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Abstract

In a recent paper it was shown how memory traffic can be diminished by reformulating the classic
algorithm for reducing a matrix to bidiagonal form, a preprocess when computing the singular values of
a dense matrix. The key is a reordering of the computation so that the most compute- and memory-
intensive operations can be “fused”. In this paper, we show that other operations that reduce matrices
to condensed form (reduction to upper Hessenberg and reduction to ridiagonal form) can be similarly
reorganized, yielding different sets of operations that can be fused. By developing the algorithms with
a common framework and notation, we facilitate the comparing and contrasting of the different algo-
rithms and opportunities for optimization. We discuss the algorithms and showcase the performance
improvements that they facilitate.

1 Introduction

For many dense linear algebra operations there exist algorithms that cast most computation in term of
matrix-matrix operations that overcome the memory bandwidth bottleneck in current processors [9, 8, 6, 1].
Reduction to condensed form operations are important exceptions. For these operations reducing the number
of times data must be brought in from memory is the key to optimizing performance since inherently O(n3)
reads and writes from memory are incurred while O(n3) floating-point operations are performed on an n×n
matrix.

The Basic Linear Algebra Subprograms (BLAS) [15, 7, 6] provide an interface to commonly used compu-
tational kernels in terms of which linear algebra routine can be written. The idea is that if these kernels are
optimized, then implementations of algorithms for computing more complex operations benefit in a portable
fashion. As we will see, the problem is that the interface itself is limiting and can stand in the way of mini-
mizing memory traffic. In response, as part of the BLAST Forum [5], additional, more complex, operations
were suggested for inclusion in the BLAS. Unfortunately, the extensions proposed by the BLAST forum are
not as well-supported as the original BLAS. In [12], it was shown how one of the reduction to condensed
form operations, reduction to bidiagonal form, benefits from this new functionality in the BLAS.

The present paper presents algorithms for all three major reduction to condensed form operations (reduc-
tion to upper Hessenberg, tridiagonal, and bidiagonal form) with the FLAME notation [10]. This facilitates
comparing and contrasting of different algorithms for the same operation and similar algorithms for different
operations [18, 10, 2, 23]. It shows how the techniques used to reduce memory traffic in the reduction to
bidiagonal form algorithm, already reported in [12], can be modified to similarly reduce such traffic when
computing a reduction to upper Hessenberg or tridiagonal form, although with less practical success. It iden-
tifies sets of operations that can be fused in an effort to reduce the cost due to memory traffic of the three
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algorithms for reduction to condensed form. Such operations have been referred to as “Level-2.5 BLAS”.
It demonstrates the relative merits of different algorithms and optimizations that combine algorithms. All
the presented algorithms are implemented as part of the libflame library [24, 25]. Thus the paper provides
documentation for that library’s support of the target operations. The family of implementations and related
benchmarking codes are available as part of libflame so that others can experiment with optimizations of
the fused operations and the effect on performance.

This paper is structured as follows: In Section 2 we discuss the Householder transform, including some of
its properties we will use later in the paper. Various algorithms for reducing a matrix to upper Hessenberg
form are developed in Section 3, including a discussion on how to fuse key matrix-vector operations to
reduce memory traffic. Section 4 briefly discusses reduction to tridiagonal form and how it is similar to its
upper Hessenberg counterpart. The third operation, reduction to bidiagonal form, is discussed in Section 5.
Performance is discussed in Section 6 and concluding remarks can be found in Section 7. In Appendix A, we
introduce a complex Householder transform and give examples of how generalizing to the complex domain
affects the various reduction algorithms.

2 Householder transformations (Reflectors)

We start by reviewing a few basic properties of Householder transformations.

2.1 Computing Householder vectors and transformations

Definition 1 Let u ∈ Rn, τ ∈ R. Then H = H(u) = I − uuT /τ , where τ = 1
2u

Tu, is said to be a reflector
or Householder transformation.

We observe:

• Let z be any vector that is perpendicular to u. Applying a Householder transform H(u) to z leaves
the vector unchanged: H(u)z = z.

• Let any vector x be written as x = z+uTxu, where z is perpendicular to u and uTxu is the component
of x in the direction of u. Then H(u)x = z − uTxu.

This can be interpreted as follows: The space perpendicular to u acts as a “mirror”: any vector in that
space (along the mirror) is not reflected, while any other vector has the component that is orthogonal to the
space (the component outside and orthogonal to the mirror) reversed in direction. Notice that a reflection
preserves the length of the vector. Also, it is easy to verify that:

1. HH = I (reflecting the reflection of a vector results in the original vector);

2. H = HT , and so HTH = HHT = I (a reflection is an orthogonal matrix and thus preserves the norm);
and

3. if H0, · · · ,Hk−1 are Householder transformations and Q = H0H1 · · ·Hk−1, then QTQ = QQT = I (an
accumulation of reflectors is an orthogonal matrix).

As part of the reduction to condensed form operations, given a vector x we will wish to find a Householder
transformation, H(u), such thatH(u)x equals a vector with zeroes below the first element: H(u)x = ∓‖x‖2e0
where e0 equals the first column of the identity matrix. It can be easily checked that choosing u = x±‖x‖2e0
yields the desired H(u). Notice that any nonzero scaling of u has the same property, and the convention is
to scale u so that the first element equals one. Let us define [u, τ, h] = Housev(x) to be the function that
returns u with first element equal to one, τ = 1

2u
Tu, and h = H(u)x.
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2.2 Computing Au from Ax

Later, we will see that given a matrix A, we will need to form Au where u is computed by Housev(x), but
we will do so by first computing Ax. Let

x→
(
χ1

x2

)
, v →

(
ν1
v2

)
, u→

(
υ1

u2

)
,

v = x− αe0 and u = v/ν1, with α = −sign(χ1)‖x‖2. Then

‖x‖2 =
∥∥∥∥( χ1

‖x2‖2

)∥∥∥∥
2

, ‖v‖2 =
∥∥∥∥( χ1 − α

‖x2‖2

)∥∥∥∥
2

, ‖u‖2 =
∥∥∥∥( ‖v‖2

χ1 − α

)∥∥∥∥
2

, (1)

τ =
uTu

2
=
‖u‖22

2
=

‖v‖22
2(χ1 − α)2

, (2)

w = Ax and Au =
A(x− αe0)
(χ1 − α)

=
(w − αAe0)

(χ1 − α)
. (3)

We note that Ae0 simply equals the first column of A. We will assume that various results in Eq. (1)–(2)
are computed by the function Houses(x) where [χ1 − α, τ, α] = Houses(x).1 Then, the desired vector Au
can be computed via Eq. (3).

2.3 Accumulating transformations

Consider the transformation formed by multiplying b Householder transformations
(
I − uju

T
j /τj

)
, for 0 ≤

j < b− 1. In [13] it was shown that if U =
(
u0 u1 · · · ub−1

)
, then(

I − u0u
T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT ).

Here T = 1
2D+S where D and S equal the diagonal and strictly upper triangular parts of UTU = ST +D+S.

Later we will use the fact that if

U =
(
U0 u1

)
and T =

(
T00 t01
0 τ11

)
then

t01 = UT
0 u1, τ11 =

uT
21u21

2
, and

(
T00 t01
0 τ11

)−1

=
(
T−1

00 −T−1
00 t01/τ11

0 τ−1
11

)
.

For further details, see [13, 17, 22, 27]. Alternative ways for accumulating transformations are the WY-
transform [4] and compact WY-transform [20].

3 Reduction to upper Hessenberg form

In the first step towards computing the Schur decomposition of a matrix A, the matrix is reduced to upper
Hessenberg form: A→ QBQT where B is an upper Hessenberg matrix (zeroes below the first subdiagonal)
and Q is orthogonal.

3.1 Unblocked algorithm

The basic algorithm for reducing the matrix to upper Hessenberg form, overwriting the original matrix with
the result, can be explained as follows.

1Here, Houses stands for “Householder scalars”, in contrast to the function Housev which provides the Householder vector
u.
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Algorithm: [A] := HessRed unb(b, A)

Partition A→
„

ATL ATR

ABL ABR

«
, u→

„
uT

uB

«
, y →

„
yT

yB

«
, z →

„
zT

zB

«
where ATL is 0× 0 and uT , yT , and zT have 0 rows

while m(ATL) < m(A) do
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
uT

uB

«
→

0@ u01

υ11

u21

1A ,

„
yT

yB

«
→

0@ y01
ψ11

y21

1A ,

„
zT

zB

«
→

0@ z01
ζ11
z21

1A
where α11, υ11, ψ11, ζ11 are scalars

Basic unblocked 1:

[u21, τ, a21] := Housev(a21)

A22 := (I − u21u
T
21/τ)A22 = A22 − u21u

T
21A22/τ A02

aT
12

A22

 :=

 A02

aT
12

A22

 (I − u21u
T
21/τ) =

 A02 −A02u21u
T
21/τ

aT
12 − aT

12u21u
T
21/τ

A22 −A22u21u
T
21/τ


Basic unblocked 2: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := AT
22u21

z21 := A22u21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ
A22 := A22 − u21y

T
21 − z21uT

21

aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

α11 := α11 − υ1ψ1 − ζ1υ1 (?)
aT
12 := aT

12 − υ1y
T
21 − ζ1uT

21 (?)
a21 := a21 − u21ψ1 − z21υ1 (?)
[x21, τ, a21] := Housev(a21)
A22 := A22 − u21y

T
21 − z21uT

21 (?)
v21 := AT

22x21

w21 := A22x21

u21 := x21; y21 := v21
z21 := w21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ

aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
uT

uB

«
←

0@ u01

υ11

u21

1A ,

„
yT

yB

«
←

0@ y01
ψ11

y21

1A ,

„
zT

zB

«
←

0@ z01
ζ11
z21

1A
endwhile

Figure 1: Unblocked algorithms for reduction to upper Hessenberg form. Operations marked with (?) are
not executed during the first iteration.
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• Partition A→
(
α11 aT

12

a21 A22

)
.

• Let [u21, τ, a21] := Housev(a21).2

• Update a01 A02

α11 aT
12

a21 A22

 :=

 I 0 0
0 1 0
0 0 H

 a01 A02

α11 aT
12

a21 A22

( 1 0
0 H

)
=

 a01 A02H

α11 aT
12H

Ha21 HA22H


where H = H(u21). Note that a21 := Ha21 need not be executed since this update was performed by
the instance of Housev above.3

• Continue this process with the updated A22.

This is captured in the algorithm in Figure 1 (top), in which it is recognized that as the algorithm proceeds
beyond the first iteration, the submatrix A20 must also be updated. As formulated, the submatrix A22 has
to be read and written in the first highlighted operation and submatrices A02, aT

12, and A22 must be read and
written in the second highlighted operation in Figure 1 (top) if the operations in the highlighted boxed are
“fused” by which we mean that they are implemented at the same level as a typical level-2 BLAS operation.
Thus, the bulk of memory operations then lie with A22 being read and written twice and A20 being read and
written once. We will track the number of times A22 and A20 need to be read and written by the different
algorithms in Figure 2.

Let us look at the update of A22 in Figure 1 (top) in more detail:

A22 := HA22H = (I − u21u
T
21/τ)A22(I − u21u

T
21/τ)

= A22 − u21( AT
22u21︸ ︷︷ ︸
v21

)T /τ − ( A22u21︸ ︷︷ ︸
w21

)uT
21/τ + (uT

21 A22u21︸ ︷︷ ︸
w21

)u21u
T
21/τ

2

= A22 − u21v
T
21/τ − w21u

T
21/τ + uT

21w21︸ ︷︷ ︸
2β

u21u
T
21/τ

2

= A22 − u21 ((v21 − βu21/τ)/τ)︸ ︷︷ ︸)T

y21

− ((w21 − βu21/τ)/τ)︸ ︷︷ ︸
z21

uT
21

= A22 − (u21y
T
21 + z21u

T
21).

This motivates the algorithm in Figure 1 (left). The problem with this algorithm is that, when implemented
using traditional level-2 BLAS, it requires A22 to be read four times and written twice. If the operations in
the highlighted boxes are instead fused, then A22 needs only be read twice and written once.

What we will show next is that by delaying the update A22 := A22 − (u21y
T
21 + z21u

T
21) until the next

iteration, we can reformulate the algorithm so that A22 needs only be read and written once per iteration.
Let us focus on the update A22 := A22 − (u21y

T
21 + z21u

T
21). Partition

A22 →
(
α+

11 a+T
12

a+
21 A+

22

)
, u21 →

(
υ+

1

u+
21

)
, y21 →

(
ψ+

1

y+
21

)
, z21 →

(
ζ+
1

z+
21

)
,

where + indicates the partitioning in the next iteration. Then A22 := A22 − (u21y
T
21 + z21u

T
21) translates to(

α+
11 a+T

12

a+
21 A+

22

)
:=

(
α+

11 a+T
12

a+
21 A+

22

)
−

((
υ+

1

u+
21

)(
ψ+

1

y+
21

)T

+
(

ζ+
1

z+
21

)(
υ+

1

u+
21

)T
)

=
(

α+
11 − (υ+

1 ψ
+
1 + ζ+

1 υ
+
1 ) a+T

12 − (υ+
1 y

+T
21 + ζ+

1 u
+T
21 )

a+
21 − (u+

21ψ
+
1 + z+

21υ
+
1 ) A+

22 − (u+
21y

+T
21 + z+

21u
+T
21 )

)
,

2Note that the semantics here indicate that a21 is overwritten by Ha21.
3In practice, the zeros below the first element of Ha21 are not actually written. Instead, the implementation overwrites

these elements with the corresponding elements of the vector u21.
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Algorithm Read Write
A22 A02 A22 A02

Reduction to Hessenberg form
Basic unblocked 1 Unfused (?) 4 2 2 1

Fused 2 1 2 1
Basic unblocked 2 Unfused (?) 4 2 2 1

Fused 2 1 1 1
Rearranged unblocked Unfused (?) 4 2 2 1

Fused 1 1 1 1
Blocked Unfused (?) 4 2/b 2 1/b
+ basic unblocked 2 Fused 2 2/b 1 1/b
Blocked Unfused (?) 4 2/b 2 1/b
+ rearranged unblocked Fused 1 2/b 1 1/b
Blocked Unfused (?) 2 + 2/b 2/b 2/b 1/b
+ lazy unblocked Fused 1 + 2/b 2/b 2/b 1/b
GQvdG blocked + GQvdG unblocked (?) 1 + 3/b 2/b 2/b 1/b
Reduction to tridiagonal form
Basic unblocked 2 1
Rearranged unblocked Unfused (?) 2 1

Fused 1 1
Blocked + lazy unblocked (?) 1 + 1/b 1/b
Reduction to bidiagonal form
Basic unblocked Unfused (?) 4 2

Fused 2 1
Rearranged unblocked Unfused (?) 4 2

Fused 1 1
Howell’s Algorithm 1 + 2/b 2/b

Figure 2: Summary of the number of times the different major submatrices of A must be brought in from
memory per column of A. (The (?) indicates that the indicated algorithm does NOT require fused operations.
In other words, traditional level-2 BLAS suffice). There are opportunities for fusing level-3 BLAS as well,
which is not explored in this paper and is therefore not reflected in the table. It should be noted that small
changes in how operations are or are not fused change entries in the table. What is important is that the
table explains why the best blocked algorithms attain the performance that they attain.

which shows what computation would need to be performed if the update of A22 is delayed until the next
iteration. Now, before v21 = AT

22u21 and z21 = A22u21 can be computed in the next iteration, Housev(a21)
has to be computed, which requires a21 to be updated. But what is important is that A22 can be updated
by the two rank-1 updates from the previous iterations just before v21 = AT

22u21 and w21 = A22u21 are
computed, which allows them to be “fused” into one operation that reads and writes A22 to and from
memory only once. The algorithm in Figure 1 (right) takes advantage of these insights. To our knowledge
it has not been previously published.

3.2 Lazy algorithm

We now show how the reduction to upper Hessenberg form can be restructured so that the update A22 :=
A22 − (u21y

T
21 + z21u

T
21) during each step can be avoided. This algorithm in and by itself is not practical,

since (1) it requires too much temporary space, and (2) intermediate matrix-vector multiplications, which
incur additional memory reads, eventually begin to dominate the operation. But it will become an integral
part of the blocked algorithm discussed in Section 3.4. This algorithm was first reported in [9].

The rather curious choice of subscripts for u21, and y21, and z21 now becomes apparent: By passing
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Algorithm: [A,U, Y, Z] := HessRed lazy unb(A,U, Y, Z)

Partition X →
„

XTL XTR

XBL XBR

«
for X ∈ {A,U, Y, Z}

where XTL is 0× 0
while n(UTL) < n(U) do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − zT

10u10

a21 := a21 − U20y10 − Z20u10

aT
12 := aT

12 − uT
10Y

T
20 − zT

10U
T
20

[u21, τ, a21] := Housev(a21)

y21 := AT
22u21

z21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(ZT

20u21)
z21 := z21 − U20(Y T

20u21)− Z20(UT
20u21)

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ
aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

endwhile

Figure 3: Lazy unblocked algorithm for reduction to upper Hessenberg form.

matrices U , Y , and Z into the algorithm in Figure 1, and partitioning them just like we do A in that
algorithm, we can accumulate the subvectors u21, y21 and z21 into those matrices. Now, let us assume that
at the top of the loop ABR has not yet been updated. Then α11, a21, aT

12 and A22 have not yet been updated,
which means we cannot perform many of the computations in the current iteration. However, if we let α̂11,
â21, âT

12, and Â22 denote the original values in A in those locations, then the desired α11, a21, and aT
12 are

given by

α11 = α̂11 − uT
10y10 − zT

10u10

a21 = â21 − UT
20y10 − ZT

20u10

aT
12 = âT

12 − uT
10Y

T
20 − zT

10U
T
20

A22 = Â22 − U20Y
T
20 − Z20U

T
20.

Thus, we start the iteration by updating in this fashion these parts of A.
Next, we observe that the updated A22 itself is not actually needed in updated form: We need to be able
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Algorithm: [A,U,Z, T ] := HessRed GQvdG unb(b, A, U, Z, T )

Partition X →
„

XTL XTR

XBL XBR

«
for X ∈ {A,U, Z, T}

where XTL is 0× 0
while n(UTL) < b do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

where χ11 is a scalar a01

α11

a21

 :=

 a01

α11

a21

−
 Z00

zT
10

Z20

T−1
00 u10

 a01

α11

a21

 :=

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T  a01

α11

a21


[u21, τ11, a21] := Housev(a21) z01

ζ11
z21

 :=

 A02

aT
12

A22

u21

t01 := UT
20u21

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

endwhile

Figure 4: GQvdG unblocked algorithm for the reduction to upper Hessenberg form.

to compute AT
22u21 and A22u21. But this can be done via the alternative computations

y21 := AT
22u21 = ÂT

22u21 − Y20(UT
20u21)− U20(ZT

20u21)
z21 := A22u21 = Â22u21 − U20(Y T

20u21)− Z20(UT
20u21)

which requires only matrix-vector multiplications. This inspires the algorithm in Figure 3.

3.3 GQvdG unblocked algorithm

The lazy algorithm discussed above requires at each step a matrix-vector and a transposed matrix-vector
multiply which can be fused so that the matrix only needs to be brought into memory once. In this section,
we show how the bulk of computation (and associated memory traffic) can be cast in terms of a single matrix
multiplication per iteration with a much simpler algorithm that does not require fusing and thus no special
implementation of the fused operation. This algorithm was first proposed by G. Quintana and van de Geijn
in [19], which is why we call it the GQvdG unblocked algorithm. It is summarized in Figure 4.

The underlying idea builds upon how Householder transformations can be accumulated: The first b
updates can be accumulated into a lower trapezoidal matrix U and upper triangular matrix T so that(

I − u0u
T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT ).
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After b iterations the basic unblocked algorithm overwrites matrix A with

A(b) = H(ub−1) · · ·H(u0)ÂH(u0) · · ·H(ub−1)
=

(
I − ub−1u

T
b−1/τb−1

)
· · ·
(
I − u0u

T
0 /τ0

)
Â
(
I − u0u

T
0 /τ0

)
· · ·H(ub−1)

= (I − UT−1UT )T Â(I − UT−1UT ) = (I − UT−1UT )T (Â− ÂU︸︷︷︸
Z

T−1UT )

= (I − UT−1UT )T (Â− ZT−1UT ),

where Â denotes the original contents of A.
Let us assume that this process has proceeded for k iterations. Partition

X →
(
XTL XTR

XBL XBR

)
for X ∈ {A, Â, U, Z, T},

where XTL is k × k. Then

A(k) =

(
A

(k)
TL A

(k)
TR

A
(k)
BL A

(k)
BR

)
=

(
I −

(
UTL

UBL

)
T−1

TL

(
UTL

UBL

)T
)T ((

ÂTL ÂTR

ÂBL ÂBR

)
−
(

ZTL

ZBL

)
T−1

TL

(
UTL

UBL

)T
)
.

Now, assume that after the first k iterations our algorithm leaves our variables in the following states:

• A =
(
ATL ATR

ABL ABR

)
contains

(
A

(k)
TL ÂTR

A
(k)
BL ÂBR

)
. In other words, the first k columns have been

updated and the rest of the columns are untouched.

• Only
(
UTL

UBR

)
, TTL, and

(
ZTR

ZBR

)
have been updated.

The question is how to advance the computation. Now, at the top of the loop, we expose

(
XTL XTR

XBL XBR

)
→

 X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22


for (X,x, χ) ∈ {(A, a, α), (Â, â, α̂), (U, u, υ), (Z, z, ζ), (T, t, τ). In order to compute the next Householder
transformation, the next column of A must be updated according to prior computation:

 a01

α11

a21

 =

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T

 a01

α11

a21

−
 Z00

zT
10

Z20

T−1
00 u10

︸ ︷︷ ︸
column k of ZkT

−1
k UT

k

 ,

which means first updating  a01

α11

a21

 :=

 a01 − Z00w10

α11 − zT
10w10

a21 − Z20w10

 ,
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where w10 = T−1
00 u10. Next, we need to perform the update a01

α11

a21

 :=

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T  a01

α11

a21



=

 a01

α11

a21

−
 U00

uT
10

U20

T−T
00

 U00

uT
10

U20

T  a01

α11

a21

 =

 a01 − U00y10
α11 − uT

10y10
a21 − U20y10

 ,

where y10 = T−T
00 (UT

00a01+u10α11+UT
20a21). After these computations we can compute the next Householder

transform from a21, updating a21:

• [u21, τ, a21] := Housev(a21).

The next column of Z is computed by z01
ζ11
z21

 :=

 Â00 â01 Â02

âT
10 α̂11 âT

12

Â20 â21 Â22


 0

0
u21

 =

 Â02u21

âT
12u21

Â22u21

 .

We finish by computing the next column of T : T00 t̂01 T̂02

0 τ̂11 t̂T12
0 0 T̂22

 :=

 T00 UT
20u21 T̂02

0 1
2u

T
21u21 t̂T12

0 0 T̂22

 .

Note that 1
2u

T
21u21 is equal to the τ computed by Housev(a21), and thus it need not be recomputed to

update τ11.

3.4 Blocked algorithms

We now discuss how much of the computation can be cast in terms of matrix-matrix multiplication. The first
such blocked algorithm was reported in [9]. That algorithm corresponds roughly to our blocked Algorithm
1.

In Figure 5 we give four blocked algorithms which differ by how computation is accumulated in the body
of the loop:

• Two correspond to using the unblocked algorithms in Figure 1.

• A third results from using the lazy algorithm in Figure 3. For this variant, we introduce matrices U ,
Y , and Z of width b in which vectors computed by the lazy unblocked algorithm are accumulated. We
are not aware of this algorithm having been reported before.

• The fourth results from using the algorithm in Figure 4. It returns matrices U , Z, and T . It was first
reported in [19] and we will call it the GQvdG blocked algorithm.

Let us consider having progressed through the matrix so that it is in the state

A =
(
ATL ATR

ABL ABR

)
, U =

(
UT

UB

)
, Y =

(
YT

YB

)
, Z =

(
ZT

ZB

)
,

where ATL is b × b. Assume that the factorization has completed with ATL and ABL (meaning that ATL

is upper Hessenberg and ABL is zero except for its top-right most element), and ATR and ABR have been
updated so that only an upper Hessenberg factorization of ABR has to be completed, updating the ATR

submatrix correspondingly. In the next iteration of the blocked algorithm, we perform the following steps:

10



Algorithm: [A] := HessRed blk(A, T )

Partition A→
„

ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {T, U, Y, Z}

where ATL is 0× 0 and TT , UT , YT , and ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

where A11 is b× b and T1, U1, Y1, and Z1 have b rows

Algorithm 1, 2: (blocked + basic unblocked, blocked + rearranged unblocked)

[ABR, UB ] := HessRed unb(b, ABR)
T1 = 1

2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B )

Algorithm 3: (blocked + lazy unblocked)

[ABR, UB , YB , ZB ] := HessRed lazy unb(b, ABR, UB , YB , ZB)
T1 = 1

2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B )
A22 := A22 − U2Y T

2 − Z2UT
2

Algorithm 4: (GQvdG blocked + GQvdG unblocked)

[ABR, UB , ZB , T1] := HessRed GQvdG unb(b, ABR, UB , ZB , T1)

ATR := ATR(I − UBT
−1
1 UT

B )„
A12

A22

«
:=

 
I −

„
U1

U2

«
T−1
1

„
U1

U2

«T
!T „„

A12

A22

«
−
„

Z1

Z2

«
T−1
1 UT

2

«

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

endwhile

Figure 5: Blocked reduction to Hessenberg form based on original or rearranged algorithm. The call to
HessRed unb performs the first b iterations of one of the unblocked algorithms in Figures 1 or 3. In
the case of the algorithms in Figure 1, UB accumulates and returns the vectors u21 encountered in the
computation and YB and ZB are not used.

• Perform the first b iterations of the lazy algorithm with matrix ABR, accumulating the appropriate
vectors in UB , YB , and ZB .

• Apply the resulting Householder transformations from the right to ATR. In Section 2.3 we discussed
that this requires the computation of UTU = ST + D + S, where D and S equal the diagonal and
strictly upper triangular part of UTU , after which ATR := ATR(I −UT−1UT ) = ATR−ATRUT

−1UT

with T = 1
2D + S.

• Repartition

(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
→

 U0

U1

U2

 , . . .

• Update A22 := A22 − U2Y
T
2 − Z2U

T
2 .
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• Move the thick line (which denotes how far the factorization has proceeded) forward by the block size:

(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
←

 U0

U1

U2

 , . . .

Proceeding like this block-by-block computes the reduction to upper Hessenberg form while reducing the
size of the matrices U , Y , and Z, casting some of the computation in terms of matrix-matrix multiplications
that are known to achieve high performance.

When one of the unblocked algorithms in Figure 1 is used instead, A22 is already updated upon return
from HessRed unb and thus only the update of ATR can be accelerated by calls to level-3 BLAS operations.

The GQvdG blocked algorithm, which uses the GQvdG unblocked algorithm, was incorporated into
recent releases of LAPACK, modulo a small change that accumulates T−1 instead of T . Prior to this, an
algorithm that used the lazy unblocked algorithm but also updated ATR as part of that unblocked algorithm
(and thus cast less computation in terms of level-3 BLAS) was part of LAPACK [9]. A comparison between
the GQvdG blocked algorithm and this previously used algorithm can be found in [19].

3.5 Fusing operations

We now discuss how three sets of operations encountered in the various algorithms can be fused to reduce
memory traffic.

In the lazy algorithm, delaying the update of A22 yields the following three operations that can be fused
(here we drop the subscripts):

A := A− (uyT + zuT )
v := ATx
w := Ax

Partition

A→
`
a0 · · · an−1

´
, u→

0B@ υ0

.

..
υn−1

1CA , v →

0B@ ν0
.
..

νn−1

1CA , x→

0B@ χ0

.

..
χn−1

1CA , y →

0B@ ψ0

.

..
ψn−1

1CA .

Then the following steps, 0 ≤ i < n, compute the desired result (provided initially w = 0):

ai := ai − ψiu− υiz; νi := aT
i x; w := w + χiai.

Similarly,
v := ATx
w := Ax

can be computed via
νi := aT

i x; w := w + χiai, 0 ≤ i < n.

Finally,
y := y − Y (UTu)− U(ZTu)
z := z − U(Y Tu)− Z(UTu)

can be computed by partitioning

U →
(
u0 · · · uk−1

)
, Y →

(
y0 · · · yk−1

)
, Z →

(
z0 · · · zk−1

)
,

and computing

α := uT
i u; β := zT

i u; γ := yT
i u; y := y − αyi − βui; z := z − αzi − γui,

for 0 ≤ i < n.
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Algorithm: [A] := TriRed unb(b, A)

Partition A→
„

ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, y}

where ATL is 0× 0 and uT , yT have 0 rows
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

where α11, υ11, and ψ11 are scalars

Basic unblocked: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := A22u21

β := uT
21y21/2

y21 := (y21 − βu21/τ)/τ
A22 := A22 − u21y

T
21 − y21uT

21

α11 := α11 − 2υ11ψ11 (?)
a21 := a21 − (u21ψ11 + y21υ11) (?)
[x21, τ, a21] := Housev(a21)
A22 := A22 − u21y

T
21 − y21uT

21 (?)
v21 := A22x21

u21 := x21; y21 := v21
β := uT

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

endwhile

Figure 6: Unblocked algorithms for reduction to tridiagonal form. Left: basic algorithm. Right: rearranged
to allow fusing of operations. Operations marked with (?) are not executed during the first iteration.

4 Reduction to tridiagonal form

The first step towards computing the eigenvalue decomposition of a symmetric matrix is to reduce the matrix
to tridiagonal form.

Let A ∈ Rn×n be symmetric. If A→ QBQT where B is upper Hessenberg and Q is orthogonal, then B is
symmetric and therefore tridiagonal. In this section we show how to take advantage of symmetry, assuming
that matrix A is stored in only the lower triangular part of A and only the lower triangular part of that
matrix is overwritten with B.

When matrix A is symmetric, and only the lower triangular part is stored and updated, the unblocked
algorithms for reducing A to upper Hessenberg form can be changed by noting that v21 = w21 and y21 = z21.
This motivates the algorithms in Figures 6–8. The blocked algorithm and associated unblocked algorithm
was first reported in [9].

In the rearranged algorithm, delaying the update of A22 allows the highlighted operations in Fig-
ure 6 (right) to be fused via the algorithm in Figure 9. We leave it as an exercise to the reader to fuse
the highlighted operations in Figure 7.
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Algorithm: [A,U, Y ] := TriRed lazy unb(A,U, Y )

Partition X →
„

XTL XTR

XBL XBR

«
for X ∈ {A,U, Y }

where XTL is 0× 0
while n(UTL) < n(U) do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − yT

10u10

a21 := a21 − U20y10 − Y20u10

[u21, τ, a21] := Housev(a21)
y21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(Y T

20u21)
β := uT

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

endwhile

Figure 7: Lazy unblocked reduction to tridiagonal form.

5 Reduction to bidiagonal form

The previous sections were inspired by the paper [12] that discusses how fused operations can benefit algo-
rithms for the reduction of a matrix to bidiagonal form. The purpose of this section is to present the basic
and rearranged unblocked algorithms for this operation with our notation to facilitate the comparing and
contrasting of the reduction to upper Hessenberg and tridiagonal form algorithms to those for the reduction
to bidiagonal form.

The first step towards computing the Singular Value Decomposition (SVD) of A ∈ Rm×n is to reduce the
matrix to bidiagonal form: A→ UBV T where B is a bidiagonal matrix (nonzero diagonal and superdiagonal)
and U and V are again square and orthogonal.

For simplicity, we explain the algorithms for the case where A is square.

5.1 Basic algorithm

The basic algorithm for this operation, overwriting A with the result B, can be explained as follows:

• Partition A→
(
α11 aT

12

a21 A22

)
.

• Let
[(

1
u21

)
, τL,

(
α11

0

)]
:= Housev

((
α11

a21

))
.4

4Note that the semantics here indicate that α11 is overwritten by the first element of

„
α11

0

«
.

14



Algorithm: [A,U, Y ] := TriRed blk(A,U, Y )

Partition A→
„

ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {U, Y }

where ATL is 0× 0 and UT , YT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {U, Y }

where A11 is b× b and U1, and Y1 have b rows

[ABR, UB , YB ] := TriRed lazy unb(b, ABR, UB , YB)
A22 := A22 − U2Y

T
2 − Y2U

T
2

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {U, Y }

endwhile

Figure 8: Blocked reduction to tridiagonal form based on original or rearranged algorithm. TriRed unb
performs the first b iterations of the lazy unblocked algorithm in Figure 7.

• Update (
α11 aT

12

a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)T

/τL

)(
α11 aT

12

a21 A22

)
=

(
α− ψ11/τL aT

12 − yT
21/τL

0 A22 − u21y
T
21/τL

)
,

where ψ11 = α11 + uT
21a21 and yT

21 = aT
12 + uT

21A22. Note that α11 := α− ψ11/τL need not be executed
since this update was performed by the instance of Housev above.

• Let [v21, τR, a12] := Housev (a12).

• Update A22 := A22(I − v21vT
21/τR) = A22 − z21vT

21/τR, where z21 = A22v21.

• Continue this process with the updated A22.

The resulting algorithm, slightly rearranged, is given in Figure 10 (left).

5.2 Rearranged algorithm

We now show how, again, the loop can be restructured so that multiple updates of, and multiplications with,
A22 can be fused. Focus on the update A22 := A22 − (u21y

T
21 + z21v

T
21). Partition

A22 →
„

α+
11 a+T

12

a+
21 A+

22

«
, u21 →

„
υ+
11

u+
21

«
, y21 →

„
ψ+

11

y+21

«
, z21 →

„
ζ+11
z+21

«
, v21 →

„
ν+
11

v+21

«
,
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Algorithm: [A] := Fused Syr2 Symv(A, x, y, u, v)

Partition A→
„

ATL ATR

ABL ABR

«
, z →

„
zT

zB

«
for z ∈ {x, y, u, v}

where ATL is 0× 0, xT , yT , uT , vT have 0 elements
v = 0

while m(ATL) < m(A) do
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
zT

zB

«
→

0@ z0
ζ1
z2

1A
for (z, ζ) ∈ {(x, χ), (y, ψ), (u, υ), (v, ν)}

where α11, χ1, ψ1, υ1, ν1 are scalars

α11 := α11 + 2ψ1υ1

a21 := a21 + ψ1u2 + υ1y2 (axpy ×2)

}
toward
A :=A+(uyT +yuT )

ν1 := ν1 + α11χ1 + aT
21x2 (dot)

v2 := v2 + χ1a21 (axpy)

}
toward
v := Ax

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
zT

zB

«
←

0@ z0
ζ1
z2

1A
for (z, ζ) ∈ {(x, χ), (y, ψ), (u, υ), (v, ν)}

endwhile

Figure 9: Algorithm that fuses a symmetric rank-2 update and a symmetric matrix-vector multiply:
A := A+ (uyT + yuT ); v := Ax, where A is symmetric and stored in the lower triangular part of A.

where + indicates the partitioning in the next iteration. Then(
α+

11 a+T
12

a+
21 A+

22

)
:=

(
α+

11 a+T
12

a+
21 A+

22

)
−
(
υ+

11

u+
21

)(
ψ+

11

y+
21

)T

−
(
ζ+
11

z+
21

)(
ν+
11

v+
21

)T

=
(
α+

11 − υ
+
11ψ

+
11 − ζ

+
11ν

+
11 a+T

12 − υ
+
11y

+T
21 − ζ

+
11v

+T
21

a+
21 − u

+
21ψ

+
11 − z

+
21ν

+
11 A+

22 − u
+
21y

+T
21 − z

+
21v

+T
21

)
,

which shows how the update of A22 can be delayed until the next iteration. If u21 = y21 = z21 = v21 = 0
during the first iteration, the body of the loop may be changed to

α11 := α11 − υ11ψ11 − ζ11ν11
a21 := a21 − u21ψ11 − z21ν11
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21[(
1
u+

21

)
, τL,

(
α11

0

)]
:= Housev

((
α11

a21

))
A22 := A22 − u21y

T
21 − z21vT

21

y21 := a12 +AT
22u

+
21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)
β := yT

21v21
y21 := y21/τL
z21 := (A22v21 − βu+

21/τL)/τR

Now, the goal becomes to bring the three highlighted updates together. The problem is that the last update,
which requires v21, cannot commence until after the second call to Housev completes. This dependency
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Algorithm: [A] := BiRed unb(A)

Partition A→
„

ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, v, y, z}

where ATL is 0× 0, uT , vT , yT , zT have 0 elements
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

where α11, υ11, ν11, ψ11, and ζ11 are scalars

Basic unblocked: Rearranged unblocked:

[(
1
u21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))

y21 := a12 +AT
22u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21 − βu21/τL)/τR

A22 := A22 − u21y
T
21 − z21vT

21

α11 := α11 − υ11ψ11 − ζ11ν11 (?)
a21 := a21 − u21ψ11 − z21ν11 (?)
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21 (?)[(
1
u+

21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))
a+
12 := a12 − a12/τL
A22 := A22 − u21y

T
21 − z21vT

21 (?)
y21 := AT

22u
+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

y21 := y21 + a12

[ψ11 − α12, τR, α12] := Houses(a+
12)

v21 := (a+
12 − α12e0)/(ψ11 − α12);

aT
12 := α12e

T
0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12A22e0)/(ψ11 − α12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

endwhile

Figure 10: Unblocked algorithms for reduction to bidiagonal form. Left: basic algorithm. Right: rearranged
to allow fusing of operations. Operations marked with (?) are not executed during the first iteration.
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can be circumvented by observing that one can perform a matrix-vector multiply of A22 with the vector
aT
12 = aT

12 − yT
21/τL instead of with v21, after which the result can be updated as if the multiplication

had used the output of the Housev, as indicated by Eq. (3) in Section 2. These observations justify the
rearrangement of the computations as indicated in Figure 10 (right).

5.3 Lazy algorithms

A lazy algorithm can be derived by not updating A22 at all, and instead accumulating the updates in matrix
U , V , Y , and Z, much like was done for the other reduction to condensed form operations.

We start with the rearranged algorithm to make sure that

y21 := AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

can still be fused. Next, the key is to realize that what was previously a multiplication by A22 must now be
replaced by a multiplication by A22−U20Y

T
20 −Z20V

T
20. This yields the algorithm in Figure 11 (right) which

was first proposed by Howell et al. [12].
For completeness, we include in Figure 11 (left) a basic algorithm which does not rearrange operations

for fusing, but still has the “lazy” property whereby A22 is never updated.

5.4 Blocked algorithms

Finally, a blocked algorithm is given in Figure 12. The basic lazy unblocked algorithm in conjunction with
the blocked algorithm was first published in [9] and is part of LAPACK. The rearranged lazy unblocked
algorithm in conjunction with the blocked algorithm (Howell’s Algorithm) was proposed by Howell et al.
and published in [12].

5.5 Fusing operations

Once again, we leave it as an exercise to the reader to construct loop-based fusings of the operations high-
lighted in Figures 10 and 11.

6 Impact on performance

We now report performance for implementations of various algorithms that is attained in practice. We stress
that final conclusions cannot be made until someone (not us) fully optimizes the fused operations.

6.1 Platform details

All experiments were performed on a single core of a Dell PowerEdge R900 server consisting of four Intel
“Dunnington” six-core processors. Each core provides a peak performance of 10.64 GFLOPS. Performance
experiments were gathered under the GNU/Linux 2.6.18 operating system. Source code was compiled by
the Intel C/C++ Compiler, version 11.1. All experiments were performed in double precision floating-point
arithmetic on real-valued matrices.

All reduction to condensed form implementations reported in this paper were linked to the BLAS provided
by GotoBLAS2 1.10. All LAPACK implementations were obtained via the netlib distribution of LAPACK
version 3.2.1. For the reduction to bidiagonal form we also compare against an implementation by Howell
published in [12] and available from [11].

In many of our papers, the top line of a graph represents peak attainable performance. But given that
the reduction algorithms cannot be expected to attain near-peak performance (since inherently a significant
fraction of computation is in memory-intensive level-2 BLAS operations), we do not follow that convention
in this paper so as to make the very busy graphs more readable.
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Algorithm: [A,U, V, Y, Z] := BiRed lazy unb(A,U, V, Y, Z)

Partition X →
„

XTL XTR

XBL XBR

«
for X ∈ {A,U, V, Y, Z}

where XTL is 0× 0
while n(UTL) < n(U) do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

Lazy basic unblocked: Lazy rearranged (Howell) unblocked:

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20[(

1
u21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))
y21 := a12 +AT

22u21

−Y20U
T
20u21 − V20Z

T
20u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21
−U20Y

T
20v21 − Z20V

T
20v21

−βu21/τL)/τR

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20[(

1
u+

21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))
a+
12 := a12 − a12/τL
y21 := −Y20U

T
20u

+
21 − V20Z

T
20u

+
21

y21 := y21 +AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

w21 := w21 − U20Y
T
20a

+
12 − Z20V

T
20a

+
12

a22l := A22e0 − U20Y
T
20e0 − Z20V

T
20e0

y21 := a12 + y21
[ψ11 − α12, τR, α12] := Houses(a+

12)
v21 := (a+

12 − α12e0)/(ψ11 − α12);
aT
12 := α12e

T
0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12a22l)/(ψ11 − α12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

endwhile

Figure 11: Lazy versions of the algorithm in Figure 10. Upon entry matrix A is n × n and matrices U , V ,
Y , and Z are n× b. Note that the multiplications A22e0, Y T

20e0, and UT
20e0 do not require computation: they

simply extract the first column or row of the given matrix.
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Algorithm: [A] := BiRed blk(A,U, V, Y, Z)

Partition A→
„

ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {U, V, Y, Z}

where ATL is 0× 0 and UT , VT , YT , ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

where A11 is b× b and U1, V1, Y1, and Z1 have b rows

[ABR, UB , VB , YB , ZB ] := BiRed lazy unb(b, ABR, UB , VB , YB , ZB)
A22 := A22 − U2Y

T
2 − Z2V

T
2

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

endwhile

Figure 12: Blocked algorithm for reduction to bidiagonal form. For simplicity, it is assumed that A is n× n
where n is an integer multiple of b. Matrices U , V , Y , and Z are all n× b.

6.2 Fused operation implementations

Fused operations were coded in terms of level-1 BLAS. Ideally, they would be coded at the same level of
abstraction as highly optimized level-2 BLAS, which often means in assembly code. We do not have the
expertise to do this ourselves. Thus, regardless of the performance observed using these fused operations, we
suspect that higher performance may be attainable provided that the fused operations are carefully coded
by an expert. The “Build To Order BLAS” project [21] studies the systematic and automatic optimization
of these kinds of fused operations and some such fused operations are available as part of vendor libraries.

6.3 Implementations of the reduction algorithms

The algorithms were implemented using the FLAME/C API [24, 3] which allows the implementations to
closely mirror the algorithms presented in this paper. Since this API carries considerable overhead that affects
performance, the unblocked algorithms were translated into lower-level (LAPACK-like) implementations that
use the BLAS-like Interface Subprograms (BLIS) interface [26]. This is a C interface that resembles the BLAS
interface but is more natural for C and fixes certain problems for the routines that compute with (single
and double precision) complex datatypes. All these implementations are part of the standard libflame
distribution so that others can experiment with further optimizations.

6.4 Tuning of block size

We performed experiments to determine the optimal block size for the blocked algorithms. A block size of
32, the default block size for the LAPACK implementation, appeared to be near-optimal and was used for
all experiments.

20



0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

problem size

G
F

LO
P

S

 

 

75% of peak
basic unblocked 1
basic unblocked 2
basic unblocked 2 with fusing
rearranged unblocked
rearranged unblocked with fusing
blocked with lazy unblocked
blocked with lazy unblocked with fusing
GQvdG blocked with GQvdG unblocked
netlib dgehrd

0 50 100 150 200 250 300
0

1

2

3

4

5

problem size

G
F

LO
P

S

 

 

47% of peak
basic unblocked 1
basic unblocked 2
basic unblocked 2 with fusing
rearranged unblocked
rearranged unblocked with fusing
blocked with lazy unblocked
blocked with lazy unblocked with fusing
GQvdG blocked with GQvdG unblocked
netlib dgehrd

Figure 13: Performance of various implementations of reduction to upper Hessenberg form for problem sizes
up to 3000 (top) and up to 300 (bottom). Implementations of blocked algorithms use a block size of 32.
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6.5 Reduction to upper Hessenberg form

Performance of the various implementations of reduction to upper Hessenberg form are given in Figure 13.
The netlib LAPACK algorithm always outperforms the other implementations, although eventually the
“GQvdG blocked with GQvdG unblocked” algorithm catches up. Note that netlib dgehrd uses the “GQvdG
blocked with GQvdG unblocked” algorithm, with the minor modification that the algorithm switches to
what is essentially our pure basic unblocked algorithm for the final 128 × 128 subproblem (when ABR is
128× 128).

Of particular interest is the comparison of the curves labeled “GQvdG blocked with GQvdG unblocked”
and “blocked with lazy unblocked with fusing”. Table 2 predicts that these should attain very similar
performance. While the latter performs much better than its unfused counterpart, it does not attain the
performance of “GQvdG blocked with GQvdG unblocked”. One would expect it to be even more competitive
if the fused operation were fully optimized.

6.6 Reduction to tridiagonal form

Figure 14 reports performance for various implementations of reduction to tridiagonal form. There is not
much to remark upon here: the algorithms that use fused implementations do not perform well, possibly
because the level-2 BLAS used by the basic algorithm are optimized to a degree that cannot be easily attained
when implementing the fused the operations in terms of level-1 BLAS.

6.7 Reduction to bidiagonal form

Figure 15 reports performance for various implementations of reduction to bidiagonal form. For this operation
there is a clear advantage gained from rearranging the computations and fusing operations. The “blocked
with lazy rearranged with fusing” implementation closely tracks the performance of Howell’s implementation
and thus confirms the benefit of fusing. Howell’s implementation implements the fused operation in terms of
level-2 BLAS operations with a few columns while our implementation uses calls to level-1 BLAS operations,
which accounts for the slightly better performance attained by his implementation.

6.8 Hybrid algorithms

In Figure 15 it can be observed that, for the smallest problem sizes (n ≤ 100), the “basic unblocked
with fusing” algorithm yields the best performance. Similarly, for a range of medium-sized problem sizes
(100 < n ≤ 500), the performance of the “rearranged unblocked with fusing” algorithm is superior. This
suggests that a library routine should switch algorithms as a function of problem size. In Figure 16 we show
performance for one such hybrid algorithm implementation.5 There, “blocked with lazy rearranged with
fusing (optimized)” refers to an implementation that uses the “basic unblocked with fusing” algorithm if the
problem size is 100×100 or smaller, and then uses the “blocked with lazy rearranged with fusing” algorithm,
except that it switches to the “rearranged unblocked with fusing” algorithm when the size of ABR is less
than 500×500. For a range of problem sizes this approach yields a slight advantage of up to 12 percent over
netlib dgebrd.

Similar hybrid algorithms can constructed in a straightforward manner for both reduction to upper
Hessenberg form and reduction to tridiagonal form, and so we have omitted results corresponding to those
operations.

6.9 Experiments with multiple cores

A logical criticism of the experimental results given in the paper is that they only involve a single core.
However, the limiting factor for performance is the bandwidth to memory which is clearly demonstrated by

5Note that the netlib LAPACK implementations of all three condensed form operations tested in this paper employ hybrid
approaches, albeit with different crossover points. The netlib routines for reduction to upper Hessenberg form (dgehrd) and
reduction to bidiagonal form (dgebrd) switch to basic unblocked algorithms for the final 128× 128 submatrix, while the routine
for reduction to tridiagonal form (dsytrd) switches for the final 32× 32 submatrix.
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Figure 14: Performance of various implementations of reduction to tridiagonal form for problem sizes up to
3000 (top) and up to 300 (bottom). Implementations of blocked algorithms use a block size of 32.
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Figure 15: Performance of various implementations of reduction to bidiagonal form for problem sizes up to
3000 (top) and up to 300 (bottom). Implementations of blocked algorithms use a block size of 32.
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Figure 16: Performance of optimized blocked implementations of reduction to bidiagonal form for problem
sizes up to 3000 (top) and up to 1000 (bottom). Implementations of blocked algorithms use a block size of
32.
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the experiments. Also, parallelizing the fused operations goes beyond the scope of this paper. The work
presented here exposes how algorithms can be rearranged to create fusable operations so that others can
focus on the optimization of those operations.

7 Conclusion

This paper presents what we believe to be the most complete analysis to date of algorithms for reducing
matrices to condensed form. Numerous algorithms are summarized and opportunities for rearranging and
fusing of operations are exposed. For different ranges of problem sizes different algorithms attain the best
performance.

At the time of this writing, our research group does not have the in-house expertise to fully optimize
the fused operations. As a result, the performance results should be taken with a grain of salt. Conclusive
evidence would come only when the fused operations are assembly-coded. The implementations and related
timing experiments are part of the libflame library so that others can push the envelop on performance
even further.
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A Computing in the complex domain

For simplicity and clarity, the algorithms given thus far have assumed computation on real matrices. In this
appendix, we briefly discuss how to formulate a few of these algorithms for complex matrices.

In order to capture more generalized algorithms which work in both the real and complex domains, we
must first introduce a complex Householder transform.
Definition 2 Let u ∈ Cn, τ ∈ R. Then H = H(u) = I − τ−1uuH , where τ = 1

2u
Hu, is a complex

Householder transformation.
The complex Householder transform has properties similar to those of the real instantiation, namely:

(1) HH = I; (2) H = HH , and so HHH = HHH = I; and (3) if H0, · · · ,Hk−1 are complex Householder
transformations and Q = H0H1 · · ·Hk−1, then QHQ = QQH = I.

Let x, v, u ∈ Cn,

x→
(
χ1

x2

)
, v →

(
ν1
v2

)
, u→

(
υ1

u2

)
,

v = x− αe0, and u = v/ν1. We can re-express the complex Householder transform H as:

H =

(
I − τ−1

(
1
u2

)(
1
u2

)H
)

It can be shown that the application of H(u) to a vector x,

H

(
χ1

x2

)
=

(
α
0

)
(4)

is satisfied for

α = −‖x‖2χ1

|χ1|
.

Notice that for x, v, u ∈ Rn, this definition of α is equivalent to the definition given for real Householder
transformations in Section 2.2, since χ1/|χ1| = sign(χ1). By re-defining α this way, we allow τ to remain real,
which allows the complex Householder transform to retain the property of being a reflector. Other instances
of the Householder transform, such as those found in LAPACK, restrict α to the real domain [14, 16]. In
these situations, Eq. (4) is only satisfiable if τ ∈ C, which results in HH 6= I. We prefer our Householder
transforms to remain reflectors in both the real and complex domains, and so we choose to define α as above.

Recall that Figures 1–12 illustrate algorithms for computing on real matrices. We will now review a few
of the algorithms, as expressed in terms of the complex Householder transform.

A.1 Reduction to upper Hessenberg form

Since the complex Householder transform H is a reflector, the basic unblocked algorithm for reducing a
complex matrix to upper Hessenberg is, at a high level, identical to the algorithm for real matrices:

• Partition A→
(
α11 aT

12

a21 A22

)
.

• Let [u21, τ, a21] := Housev(a21).

• Update a01 A02

α11 aT
12

a21 A22

 :=

 I 0 0
0 1 0
0 0 H

 a01 A02

α11 aT
12

a21 A22

( 1 0
0 H

)
=

 a01 A02H

α11 aT
12H

Ha21 HA22H


where H = H(u21). Note that a21 := Ha21 need not be executed since this update was performed by
the instance of Housev above.
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Algorithm: [A] := ComplexHessRed unb(b, A)

Partition A→
„

ATL ATR

ABL ABR

«
, u→

„
uT

uB

«
, y →

„
yT

yB

«
, z →

„
zT

zB

«
where ATL is 0× 0 and uT , yT , and zT have 0 rows

while m(ATL) < m(A) do
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
uT

uB

«
→

0@ u01

υ11

u21

1A ,

„
yT

yB

«
→

0@ y01
ψ11

y21

1A ,

„
zT

zB

«
→

0@ z01
ζ11
z21

1A
where α11, υ11, ψ11, ζ11 are scalars

Basic unblocked 1:

[u21, τ, a21] := Housev(a21)

A22 := (I − u21u
H
21/τ)A22 = A22 − u21u

H
21A22/τ A02

aT
12

A22

 :=

 A02

aT
12

A22

 (I − u21u
H
21/τ) =

 A02 −A02u21u
H
21/τ

aT
12 − aT

12u21u
H
21/τ

A22 −A22u21u
H
21/τ


Basic unblocked 2: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := AH
22u21

z21 := A22u21

β := uH
21z21/2

y21 := (y21 − β̄u21/τ)/τ
z21 := (z21 − βu21/τ)/τ
A22 := A22 − u21y

H
21 − z21uH

21

aT
12 := aT

12 − aT
12u21u

H
21/τ

A02 := A02 −A02u21u
H
21/τ

α11 := α11 − υ1ψ̄1 − ζ1ῡ1 (?)
aT
12 := aT

12 − υ1y
H
21 − ζ1uH

21 (?)
a21 := a21 − u21ψ̄1 − z21ῡ1 (?)
[x21, τ, a21] := Housev(a21)
A22 := A22 − u21y

H
21 − z21uH

21 (?)
v21 := AH

22x21

w21 := A22x21

u21 := x21; y21 := v21
z21 := w21

β := uH
21z21/2

y21 := (y21 − β̄u21/τ)/τ
z21 := (z21 − βu21/τ)/τ

aT
12 := aT

12 − aT
12u21u

H
21/τ

A02 := A02 −A02u21u
H
21/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
uT

uB

«
←

0@ u01

υ11

u21

1A ,

„
yT

yB

«
←

0@ y01
ψ11

y21

1A ,

„
zT

zB

«
←

0@ z01
ζ11
z21

1A
endwhile

Figure 17: Unblocked reduction to upper Hessenberg form using a complex Householder transform. Left:
basic algorithm. Right: rearranged algorithm so that operations can be fused. Operations marked with (?)
are not executed during the first iteration.
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• Continue this process with the updated A22.

As before, Ha21 is computed by Housev.
The real and complex algorithms begin to differ with the updates of aT

12 and A02:

aT
12 := aT

12H

= aT
12 − aT

12u21u
H
21/τ

A02 := A02H

= A02 −A02u21u
H
21/τ

Specifically, we can see that u21 is conjugate-transposed instead of simply transposed.
The remaining differences can be seen by inspecting the update of A22:

A22 := HA22H

= (I − u21u
H
21/τ)A22(I − u21u

H
21/τ)

= A22 − u21( AH
22u21︸ ︷︷ ︸
v21

)H/τ − ( A22u21︸ ︷︷ ︸
w21

)uH
21/τ + (uH

21 A22u21︸ ︷︷ ︸
w21

)u21u
H
21/τ

2

= A22 − u21v
H
21/τ − w21u

H
21/τ + uH

21w21︸ ︷︷ ︸
2β

u21u
H
21/τ

2

= A22 − u21(vH
21 − βuH

21/τ)/τ − ((w21 − βu21/τ)/τ)uH
21

= A22 − u21 ((v21 − β̄u21/τ)/τ︸ ︷︷ ︸)H

y21

− ((w21 − βu21/τ)/τ)︸ ︷︷ ︸
z21

uH
21

= A22 − (u21y
H
21 + z21u

H
21)

This leads towards the basic and rearranged unblocked algorithms in Figure 17.

A.2 Reduction to tridiagonal form

Let A ∈ Cn×n be Hermitian. If A → QBQH where B is upper Hessenberg and Q is unitary, then B is
Hermitian and therefore tridiagonal. We may take advantage of the Hermitian structure of A just as we did
with symmetry in Section 4. Let us assume that only the lower triangular part of A is stored and read, and
that only the lower triangular part is overwritten by B.

When matrix A is Hermitian, and only the lower triangular part is referenced, the unblocked algorithms
for reducing A to upper Hessenberg form can be changed by noting that v21 = wH

21 and y21 = zH
21. This

results in the basic and rearranged unblocked algorithms shown in Figure 18.

A.3 Reduction to bidiagonal form

The basic algorithm for reducing a complex matrix to bidiagonal form can be explained as follows:

• Partition A→
(
α11 aT

12

a21 A22

)
.

• Let
[(

1
u21

)
, τL,

(
α11

0

)]
:= Housev

((
α11

a21

))
.

• Update (
α11 aT

12

a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)H

/τL

)(
α11 aT

12

a21 A22

)
=

(
α− ψ11/τL aT

12 − yT
21/τL

0 A22 − u21y
T
21/τL

)
,
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Algorithm: [A] := ComplexTriRed unb(b, A)

Partition A→
„

ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, y}

where ATL is 0× 0 and uT , yT have 0 rows
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

where α11, υ11, and ψ11 are scalars

Basic unblocked: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := A22u21

β := uH
21y21/2

y21 := (y21 − βu21/τ)/τ
A22 := A22 − u21y

H
21 − y21uH

21

α11 := α11 − υ11ψ̄11 − ψ11ῡ11 (?)
a21 := a21 − (u21ψ̄11 + y21ῡ11) (?)
[x21, τ, a21] := Housev(a21)
A22 := A22 − u21y

H
21 − y21uH

21 (?)
v21 := A22x21

u21 := x21; y21 := v21
β := uH

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

endwhile

Figure 18: Unblocked reduction to tridiagonal form using a complex Householder transformation. Left: basic
algorithm. Right: rearranged to allow fusing of operations. Operations marked with (?) are not executed
during the first iteration.

where ψ11 = α11 + uH
21a21 and yT

21 = aT
12 + uH

21A22. Note that α11 := α− ψ11/τL need not be executed
since this update was performed by the instance of Housev above.

• Let [v21, τR, a12] := Housev (a12).

• Update A22 := A22(I − v21vT
21/τR) = A22 − z21vT

21/τR, where z21 = A22v21.

• Continue this process with the so updated A22.

The resulting unblocked algorithm and a rearranged variant that allows fusing are given in Figure 19.

A.4 Blocked algorithms

Blocked algorithms may be constructed for reduction to upper Hessenberg form by making the following
minor changes to the algorithms shown in Figure 5:

• For Algorithms 1–4, updateATR by applying the complex block Householder transform, (I−UBT
−1UH

B ),
instead of (I − UBT

−1UT
B ).

• For Algorithm 3, update A22 as A22 = A22 − U2Y
H
2 − Z2U

H
2 .
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Algorithm: [A] := ComplexBiRed unb(A)

Partition A→
„

ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, v, y, z}

where ATL is 0× 0, uT , vT , yT , zT have 0 elements
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

where α11, υ11, ν11, ψ11, and ζ11 are scalars

Basic unblocked: Rearranged unblocked:

[(
1
u21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))

y21 := a12 +AT
22ū21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)

β := yT
21v̄21

y21 := y21/τL
z21 := (A22v̄21 − βu21/τL)/τR

A22 := A22 − u21y
T
21 − z21vT

21

α11 := α11 − υ11ψ11 − ζ11ν11 (?)
a21 := a21 − u21ψ11 − z21ν11 (?)
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21 (?)[(
1
u+

21

)
, τL,

(
α11

0

)]
:=

Housev

((
α11

a21

))
a+
12 := a12 − a12/τL
A22 := A22 − u21y

T
21 − z21vT

21 (?)
y21 := AT

22ū
+
21

a+
12 := a+

12 − y21/τL
w21 := A22ā

+
12

y21 := y21 + a12

[ψ11 − α12, τR, α12] := Houses(a+
12)

v21 := (a+
12 − α12e0)/(ψ11 − α12);

aT
12 := α12e

T
0

u21 := u+
21

β := yT
21v̄21

y21 := y21/τL
z21 := (w21 − ᾱ12A22e0)/(ψ̄11 − ᾱ12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

endwhile

Figure 19: Unblocked reduction to bidiagonal form using a complex Householder transformation. Left: basic
algorithm. Right: rearranged to allow fusing of operations. Operations marked with (?) are not executed
during the first iteration.
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• Compute T as T = 1
2D + S where UH

B UB = SH +D + S.

Blocked algorithms for reduction to tridiagonal form and bidiagonal form can be constructed in a similar
fashion.
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