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Abstract—The compression of elevation data is studied in
this paper. The performance of JPEG-LS, the new international
ISO/ITU standard for lossless and near-lossless (controlled-lossy)
still-image compression, is investigated both for data from the
USGS digital elevation model (DEM) database and the navy-pro-
vided digital terrain model (DTM) data. Using JPEG-LS has the
advantage of working with a standard algorithm. Moreover, in
contrast with algorithms like the popular JPEG-lossy standard,
this algorithm permits the completely lossless compression of
the data as well as a controlled lossy mode where a sharp upper
bound on the elevation error is selected by the user. All these are
achieved at a very low computational complexity. In addition to
these algorithmic advantages, we show that JPEG-LS achieves
significantly better compression results than those obtained with
other (nonstandard) algorithms previously investigated for the
compression of elevation data. The results here reported suggest
that JPEG-LS can immediately be adopted for the compression of
elevation data for a number of applications.

Index Terms—Compression, elevation data, JPEG-LS, standard.

I. INTRODUCTION

T HE COMPRESSION of elevation data is fundamental for
a number of applications including storage, transmission,

and real-time visualization in navigation exercises. The storage
and transmission of high-resolution elevation information can
consume considerable amounts of resources, and with the in-
creased interest in mapping the earth and having maps for real
time navigation, the development of compression techniques to
help in theses tasks is becoming very important.

In this paper we investigate the use of JPEG-LS, the new
ISO/ITU standard for lossless and near-lossless compression
of continuous-tone imaging for the compression of high-reso-
lution elevation data. The advantages of using a standard algo-
rithm are numerous, including making it possible for any user
to compress and decompress the data and the wide availability
of supporting software and hardware. This is what has moti-
vated the development of popular standards such as JPEG (lossy
still image compression), MPEG (lossy video compression), the
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new JPEG-LS (lossless and near-lossless still image compres-
sion), and the forthcoming JPEG2000. In particular, for eleva-
tion data, JPEG-LS has a number of advantages over other stan-
dards (e.g., JPEG). First of all, it is capable of lossless com-
pression. This is not just important but mandatory for databases
such as those collected and maintained by the U.S. Geolog-
ical Survey (USGS). Secondly, JPEG-LS includes a near-loss-
less mode through which the maximal error in pixel value can
be controlled, thereby limiting the maximal elevation error in
the reconstructed image. This is fundamental for applications
such as landing, where the terrain slope is of primary impor-
tance. This makes the standard JPEG-LS a perfect candidate for
the compression of elevation maps. While other papers have re-
ported results on the compression of elevation maps, e.g., [1],
[2] and references therein, to the best of our knowledge none of
them have these three fundamental qualities all together (using
a standard algorithm and having both lossless and controlled-
lossy modes). Moreover, JPEG-LS has very low computational
complexity, and as we will detail later in this paper, it achieves
significant improvements on compression ratios over previously
reported results.

Digital elevation data for a region normally consists of an
array of elevations for ground positions at regularly spaced in-
tervals, see Fig. 1. In this report we investigate data from both
the USGS digital elevation model (DEM) and the Navy digital
terrain models (DTM). The exact details and resolutions for this
data are given in the results section. For about 100 images tested
from the USGS, we have obtained an average lossless compres-
sion ratio of 14.23 : 1 for 16-bit images, or 1.12 bits per pixel.
For similar algorithmic complexity, [2] reports compression ra-
tios of 8–9 : 1, with increased buffer size and without all the
JPEG-LS qualities described previously. With a significant ad-
dition on algorithmic complexity, [2] reports compressions of
9.85 : 1 for this type of data. As stated earlier, we can also per-
form controlled lossy compression with JPEG-LS and we also
report in this article significant compression ratios on high-res-
olution data of 24 bits or more with a guaranteed maximal error
in height which is insignificant for most applications. We also
tested compressing the image in subblocks, thereby allowing for
semirandom access to the data. In the rest of this paper, we will
detail all these findings.

This paper is divided in two major parts. In the first part a
brief description of JPEG-LS is provided, while the second part
reports results on applying JPEG-LS to the elevation data. In
the concluding remarks section we provide some design sug-
gestions for future systems using JPEG-LS for the compression
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Fig. 1. Rendering of elevation maps.

Fig. 2. Basic block diagram of JPEG-LS.

of elevation data and suggest, based on the results here reported,
the adoption of JPEG-LS as a possible compression algorithm
for this type of information.

II. BRIEF DESCRIPTION OF THEJPEG-LS ALGORITHM

JPEG-LS achieves state-of-the-art compression rates at very
low computational complexity and memory requirements.
These characteristics are what brought to the selection of
JPEG-LS, which is based on the LOCO-I algorithm developed

at Hewlett-Packard Laboratories, as the new ISO/ITU standard
for lossless and near-lossless still image compression.

The basic block diagram of JPEG-LS if given in Fig. 2. In this
section, we briefly describe the main components of JPEG-LS.
A detailed description of this algorithm is contained in [3], from
where the brief description below has been adapted.

A. Modeling and Prediction

Modeling in lossless image compression can be formulated as
an inductive inference problem [4]. In a raster scan, after having
scanned past data, one infers the next pixel value by assigning a
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Fig. 3. Causal template for JPEG-LS.

conditional probability distribution to it. In state-of-the-art loss-
less image compression schemes, this probability assignment is
generally broken into the following components.

a) A prediction step, in which a deterministic value is
guessed for the next sample based on a finite subset
(a causal template) of the available past sequence.

b) The determination of a context in which occurs. The
context is a function of a (possibly different) causal tem-
plate.

c) A probabilistic model for the prediction residual (or error
signal) , conditioned on the context
of . This model determines how the residual is com-
pressed.

The prediction and modeling units in JPEG-LS are based on
the causal template depicted in Fig. 3, wheredenotes the
current sample, and and are neighboring samples in
the relative positions shown in the figure. The dependence of

, and , on the time index has been deleted from the
notation for simplicity. Moreover, by abuse of notation, we will
use , and to denote both the values of the samples
and their locations. The use of the template of Fig. 3 implies a
buffering requirement of just one scan line.

Specifically, the fixed predictor in JPEG-LS is based on the
following simple formula (which has limited edge detection ca-
pability):

if

if

otherwise.

(1)

B. Context Modeling

Reducing the number of parameters is a key objective in a
context modeling scheme. The total number of parameters in
the model depends on the number of free parameters defining
the coding distribution at each context and on the number of
contexts.

Addressing the issue of number of parameters per context, it
is an accepted observation, adopted by JPEG-LS, that the global
statistics of residuals from a fixed predictor in continuous tone
images are well modeled by two-sided geometric distributions
(TSGD) centered at zero. For context-conditioned predictors,
this distribution has an offset, and this is addressed by JPEG-LS
as well. For each context then there is a need to estimate the
exponential decay value and center of the distribution, just two
parameters.

The prediction residual can take on any value in the range
, where is the size of the image alphabet. Ac-

tually, given the predicted value(known to both the encoder

and decoder from the causal template),can take on only -pos-
sible different values. This property is exploited in JPEG-LS by
reducing, modulo , the actual value of the prediction residual
to a value between and , thus remapping large
prediction residuals to small ones. Merging the “tails” of peaked
distributions with their central part does not significantly affect
the original two-sided geometric behavior. In the common case
in which (i.e., bits per sample), the previous remap-
ping consists of just interpreting theleast significant bits of

in 2’s complement representation.
JPEG-LS has then to address the determination of the con-

text, and guaranteeing this is a relatively small number, although
large enough to capture the different local statistics of the image.
The context that conditions the encoding of the current predic-
tion residual in JPEG-LS is built out of the differences

, and . These differences represent the
local gradient, thus capturing the level of activity (smoothness,
edginess) surrounding a sample, which governs the statistical
behavior of prediction errors. For further model size reduction,
each difference , is quantized into a small (fixed)
number of approximately equiprobable, connected regions by
a quantizer independent of . This aims to maximize the
mutual information between the current sample value and its
context, an information-theoretic measure of the amount of in-
formation provided by the conditioning context on the sample
value to be modeled. We refer to [5] and [6] for an in-depth the-
oretical discussion of these issues.

To preserve symmetry, the regions are indexed
, with , for a

total of different contexts. To further reduce the
number of contexts, symmetric contexts are merged. The total
number of contexts then becomes . For
JPEG-LS, was selected, resulting in 365 contexts.

JPEG-LS provides default thresholds T1, T2, T3 to define
the boundaries between quantization regions. These depend on
the size of the alphabet, and can also be changed by the user.
A suitable choice collapses quantization regions, resulting in a
smaller effective number of contexts, with applications to the
compression of small images. This will be important for the
partition of large elevation maps into small regions for semi-
random access.

The systematic context-dependent biases (offsets) in predic-
tion residuals deteriorate the performance of the Golomb–Rice
coder used by JPEG-LS (see below), which relies heavily on
two-sided geometric-distributions (TSGDs) of prediction resid-
uals centered about zero. To alleviate the effect of systematic
biases, JPEG-LS uses an error feedback aimed at “centering”
the distributions of prediction residuals. This bias cancellation
is based on keeping counters (per context) for the number
of total context occurrences and the accumulated prediction
residual ( ). See [3] for details on this very low complexity
approach.

C. Coding

To encode bias corrected prediction residuals distributed
according to the TSGD, JPEG-LS uses a minimal complexity
family of optimal prefix codes for TSGDs, sequentially se-
lecting the code among this family.
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Golomb codes were first described in [7] as a means for en-
coding run lengths. Given a positive integer parameter, the
Golomb code encodes an integer in two parts: a
unary representation of and a modified binary represen-
tation of (using bits if
and bits otherwise). Golomb codes are optimal [8] for
one-sided geometric distributions of the nonnegative integers,
i.e., distributions of the form , where .
Thus, for every there exists a value of such that yields
the shortest average code length over all uniquely decipherable
codes for the nonnegative integers.

The special case of Golomb codes with leads to
very simple encoding/decoding procedures. The code foris
constructed by appending theleast significant bits of to the
unary representation of the number formed by the remaining
higher order bits of (the simplicity of the case was
already noted in [7]). The length of the encoding is

. We refer to codes as Golomb-power-of-2 (GPO2)
codes.

In order to use these codes, the TSGDs have to be first
mapped into one-sided geometric distributions. This is el-
egantly addressed in JPEG-LS, based on theoretical results
reported in [9], [10]; see [3] for details.

In keeping with the low complexity constraints set for
JPEG-LS, as in [11], JPEG-LS uses the sub-family of codes
for which the Golomb parameter is a power of 2. To conclude
the coding then, we need to select the specific code from this
sub-family, mainly adaptively select the context-dependent.
The explicit computation method, as opposed to an exhaustive
search for the best code, is used in JPEG-LS for determining the
optimal code in the subfamily, based on the sufficient statistics
which are functions of the number of times a given context was
previously used and the total error previously accumulated for
the given context. The adaptive selection of the code is based on
results proved in [10], and it is detailed in [3]. Just to give the
reader an idea of how computationally efficient is to compute

, in the C programming language it is done by the “one-liner”

Here is an accumulator related to the statistics previously
mentioned.

D. Embedded Alphabet Extension: Run Mode

Golomb codes, being subsets of the class of Huffman coding
(as opposed to arithmetic coding) have a problem of redun-
dancy (i.e., excess code length over the entropy) for contexts
representing smooth regions, which have peaked distributions
as a prediction residual of zero is very likely. This is due to
its fundamental limitation of producing at least one code bit
per encoding. JPEG-LS addresses the problem of redundancy
by embedding an alphabet extension into the context condi-
tioning. Specifically, the encoder enters a differently encoded
“run” mode when a context with is detected, as
this indicates a flat region. Since the central region of quantiza-
tion for the gradients is the singleton , the run con-
dition is easily detected in the process of context quantization by

checking for the quantized context . De-
tails on this run mode are provided in [3].

E. Near-Lossless Compression

JPEG-LS offers a lossy mode of operation, termed “near-loss-
less,” in which every sample value in a reconstructed image
component is guaranteed to differ from the corresponding value
in the original image by up to a preset (small) amount,. This is
of significant importance for the compression of elevation data
as we will see below. Moreover, JPEG-LS is the only standard
currently supporting this mode of operation.

The basic technique employed for achieving this near-lossless
or controlled-lossy in JPEG-LS is the traditional DPCM loop
[12], where the prediction residual (after correction and possible
sign reversion, but before modulo reduction) is quantized into
quantization bins of size , with reproduction at the center
of the interval (thereby giving a maximal error of).

Context modeling and prediction are based on reconstructed
values, so that the decoder can mimic the operation of the en-
coder. The condition for entering the run mode is relaxed to re-
quire that the gradients satisfy . This
relaxed condition reflects the fact that reconstructed sample dif-
ferences up to can be the result of quantization errors. More-
over, once in run mode, the encoder checks for runs within a
tolerance of while reproducing the value of the reconstructed
sample at . Consequently, the run interruption contexts are de-
termined according to whether or not. The relaxed
condition for the run mode also determines the central region for
quantized gradients, which is . Thus, the
size of the central region is increased by. Consequently, the
default thresholds for gradient quantization are scaled accord-
ingly.

Note that this mode allows to “ignore” small errors in the
elevation data for general terrains. When combined with the run
mode, it provides an additional very efficient form to compress
slowly sloped terrains.

The quantized error is scaled and transmitted to the decoder.
This scales it back as part of the decoding procedure. The statis-
tics collecting counters to determine the value ofin the context
dependent Golomb-code uses the quantized (and scaled) predic-
tions as well; see [3] for details.

For a discussion on Multicomponent images, palettes and
sample mapping, and the JPEG-LS bitstream structure, please
refer to [3].

III. COMPRESSION OFELEVATION DATA

This section describes results on compression of high reso-
lution digital elevation data. We report the different techniques
used to compress elevation data based on spatial resolution, bits
per pixel, and range of pixel values. Using the number of bits
per pixel of the original image as a criteria for classification we
have three main types of images, as discussed below. For each
of these classes we describe three compression approaches as
follows.

a) Compressing the whole image as is, both in lossless and
near-lossless mode.
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Fig. 4. Sample DEM images with elevation range.

b) Partitioning the image into smaller blocks (
pixels). This allows semi-random access to different re-
gions of the image as well as local adaptation of the (few)
JPEG-LS parameters.

c) Compressing a “slope” image. This is for applications
such as helicopter landing, where the terrain slope is a
critical factor.

In describing each of these approaches, we provide the results
obtained and give methods to optimize the compression ratio.
The advantages of a particular approach, and the tradeoff which
it entails, will also be discussed.

A. Compressing the Whole Image As Is

1) Images With 16 Bits per Pixel or Less:The images
used for testing in this section are in DEM (Digital Eleva-
tion Model) format and were obtained from the USGS site
http://edcftp.cr.usgs.gov/pub/data/DEM/250. An example
of this is provided in Fig. 4. Another available format is
the spatial data transfer standard (SDTS). Within DEM,
there are images with scales of 1 : 24 000, 1 : 100 000 and
1 : 250 000. The latter were used for the tests described
below. Specifications of the DEM format are available at
http://edcwww.cr.usgs.gov/glis/hyper/guide/usgs_dem.supple-
ment#typea. When DEM data is read into a raster format, the
elevations are merely numbers in a 12011201 array of inte-
gers (specifically short integers). As described earlier, JPEG-LS
has default quantization regions for context determination.
These are obtained by assigning T13, T2 7 and T3 21
as the default quantization level thresholds. (Results with these
default parameters are first reported in the table.) Equalizing
any two or all of the values collapses the quantization regions
and reduces the effective number of contexts available. This
might result in a significant improvement in compression ratio
for small images such as 1 : 250 000 DEMs (as well as for
128 128 blocks). Typically, these images are of size 9.84 MB

in their DEM data format. On converting them to a 2-D array
of short integers, this size reduces to 2.88 MB. This file is then
compressed using JPEG-LS. The “effective compression ratio”
entered in Table I, and henceforth, is calculated from the size of
the original DEM file. The actual compression ratios and bits
per pixel are given in the tables as well.

As observed in Table I, the compression ratios depend on the
pixel values range. The first image has a small range of pixel
values and compression is improved by reducing the number of
contexts. The second and third images also have a reasonably
small range and compression improves marginally when T1, T2,
and T3 are equalized. Images 4 and 5 however, have a larger
range and benefit from having a larger number of contexts. In
the table we report the results both for default and for optimized
thresholds T1, T2, and T3. As noted, a slightly improvement
can be obtained with tailored thresholds, although the results
with the default values are already, to the best of our knowledge,
state-of-the-art for this type of algorithmic complexity. The spe-
cific optimal thresholds could be, for example, learned off-line.
This is in particular possible for DEM due to the availability of
abundant sample data.

We have tested JPEG-LS on over 100 16-bit DEM images
from the USGS data set, and obtained an average compression
ratio of 14.23 : 1. JPEG-LS applied to images of very flat terrain
produces extremely high compression ratios (1000 and more).
These high values would produce a distorted average compres-
sion ratio (mean is much larger than the median), which will
not be indicative of the true performance of JPEG-LS algo-
rithm. Hence they have been omitted from the data set when
computing the average compression. Fig. 5 shows compression
ratios for a these DEM images (the horizontal axis is just the
image number.) To improve the visualization, we have removed
from the graph as well all images that compressed more than
60 : 1. The average compression ratio for the set shown, which
is then a subset from those tested, is 11.75 : 1. Average effec-
tive compression ratio is 40.08. JPEG-LS default values of the
thresholds T1, T2, and T3 were used for this large data set.

Comparing with other results reported in the literature, e.g.,
[2] (which includes among others tests with popular packages
like GZIP), JPEG-LS achieves significantly better compression
at a similar or lower computational cost. To this we add all the
advantages of working with JPEG-LS that were mentioned in
the introduction.

2) Images With 16 to 32 Bits per Pixel:These are very high
resolution images in DTM (Digital Terrain Model) format with
3 m postspacing. The 3 m resolution DTM data consists of
points described by three coordinates:-coordinate (easting),
-coordinate (northing) and-coordinate (elevation). The ele-

vation values are stored in double float format (64-bit per pixel)
in all DTM files. However, for this class of images, the actual
number of bits required to completely represent the-coordi-
nate (elevation) is far smaller than 64. For example, all eleva-
tions in the example “cosogeo3.asc” could be represented using
24 bits to an accuracy of 10 m. JPEG-LS can directly com-
press only (at most) 16-bit images. So each 24-bit elevation
in cosogeo3.asc was split into a 16 bits value and a eight bits
value and each was compressed separately. The results appear
in Table II. A large saving is realized even prior to compression,
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TABLE I
COMPRESSIONRESULTS ON1 : 250 000 DEM DATA

Fig. 5. Compression ratios for 100 DEM images. The vertical axis indicates
the compression ratio while the horizontal one stands for the DEM image
number. The average compression ratio is 11.75.

TABLE II
COMPRESSIONRESULTS ONcosogeo3.asc DTM DATA (24-BIT PER PIXEL)

when the double data is converted to the aforementioned 16–8
split.

Table II also shows the results when the elevation data was
split into two groups of 12 bits. The compression ratio is supe-
rior (as expected, because the upper 12 bits show very little vari-
ation for adjacent pixels, and hence can be compressed better
than the upper 16 bits). However, the effective compression ratio
is less, because we now have to use (16 bits) integers for both
parts.

TABLE III
COMPRESSIONRESULTS ONswath3.asc DTM DATA (ORIGINALLY

25-BIT PER PIXEL IMAGE)

A different approach was used for the example “swath3.asc”
which had a maximum of 25 bits per pixel. Here the split used
was 8–8–8–1, the reasons being the following.

a) The LSB could be neglected entirely, if tolerable, or suited
to the application.

b) The most significant byte varies little from pixel to pixel.
The effective compression for the upper 16 bits was more
if bits 18–25 were compressed separately from bits 10–17
as opposed to compressing bits 10–25 at once.

The larger size of this data set allowed the JPEG-LS adap-
tive predictor to train itself. This, along with point b) from ear-
lier, is responsible for improving the compression ratio (2.79 for
swath3.asc as compared with 2.18 for cosogeo3.asc; both files
have the same spatial resolution). Results appear in Table III.

As expected, when increasing the number of bits used to rep-
resent the elevation data, the compression ratio is reduced. On
the other hand, when neglecting a few of the lower significant
bits or using JPEG-LS in the controlled lossy mode (see the fol-
lowing), significant improvements are achieved. The error in el-
evation in this case is insignificant for most applications. There-
fore, JPEG-LS achieves significant compression ratios for this
type of data as well. The same conclusion holds for the very
high resolution data reported below.

3) Images With 32 or More Bits per Pixel:These images
are also in DTM format but with 10 m postspacing. Thus they
have lower resolution, but the pixels now take up more bits
(up to 48). Note that the numbers do not increase in magni-
tude, but only in precision (i.e., the number of digits after the
decimal point is increased). These were split as 16–16–16 and
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TABLE IV
COMPRESSIONRESULTS ONswath10.asc DTM DATA (48-BIT PER PIXEL)

[CR= COMPRESSIONRATIO] [NL = NEAR LOSSLESSPARAMETER]

8–8–8–8–8–8. Due to the larger post spacing, the least signif-
icant bits in adjacent pixels are uncorrelated. The compression
performance is good only for the upper 16 bits and there is little
or no compression for the other packets; see Table IV. Thus, to-
tally lossless JPEG-LS, which preserves the elevation (accurate
to 10 ft) does not provide appreciable compression for these
images. A considerable saving is realized if, for applications
which don’t require this accuracy, the lower 16 bits are neglected
totally. Even this drastic omission in swath10.asc gives a max-
imum pixel error of 0.000 006 553 6 m. Lossless compression
results for the 16–16–16 split are slightly better than those for
8–8–8–8–8–8 split. This indicates that, if there are 16 bits of al-
most uncorrelated data, then we are better off compressing them
together instead of splitting them into groups of eight bits. But
when the 16 lower bits are sacrificed, the 8–8–8–8–8–8 method
wins, for the reasons discussed in Section III-A2. (Note the very
high compression ratio for the upper eight bits.) From Table IV,
we surmise that the best possible split is 8–8–16–16. This yields
a total lossless CR of 1.50 and an effective lossless CR of 3.77.
Once again, keeping this high precision is not necessary for most
applications.

B. Partition of Image Followed by Compression

Partition of the image into tiles of 64 64 or 128 128
pixels permits a semi-random access to the data. In addition, the
near-lossless parameter can be independently selected per tile,
and while some tiles can be compressed in lossless mode, others
can be compressed in the near-lossless mode and with different
error tolerance.

We now investigate the effects of tiling in the compression of
elevation data. On one hand, tiling might improve the compres-

TABLE V
LOSSLESSCOMPRESSIONRESULTS ONmariposa-w

TABLE VI
COMPRESSION ONSEGMENTS OFcosogeo3.asc DTM

sion ratio when the JPEG-LS parameters can be adapted to each
particular tile. On the other hand, the compression ratio for the
total image will be negatively affected if the adaptive predictor
has significantly less data to learn and adapt. As we will see in
the following, the overall changes in compression ratio for tiled
data are not very significant, and we gain the semi-random ac-
cessibility to the elevation map.

1) Images With Less Than 16 Bits per Pixel:Table V shows
the performance of JPEG-LS for mariposa-w, when the image
is partitioned into blocks of 128 128 pixels, for two different
triads of T1, T2, and T3. As expected, the compression ratio suf-
fers due to the tiling operation. However, after tiling, it is pos-
sible to equalize T1, T2, T3 as shown, to obtain a significantly
higher average compression ratio. It is thus clear that reducing
the number of contexts results in better compression of an indi-
vidual tile.

2) Images With 16 to 32 Bits per Pixel:Table VI (left)
shows compression ratios for the different 128128 pixel
tiles of the cosogeo3.asc (DTM) image. The compression ratio
for cosogeo3.asc was 2.18 and the average ratio for the tiled
version is 2.096 for the default triad (T1,T2,T3)(3,7,21). The
reduction is due to the tiling operation as discussed previously.
Table VI (right) contains the compression ratios for (T1,T2,T3)

(4,4,4). As expected, compression ratio increases for some
segments and decreases for others. This suggests that different
segments have different optimum triads, and the segment of
interest can be compressed more if its optimum triad is found.
Equalizing T1, T2, and T3 is profitable while compressing the
upper 16 (or 12) bits. These do not vary appreciably from pixel
to pixel and a smaller number of contexts suffices. The lower
eight (or 12) bits vary significantly across pixels and hence
require a different optimum triad, wherein T1, T2, and T3 are
not necessarily equal. A better average overall compression
ratio than that obtained in the above two tables will thus result
if (4,4,4) is used to compress the upper 16 bits and (3,7,21) is
used for the lower eight bits.

C. Compression of a “Slope” Image

Preserving the terrain slope, not its absolute elevation, it is of
importance for operations such as helicopter landing. As a vari-
ation, JPEG-LS was tested on a “slope” image. This image was
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TABLE VII
COMPRESSIONRESULTS ONcosogeo3.asc SLOPE DATA

constructed out of the original cosogeo3.asc using the following
relations:

Gradient

and are the derivatives in the horizontal and vertical di-
rections. To avoid boundary problems, we neglect the first and
last rows and columns [from an image we compute an

size image]. The square root operation
will result in very fine precision, but we persist with the same
number of digits after the decimal points as that in the original
image. The compression ratio then is superior to that obtained
by compressing the image as is. Table VII shows the results.

Once again, the motivation for this approach comes from
landing applications wherein slope of the terrain is more impor-
tant than the absolute elevation. We have the following options.

a) Transmit a compressed image as in Section III-A2 and
perform slope calculations after reception. This is once
again where the advantages of JPEG-LS come into play.
Since JPEG-LS bounds the elevation error (in the con-
trolled lossy mode), we obtain a bound in the slope error
of the lossy reconstructed image as well, see the following
for an example.

b) Computing the slope image and compressing it prior to
transmission, as earlier.

D. Near Lossless Mode

Section II-E describes the near lossless mode in JPEG-LS. If
we can tolerate a fixed error in some or all the pixels of an image,
then the near lossless mode can be use to advantage, especially
for images with high elevation resolution (adjacent pixel values
are correlated and their difference is small). Tables II and III
show how a higher compression ratio is obtainable if near-loss-
less JPEG-LS is used to compress the least significant byte por-
tion. For example, when the lossy parameter , the pixels of

cosogeo3.asc will be offset by at most 0.0001 m. For landing-re-
lated applications, this translates into a maximum slope error of
6.667 10 m/m for 3 m DTM data. Even with these insignif-
icant errors, compression ratios are considerably improved.

Note that controlled-lossy results are also obtained when en-
tire low significant bytes of data are neglected for large dynamic
range images. This is also reported in the tables, where compres-
sion per byte (or word) is given. Also in this case, the elevation
error is considerably small and the compression ratio is signifi-
cantly improved.

To recapp, JPEG-LS near-lossless mode permits a significant
improvement in the compressibility of the elevation data at a
cost which is irrelevant for most real applications.

IV. CONCLUSIONS

We have studied the application of JPEG-LS for the compres-
sion of elevation data. Using JPEG-LS has three main advan-
tages. First, it is a low complexity, high-compression ratio stan-
dard. Second, it permits lossless compression, which is funda-
mental for applications such as storage. And third, it provides a
controlled lossy mode that permits the user to dictate a maximal
error in the elevation (slope), thereby improving the compres-
sion ratio while guaranteeing performance.

From the investigation, we have also concluded the following
design decisions.

a) The compression is marginally better if the upper 16 bits
are first split into 2 bytes each and then separately com-
pressed, as opposed to direct compression of the upper 16
bits.

b) When lower and middle bits of images are minimally cor-
related or uncorrelated, it is better to compress them in
groups of 16 bits rather than groups of eight bits. This is
particularly helpful for 10 m resolution DTM data.

c) It is beneficial if the least significant bits are in as small
a group as possible (e.g., 25 bit data can be split as
8–8–8–1). If permissible, this segment can be totally
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neglected resulting in higher effective compression. This
applies especially to 3 m resolution DTM data.

d) For images where a region of concentration can be de-
fined, it is possible to partition the image into tiles of 128

128 pixels. The region of interest can be compressed
with lossless JPEG-LS and the reduced pixel value range
makes the compression ratio responsive to the quantiza-
tion region thresholds T1, T2 and T3. For one optimal
choice of the triad, which collapses the quantization re-
gions and reduces the number of contexts, better compres-
sion is obtained. The remaining segments can either be
neglected or be compressed using near-lossless JPEG-LS,
so that, in return for a controlled loss, improved compres-
sion is obtained.

e) The compression capability of JPEG-LS improves with
the resolution of the DEM data. Higher resolution pro-
vides a better correlation between adjacent pixel values
and therefore a better performance for the JPEG-LS pre-
dictor.

f) The larger the image, the better the predictor in JPEG-LS is
trained. Hence, the compression is marginally better for
a larger image than for a smaller image with the same
spatial resolution.

g) Segmentation allows better compression of an individual
segment but the overall compression ratio suffers due to
point f) earlier. (JPEG-LS would now compress small
blocks of 128 128 pixels instead of one large image).

To conclude, having in mind the immediate availability of
JPEG-LS, the results here reported strongly support its adoption
for the compression of elevation data for a number of applica-
tions, e.g., storage. This does not mean that JPEG-LS provides
a complete solution to the problem and indeed, the development
of compression algorithms tailored to elevation data is still an
open problem.
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