates special update instructions that this plugin is responsible for and
returns the aggregated set of updates.

• compose : Plugin × Updates × Updates → Updates

composes the update multi-sets assuming that there is an order between them
(first happens before second ) and returns a multi-set of update instructions
as the result of composition. Only instructions and locations for which the
plug-in is responsible for composing are processed. Some major differences
between compose(p, u1, u2) and aggregateUpdates(p, u) are:

1. aggregateUpdates works with the current state and the update multiset
provided to produce resultant updates; these resultant updates are gen-
erated to (when the update set is fired) replace values at locations in
the state. However compose works exclusively with the update multisets
provided, to produce a composed update multi-set which will later be
aggregated (possibly with additional update instructions).

2. The result of aggregateUpdates is a set of regular updates, while the result
of compose is a multi-set possibly containing special update instructions.

3. compose combines two multi-set of update instructions considering that
there is an order between the occurance of the update instructions within
the two multi-sets.

7updateActions : Plugin → Action-set
returns the set of special update actions associated with this plugin.
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Chapter 4

Final Remarks

4.1 Related Work

Machine assistance plays an increasingly important role in making practical sys-
tems design feasible. Specifically, model-based systems engineering demands for
abstract executable specifications as a basis for design exploration and experimen-
tal validation through simulation and testing. Thus it is not surprising that there
is a considerable variety of executable ASM languages that have been developed
over the years.

The first generation of tools for running ASM models on real machines goes
back to Jim Huggins’ interpreter written in C [19, 21] and, even further back, to
the Prolog-based interpreter by Angelica Kappel [23]. Other interpreters and com-
pilers followed: the lean EA compiler [4] from Karlsruhe University, the scheme-
interpreter [14] from Oslo University, and an experimental EA-to-C++ compiler
developed at Paderborn University [3]. Besides practical work on ASM tools, con-
ceptual frameworks for more systematic implementations were developed. The
work on the evolving algebra abstract machine (EAM) [12], an abstract formal defi-
nition of a universal ASM for executing ASM models, contributed to a considerably
improved understanding of fundamental aspects of making ASMs executable.

Based on such experience, a second generation of more mature ASM tools and
tool environments was developed: AsmL (ASM Language) [25], the ASM Work-
bench [11] and the Xasm (Extensible ASM) language [2] are all based on compilers,
while AsmGofer [27] provides an ASM interpreter.1 The most prominent one is
AsmL, developed by the Foundations of Software Engineering group at Microsoft
Research. AsmL is a strongly typed language based on the concepts of ASMs but
also incorporates numerous object-oriented features and constructs for rapid pro-
totyping of component-oriented software, thus departing in that respect from the
theoretical model of ASMs; rather it comes with the richness of a fully fletched
programming language. At the same time, it lacks any built-in support for dealing
with distributed systems. Being deeply integrated with the software development,
documentation, and runtime environments of Microsoft, its design was shaped by
practical needs of dealing with fairly complex requirements and design specifica-
tions for the purpose of software testing; as such, it is oriented toward the world of

1We focus here on the more common and well-known ASM tools. For a complete overview,
see also [9], Sect. 8.3.
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code. This has made it less suitable for initial modeling at the peak of the problem
space and also restricts the freedom of experimentation.

The ASM Workbench is a tool environment supporting software specification,
design, and validation in early design phases and rapid prototyping of embedded
systems [13, 10]. The source language for the ASM Workbench tools is the ASM
Specification Language (ASM-SL), a strongly typed language with an ML-like type
system based on parametric polymorphism. ASM-SL extends the basic language of
ASM transition rules by introducing additional constructs for defining ASM states,
including a collection of predefined generic data types implementing standard math-
ematical structures (like tuples, lists, finite sets, finite maps, etc.) with associated
operations. The ASM-SL language is quite concise and close to standard math-
ematical notation, making it easily readable and understandable. ASM-SL does
however not provide any built-in support for distributed ASM models. In [26], a
compilation scheme for compiling ASM-SL like specifications to C++ is presented,
providing efficient C++ coding while preserving the structure of the original ASM
specification. Based on this work, a proprietary compiler was developed and used
successfully in the FALKO project at Siemens, Munich [7].

Xasm is an open source project [3] and comes with a development environment
consisting of an Xasm-to-C compiler, a run-time system and a graphical interface
for debugging and animating Xasm models. The language provides an interface
to C allowing both C-functions to be used in Xasm programs as well as Xasm
modules to be called from within C-programs. A rapid prototyping tool Gem-Mex,
built around Xasm, assists the designer of a programming language in a number
of activities related to the language life cycle (from early design steps to routine
programmer usage). Gem-Mex supports automatic generation of documentations,
generation of language implementations based on Xasm code, and visualization and
animation of the static and dynamic behavior of specified languages at a symbolic
level. Xasm in its present form does not support distributed ASMs.

Finally, AsmGofer is an advanced ASM programming system which runs on
various platforms, including Unix-based or MS-based operating systems. It pro-
vides an ASM interpreter embedded in the functional programming language Gofer,
a subset of Haskell, the de-facto standard for strongly typed lazy functional pro-
gramming languages. A widely recognized application of AsmGofer is its use for
executing the ASM specification of a light control system [8]. As with AsmL, ASM-
SL and Xasm, AsmGofer does also not provide built-in support for distributed ASM
models.

In contrast to CoreASM, all the above languages build on predefined type con-
cepts rather than the untyped language underlying the theoretical model of ASMs;
none of these languages comes with a run-time system supporting the execution of
distributed ASM models; only Xasm is designed for systematic language extensions
and in that respect is similar to our approach; however, the Xasm language itself
diverts from the original definition of ASMs and seems closer to a programming
language.

4.2 Conclusion

In this report we presented the design of the CoreASM extensible ASM execution
engine, mainly focusing on the kernel of the engine. The CoreASM engine itself
forms the kernel of a novel environment for model-based engineering of abstract
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requirements and design specifications in the early phases of the software develop-
ment process. Sensible instruments and tools for writing an initial specification call
for maximal flexibility and minimal encoding as a prerequisite for easy modifiabil-
ity of formal specifications, as required in evolutionary modeling for the purpose
of exploring the problem space. The aim of the CoreASM effort is to address this
need for abstractly executable specifications.

Aiming at a most flexible and easily extensible CoreASM language, most func-
tionalities of the CoreASM engine are implemented through plug-ins to the ba-
sic CoreASM kernel. The architecture supports plug-ins for backgrounds, rules
and scheduling policies, thus providing extensibility in three different dimensions.
Hence, CoreASM adequately supports the need to customize the language for spe-
cific application contexts, making it possible to write concise and understandable
specifications with minimal effort.

The CoreASM language and tool architecture for high-level design, experimental
validation and formal verification of abstract system models is meant to comple-
ment other existing approaches like AsmL and XASM rather than replacing them.
As part of future work, we envision an interoperability layer through which abstract
specifications developed in CoreASM can be exported, after adequate refinement,
to AsmL or XASM for further development.
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Appendix A

Rules and Definitions

A.1 Engine Life-cycle

Initializing the Engine

InitKernel ≡
pluginCatalog := {}
loadedPlugins := {}
grammarRules := {}

LoadCatalog ≡
forall pName in availablePluginModules do

let p = createPlugin(pName) in

add p to pluginCatalog

LoadStdPlugins ≡
forall p in stdPlugins do

LoadPlugin(p)

LoadPlugin(p) ≡
InitializePlugin(p)
add p to loadedPlugins
forall r in pluginGrammar(p) do

add r to grammarRules
forall op in pluginOperators(p) do

add r to operatorRules
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Loading Specification

ParseHeader ≡
requiredPlugins := requestedPlugins(specification)

LoadSpecPlugins ≡
forall p in requiredPlugins do

LoadPlugin(p)

InitAbstractStorage ≡
CreateFunction(“agents”)
CreateFunction(“program”)
CreateFunction(“self”)

ExecuteInitialization ≡
CreateSpecFunctionsAndRules(specification)
PrepareInitialRuleExecution

CreateFunction(name) ≡
if isFunctionName(name) then

ClearFunction(name)
else

let f = new(Element) in

isFunction(f) := true
name(f) := name

PrepareInitialRuleExecution ≡
let a = new(Element) in

SetValue((“agents”, 〈a〉), tt)
SetValue((“program”, 〈a〉), initRule)
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[16] R. Farahbod, V. Gervasi, and U. Glässer. Design and Specification of the Core-
ASM Execution Engine. Technical Report SFU-CMPT-TR-2005-02, Simon Fraser
University, February 2005.

[17] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[18] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9–36. Oxford University Press, 1995.

[19] Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In B. Pehrson
and I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technol-
ogy/Foundations, pages 587–592, Elsevier, Amsterdam, the Netherlands, 1994.

[20] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal
Computer Science, 7(11):917–951, 2001.

[21] J. Huggins. An offline partial evaluator for evolving algebras. Technical Report
CSE-TR-229-95, University of Michigan, 1995.

[22] ITU-T Recommendation Z.100 Annex F (11/00). SDL Formal Semantics Definition.
International Telecommunication Union, 2001.

[23] A. M. Kappel. Executable Specifications Based on Dynamic Algebras. In
A. Voronkov, editor, Logic Programming and Automated Reasoning, volume 698 of
Lecture Notes in Artificial Intelligence, pages 229–240. Springer, 1993.

[24] Mashaal A. Memon. Specification language design concepts: Aggregation and ex-
tensibility in coreasm. Master’s thesis, Simon Fraser University, Burnaby, Canada,
Spring 2006.

[25] Microsoft FSE Group. The Abstract State Machine Language. Last visited March
2006, http://research.microsoft.com/fse/asml/.

[26] J. Schmid. Compiling Abstract State Machines to C++. Journal of Universal Com-
puter Science, 7(11):1068–1087, 2001.

[27] Joachim Schmid. Executing ASM Specitications with AsmGofer. Last visited March
2006, http://www.tydo.de/AsmGofer/.

[28] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag, 2001.

57


