
T E R M I N A T I O N *

Nachum Dershowitz

Depar tmen t of Compute r Science
Univers i ty of Illinois at Urbana-Champaign

Urbana, Illinois 61801
U.S.A.

A B S T R A C T

This survey describes methods for proving tha t systems of rewri te rules terminate . Illus-

t ra t ions of the use of path orderings and other simplification orderings in terminat ion proofs

are given. The effect of restrictions, such as l inearity, on the form of rules is considered. In

general, though, te rminat ion is an undeeidable p roper ty of rewri te systems.

1. I N T R O D U C T I O N

A term-rewriting (rewrite) system R over a set of terms T is a set of rewrite rules, each

of the form l - -> r , where I and r are terms in T or are terms containing variables ranging

over T . Such a rule applies to a te rm t in T if a sub te rm s of t matches the left-hand side l

with some subst i tut ion a of te rms in T for variables appearing in I (i.e. s--~la). The rule is

applied by replacing the sub te rm s in t with the corresponding r ight -hand side ra of the rule,

within which the same subst i tut ion a of terms for variables has been made. We write t~RU ,

or jus t t ~ u , to indicate tha t a t e rm u in T is derivable in this way from the t e rm t in T by

a single application of some rule in R . If t=* • • • ~ u in zero or more steps, abbrevia ted

t ~ * u , then we say tha t t reduces to u ; if no rule can be applied to t , we say tha t t is irredu-

cible; when t reduces to an irreducible t e rm u, we say tha t u is a normal form of t .

There are five propert ies involved in the verification of rewrite systems:

1) termination--no infinite derivat ions are possible,

2) confluence--each t e rm has at most one normal form,

3) soundness--terms are only rewri t ten to equal terms,

4) completeness--equal te rms have the same normal form,

5) correctness--all normal forms satisfy given requirements .

*The preparation of this survey was supported in part by the National Science Foundation under Grant
MCS 83-07755.

181

This survey is devoted to a discussion of the first aspect, namely termination, generally a

prerequisite for demonstrat ing other properties. Two related concepts, only briefly discussed,

are "quasi-termination" and "weak terminat ion." A quasi-terminating rewrite system is one

for which only a f inite number of different terms are derivable from any given term. A

weakly-terminating system is one for which every term has at least one normal form.

Consider, for example, the following simple system consisting of three rules:

white ,red --> red ,white
blue ,red --> red ,blue

blue ,white -> white ,blue
(0)

This program plays the "Dutch National Flag" game. Given a sequence of marbles, colored

red, white, or blue and placed side by side in no part icular order, the program rearranges the

marbles so that all red ones are on the left, all blue ones are on the right, and all white ones

are in the middle. The first rule, for example, states that if anywhere in the series there is an

adjacent pair of marbles, the left one white and the right one red, then they should be

exchanged so that the red marble is on the left and the white one is on the right. I t is not

hard to prove that, regardless of the initial arrangement of marbles, applying the above rules r

in any order always results in a sequence of correctly arranged marbles. As we will see, a ter-

mination proof can be based on the ordering

blue is greater than white and white is greater than red.

Each rule replaces two marbles, the one on the left with "greater" color is exchanged with the

"smaller" one to its right.

To illustrate the difficulty often encountered when a t tempt ing to determine if, and why, a

rewrite system terminates, consider the following system (for disjunctive normal form):

- - - - a --~ a

-(~,+~) ---) -,~x-~
-(~x~) ~ -~+-~

~x(~+~) -~ (~×~)+(~x~)
(~+~)x~ --) (~x,~)+(~x~)

(1)

The first rule eliminates double negations; the second and third rules apply DeMorgan's laws

to push negations inward; the last two apply the distr ibutivi ty of x over + . The difficulty in

proving termination for systems such as this stems from the fact tha t while some rewrites may

decrease the size of a term, other rewrites may increase its size and duplicate occurrences of

subterms. Furthermore, applying a rule to a subterm not only affects the s t ructure of tha t

subterm, but also changes the s tructure of its superterms. And a proof of termination must

take into consideration the many different possible rewrite sequences generated by the non-

deterministic choice of rules and subterms.

182

Various methods for proving termination of rewrite systems have been suggested, includ-

ing [Gorn-67, Iturriaga-67, Knuth-Bendix-70, Manna-Ness-70, Gorn-73, Lankford-75, Lipton-

Snyder-77, Plaisted-78, Plaisted-78b, Dershowitz-Manna-79, Lankford-79, Kamin-Levy-80,

Pettorossi-81, Dershowitz-82, Jouannaud,etal.-82, Dershowitz,etal.-83, Lescanne-84,

Jouannaud-Munoz-84, Kapur,etal.-85, Bachmair-Plaist ed-85, Bachmair-Dershowitz-85,

Rusinowitch-85]. Termination is in general an undecidable property of rewrite systems (as it

is for Markov systems on strings; see [Huet-Lankford-78]). For a lively discussion of tasks that

are difficult to show terminating, see [Gardner-83].

In the next section we prove that termination is undecidable. In Section 3 we show how

well-founded orderings are used in termination proofs, and in Section 4 we show how simplif-
ication orderings are used. Similar methods are described in Section 5 for using quasi-
orderings to prove termination (or quasi-termination). Section 6 presents muitiset orderings.
Then, in Section 7, we define path orderings based on an underlying operator "precedence".

This is followed in the last two sections with methods for determining if rewrite systems of

restricted form terminate (or weakly-terminate). Examples are provided throughout; proofs

are generally omitted.

2. N O N T E R M I N A T I O N

Given a set of operators F , we consider the set T(F) of all terms constructed from opera-

tors in F . Operators in F may be varyadic, i.e. have variable arity, in which case if f is an

operator and tl, ..., t n (n>O) are terms in T(F), then f (t l , . . . ,tn) is also a term in T(F).

Or an operator f may be restricted to a fixed arity, in which case f (t 1, • • •, tn) E T only if f

is of ari ty n.

Def in i t ion 1. A rewrite system R is terminating for a set of terms T, if there exist
no infinite sequence of terms t i E T such that t l ~ t z ~ t 3 ~ ' ' ' . A system is nonter-
minating if there exists any such infinite derivation. A system is weakly-terminating if
for each term t E T there is an irreducible term derivable from t.

Terminat ing systems are variously called finitely terminating, uniformly terminating,
strongly terminating, and noetherian. Unless indicated otherwise, when we speak of termina-

tion, we mean with respect to all terms constructed from a given set of (fixed or variable)

operators F . Rules of a terminating system are called reductions.

Example. A trivial example of a terminating system is

- - a --> a . (2)

An equally trivial example of a nonterminating system is

- ~ --> - - - a . (3)

A less trivial example (of what?) is

- (~ + ~) --> (- - ~ + ~) + ~ . (4)

183

An example of a non-weakly-terminating system is

f(g(c~)) "> g (g (f (f (a)))) .

T h e o r e m 1. Terminat ion o f rewrite sys tems is undecidable, even i f the sys tem has
only two rules.

(5)

Proof. Turing machines can be simulated by rewrite systems. Given any Turing

machine A/, there exists a two-rule system R ~ such that R ~ terminates for all initial terms if,

and only if, ~ halts for all input tapes. Since it is undecidable (not even semi-decidable) if a

Turing machine halts uniformly, it is also undeeidable if rewrite systems terminate.

Each state symbol and tape symbol of the machine will be a constant in the system.

Additionally, we need three operators: a binary operator {which we will denote by adjacency

and assume associates to the right), a unary operator 0 (the erase function), and a ternary

operator C. 1 We use an additional constant O to denote the end of the tape. Corresponding

to a machine in state q with nonblank left portion of the tape ala2 " " " am {from the left end

until the symbol preceding the read head) and risht portion bib 2 • • " bn {from the symbol

being scanned to the end), is the term

C(am " ' " a2a ln,qblb2 "-" b,, n ,machine) ,

where machine is a term encoding transitions as subterms of the form

signifying "if the machine is in state 0 reading the symbol/3 and the symbol immediately to

left of/~ is a, then replace the tape segment a/3 with ,y~/g~, position the head on g, and go

into state 0~. ' ' Any extra tape symbols introduced in this way, are placed within an "erase"

term 0. Thus, for each left-moving instruction of the form "if in state q reading a, write a ~,

move left, and go into state qt,, there are subterms of the form

O(sqa 0 (#) 0 (#)qtsa')

for every tape symbol s, as well as an extra subterm of the form

O(nqa n 0 (#)q '#a ')

{where # is the blank symbol) to handle the left end of the tape. For each right-moving

instruction of the form "if in state q reading a, write a ~, move right, and go into state ql,,,

there are subterms of the form

O(sqa salqlcg(#)O(#))

for every tape symbol s, as well as extra subterm of the form

O(sqn sa'q'O(#)v)

when a is the blank symbol # (to handle the right end of the tape). The term machine is

ICf. [Bergstra-Tucker-80], where it is shown that siz "hidden" functions suffice for the specification of com-

184

the concatenation of all transitions.

The rewrite system R ~ consists of exactly two rules:

C(aX,eyt3p,O(acq3 T{oS~6)r) --) C(~,TX,~6p,machine).

The first rule erases transitions from the machine description until an appl ieabh one reaches

the beginning of the description, at which time the second rule can be applied to simulate a

move. Though there are rewrite sequences that erase all applicable transitions and therefore

do not correspond to a machine computation, those sequences all terminate. Clearly, if the

machine ~ does not terminate for some input tape, then the system R ~ does not terminate

for the corresponding input term. Note that no rewrite step can increase the number of

occurrences of the operator C in a term. Thus, the only way for R~t not to terminate is for

one of the occurrences of C to be infinitely rewritten, in a manner corresponding to an infinite

computation of :M. [2

An alternative proof of undecidabili ty of termination is given in [Huet-Lankford-78]; see Sec-

tion 9. The number of rules in that proof depends on the number of machine transitions. 2

Though termination of a rewrite system means that all (infinitely many) possible deriva-

tions are finite, one need only consider derivations tha t begin with certain terms:

L e m m a 1. A rewrite system is terminating (for all terms) if , and only if , it ter-
minates for all instances o f its left-hand sides.

By an instance of a left-hand side I we mean a term la with terms subst i tuted for the vari-

ables of the left-hand side. Certainly, if a derivation repeats a term, the system is nonter-

minating. We say tha t

D e f i n i t i o n 2. A derivation t l ~ t 2 = ~ ' " = ~ t T ~ ' " = a t k = * " " cycles if t y=t k for
some j < k . A rewrite system cycles if it has a cycling derivation.

Cycling is a special case of "looping":

D e f i n i t i o n 3. A derivation tl=at2=~ "" • ~ t j=* " • • =~tk~ "" " loops if t i is a (not
necessarily proper) subterm of t k for some j < k . A rewrite system loops if it has a
looping derivation.

It is also obvious that looping systems do not terminate. But a system need not be looping to

be nonterminating.

Ezample. System (4) does not terminate. The following infinite derivation begins with an

instance of its left-hand side, but the system is nonlooping:

putable data types. In fact, three do.

2Perhaps a proof along the lines of the one given above was intended by [Lipton-Snyder-77] when they as-
serted, sans proof, that three rules suffice for undeeidability.

- - - - (0+1)

185

- ((- - 0 + 1) + 1)
(- - (- - - 0 + 1) + 1) + 1
(- ((. . . . 0 + 1) + 1) + 1) + 1

= (((- - (. . . . 0 + 1) + 1) + 1) + 1) + 1

To characterize nontermination, therefore, a notion weaker than looping is needed. View-

ing terms as ordered trees suggests the following definition:

D e f i n i t i o n 4. A term s is homeomorphieally embedded in a term t writ ten s <1 t , if,
and only if, s is of the form f (s l , s 2 , . . . ,sin) , t is of the form g(tl , t2, . . . , tn) , and
either
(a) f-----g and s i ~ t]~ for all i , l < i ~ m , where l < j l < j 2 < • . • < j m ~ n , or

(b) s _<I t j for some j , l < j < n .

Thus, this relation embodies a notion of "syntactic simplicity": s <1 t if s may be obtained

from t by deletion of selected operators and operands. If s is embedded in t , but s ¢ t , then

we write s <I t. For example,

- - (0 + 1) <I (((- - (. . . . 0 + 1) + 1) + 1) + 1) + 1 .

D e f i n i t i o n 5. A derivation t l ~ t 2 ~ ' . ' ~ t j ~ " ' ~ t k ~ ' . , is self-embedding if
t j _<1 tk for some j < k . A rewrite system is self-embedding if it allows a self-embedding
derivation.

T h e o r e m 2 [Dershowitz-82]. I f a rewrite system is nonterminating, then it is sel f-
embedding.

The proof of this is based on the Tree Theorem [Higman-52, Kruskal-60, Nash-Williams-63]. s

This theorem means that, to show termination of a system, one can prove it to be non-

self-embedding. The converse, however, does not hold: self-embedding does not imply nonter-

mination.

Example. The rewrite system

f (f (a)) --~ f (g (f (a))) (6)

is both self-embedding and terminating.

Unfortunately, even this sufficient condition for termination is undecidable:

T h e o r e m 3 ~laisted-85]. I t is undeeidable whether a rewrite sys tem is sel f-
embedding.

Of course, self-embedding is partially decidable: just search through all derivations until an

embedding is discovered. I t is similarly undeeidable if a system cycles or loops. (For details,

SA weaker form of "embedding" and correspondingly weaker results appear as an exercise in [Knath-73],
where it was suggested that embedding has applications to proofs of termination.

186

see [Plaisted-85].)

3. T E R M I N A T I O N

To express proofs of termination, we need the following concepts: A partially-ordered set

(S,~-) consists of a set S and a transit ive and irreflexive binary relation ~- defined on ele-

ments of S. 4 As usual, s~-t means tha t either s~-t or s----t, s-~t means the same as tY.-s,

and s ~ t means t _ s . A partially ordered set is said to be totally ordered if for any two dis-

t inct elements s and s t of S, either s > - s t or st).-s. For example, both the set of integers and

the set of natural numbers are total ly ordered by the "greater- than" relation > . The set of

all subsets of the integers is part ial ly ordered by the "proper subset" relation ~ . An exten-

sion of a part ial ordering ~ on S is a part ial ordering ~.r also on S such that s) - s I implies

s ~ s ~ for all s,s*E S. Part ia l orderings of component elements can also be extended to a par-

tial ordering of tuples of elements: a tuple (sl ,s2, . . . , s ,) in (Sl,>-l)x(S2,Y-2)x • • • (S , ,~ -n)

is lexicographically greater than another tuple (t l , t 2 , . . . , t ,) if for some i (l ~ i ~ ; n) s i ~ i t l

while s / ~ t / for all j < i .

A partially ordered set (S,>-) is said to be well-founded if there are no infinite descending

sequences sl~-s2>-sa~- . . . of elements of S. Thus, the natural numbers N under their

"na tura l" ordering > is well-founded, since no sequence of natura l numbers can descend

beyond 0. But > is not a well-founded ordering of all the integers, since, for example,

- 1 > - 2 > - 3 > • • • is an infinite descending sequence. Nor is > a well-founded ordering of

the reals. If (SI,>-I) and ($2,>-2) are two well-founded sets, then their lexieographically

ordered cross-product (SIxS2,~'*) is also well-founded, where a pair (s l ,s2) in S l X S 2 is

greater than another pair (tl , t2) in S I x S 2 !f either s l ~ l t l or else sl----~t I and s 2 ~ z t 2. Simi-

larly, a lexicographic ordering of tuples of any fixed length is well-founded, if the orderings of

the components are. For example, the tuple (2,5,1,6) is greater than (2,4,9,8) in the well-

founded lexicographic ordering of tuples of naturally ordered natural numbers. (See, e.g.,

[Manna-74].)

The notion of well-foundedness suggests the following straightforward method of proving

termination:

T h e o r e m 4. A rewrite system R over a set o f terms T is terminating if, and only
if, there exists a well-founded ordering >- over T such that

t ~ u implies t >-u

for all terms t and u in T.

Example. System (0) terminates, since the lexicographic ordering of tuples of colors (with

blue >white >red) is well-founded and the tuple of colors corresponding to a sequence of mar-

bles is reduced with each rule application. By the nature of the lexicographic ordering, one

4Asymmetry of a partial ordering follows from transitivity and irreflexivity.

187

need only consider the change in the teftmost of the two affected components: if it was white

before, then it is red after; if it was blue before, then it is either red or white after.

The following equivalent formulation (see[Kamin-Levy-80]) takes advantage of the structure of

terms:

Coro l l a ry . A rewrite system R over a set o f terms T is terminating i f , and only i f ,
there exists a well-founded ordering ~ over T such that

l > - r

for each rule l--->r in R and for any substitution o f terms in T for the variables o f
the rule, and such that

t ~ u a n d t ~ - u imply f (. . . t . . .) > - f (. . . u " ")

for all terms in 7".

Example. The system

f (f (c ~)) ~ f (g (f (~))) (6)

is terminating, since the number of adjacent f ' s is reduced with each application. Note that

counting the number of adj acencies makes g (f (f (a))) > f (a), though

f (g (f (f (a)))) ~ f (f (a)) .

The following definition and theorem eliminate the need to consider all derivations t=*u

and are often used to prove termination:

Definition 6. A partial ordering N over a set of terms T is monotonic (with respect
to term structure) if it has the replacement property,

t ~ u implies f (" " " t " " ")~- f (" " " u ' ' ') ,

for all terms in T.

In other words, reducing a subterm, reduces any superterm containing it.

Theorem 5 [Manna-Ness-70]. A rewrite system R over a set o f terms T is terminat-
ing i f , and only i f , there exists a monotonic well.founded ordering ~- over T such
that

l > - r

for each rule l --->r in R and for any substitution o f terms in T for the variables o f
the rule.

Note that the ordering ~- is defined on T, not on terms like ! and r containing variables.

That is why we require that l >-r for all substitutions that yields terms in T. With monotoni-

city, this ensures that t ~-u whenever t reduces to u. As we will see, it is sometimes possible

to "lift" an ordering on T to an orderings on terms with variables so that I >--r in the lifted

ordering guarantees that in fact l >-r for all substitutions.

Example. The system

188

y{g{~)) --> g(f(a)) (7)

terminates. To see this, consider the following well-founded monotonic ordering on monadie

terms: given an ordering on operators, a term s is greater than a term t if s has more opera-

tors than does t , or if they have the same number of operators, but the outermost operator of

s is greater than that of t , or if they are of the same length and their outermost operators are

identical, but the operand of s is (recursively) greater than that of t. Choosing an operator

ordering f > g , the above rule is a reduction.

It is frequently convenient to separate a well-founded ordering on terms into two parts: a

termination funct ion r that maps terms in T to a set ~ and a "s tandard" well-founded ord-

ering ~ on ~.

Def in i t ion 7. A termination funct ion r : T - - > ~ is composed of a set of functions
f~:~-->~), one for each operator f , and is defined by

r (/ (t l , . . . , t ,)) = f ~ (r (t t) , . . . , r (t ,))

for every term f (t l , . . . , t ,) in T, and for which

x ~ z ' i m p l i e s f r (' " a c " ') > - f ~ (" ' x ~ ' ' ')

for all x , x t, * • • in)1/.

In other words a termination function is a monotonic morphism on terms.

T h e o r e m 6 ~anna-Ness-70] . A rewrite system R over a set o f terms T is terminat-
ing i f , and only i f , there exists a well-founded set (Y~,~) and termination function
r:T--> Y~, such that

ry) ~- r(r)

for each rule I-->r in R and for any substitution o f terms in T for the variables o f
the rule.

The use of monotonic polynomial interpretations was suggested in [Manna-Ness-70,

Lankford-75, Lankford-79]. Using this method, an integer polynomial F (x 1 x ,) of

degree n is associated with each n-a ry operator f . The choice of coefficients must ensure

monotonicity and that terms are mapped into nonnegative integers only; this is the case if all

coefficients are positive. (A number of examples may be found in [Dershowitz-Manna-79];

some work on automated polynomial proofs is in progress [BenCherifa-84].) The use of rewrite

systems as termination functions and the formulation of abstract monotonicity conditions are

explored in [Bachmair-Dershowitz-85, Gnaedig-85].

Example. Consider the following system (for symbolic differentiation with respect to x):

189

D z x -> 1
Dz a --> 0

D= (a+f l) --> Dx a + D z / ~
D= (a-fl) -> D= a-Dx fl

D:~ (-a) "--> -Dx a
D x (axfl) -> I~xD x a+axD x/~

D z a D r #
D = (~) --> # 'a ---~--

D z
Dr (In a) -->

Ot

Dx (a p) --> flxa~-lDx a + a ~ x (l n a)xD=/~

where a is any constant symbol

defined as follows:

(8)

other than x. Let the termination function r : T - > N be

r(.+ /~) = ~ (.) + ~(~)
T(~x/~) = r (.) + T(Z)
, (. - / ~) = , (.) + , (Z)

~ (~) = ~(~) + ~ (~)

~(~) = r(~) + ~ (~)
• (D ~ .) = ~(.)~

~ (- ~) = r (~) + l
• (l n ~) = ~ (~) + 1

r(u) = 4

where u is any constant (including x). For each of the nine rules l->r, the value of r

decreases, i.e. r(l)>r(r). For example,

r(Dx (~")) ~- r(-~-) 2 _-- (r(a)+r(]~)) 2 ---- r(a)2+r(fl)2+2r(a)r(fl),
p p

while

D ~ D A
= + , (o / + + ,

This is a decrease, since r(a} and r(/~) are at least 4 and therefore

2~(~)~(~) > 4T(~)+4~(~) > ~ (~)+2~(~)+4 .

Integer polynomials cannot, however, suffice for termination proofs in general, since tha t

would place a polynomial bound on computations {see, e.g., [Huet-Oppen-80 D.

Example. It seems that System (1) cannot be proved to terminate with any monotonic polyno-

mial interpretat ion [Dershowitz-83]. But termination can he proved using exponentials

[Filman-78], defining ~': T - > N as follows:

190

~ (. + :) = ~(.) + r (:) + l

r (- .) =
• (u) = 3,

where u is any constant. Since the value of any term is at least 3, each rule is a reduction.

Proving termination of rewriting modulo equations is, in practice, considerably more

difficult than for plain rewrite systems. Here, given an equational theory (congruence relation)

E , a rule l - ->r in R applies to a term t E T if there is a substi tution a such that l a~ - s for

some subterm s of a term v such that V ~ E t in the theory E . If i - -> r applies in this sense,

then we write t ~ R / E u, where u is any term equal (in E) to that v with s replaced by ra.

The question then is: for given R and E , does there exist an infinite sequence of terms t~ ¢ T

such that t l ~ R / E t 2 ~ R / E " "" ?

Example. Let I denote the equational theory (idempotence):

For any nonempty R , R / / I cannot be terminating, since there must be an infinite derivation

1.~-tl + l ~ R l +r----l(l + l) + r ~ R . • • for any l - -> r ER.

The equational theory A C , consisting of the associative and commutative axioms,

f (oqf (/3,"/)) = f (f (a,~),'/)
f (oq:3) --- f (/3,oI),

is particularly impor tan t in practice. Let t" denote the flattened version of a term t , with all

nested occurrences of associative-commutative operators stripped, and where the order of

arguments of such operators is not significant, and let T ~ { t : t E T}. Two terms u and v are

equal in A C if, and only if, ~" and ~" are the same. It is natural, therefore, to consider order-

ings on flattened terms.

191

T h e o r e m 7 [Dershowitz,etal.-83]. Let R be a rewrite sys tem over some set o f terms T
and F a set o f associat ive-commutative operators. The rewrite relation R / A C is ter-
mina t ing i f , and only i f , there exists a well- founded ordering >-- on T such that

T>-F
for each rule l-->r in R and for any subst i tut ion o f terms for the variables o f the
rule, and

f (l,~) ~- f (r,~)

for each rule l - > r in R whose lef t -hand side l or right-hand side r has outermost
associat ive-commutative symbol f C F or whose right-hand side is j u s t a variable
(where ~ is a variable otherwise not occurring in the rule), and such that

u ~ R / A C V and ~ - ~ imply f (• ' ' ~ " ' ') > - f (• ' ' ~ ' ' •)

for all terms u and v in T and f (" " u " ") and f (" . " ~ . " .) in "T.

Since addition and multiplication are themselves associative and commutative, monotonic

polynomial interpretat ions are frequently helpful. To provide an ordering for flattened terms,

a polynomial interpretat ion of a term should preserve its value under associativity and eom-

mutativity. The interpretations, F (x , y) : x y and F (z , y) ~ - x + y + l , for example, preserve

value, whereas F(x ,y) - -~xy + 1, though symmetric, does not.

Example. Consider the following system (for Boolean rings):

(~-1 ---) a
~ - 0 --> 0
~.ol --)- (~

~ + 0 --~
a + ~ --) 0

(~+fl) '~ --> (~'~'1 + 0 ' ~)

(9)

One can use the following polynomial interpretat ion to prove its termination:

~(.+Z) = ~ (.) + T (Z) + I
r(..Z) = r (-) rO)

r(u) = 2,

where u is any constant.

4. S I M P L I F I C A T I O N O R D E R I N G S

In proving termination, one can use any ordering ~- that is well-founded over all terms

tha t could appear in any one derivation; the ordering need not be well-founded over all terms

that appear in all derivations. We call an ordering for which >-N=** is always well-founded,

regardless of what rules are in R , well-founded for derivations. Thus, to apply Theorem 4,

we need only that >- be a well-founded ordering for derivations. In particular, Theorem 2

implies the following:

192

T h e o r e m 8. A partial ordering ~- is well-founded for derivations i f it has an exten-
sion that contains the embedding relation t>.

To apply Theorem 5, we need ~ to be monotonic, as well as well-founded for derivations.

The following definition describes monotonic extensions of I>:

D e f i n i t i o n 8 [Dershowitz-82]. A monotonic part ia l ordering >- is a simplification
ordering for a set of terms T if it possesses the subterm property,

f (' ' ' t ' ' ') ~ t ,

and the deletion property,

f (' ' ' t ' ' ') >- f (.),

for all terms in T.

By i terat ing the subterm property, any term is also greater than any of the (not necessarily

immediate) subterms contained within it. The deletion condition asserts that deleting sub-

terms of a {variable arity) operator reduces the term in the ordering; if the operators f have

fixed arity, the deletion condition is superfluous. Together these conditions imply that "syn-

tactically simpler" terms are smaller in the ordering.

T h e o r e m 9 [Dershowitz-79]. Any simplification ordering is a monotonic well-
founded ordering for derivations.

In the previous section, we saw the use of polynomial interpretat ions for termination

proofs. That method requires that terms be mapped onto the well-founded nonnegative

integers; using simplification orderings, on the other hand, allows the methods to be extended

to domains that are not themselves well-founded. For example, one can associate a monotonic

polynomial F(x j , . . . , x n) over the reals with each n -a ry operator f [Dershowitz-79]. For

any given choice of polynomials F to provide a simplification ordering, we must have that

x i > x i l i m p l i e s F (' ' ' z i ' ' ') > F (' ' ' x i " ' ')

and i

F (- . - =i " ") > x~

for all positions i and for all real-valued xs. 5 For termination, we need

r(l) > tau(r),

for all rules I - ->r and for all real value assignments to the variables r (a) in r(l). Allowing the

x ' s to take on any real value is usually too strong a requirement; instead one may show tha t

terms always map into some subset R I of the reals, i.e. x l , ..., x n in R ~ implies F(xl , . . . ,xn)

in R (Then one need only show that the conditions hold for all x in R I. The above condi-

tions are all decidable {albeit in superexponential time), since they are logical combinations of

mult ivariate polynomial inequalities over the reals [Tarski-51] (see [Cohen-69] for a much

~rhe methods of the next section allow the strict inequalities > in these two conditions to be replaced by ~.

193

briefer decision procedure and [Collins-75] for a more efficient one). Thus, the polynomial ord-

ering can be effectively "lifted" to open (i.e. nonground) terms. It is similarly decidable if

there exists polynomials (and a suitable definition of R t) of a given maximum degree that

satisfy the conditions and thereby prove termination. (The decision procedure, however, can-

not point to the appropriate polynomials). For polynomials over the natural numbers, these

conditions are not decidable (see [Lankford-79]).

Example. Consider the set of expressions T constructed from some set of constants and the

single operator x and the system (for semigroups)

(o~x/3)x 9 "~ ax(flx,-/) (10)

Terms t and u are compared by comparing their real value interpretations, r(t) and r(u).

The real polynomials used are

~(~x/3) = d . r (~) + ~(/3)

for some real d > 1, for products, and

~ (u) = e

for some e >0, for constants u. The value of the function r decreases for the subexpression

that the rule is applied to: for any terms a,/3, and 9,

r((olx/3)x'/) = d'~'(~x/3)xr('7) ~-- d2"z(cQ + d'r(/3) + r(9),

while

r (~ × O × ~)) = d ' r (~) + ~ O x ~) = d - r (~) + d ' ~ (~) + ~ (~) .

This is a reduction, i.e.

r((c, xjS)x,'t) > ~'(c~x(/3x-r)),

since d2>d and r (a)>0 .

Most orderings used in conjunction with Theorem 5 to prove termination of rewrite sys-

tems are simplification orderings. In fact:

T h e o r e m 10. Any total monotonic ordering >- is well-founded for derivations if,
and only if, it is a simplification ordering.

In general, however, total monotonic orderings, and hence simplification orderings, do not

suffice for termination proofs.

Example. Consider the system

f (a) -~ f (b) (11)
g(b) --) g(a).

If an ordering > is total, then either a>b or b>a. If a>b, then we would also have

g(a)>g(b), and the second rule would not be a reduction; analogously, if b > a , the first rule

194

would not be.

We have seen above (Theorem 1) that termination is undecidable for two-rule systems;

for one-rule systems, the question of decidabili ty is open. On the other hand,

T h e o r e m 11 [Jouannaud-Kirchner-82]. It is decidable i f a system of only one rule
reduces under any simplification ordering.

5. Q U A S I - O R D E R I N G S

This section describes methods for proving termination using quasi-orderings. A quasi-
ordered set (S , ~) consists of a set S and a transit ive and reflexive binary relation ~ defined

on elements of S. For example, the set of integers is quasi-ordered under the relation "greater

or congruent modulo 10." Given a quasi-ordering ~ on a set S, define the equivalence relation

as both ~ and ~ and the part ial ordering ~- as ~ but not ~ . A quasi-order ~ on S is

total if, for any two elements s and s t in S , either s ~ s ' or else s ~ s ' . Note that the strict

part ~ is well-founded if, and only if, all infinite quasi-descending sequences s l ~ S 2 ~ S 3 ~ • • •

of elements of S contain a pair s j~s k for some j < k . In other words, if ~ is well-founded,

then from some point on, in any infinite quasi-descending sequence, all elements are

equivalent.

A stronger notion than well-foundedness is accordingly the following:

Def in i t ion 9 [Kruskal-60]. A set S is well-quasi-ordered under a quasi-ordering ~ if
every infinite sequence s i,s2, " • • of elements of S contains a pair of elements s j and
sk, j < k , such that s j~s k.

Thus, the strict part of any well-quasi-ordering is well-founded. Well-quasi-ordered sets are

said to have the finite basis property in [Higman-52]; for a survey of the history and applica-

tions of well-quasi-orderings, see [Kruskal-72]. A generalization, limiting the contexts in which

an embedding may occur, and possibly having applications to proofs of termination, can be

found in [Ehrenfeucht,etaL-83, Bucher,etal.-84, Puel-85]. A even stronger notion than well-

quasi-ordering, namely better-quasi-ordering, is exploited in [Laver-78].

Note that any finite set is well-quasi-ordered under any quasi-ordering (including equal-

ity). I t follows from the definitions that if a set is well-quasi-ordered under ~ , then it is well-

founded under (any extension of) the part ia l ordering ~-; the converse is true for total order-

ings, i.e. if a set is well-founded under a total ordering)--, then it is well-quasi-ordered under

195

T h e o r e m 12. A rewrite system R over a set o f terms T is terminating i f there ex-
ists a quasi-ordering ~, which extends a well-founded ordering ~- and has the strict
subterm property

f (- ' . t . ' .) >.-t,

such that

l ~ . - r

for each rule l ->r in R and for any substitution o f terms in T for the variables o f
the rule, such that

s ~ t a n d s ~ t imply f (' ' ' s ' ' ') ~ f (' ' ' t ' ' ') .

(Cf. [Kamin-Levy-80].)

The quasi-ordering used in the above theorem can be a combination of two quasi-

orderings, one used to show that eventually all terms in a derivation are equivalent and the

second to show that there can only be a finite number of equivalent terms in any such deriva-

tion.

Definit ion 10. A rewrite system R is quasi-terminating for a set of terms T, if all
(infinite) derivations contain only a finite number of different terms. Equivalently (for
finite systems), any infinite derivation must cycle.

Quasi-terminating systems are also referred to as globally finite. To prove that a system is

quasi-terminating, one can use quasi-orderings in the obvious way:

T h e o r e m 13. A rewrite system R over a set o f terms T is quasi-terminating i f there
exists a quasi-ordering ~, which extends a well-founded ordering ~- and whose
equivalence relation ~-~ admits only finite equivalence classes, such that

t ~ u implies t ~ u

for all terms t and u in 7".

The following theorem gives one method for establishing finiteness of equivalence classes:

T h e o r e m 14. I f the strict part ~- of a quasi-ordering ~ on a set o f terms T is an
extension of the embedding relation ~>, then ~-~ admits only finite equivalence
classes.

Example. Consider the polynomial interpretation

r(if(,~ ,~, ,~)) = r (cOx(r (~)+r ('~))

with constants assigned the value 2. The partial ordering t >-u if, and only if, r (t) > r (u) does

contain the embedding relation. Since, for the system (for normalizing conditionals)

i f (i f (c~,fl,q),8,e) --> i f (a,i f (~,6,,),i f (%6,¢)) (12)

r(l)=r(r) , the system is quasi-terminating.

Another method is the following:

196

T h e o r e m 15. I f the strict part ~ of a quasi-ordering ~ on a set o f terms T is
well-founded and has the subterm property

f (' ' ' t ' ' ') >-t ,

the deletion property

f (. . . t . . .) >- f (.),

and admits only a finite number o f terms smaller than any given one, then ~ admits
only finite equivalence classes.

Note that the ordering need not be monotonic. (Cf. [Lipton-Snyder-77].)

Example. Consider the following system (for distributivity):

.x(jS+u) ~ (o, xH)+(,~x~)
(~+~)x. --> (~x.)+(~x.)

Ixc~ ~

(13)

Under the natural interpretation (+ as addition and x as multiplication, but constants as 2)

terms can be mapped into natural numbers (and hence the term ordering has order-type w)

while satisfying the subterm property. Since l ~ r under this interpretation the system quasi-

terminates.

Of course:

T h e o r e m 16 [Guttag, etal.-83]. Quasi-termination o f rewrite systems is undecidable.

On the other hand, nontermination of any quasi-terminating system is clearly semi-decidable.

Also, termination of a quasi-terminating system for a given input term is decidable (construct

all derivations initiated by that term until they terminate or cycle).

Example. System (10) quasi-terminates, as does any (finite) system that never increases the

size of terms.

Another notion that has been investigated is fair termination (of quasi-terminating sys-

tems), in which all infinite derivations must include an application of each rule that is

infinitely often applicable. See [Porat-Francez-85].

Using a definition of monotonicity, we can give a local condition for quasi-termination:

Def in i t ion 11. A quasi-ordering ~ over a set of terms T is monotonic if

t ~ u implies f (' ' ' t ' ' ') ~ f (' ' ' u ' ' ')

for all terms in 7".

197

T h e o r e m 17 [Dershowitz-82]. A rewrite system R over a set o f terms T is quasi-
terminating i f there exists a monotonic quasi-ordering ~, which extends a simplifica-
tion ordering ~-, such that

l ~ r

for each rule l-->r in R and for any substitution o f terms in T for the variables o f
the rule.

Example. System (13) can be shown to be quasi-terminating using the "natural" interpreta-

tion which preserves the value of a term under rewriting, i.e. r (l) : r (r) for both rules. By

letting constants have a positive value, the quasi-ordering m is an extension of the

simplification ordering > .

Given quasi-termination, the following method may be used to prove full termination:

T h e o r e m 18. A quasi-terminating rewrite system R over a set of terms T is ter-
minating i f there exists a monotonic quasi-ordering ~ such that

l N r

for each rule l--->r in R and for any substitution of terms in T for the variables o f
the rule.

Thus, to prove termination one can first find a monotonic quasi-ordering ~ guaranteeing

quasi-termination, and then find any monotonic quasi-ordering ~t under which each rule is a

reduction. 6

Example. The proof of termination of System (12) may be completed using the monotonic

quasi-ordering t~ 'u if, and only if, It I~ lu I, which "decreases" with application of the

length-increasing rules.

Example. To complete a proof of termination for the quasi-terminating System (10), a mono-

tonic quasi-ordering ~ can be used, under which t l x t2~ t l l x t2 ~ if, and only if,

I t ,xt=l-- I t l 'Xt=' l and It,[="It1' I.
Extending the results of the previous section, we have

D e f i n i t i o n 12 [Dershowitz-82]. A monotonic quasi-ordering ~ is a quasi-
simplification ordering for a set of terms T if it possesses the subterm property

f (. . . t . . .) ~ t ,

and deletion property,

f (' ' . t . ' .) ~ f (.),

for all terms in T.

That is, a quasi-simplification ordering is a monotonic extension of the embedding relation I:> .
m

A quasi-simplification ordering for fixed-arity operators is called a divisibility order in

[Higman-52]. The strict part ~- of any quasi-simplification ordering ~ is well-founded for

SILipton-Snyder-77 , Guttag, etaL-83] use "increasing length" where any monotonic quasi-ordering would do.

198

derivations. For proving termination, it is enough that ~ be monotonic:

T h e o r e m 19 [Dershowitz-82]. A rewrite system R over a set o f terms T is terminat-
ing i f there exists a quasi-simplification ordering ~ such that

l ~ - r

for each rule i ->r in R and for any substitution o f terms in T for the variables of
the rule.

6. M U L T I S E T O R D E R I N G S

Multisets, or bags, are like sets, but allow multiple occurrences of identical elements. A

part ial ordering >- on any given set S can be extended to form an ordering ~ on finite mul-

tisets over S. In this extended ordering, M>~-M ~, for two finite multisets M and M I over S ,

if M I can be obtained from M by replacing one or more elements in M by any (finite)

number of elements taken from S, each of which is smaller than one of the replaced elements.

More formally, let ~ (S) denote the set of finite multisets of elements of S. Then:

Def in i t ion 13 [Dershowitz-Manna-79]. For a partially-ordered set (S , ~) , the multiset
ordering >-~ on ~{(S) is defined as follows:

M>-~.-M I

if, and only if, for some multisets X , Y ¢ ~ (S) , where X is a nonempty subset of M,

M ' = (M - X) U Y

and for all y E Y there is an x E X such that

x~ . - y .

Def in i t ion 14. For a quasi-ordered set (S ,L) , the multiset quasi-ordering ;~z on
J~(S) is defined as follows:

M 2 ~ : M I

if, and only if, for some multisets X , Y E ,M(S),

M ' ~ (M - X) O Y

and for all y (Y there is an x EX such that

x ~ y ,

where two multisets are considered equivMent if the equivalence classes of their ele-
ments (under ~.) are the same.

For example, the multiset {3,3,3,4,0,0} of natural numbers is identical to the multiset

{0,3,3,0,4,3}, but distinct from {3,4,0}. If N is the set of natura l numbers 0, 1, 2, ... with the

> ordering, then under the corresponding multiset ordering >> over N, the multiset {3,3,4,0}

is greater than each of the three multisets {3,4}, {3,2,2,1,1,1,4,0}, and {3,3,3,3,2,2}. In the first

case, two elements have been removed (i.e. replaced by zero elements); in the second case, an

occurrence of 3 has been replaced by two occurrences of 2 and three occurrences of 1; and in

the third case, the element 4 has been replaced by two occurrences each of 3 and 2, and in

199

addition the element 0 has been removed. (See also [Smullyan-79, Gardner-83].)

This ordering on multisets enjoys the following minimality property:

T h e o r e m 20 [Lescanne-Jouannaud-82]. For a given partial ordering >- on a set S,
any partial ordering ~,.~l on ,M(S) that satisfies the property

s >-s t implies {" ' ' s " ' ' }>.>-l{. . . s t . . . }

is contained in the multiset ordering >->-.

Multiset orderings are used in termination proofs on account of the following:

T h e o r e m 21 IDershowitz-Manna-79]. The multiset ordering ~ is well-founded if,
and only if, ~- is.

Example. To prove termination of System (8), we use a simple path ordering of [Plaisted-78].

Terms are mapped into multisets of sequences of operators; sequences are compared in the

monadic path ordering >mpo, as we did for System (7}. The monotonic termination function

used for the simple path ordering is

r(t) ~- { (f l , f 2 , . . . , f k) I (f l , f 2 , . . . , f k) is a path in t},

where a path is a sequence of operators, starting at the outermost one of the whole term (the

root, viewing terms as trees) and taking subterms until a constant (leaf) is reached. For the

operator ordering, we take D to be greater than all else. For example, consider the expression

t = D= D= (Dz y x(y +D. D= x)),

or with the D ' s numbered for expository purposes,

t = D 1 D 2 (D a y x (y + D 4 D s x)) .

There are three paths, and

r(t) = {(D1,D2,x,Da,y),(DI,D2,x,+,y),(D1,D2,x,+,D4,Ds,x)}.

Applying the rule

to t yields

u = Dl (((y + D 4 D s x) x D 2 D 3 y) + (D a y x D 2 (y + D4D~x)))

(with the labeling of the Dx's retained), and accordingly

r(u) --~ { (DI ,+,x ,+,y) , (DI ,+,x ,+,D4,Ds ,x) , (DI ,+,x ,D2,D3,y) ,

(D I, + , x ,D 3,y), (D I, + , x ,D 2, + ,y), (D I, + , x ,D 2, + ,D 4,D s,x) }.

We have r(t)>>rapor(u), since

200

(DI,D2,×,Da,y) >mpo
(DI,+,x,D2,+,D4,Ds,x) >,npo

(DI,D2,x,D3,Y) >rnpo
(DI,D2,×,Da,Y) >rapo
(DI,D2,x,D3,Y) >mpo

(DI,+,x,D2,+,D4,Ds, x) >~t,o

(DI,+,X,+,Y)
(DI,+,x,+,D4,Ds,x)
(DI,+,x,D2,Da,y)
(DI,+,×,Da,Y)
(DI,+,x,D2,+,Y)
(DI,+,x,D2,+,D 4,Ds,x).

In the monadic path ordering, sequences are compared left-to-right: At each step, any opera-

tor or constant less than or equal to the corresponding one in the other sequence is skipped

over. Whichever sequence is finished first is smaller; if both finish together, whichever last

had a smaller operator is largerfl

If (S,>-) is totally ordered, then for any two multisets M,M~E 14(S), one may determine

whether M~,~M t by first sort ing the elements of both M and M I in descending order (with

respect to the relation ~) and then comparing the two sorted sequences lexicographically. 8

For example, to compare the multisets {3,3,4,0} and {3,2,1,2,0,4}, one may compare the sorted

sequences (4,3,3,0) and (4,3,2,2,1,0). Since (4,3,3,0} is lexicographically greater than

(4,3,2,2,1,0), it follows that {3,3,4,0}>>{3,2,1,2,0,4}. [Lescanne-$ouannaud-82] describes an

implementation of multiset orderings for the nontotal case.

Consider the case where there is a bound k on the number of replacement elements. Any

termination proof using this bounded multiset ordering over N may be translated into a proof

using natural numbers. This may be done using the termination function

k" - 1
¢ (M) = L ' k - I

n E M

which maps multisets over the natural numbers into the natural numbers. When exactly k

elements n - 1 replace one element n , the above function gives the exact number of replace-

ments until termination.

In general, if (S,~-) is of order type ~, then the multiset ordering (~ (S) , ~ } over (S,~-)

is of order type w e .̀ This follows from the fact tha t there exists a mapping ¢ from .M(S) onto

we ̀that is one-to-one and order-preserving, i.e. if M~v'~-M I for M,MIE ~(S), then the ordinal

~b(M) is greater than ¢(M') . That mapping is

¢ (M) = S wig(m)
ra { M

where V' denotes the natural (i.e. commutative) sum of ordinals and ¢ is the one-to-one

order-preserving mapping from S onto a.

7[Gorn-73] uses a "stepped" lexieographic ordering (under which longer sequences are larger) to prove termi-
nation of differentiation, but without using multisets, his proof applies only when D's are not nested.

SThis is the ordering I + in [Manna-69].

201

Example. The simple path ordering does not work for the system:

-(~+~) --> ---,~ x ---fl
- (~ x~) --> - - - ~ + - - - ~

(14)

Instead, we use Theorem 19 and define the following quasi-simplification ordering: t>->-n for

two terms t and u if, and only if,

It I+.~[, I+. and {lal+x:-a in t} ~" {]o~[+x:-a in u},

where the multisets contain the value [~[+x (the number of oeeurrenees of operators other

than - in a) for each subterm of the form - a , and multisets are compared using =' . I i is

easy to see that this quasi-ordering satisfies the replacement and subterm properties of quasi-

simplification orderings on fixed-arity terms. I t remains to show that each rule reduces the

subterm it is applied to. For all three rules, the number of operators other than - is the

same on both sides. To see that

note that there are two less elements in the multiset of numbers of operators for the right-

hand side than for the left-hand side. To see that

-(~+~) >- - - - ~ x - - - ~

-(~x~) >- ---~+---~

note that the number of operators other than - in ~+/~ and ~x/3 is greater than that of

- - a , - ~ , a, - - / 3 , -/3, and 13.

7. P R E C E D E N C E O R D E R I N G S

We use the muttiset ordering in the following:

Def in i t ion 15 [Dershowitz-82]. Let >- be a part ia l ordering on a set of operators F .
The recursive path ordering >'~o on the set T(F) of terms over F is defined recursive-
ly as follows:

s = f (s l , . . . , s , ,) ~',~o g (t l , . . . , t ,) ~- t

if

o r

o r

sl ~rpo t for some i----1,...,m

f ~ g and s >-rpo t 5 for all j--~l,. . . ,n

f = g a n d { s l , . . . ,sin} ~"rpo {tl ,tn},

where >'>-rpo is the extension of >-n~o to multisets and ~wo means >',~o or permuta-
tively congruent (equivalent up to permutat ions of subterms).

This definition is similar to a characterization of the path of subterms ordering given in

202

[Plaisted-78b]. ° The idea is that a term is decreased by replacing a subterm with any number

of smaller (recursively) subterms connected by any structure of operators smaller (in the

operator ordering) than the outermost operator of the replaced subterm.

To determine, then, if a term s is greater in this ordering than a term t , the outermost

operators of the two terms are compared first. If the operators are equal, then those (immedi-

ate) subterms of t that are not also subterms of s must each be smaller (recursively in the

term ordering) than some subterm of s. If the outermost operator of s is greater than that of

t , then s must be greater than each subterm of t; while if the outermost operator of s is nei-

ther equal nor greater that that of t, then some subterm of s must be greater or equal to t.

For example, suppose - > + , and let s~- -~-(lx(l+0)) and t - - - - - l + - (0 x l) . The term s is

greater than t under the corresponding recursive path ordering >rpo by the following line of

reasoning:

s >rpot since -- > + and s >rpo - 1 , - (0 x l)

s > r p o - 1 since l x (l + 0) > r p o 1

l x (l + O) > r p o l since 1~:~ol

s >rpo-(Oxl) since l x (l + 0) > r p o 0 X l

l x (l + 0) > r p o 0 X l since 1=1 and l + 0 > r p o 0

1+0>f ro0 since 0>0.

T h e o r e m 22 [Dershowitz-82]. The recursive path ordering is a simplification order-
ing.

Using the recursive path ordering to prove the termination of rewrite systems generalizes the

(exponential interpretat ion) method in [Iturriaga-67]. 10

Example. We can use a recursive path ordering to prove termination of System (1). Let the

operators be ordered by - > x > + . Since this is a simplification ordering on terms, by

Theorem 9, we need only show that

- - - -¢r > r p o c~

-(~+/~) >~po -c~x-8
-(axe) >,po - a + - 8

ax(~+~) >~,,o (,~x~)+(ax~)
(~+~)xa >~po (~x~)+(~xa)

for any terms c~, /3, and ft. The first inequality follows from the subterm condition of

simplification orderings. By the definition of the recursive path ordering, to show that

°This ordering addresses the problem posed in [Levy-80].
1°The cases where Iturriaga's method works are those for which the operators are partially ordered so that

the outermost ("virtual") operators of the left-hand side of the rules are greater than any other operators.

203

- (a+/~)>rpo(-c~x- /~) when - > x , we must show that - (a+/~)~rpo-c~, and

- (a+/~)>,~o- /~ . Now, since the outermost operators of -(a+jO), - a , and -/~ are the same,

one must show that a+/~>,~oa and a+fl:>rpo/~. But this is true by the subterm condition.

Thus the second inequality holds. By an analogous argument, the third inequality also holds.

For the fourth inequality, since x > + , we must show ax(/~+-~)>~oax/~ and

,~x(/~+q}>,po~X% By the definition of the recursive path ordering for the case when two

terms have the same outermost operator, we must show that {a,/~+q}>>rpo{c~,fl } and

{~,/~+q}>>rpo{~,q}. These two inequalities between multisets hold, since the elements/~+q is

greater than both /~ and q with which it is replaced. Similarly the fifth inequality may be

shown to hold. Therefore, by Theorem 9, this system terminates for all inputs.

The multiset ordering described above, nested multiset ordering [Dershowitz-Manna-79],

and simple path ordering may all be thought of as special cases of the recursive path ordering,
in which the multiset constructor { • • • } is greater than other operators. The nested multiset

ordering is just a recursive path ordering on all terms constructed from one varyadic operator,

and {with just that one operator) is of order type e0 .ll Gentzen used such an ordering to show

termination of his "normalization procedure" [Gentzen-38]. Two other interesting examples of

e 0 termination arguments may be found in [Kirby-Paris-82].

The above definition of the recursive path ordering is not particularly well-suited for com-

putation. The recursive decomposition ordering ~-r,to {defined in [Lescanne-84, Plaisted-79]

for the case when the ordering ~- on operators is total) "preprocesses" terms in an at tempt to

improve efficiency. Suppose ~- is total, and let t" denote the term t-~-g(tl, . . . ,tn) with all

subterms sorted according to ~'rdo, i.e. [=g([i~, ' '" ,tin), where t s~-rdo ' ' ' ~rdot], and

{ t]~ , . . . , t£} is permutatively congruent to { t l , . . . , t n } . Consider two sorted terms

g = u [f (s l , . . . , s m)] and [=v[g(t l , . . . , tn)] ,where f and g are the greatest operators in s

and t, and u and v are the "contexts" surrounding the leftmost {maximal) occurrences of f

and g in s and t, respectively. Then,

S ~'rdo t

if, and only if, the decomposition of g,

(f ,(S 1 , Srn },U [o]),

is greater than the decomposition of [,

(g , (t~ , t .) , ~ I o l) ,

where the three components are compared lexicographically, the operators f and g according

to ~ , the subterms s i and tj lexicographically {using ~'r~o recursively), and the contexts tt

and v recursively. In comparing contexts, the operator o is considered to be greater than any

term not containing o; in choosing greatest f and g, circles are ignored. For example, sup-

pose 0 > - > x > + > l , s-----~-(lx(l+0)), and t - - - = - l + - (0 x l) . Their sorted terms are

llThat the nested multiset ordering has the properties of simplification orderings was pointed out in

204

g - ~ - ((0 + l) x l) and t ' - - - - - (0 x l) + - l . The full decomposition of g is

(0,(),(--,((x,((+,(o,l),o),l),o)),o});

that of [is

(0,(),(-,((x,(o,1),o)),(+,(o,(-,(),o)),o))).

The first decomposition is greater, since (+,(o,1),o) is greater than just o.

With the above definition, the comparison of two sorted terms is essentially lexicographic.

Sorting a list of sorted terms and building the decomposition are believed to be relatively inex-

pensive [Dershowitz-Zaks-81, Lescanne-Steyaert-83]. The definition of "decomposition" can be

extended to the nontotal ease [Jouannaud,etal.-82, Rusinowitch-85]. The recursive decomposi-
tion ordering as welt as the path of subterms ordering ~laisted-78b] and path ordering
[Kapur-Sivakumar-83], extend the recursive path ordering somewhat when the ordering N on

operators is partial. The four are are equivalent in the total case. For example, the path of

subterms ordering makes h (f (c~), f (fl)) >pso h (g (afl),g (c~,/~)) if f > g, but the two are incom-

parable under >rpo. With a total ordering on operators, terms are also totally ordered.

Thus, one can determine that h(f(a),f(fl))>rpoh(g(a,fl),g(a,fl))in all three possible cases:

a>fl, fl>c~, and a~-fl. The exact relation between them is investigated in [Rusinowitch-85].

These orderings are also equivalent for monadic terms, even when the operator ordering is

partial; an efficient implementation of the monadic case is given in [Lescanne-811.

These precedence orderings may be conveniently lifted to apply to nonground terms (con-

taining variables) by considering variables as (zeroary) constant symbols, unrelated to any

other symbol. For the recursive path ordering this idea is illustrated in [Dershowitz-821 and

formalized in [Ituet-Oppen-80]; for the reeursive decomposition ordering this is done in

[Jouannaud,etal.-82]; for the path of subterms ordering, see [Plaisted-78b]. For example, we

have -(a+fl)>rp o - a x - f l , where a and fl are variables, since - is greater than x (under >)

and -((~+fl) is greater than both - a and - f l (under >,-po). For -(a+fl)>rvo-a, it must be

that c~+fl>rpoa , which is true since + ~ a and a~rpoa. Given a partial ordering N of opera-

tors F, the following lifted ordering can also be used:

where orderings are viewed as relations and all possible total extensions of the given pre-

cedence are considered. (See, for example, [Forgaard-84].)

These orderings are also incremental. That is, one can start with an empty ordering on

operators, and add to it only as necessary to satisfy given inequalities between terms. How

this may be done with the recursive decomposition ordering is described in [Jouannaud,etal.-
82] (see also [AitKaci-83]). When comparing two terms, the comparison may stop when two

decompositions have incomparable symbols, say f and g, as their first components. The idea

is to add f > g to the ordering at that point. (This method has been implemented in the

[Scherlis-80 I. For a "constructive" discussion of this ordering, see [Paulson-84].

205

REVE system [Lescanne-83]. Details may be found in [Choque-83, Detlefs-Forgaard-85].) For

instance, in order for ~x(f l+ '7)>rdo(axfl)+(ax '7) to hold, one needs x~>+; if x > + , then for

- - (a+f l)>rdo- -ax- - f l to hold, it must he that - > x . But choosing an ordering on operators

so that two terms are comparable under the recursive path ordering is NP-complete

[Krishnamoorthy-Narendran-84] in the number of different operators.

It is sometimes necessary to transform terms before comparing them in the recursive path

ordering. As long as the ordering on the operators of the transformed terms is well-founded,

the recursive path ordering on transformed terms will also be:

T h e o r e m 23 [Dershowitz-82]. The recursive path ordering ~n~o on the set o f terms
T(F) is well-founded if, and only if, the partial ordering ~- on the set o f operators F
is well-founded.

But the transform r, which acts as termination function, needs to satisfy the monotonicity

condition

r (t)~por (u) implies r (f (" " t " "))~-~or(f (. . . u " ')) .

Depending on the particular r, this condition may or may not hold. One way in which terms

may be transformed is to let the kth operand of a term act as its operator. Then to compare

two terms one must first recursivelg compare their kth operands and then use the recursive

path ordering. With this transform, the result is a monotonic simplification ordering. (See

[Dershowitz-82].)

Ezample. To prove that System (12) terminates we consider the condition to be the operator.

The condition i f (a,fl,'7) of the left-hand side is greater (by the subterm property) than the

condition a of the right-hand side. Thus, we need to show that the left-hand side is greater

than both right-hand-side operands if(fl,~,E) and i f ('7,~,E). Again, i f (a,fl,'7) is greater than

both operators fl and '7, and now the left-hand side is clearly greater than the remaining

operands/i and E.

Ezample. The following system (for a combinator C) terminates:

(c.((~-~)-'7).~ ~ (~.'7).((~-'7).~). (is)

One way to see that is to consider the left operand of • to he the operatorJ 2

This particular ordering, considering the first operand to be the operator and applied to

terms constructed only from one varyadic operator f , is of order type /'0 (see [Veblen-08,

Feferman-68].) This can he shown with the following order-preserving mapping ~ershowitz-

80] ~b from T({f}) onto Fo:

12This kind of proof is possible when the eombinator has a non-a~eending property described in [Pettorossi-
78, Pettorossi-81].

206

¢(f) = 0

¢ (f (f , . . . , f)) ~- n w h e r e n is the number o f operands f

r l

¢ (f (a , f l l , f 2 , . - . , fir,) = ¢¢(a)(Sw~(~'})+~(t)
i = l

where ¢ 0 (f) = f , ¢1(f)~__~# (the fl-th epsilon number), ¢~(f) is the f t h fixpoint ~ of ¢~(~)~--~

common to ¢~ for all ordinals p < a , ~ is the natural (commutative) sum of ordinals, and 6 is

1 if ¢(a}~--~-l, n = 1 , and ¢(f l) is an epsilon number and is 0 otherwise. (The purpose of $ is to

ensure that ¢ (f (f , f)) > ¢ (f) even if ¢(f) is an epsilon number.) Tha t this mapping is order-

preserving follows from the fact ([Feferman-68, Weyhrauch-78]) that Ca(f)>t,b°'(ff) if and only

if a = a ' and f > / ~ , or else a > a I and ~ba(f)>fl I, or else a < a t and f>~,baz(flt).

More generally, terms may be mapped by replacing their operators with the whole term

itself, where the new operator is the whole term itself ordered by some other well-founded ord-

ering:

Def ini t ion 16 [Kamin-Levy-80, Plaisted-79]. Let ~ be a quasi-ordering on a set of
terms T. The semantic path ordering ~ p o on T is defined recursively as follows:

8 = f (s l , . . . , s i n) >*po g (t l , ' ' ' , t .) --~ t

o r

o r

si ~epo t for some i =l , . . . ,m

s >- t and s ~spo tj for all j= l , . . . , n

s ~-~ t a n d { s l , . . . ,sin} >'>'spo { t l , . . . ,tn},

where >'>'spo is the extension of >-~o to multisets and ~spo means >'spo or permuta-
tively congruent (equivalent up to permutations of subterms}.

To use this semantic path ordering in a termination proof, the monotonicity condition

t ~ t t implies f (- - - t ' - -) > - f (- ' ' u - - -)

must hold.

Example. Consider the system

g (a,f) -> h (~,f) (18)
h (I (a),f) --> f (g (a,f)).

The first rule suggests g > h ; the second requires h > f and h ~ g . This conflict can be over-

come by letting > be a lexieogTaphic combination of a recursive path ordering with g eeh > f

and one with g > h . Comparing terms under the corresponding >,eo shows a reduction for

both rules.

207

The recursive path ordering has also been adapted to handle associative-commutative

operators by flattening and transforming terms (distributing large operators over small ones)

before comparing them [Plaisted-83, Bachmair-Plaisted-85]. Here, too, the difficulty is in

ensuring monotonicity. Flattening alone would not be monotonic. For instance, if f > g then

f(a,a)>rpog(a,a), but f (f (a , a) , a) = f (a , a , a) <rpo f(g(a,b),c)=f(g(a,b),c).

Another well-founded ordering is the following lexicographic version of the recursive path

ordering:

D e f i n i t i o n 17 [Kamin-Levy-S0]. Let >- be a partial ordering on a set of operators F.
The lexieographic path ordering Y~tpo on the set T(F) of terms over F is defined recur-
sively as follows:

s = f (s ~ , . . . , a m) >'tpo g (t l , . . . , t n) = t

and either

or

s Nlpo tj for all j= l , . . . ,n

sl)~tpo t for some i= l , . . . ,m

f = g and(Sl, . . . ,sm) >"t*po (t l , . . . , tn) ,
where >~l*po is the lexicographic extension of >-lpo.

By the same token, some operators may have their operands compared lexicographically, while

others are compared using multisets. 13 Multiset and lexicographie versions of these path ord-

erings have been implemented in REVE [Lescanne-84, Detlefs-Forgaard-85] and RRL [Kapur-

Sivakumar-83]. In [Kamin-Levy-80] it is pointed out that any well-founded manner of com-

paring operands that depends only on recursive comparisons of subterms would work as well.

Example. The following system (for Ackermann's function) can easily be seen to terminate

with a lexicographic path ordering with empty precedence:

a(s(~),s(~)) --> a(~,a(s(~),~)) (17)

Sometimes, it is possible to adapt one of the above path orderings to work where other-

wise it would not.

Example. The lexic%raphic path ordering cannot directly handle

is'I'he same lexicographic path ordering has been described in [Sakai-84], where it is erroneously claimed to
be an extension of the recursive path ordering; in fact, the two orderings are incomparable. How one might
transform terms so that t ~-~p0 u if, and only if, r(t)~rpor(u) is examined in [Pettorossi-81].

208

(~.Z).~ -> ,.(Z.~)
(~+~).,~ ---> (c,.~)+(~.~) (xs)

q.(c~+ f (fl)) --> g(q,i~)'(a+a).

One needs to differentiate between • in general and g(• • •) , making the operator larger
in the former case.

Suppose we are given a quasi-ordering ~ F on (fixed arity) operators and a quasi-

simplification ordering ~T on terms, such that f (• • • t . • •)) -T t only when f is unary and

f ~Fg all operators g. Then we can define a quasi-simplification ordering ~ in the following

manner:

if, and only if,

s = f (s ~ , . . . , s m) ~ g (t ~ , t ,) = t ,

(s,f ,st,...,sm) ~ (t,g,tl,...,tn)

where the two tuples are compared lexicographically, first according to the terms s ~ T t , then

according to the operators f ~Fg , and finally according to the subterms S i~Tt i , (or, alterna-

tively, s i ~ t i recursively). The condition on the operator ordering ~,r ensures that

possesses the subterm property. To prove termination, one must find appropriate quasi-

orderings ~F and ~T for which l)--r for all rules i - > r in the given system.

Other examples of simplification orderings are the recursive lexicographic ordering in

[Knuth-Bendix-70] and the polynomial ordering in [Lankford-79]. The method of [Knuth-

Bendix-70] assigns a positive integer weight to each zeroary operator and a nonnegative

integer weight to each other operator, with ...~T comparing terms according to the sum of the

weights of their respective operators, ~ F a total ordering of operators, and subterms com-

pared recursively. Thus, the condition on ~ r requires that a unary operator have zero weight

only if it is the largest operator under ~ r . [Lankford-79] replaces the linear sum of weight

function with monotonic polynomials having nonnegative integer coefficients. Since both these

methods use total monotonic orderings, the subterm condition is both necessary and sufficient

for the orderings to be well-founded; the integer requirements are not themselves necessary.

Example. For System (10) we can use the Knuth-Bendix ordering, taking t ~ T u to be

I t I ~ I u I and ~ r to be equality, and comparing subterms recursively.

Example. This method applies also to System (14) with t '~Tu if, and only if, ! t I+~=*lu I+x,

the largest operator under > F is --, and subterms compared recursively.

8. C O M B I N E D S Y S T E M S

In this section we consider the termination of combinations of rewrite systems. If R and

S are two (strongly or weakly) terminating systems, we wish to know under what conditions

the system R U S , containing all the rules of both R and S, also (strongly or weakly) ter-

minates.

209

Definition 18. A rewrite relation R commutes over another relation S, if whenever
t ~ s u d R v, there is an alternative derivation of the form t ~ R w ~ u sV.

With it we can reduce termination of the union of R and S to termination of each:

T h e o r e m 24 [Bachmair-Dershowitz-85]. Let R and S be two rewrite systems over
some set o f terms T. Suppose that R commutes over S. Then, the combined system
R US is terminating if, and only if, R and S both are.

For rewriting modulo equations, we have the following analogous results:

T h e o r e m 25 [Jouannaud-Munoz-84]. I f the rewrite relation R commutes over the
congruence relation E , then R/ /E is terminating if, and only if, R is terminating.

Furthermore,

T h e o r e m 2{i. Let E be a congruence relation and R and S two E-terminating
rewrite systems (over some set o f terms T). I f whenever t ~ s u ~ R / E v, there is an
alternative derivation o f the form t~R/EW~(*RuS}/EV , then the combined system
(R U S) / E is also terminating.

Some suggestions of how noncommuting R and E might be handled are given in [Jouannaud-

Munoz-84].

To show that two relations commute, we can make use of the following properties:

Def in i t ion 19. A system is left-linear if no variable occurs more than once on the
left-hand side of a rule; it is right-linear if no variable has more than one occurrence
on the right-hand side. We say that a system is linear if it is both left- and right-
linear.

Definition 20. A term u is said to overlap (or superposes) a term t if u can be
unified with some (not necessarily proper) subterm s of t, i.e. if the two can be made
the same by substi tuting terms for the variables in t and u (Whenever we speak in
this section of unifying two terms, we consider their variables to be disjoint and insist
that neither of the terms be just a variable.) We say that there is no overlap between
two terms t and u if neither t overlaps u nor u overlaps t. A rewrite system R is
said to be non-overlapping if there is no overlap among the left-hand sides of R, i.e. no
left-hand side I i overlaps a different left-hand side I i and no left-hand side I i overlaps
a proper subterm of itself.

Example. The linear system

(~x~)x~ -~ ~x(~x~)

is overlapping since (c~x3)x9 is unifiable with a x e . The system

~,x(~+,~) --> (,~x/~)+(~,x,~)

is left-linear but not right-linear; the system

(~x~)+(~×,~) -> ,~x(~+,~)

(lO)

(10)

(20)

210

is right-linear but not left-linear. Both are non-overlapping.

Other investigations of some of commuting systems include [Rosen-73, O'Donnell-77, Huet-

Levy-79, Huet-80, Raoult-Vuillemin-80]

Using these properties to establish commutation, we have the following results:

C o r o l l a r y [Dershowitz-81]. Let R and S be two rewrite systems (over some set of
terms T). Suppose that R is left-linear, S is right-linear, and there is no overlap
between left-hand sides of R and right-hand sides of S. 7hen, the combined system
R U S is terminating if, and only if, R and S both are.

This generalizes the case exploited in [Bidoit-].

Example. The systems

.x(f~+~) -> (,~x~)+(.x~)
(~+~)x. -> (~x.)+(.~x.)

c~xl --> c~

Ixc~ -->

(la)

and

axa --> a (21)
a ÷ a "->

each terminate; therefore their union also does.

Each of the three requirements of the above theorem is necessary, as evidenced by the follow-

ing examples of nonterminating systems.

Example. The system

f (c~,c~) ~ f (a,b) (22)
b ---> a

has the infinite derivation f (a , a) ~ f (a , b) ~ f (a , a) ~ . . ' , though each rule terminates, the

first is right-linear, the second is linear, and there is no overlap (but the first is not left-

linear).

Example. The system

b - > a (23)
f (a,b,~) --~ f (o~,c~,e~)

has the infinite derivation f (a ,b ,b)=~f (b ,b,b)=--=~ f (a ,b,b):=~ - • - , though each rule terminates,

the first is linear, the second is left-linear, and there is no overlap (but the second is not

211

right-linear}.

Example. The system

b "-~ g(a) (24)
a --> g(b)

has the infinite derivation b~g(a)~g(g(b))~ ' ' ' , though each rule terminates and both are

linear (but there is overlap).

Similarly for rewriting modulo equations, we have:

T h e o r e m 27. I f R / E is left-linear, S is right-linear, and there is no overlap
between left-hand sides of R / E and right-hand sides of S, then the combined system
(RUS) /E is also terminating.

Example. Let E be AC, S be

a ' l ~
a'O --> 0

~ + 0 - > a
~ + a --> 0

(Qa)

and R be

(~+fl) 'q --> (a'ff)+(fl'ff) (gb)

The system S is right-linear; the relation R/AC is left-linear, since R is left-linear and AC is

linear. There are no occurrences of 0 on the left-hand sides of R , so there is no overlap.

Therefore, R/AC commutes over S. If, say,

(d'(a'a))'(b+c) ~ S (d'a)'(b+e) :::::$R/AC d'(a'b+a'c)

then by the same token

(d.(a.a))'(b+c) ~R/AV d'((a'a)'b+(a.a).c) ~ s ~ s d.(a.b+a'c).

Recall that a system is weakly terminating if every term rewrites to an irreducible term.

Example. The following system [cf. System (1)] does not always terminate but is weakly-

terminating and its irreducible terms are in disjunctive normal form:

212

- - - - 0 / - ') "
- (a + / ~) ->
- (a x a) -->

ax(~+ ,~) -->
(~+-~)xa -->

C~

------OcX------~
- - - a + - - - ~
(a×~)+(~x-r)
(~xa)+(,~xa)

(25)

To see that it does not terminate, consider the derivation

- - - (0 x (0 + l)) ~ - - - - ((0 x 0) + (0 x l)) ~ - - (- - - - - (0 x 0) x - - - - - - (0 x l))
• --~-(-(o×o)×-(o×I))

~... =~-((---o+---o)×(---o+---I))

:=~ ''' =~ - ((- O + - O) x (- - O + - l)) :=~ -((-Ox(-O'l'-l))+(-Ox(--O+-l)))
---(-o×(-o+-I))x---(-o×(-o+-I)) ~ - - - .

Thus, beginning with a term of the form - - (ax (c~+ /~)) , a term containing a subterm of the

same form is derived, and the process may continue ad infinitum. On the other hand, any

application of the second or third rule can be followed immediately by two applications of the

first rule, thus simulating a derivation of System (1) and guaranteeing termination.

To prove that a system is weakly terminating, one can choose a part icular evaluation

strategy and show that the value of a term is reduced in some well-founded ordering for those

rewrites allowed by the chosen strategy. Thus, for the union of two weakly terminating sys-

tems R and S, one can choose to first reduce to an R-normal form and only then apply S.

Then, if one can show that applying S to an R-normal form results in an R-normal form,

weak termination of R U S follows.

Example. The nonterminating System (25) is weakly terminating by the following line of rea-

soning: The first three rules alone are weakly terminating, since applying one of those rules to

an outermost occurrence of - reduces the multiset of sizes of arguments of - . (Note that

this is not, and need not be, a monotonic ordering.) Similarly, the last two rules can be shown

weakly" terminating. Since the first three rules eliminate all negations of nonconstants and the

two distr ibutivi ty rules cannot introduce other negations, weak termination is proved.

9. R E S T R I C T E D S Y S T E M S

In this section, we consider how linearity and nonoverlapping of rules make it possible to

restrict the derivations that must be considered when proving termination or nontermination

of a rewrite system. Unfortunately:

T h e o r e m 28 [Huet-Lankford-78]. Termination of a rewrite system is undecidable,
even i f the system is linear and nonoverlapping and has only monadic operators and
constants.

In the extreme case of a single monadic rule with right-hand side no longer than left-hand

side, deciding termination is trivial. [Metivier-83, Calladine-85] provide upper bounds on the

length of a derivation in tha t ease. Similarly:

213

T h e o r e m 20 [Guttag, etai.-83]. Quas i - terminat ion o f a rewrite sys tem is undecidable,
even i f the sys tem is l inear and nonoverlapping and has only monadic operators and
constants.

We need the following definitions:

D e f i n i t i o n 21 [Lankford-Musser-78]. The set of forward closures for a given rewrite
system R may be inductively defined as follows: Every rule in R is a forward closure.
Let

c I :=# C 2 = ~ • . . ~ e m

and

d I =*d 2 =, . . . =:~d n

be two forward closures already included. If c m has a (nonvariable) subterm s within
some context u such that s unifies with d I via most general unifier a, then

c : =~ c : = "" • =~ ema = u a [d : l = ua[d2a] ~ " ' " ~ ua[dna]

is also a forward closure. (Two forward closures are considered equal if they can be
obtained one from the other by variable renaming.)

This definition is related to the narrowing process, as defined in [Single-74, Hullot-80].

D e f i n i t i o n 22 [Guttag, etal.-83]. The set of overlap closures for a given rewrite system
R may be inductively defined as follows: Every rule in R is a forward closure. Let

C I =:~ C 2 =:~ • . . =:# Crn

and

d I ~ d 2 =~ ' ' - ~ d ,

be two overlap closures already included. If crn has a (nonvariable) subterm s within
some context u such that s unifies with dl via most general unifier a, then

cla =~ c2a =~ • • " =~ cma = ua[d la]=~ ua[dga] =e~ ... =e~ ua[dna]

is also an overlap closure. If d 1 has a (nonvariable) subterm t within some context v
such that t unifies with c m via most general unifier r, then

vr[c lr] =* vr[c2 r] ~ . . . = ,v r [cmr] = d lr=* d2r =~ . . . =~ dn r

is also an overlap closure. (Two overlap closures are considered equal if they can be
obtained one from the other by variable renaming.}

Example. Consider the system

- - - -~ - ~ c~
- - (~+~) --> - -~+ - ~ (26)

The derivation

214

- ((. + - Z) + - ~) ~ - (. + - Z) + - - - ~
(- . + - - Z) + - - z ~ (- . + ~) + - - ~ ~ (- . + Z) + ~

is a forward closure for that system; the derivation

- (~ + - - ~) ~ - ~ + - - - ~ ~ - ~ + - ~

is an overlap closure, but not a forward one; the derivation

- (~ + - - ~) ~ - (~+~) ~ - ~ + - ~

is neither.

T h e o r e m 30 [Dershowitz-81]. A right-linear rewrite system is terminating if, and
only if, it has no infinite forward closures.

Example. The self-embedding rewrite system

f (h (a)) ") f (g (h(a))) (27)

is right-linear and has only one forward closure:

f(h(c~)) ~ f(g(h(ct)))

Since this forward closure is finite, the system must terminate. Note that, by Theorem 10, no

total monotonic ordering could prove termination of this system.

Example. The forward closures of

f (g (a)) --) g (g(f (a))) (28)

are all of the form

f(g(gi(c~))) ~ g(g(f (g i (a)))) ~ . . . ~ g21(f(ct))

where i~0 . Since the system is right-linear and all its forward closures are finite, by the

theorem, it must terminate for all inputs.

Example. The forward closures of

f (g (a)) ---) g(g(f(f(c~)))) (20)

include

f (g(~)) ~ g (g (f (f (a))))

and the infinite forward closures

f (g(g(gi(a)))) ~ g (g (f (f (g (g i (a)))))) ~ g (g (f (g (g (f (f (g i (a)))))))) ~ . . .

for all i~0 . Thus, the system does not terminate.

T h e o r e m 31 [Dershowitz-81]. A non-overlapping left-linear rewrite system is ter-
minating if, and only if , it has no infinite forward closures.

It has been conjectured [Dershowitz-81] that left-linearity is unnecessary.

215

Example. None of the forward closures of the non-overlapping left-linear System (8) have

nested D operators. (This can be shown by induction.) Thus, the finiteness of those forward

closures--and consequently the termination of the system--can be easily proved by consider-

ing the multiset of the sizes of the arguments of the D's. Any rule application reduces that

value under the multiset ordering.

In general, though, a term-rewriting system need not terminate even if all its chains do:

Example. The non-right-linear and overlapping system

f (a ,b ,~) ~ f (~ ,~ ,b) (30)
b --) a

has two finite forward closures. Nevertheless, the system does not terminate. To wit,

f (a ,b ,b) ~ f (b ,b ,b) ~ f (a ,b ,b) .

Theorem 32 [Guttag, etal.-83]. A quasi-terminating left-linear rewrite system is ter-
minating if, and only if, it has no infinite overlap closures.

Example. System (30) has the following infinite overlap closure:

f (b ,b ,b) ~ f (a ,b ,b) ~ f (b ,b ,b) ~ ' ' '

It is unknown whether quasi-termination and/or left-linearity are necessary in the above

theorem.

The above theorems give necessary and sufficient conditions for a left-linear or right-

linear system to terminate. One of the advantages in using closures is that nontermination is

more easily detectable, as the next theorem will demonstrate. First, we must extend the

definition of "looping."

Definition 23. A derivation t t ~ t 2 ~ • . . ~ti---# • . . loops if for some j > i t~ has a
subterm that is an instance of t i.

Theorem 33 [Dershowitz-81]. A right-linear or non-overlapping left-linear rewrite
system is nonterminating if, and only if, it has infinitely many nonlooping inf ini te
forward closures or it has a looping forward closure,

Example. The system

g(.) --> h(.)

f (~ ,~) --~ f (a , ~)
b "-) a

a - -) b

has two finite forward closures b ~ a

f (~ , ~) ~ f (a , b) ~ f (a , a) ~ " "" ,

(31)

and b ~ c , one infinite looping forward closure

and an infinite number of finite forward closures

216

f (a ,a)~ f (a ,b) ~ f (a ,a) ~ " • • ~ f (a ,b) ~ f (a ,e) with the same initial term.

Example. Consider again the right-linear System (26). Since forward closures cannot begin

with a term having - other than as outermost or innermost operator, the termination of all

closures can be easily proved using a multiset ordering on the sizes of the arguments to - .

C o r o l l a r y . The termination of a right-linear or non-overlapping left-linear rewrite
system is decidable i f the number of forward closures issuing from different initial
terms is finite.

Example. The non-overlapping left-linear system

f (a,o~) - ~
g(a) - >

has three forward closures:

f (a,g(ot)) (32)
a

g (a) ~ a

f (a ,a) =~ f(~,g(~))
f (a ,a) ~ f(a ,g(a)) ~ f (a ,a) ~ ' ' '

Since its third forward closure cycles, it does not terminate. On the other hand, the system

f (a , a) ~ f (~ , g (~))
g(a) --> b

has the forward closures:

g(a) ~ b
f (a ,~) ~ f(a,g(c~))
f (a ,a) ~ f(a,g(a)) ~ f (a,b) ~ f(b,g(b))

Since none of its three forward closures loops, it does terminate.

Example. The forward closures of

f (o,ct) -'> f (a,b)
b "-> e

(33)

are

and

b =~c

f (a , ~) ~ f (a,b) ~ f (a ,c)

(34)

217

Since the forward closures do not loop, the system terminates.

In particular,

Corollary IHuet-Lankford-78]. The termination o f a rewrite system containing no
variables (a ground system) is decidable.

Quasi-termination of ground systems is similarly decidable [Dauchet-Tison-84].

R E F E R E N C E S

218

[AitKaei-83] Ait-Kaei, H. "An algorithm for finding a minimal reeursive path ordering",
Report MS-CIS-83-7, Department of Computer and Information Science, Univer-
sity of Pennsylvania, Philadelphia, PA, 1983.

[Bachmair-Dershowitz-85] Bachmair, L., and Dershowitz, N. "Commutation, transformation,
and termination". (1985) (submitted).

[Bachmair-Plaisted-85] Bachmair, L., and Plaisted, D. A. "Associative path ordering".
Proceedings of the First International Conference on Rewriting Techniques and
Applications, Dijon, France (May 1985).

[BenCherifa-84] Ben Cherifa, A. "Preuve de la terminaison finie d'un systdme de regeriture par
l'ordre polyn6mial", Unpublished manuscript, Centre de Recherche en Informa-
tique de Nancy, Nancy, France, 1984.

[Bergstra-Tucker-80] Bergstra, J. A., and Tucker, J. V. "Equational specifications for comput-
able data types: Six hidden functions suffice and other sufficiency bounds", Pre-
print IW 128/80, Mathematiseh Centrum, Amsterdam, The Netherlands, Janu-
ary 1980.

[Bidoit-] Bidoit, M. "Thesis", Thdse.

[Bueher,etal.-84] Bucher, W., Ehrenfeucht, A., and Hausster, D. "On total regulators gen-
erated by derivation relations", University of Denver, 1984.

[Calladine-85] Calladine, P. "Personal communication", Laboratoire d'Informatique, Universitd
de Poitiers, May 1985.

[Choque-83] Choque, G. "Caleul d'un ensemble eomplet d'incrementations minimales pour
rordre recursif de decomposition", Technical report, Centre de Recherche en
Informatique de Nancy, Nancy, France, 1983.

[Cohen-69] Cohen, P. J. "Decision procedures for real and p-adie fields". Communications of
Pure and Applied Mathematics, Vol. 22, No. 2 (1969), pp. 131-151.

[Collins-75] Collins, G. "Quantifier elimination for real closed fields by cylindrical algebraic
decomposition". Proceedings Second GI Conference on Automata Theory and
Formal Languages (1975), pp. 134-183.

[Dauehet-Tison-84] Dauchet, M., and Tison, S. "Decidability of confluence for ground term
rewriting systems", Unpublished report, Universitd de Lille I, Lille, France, 1984.

[Dershowitz,etal.-83] Dershowitz, N., Hsiang, J., Josephson, N. A., and Plaisted, D. A.
"Associative-commutative rewriting". Proceedings of the Eighth International

219

Joint Conference on Artificial Intelligence, Karlsruhe, West Germany (August

1983}, pp. 940-944.

[Dershowitz-79] Dershowitz, N. "A note on simplification orderings". Information Processing

Letters, Vol. 9, No. 5 (November 1979), pp. 212-215.

[Dershowitz-801 Dershowitz, N. "On representing ordinals up to F0", Unpublished note,
Department Computer Science, University of Illinois, Urbana, IL, June 1980.

[Dershowitz-81] Dershowitz, N. "Termination of linear rewriting systems". Proceedings of the
Eighth EA TCS International Colloquium on Automata, Languages and Program-

ming, Vol. 115, Acre, Israel (July 1981), pp. 448-458.

[Dershowitz-82] Dershowitz, N. "Orderings for term-rewriting systems". J. Theoretical Com-
puter Science, Vol. 17, No. 3 (March 1982), pp. 279-301 (previous version
appeared in Proceedings of the Symposium on Foundations of Computer Science,

San Juan, PR, pp. 123-131 [October 1979]).

[Dershowitz-83] Dershowitz, N. "Well-founded orderings", Technical Report ATR-83(8478)-3,
Information Sciences Research Office, The Aerospace Corporation, E1 Segundo,

CA, May 1983.

[Dershowitz-Manna-79] Dershowitz, N., and Manna, Z. "Proving termination with multiset
orderings". Communications of the ACM, Vol. 22, No. 8 (August 1979), pp. 465-
476 (also in Proceedings of the International Colloquium on Automata,
Languages and Programming, Graz, 188-202 [July 1979]).

[Dershowitz-Zaks-81] Dershowitz, N., and Zaks, S. "Applied tree enumerations". Proceedings
of the Sixth Colloquium on Trees in Algebra and Programming, Vol. 112, Genoa,

Italy (March 1981), pp. 180-193.

[Detlefs-Forgaard-85] Detlefs, D., and Forgaard, R. "A procedure for automatically proving
the termination of a set of rewrite rules". Proceedings of the First International

Conference on Rewriting Techniques and Applications, Dijon, France (May

1985).

[Ehrenfeucht,ctal.-83] Ehrenfeucht, A., Haussler, D., and Rozenberg, G. "On regularity of
context-free languages". Theoretical Computer Science, Vol. 27 (1983), pp. 311-

32.

[Feferman-681 Feferman, S. "Systems of predicative analysis II: Representation of ordinals". J.
Symbolic Logic, Vol. 33 (1968), pp. 193-220.

[Filman-78] Filman, R. E. "personal communication", 1978.

[Forgaard-84] Forgaard, R. "A program for generating and analyzing term rewriting systems",
Master's thesis, Laboratory for Computer Science, Massachusetts Institute of

220

Technology, Cambridge, MA, September 1984.

[Gardner-83] Gardner, M. "Mathematical games: Tasks you cannot help finishing no matter
how hard you try to block finishing them". Scientific American, Vol. 24, No. 2
(August 1983), pp. 12-21.

[Gentzen-38] Gentzen, G. "New version of the consistency proof for elementary number
theory". In: Collected Papers of Gerhard Gentzen, M. E. Szabo, ed (1938).
North-Holland, 1969, pp. 252-286 (1938).

[Gnaedig-85] Gnaedig, I. "personal communication", 1985.

[Gorn-67] Gorn, S. "Handling the growth by definition of mechanical languages". Proceedings
of the Spring Joint Computer Conference (Spring 1967), pp. 213-224.

[Gorn-73] Gorn, S. "On the conclusive validation of symbol manipulation processes (How do
you know it has to work?)". J. of the. Franklin Institute, Vol. 296, No. 6
(December 1973), pp. 499-518.

[Guttag, etal.-83] Guttag, J. V., Kaput, D., and Mussel D. R. "On proving uniform termina-
tion and restricted termination of rewriting systems". SIAM Computing, Vol. 12,
No. 1 (February 1983), pp. 189-214.

[Higman-52] Higman, G. "Ordering by divisibility in abstract algebras". Proceedings of the
London Mathematical Society (3), Vol. 2, No. 7 (September 1952}, pp. 326-336.

[Huet-80] Huet, G. "Confluent reductions: Abstract properties and applications to term
rewriting systems". J. of the Association for Computing Machinery, Vol. 27, No.
4 (1980), pp. 797-821 (previous version in Proceedings of the Symposium on
Foundations of Computer Science, Providence, RI, pp. 30-45 [1977]}.

[Huet-Lankford-78] Huet, G., and Lankford, D. S. "On the uniform halting problem for term
rewriting systems", Rapport Laboria 283, IRIA, March 1978.

[Huet-Levy-79] Huet, G., and Levy, J. J. "Call by need computations in non-ambiguous linear
term rewriting systems", Rapport laboria 359, INRIA, Le Chesnay, France,
August 1979.

[Huet-Oppen-80] Huet, G., and Oppen, D. C. "Equations and rewrite rules: A survey". In:
Formal Language Theory: Perspectives and Open Problems, R. Book, ed.
Academic Press, New York, 1980, pp. 349-405.

[Hullot-80] Hullot, J. M. "Canonical forms and unification". Proceedings of the Fifth Confer-
ence on Automated Deduction, Les Arcs, France (July 1980), pp. 318-334.

[Iturriaga-67] Iturriaga, R. "Contributions to mechanical mathematics", Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1967.

221

[Jouannaud,etal.-821 Jouannaud, J. P., Lescanne, P., and Reinig, F. "Recursive decomposition
ordering". Proceedings of the Second IFIP Workshop on Formal Description of
Programming Concepts, Garmisch-Partenkirchen, West Germany (June 1982),
pp. 331-348.

[Jouannaud-Kirchner-82] Jouannaud, J. P., and Kirchner, H. "Construction d'un plus petit
order de simplification", Unpublished note, Centre de Recherche en Informatique
de Nancy, Nancy, France, 1982.

[Jouannaud-Munoz-84] Jouannaud, J. P., and Mufioz, M. "Termination of a set of rules
modulo a set of equations". Proceedings of the Seventh International Conference

on Automated Deduction, Napa, CA (May 1984), pp. 175-193.

[Kamin-Levy-SO] Kamin, S., and Levy, J. J. "Two generalizations of the reeursive path order-
ing", Unpublished note, Department of Computer Science, University of Illinois,
Urbana, IL, February 1980.

[Kapur, etal.-85] Kapur, D., Narendran, P., and Sivakumar, G. "A path ordering for proving
termination of term rewriting systems". Proceedings of the Tenth Colloquium on
Trees in Algebra and Programming (1985).

[Kapur-Sivakumar-83] Kapur, D., and Sivakumar, G. "Experiments with and architecture of
RRL, a rewrite rule laboratory". Proceedings of an NSF Workshop on the
Rewrite Rule Laboratory, Schenectady, NY (September 1983), pp. 33-56 (avail-
able as Report 84GENO08, General Electric Research and Development [April

19841).

[Kirby-Paris-82] Kirby, L., and Paris, J. "Accessible independence results for Peano arith-
metic". Bulletin London Mathematical Society, Vol. 14 (1982), pp. 285-293.

[Knuth-73] Knuth, D. E. Fundamental algorithms. Addison-Wesley, Reading, MA, 1973
(second edition}.

[Knuth-Bendix-70] Knuth, D. E., and Bendix, P. B. "Simple word problems in universal alge-
bras". In: Computational Problems in Abstract Algebra, J. Leech, ed. Pergamon

Press, 1970, pp. 263-297.

[Krishnamoorthy-Narendran-84] Krishnamoorthy, M. S., and Narendran, P. "A note on recur-
sive path ordering", Unpublished note, General Electric Corporate Research and
Development, Schenectady, NY, 1984.

[Kruskal-60] Krnsksl, J. B. "Well-quasi-ordering, the Tree Theorem, and Vazsonyi's conjec-
ture". Transactions of the American Mathematical Society, Vol. 95 (May 1960),
pp. 210-225.

[Kruskal-72] Kruskal, J. B. "The theory of well-quasi-ordering: A frequently discovered con-
cept". J. Combinatorial Theory Ser. A, Vol. 13 (1972), pp. 297-305.

222

[Lankford-75] Lankford, D. S. "Canonical algebraic simplification in computational logic",
Memo ATP-25, Automatic Theorem Proving Project, University of Texas, Aus-

tin, TX, May 1975.

[Lankford-79] Lankford, D. S. "On proving term rewriting systems are Noetherian", Memo
MTP-3, Mathematics Department, Louisiana Tech. University, Ruston, LA, May
1979.

[Lankford-Musser-78] Lankford, D. S., and Musser, D. R. "A finite termination criterion",
Unpublished draft, 1981.

[Laver-78~ Laver, R. "Better-quasi-orderings and a class of trees". Studies in Foundations and
Combinatories (1978), pp. 31-48.

[Lescanne-81] Lescanne, P. "Two implementations of the recursive path ordering on monadic
terms". Proceedings of the Nineteenth Allerton Conference on Communication,
Control, and Computing, Monticello, IL (September 1981), pp. 634-643.

[Lescanne-83] Lescanne, P. "Computer experiments with the REVE term rewriting system gen-
erator". Proceedings of the Tenth Symposium on Principles o/ Programming
Languages, Austin, TX (January 1983), pp. 99-108.

[Leseanne-84] Lescanne, P. "Some properties of decomposition ordering, A simplification ord-
ering to prove termination of rewriting systems". RAIRO Theoretical Informat-

ics, Vol. 16, No. 4, pp. 331-347.

[Lescanne-84] Lescanne, P. "Uniform termination of term-rewriting systems with status".
Proceedings of the Ninth Colloquium on Trees in Algebra and Programming, Bor-
deaux, France (March 1984).

[Lescanne-Jouannaud-82] Lescanne, P., and Jouannaud, J. P. "On multiset orderings". Infor-

mation Processing Left., Vol. 15, No. 2 (September 1982), pp. 57-62.

[Lescanne-Steyaert-83] Lescanne, P., and Steyaert, J. M. "On the study of data structures:
Binary tournaments with repeated keys". Proceedings of the Tenth EATCS
International Colloquium on Automata, Languages and Programming, Barcelona,
Spain (July 1983), pp. 466-475.

[Levy-80] Levy, J. J. "Problem 80-5". J. of Algorithms, Vol. 1, No. 1 (March 1980), pp. 108-
109.

[Lipton-Snyder-77] Lipton, R., and Snyder, L. "On the halting of tree replacement systems".
Proceedings of the Conference on Theoretical Computer Science, Waterloo,
Canada (August 1977), pp. 43-46.

[Manna-69] Manna, Z. "Termination of algorithms", Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, April 1969.

223

[Manna-74] Manna, Z. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[Manna-Ness-70] Manna, Z., and Ness, S. "On the termination of Markov algorithms".
Proceedings of the Third Hawaii International Conference on System Science,
Honolulu, HI (January 1970), pp. 789-792.

[Metivier-83] Metivier, Y. "About the rewriting systems produced by the Knuth-Bendix com-
pletion algorithm". Information Processing Letters, Vol. 16 (January 1983), pp.
31-34.

[Nash-Williams-63] Nash-Williams, C. S. J. A. "On well-quasi-ordering finite trees". Proceed-
ings of the Cambridge Philosophical Society, 59 (1963), pp. 833-835.

[O'Donnell-77] O'Donnelt, M. J. "Computing in systems described by equations". Lecture
Notes in Computer Science, Vol. 58, Berlin (1977).

[Paulson-84] Paulson, L. C. "Constructing recursion operations in intuitionistic type theory",
Technical Report 57, Computer Laboratory, University of Cambridge, Cam-
bridge, UK, October 1984.

[Pettorossi-78] Pettorossi, A. "A property which guarantees termination in weak combinatory
logic and subtree replacement systems", Report R.78-23, lnstituto di Automa-
tica, Universit$ di Roma, Rome, Italy, November 1978.

[Pettorossi-81] Pettorossi, A. "Comparing and putting together recursive path orderings,
simplification orderings and non-ascending property for termination proofs of
term rewriting systems". Proceedings of the Eighth International Colloquium on
Automata, Languages and Programming, Acre, Israel (July 1981), pp. 432-447.

[Plaisted-78] Plaisted, D. A. "Well-founded orderings for proving termination of systems of
rewrite rules", Report R78-932, Department of Computer Science, University of
Illinois, Urbana, IL, July 1978.

[Plaisted-78b] Plaisted, D. A. "A recursively defined ordering for proving termination of term
rewriting systems", Report R-78-943, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, September 1978.

[Plaisted-79] Plaisted, D. A. "personal communication", 1979.

[Plaisted-83] Plaisted, D. A. "An associative path ordering". Proceedings of an NSF Workshop
on the Rewrite Rule Laboratory, Schenectady, NY (September 1983), pp. 123-136
(available as Report 84GEN008, General Electric Research and Development
[April 1984]).

[Plaisted-85] Plaisted, D. A. "The undecidability of self embedding for term rewriting sys-
tems". Information Processing Left., Vol. 20, No. 2 (February 1985), pp. 61-64.

[Porat-Francez-85] Porat, S., and Francez, N. "Fairness in term rewriting systems".

224

Proceedings of the First International Conference on Rewriting Techniques and
Applications, Dijon, France (May 1985).

[Puel-85] Puel, L. "personal communication", May 1985.

[Raoult-Vuillemin-80] Raoult, J. C., and Vuillemin, J. "Operational and semantic equivalence
between recursive programs". J. of the Association of Computing Machinery,
Vol. 27, No. 4 (Oetober 1980), pp. 772-796.

[Rosen-73] Rosen, B. "Tree-manipulating systems and Church-Rosser theorems". J. of the
Association for Computing Machinery, Vol. 20 (1973), pp. 160-187.

[Rusinowiteh-85] Rusinowitch, M. "Plaisted ordering and reeursive decomposition ordering
revisited". Proceedings of the First International Conference on Rewriting Tech-
niques and Applications, Dijon, France (May 1985).

[Sakai-84] Sakai, K. "An ordering method for term rewriting systems". Proceedings of the
First International Conference on Fifth Generation Computer Systems, Tokyo,

Japan (November 1984).

[Scherlis-80] Scherlis, W. L. "Expression procedures and program derivation", Ph.D. Disserta-
tion, Department Computer Science, Stanford University, Stanford, CA, August

1980.

[Slagle-74] Slagle, J. R. "Automated theorem-proving for theories with simplifiers, eommuta-
tivity, and associativity", a'. of the Association for Computing Machinery, Vol.
21, No. 4 (1974), pp. 622-642.

[Smullyan-79] Smullyan, R. M. "Trees and ball gaines". Annals of the New York Academy of
Science, Vol. 321 (1979), pp. 86-90.

[Tarski-51] Tarski, A. A Decision Method for Elementary Algebra and Geometry. University of
California Press, Berkeley, CA, 1951.

[Veblen-08] Veblen, O. "Continuous increasing functions of finite and transfinite ordinals".
Transactions of the American Mathematical Society, Vol. 9 (1908), pp. 280-292.

[Weyhraueh-78] Weyhraueh, R. W. "Some notes on ordinals up to F0" , Informal note 13,
Stanford University, Stanford, CA, Mareh 1978.

