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A B S T R A C T  

This survey describes methods  for proving tha t  systems of rewri te  rules terminate .  Illus- 

t ra t ions of the use of path  orderings and other  simplification orderings in terminat ion proofs 

are given. The  effect of restrictions,  such as l inearity,  on the  form of rules is considered. In 

general, though, te rminat ion  is an undeeidable p roper ty  of rewri te  systems. 

1. I N T R O D U C T I O N  

A term-rewriting (rewrite) system R over a set of terms T is a set of rewrite rules, each 

of the form l - -> r ,  where I and r are terms in T or are terms containing variables ranging 

over T .  Such a rule applies to a te rm t in T if a sub te rm s of t matches  the left-hand side l 

with some subst i tut ion a of te rms  in T for variables appearing in I (i.e. s--~la). The  rule is 

applied by replacing the sub te rm s in t with the  corresponding r ight -hand side ra of the  rule, 

within which the same subst i tut ion a of terms for variables has been made. We write  t~RU , 

or jus t  t ~ u ,  to indicate tha t  a t e rm u in T is derivable in this way from the t e rm t in T by 

a single application of some rule in R .  If t=* • • • ~ u  in zero or more steps, abbrevia ted  

t ~ * u ,  then we say tha t  t reduces to u ;  if no rule can be applied to t ,  we say tha t  t is irredu- 

cible; when t reduces to an irreducible t e rm u,  we say tha t  u is a normal form of t .  

There  are five propert ies  involved in the  verification of rewrite systems: 

1) termination--no infinite derivat ions are possible, 

2) confluence--each t e rm has at most one normal  form, 

3) soundness--terms are  only rewri t ten to equal terms,  

4) completeness--equal te rms have the  same normal  form, 

5) correctness--all normal  forms satisfy given requirements .  

*The preparation of this survey was supported in part by the National Science Foundation under Grant 
MCS 83-07755. 
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This survey is devoted to a discussion of the first aspect, namely termination, generally a 

prerequisite for demonstrat ing other properties. Two related concepts, only briefly discussed, 

are "quasi-termination" and "weak terminat ion."  A quasi-terminating rewrite system is one 

for which only a f inite number of different terms are derivable from any given term. A 

weakly-terminating system is one for which every term has at least one normal form. 

Consider, for example, the following simple system consisting of three rules: 

white ,red --> red ,white 
blue ,red --> red ,blue 

blue ,white -> white ,blue 
(0) 

This program plays the "Dutch National Flag" game. Given a sequence of marbles, colored 

red, white, or blue and placed side by side in no part icular  order, the program rearranges the 

marbles so that  all red ones are on the left, all blue ones are on the right, and all white ones 

are in the middle. The first rule, for example, states that  if anywhere in the series there is an 

adjacent pair of marbles, the left one white and the right one red, then they should be 

exchanged so that  the red marble is on the left and the white one is on the right. I t  is not 

hard to prove that,  regardless of the initial arrangement of marbles, applying the above rules r 

in any order always results in a sequence of correctly arranged marbles. As we will see, a ter- 

mination proof can be based on the ordering 

blue is greater than white and white is greater than red. 

Each rule replaces two marbles, the one on the left with "greater"  color is exchanged with the 

"smaller" one to its right. 

To illustrate the difficulty often encountered when a t tempt ing to determine if, and why, a 

rewrite system terminates, consider the following system (for disjunctive normal form): 

- - - - a  --~ a 

-(~,+~) ---) -,~x-~ 
-(~x~) ~ -~+-~ 

~x(~+~) -~ (~×~)+(~x~) 
(~+~)x~ --) (~x,~)+(~x~) 

(1) 

The first rule eliminates double negations; the second and third rules apply DeMorgan's laws 

to push negations inward; the last two apply the distr ibutivi ty of x over + .  The difficulty in 

proving termination for systems such as this stems from the fact tha t  while some rewrites may 

decrease the size of a term, other rewrites may increase its size and duplicate occurrences of 

subterms. Furthermore,  applying a rule to a subterm not only affects the s t ructure  of tha t  

subterm, but  also changes the s tructure of its superterms. And a proof of termination must  

take into consideration the many different possible rewrite sequences generated by the non- 

deterministic choice of rules and subterms. 
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Various methods for proving termination of rewrite systems have been suggested, includ- 

ing [Gorn-67, Iturriaga-67, Knuth-Bendix-70, Manna-Ness-70, Gorn-73, Lankford-75, Lipton- 

Snyder-77, Plaisted-78, Plaisted-78b, Dershowitz-Manna-79, Lankford-79, Kamin-Levy-80, 

Pettorossi-81, Dershowitz-82, Jouannaud,etal.-82, Dershowitz,etal.-83, Lescanne-84, 

Jouannaud-Munoz-84, Kapur,etal.-85, Bachmair-Plaist  ed-85, Bachmair-Dershowitz-85, 

Rusinowitch-85]. Termination is in general an undecidable property of rewrite systems (as it 

is for Markov systems on strings; see [Huet-Lankford-78]). For a lively discussion of tasks that  

are difficult to show terminating, see [Gardner-83]. 

In the next section we prove that  termination is undecidable. In Section 3 we show how 

well-founded orderings are used in termination proofs, and in Section 4 we show how simplif- 
ication orderings are used. Similar methods are described in Section 5 for using quasi- 
orderings to prove termination (or quasi-termination). Section 6 presents muitiset orderings. 
Then, in Section 7, we define path orderings based on an underlying operator  "precedence". 

This is followed in the last two sections with methods for determining if rewrite systems of 

restricted form terminate (or weakly-terminate).  Examples are provided throughout; proofs 

are generally omitted. 

2. N O N T E R M I N A T I O N  

Given a set of operators F ,  we consider the set T(F) of all terms constructed from opera- 

tors in F .  Operators in F may be varyadic, i.e. have variable arity, in which case if f is an 

operator and tl, ..., t n (n>O) are terms in T(F), then f ( t l , . . .  ,tn) is also a term in T(F). 

Or an operator f may be restricted to a fixed arity, in which case f (t 1, • • •,  tn ) E T only if f 

is of ari ty n.  

Def in i t ion  1. A rewrite system R is terminating for a set of terms T,  if there exist 
no infinite sequence of terms t i E T such that  t l ~ t z ~ t 3 ~  ' ' '  . A system is nonter- 
minating if there exists any such infinite derivation. A system is weakly-terminating if 
for each term t E T there is an irreducible term derivable from t.  

Terminat ing systems are variously called finitely terminating, uniformly terminating, 
strongly terminating, and noetherian. Unless indicated otherwise, when we speak of termina- 

tion, we mean with respect to all terms constructed from a given set of (fixed or variable) 

operators F .  Rules of a terminating system are called reductions. 

Example. A trivial example of a terminating system is 

- - a  --> a .  (2) 

An equally trivial example of a nonterminating system is 

- ~  --> - - - a .  (3) 

A less trivial example (of what?) is 

- ( ~ + ~ )  --> ( - - ~ + ~ ) + ~ .  (4) 
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An example of a non-weakly-terminating system is 

f(g(c~)) "> g ( g ( f ( f ( a ) ) ) ) .  

T h e o r e m  1. Terminat ion o f  rewrite sys tems is undecidable, even i f  the sys tem has 
only two rules. 

(5) 

Proof.  Turing machines can be simulated by rewrite systems. Given any Turing 

machine A/, there exists a two-rule system R ~  such that R ~  terminates for all initial terms if, 

and only if, ~ halts for all input tapes. Since it is undecidable (not even semi-decidable) if a 

Turing machine halts uniformly, it is also undeeidable if rewrite systems terminate. 

Each state symbol and tape symbol of the machine will be a constant in the system. 

Additionally, we need three operators: a binary operator {which we will denote by adjacency 

and assume associates to the right), a unary operator 0 (the erase function), and a ternary 

operator C. 1 We use an additional constant O to denote the end of the tape. Corresponding 

to a machine in state q with nonblank left portion of the tape ala2 " " " am {from the left end 

until the symbol preceding the read head) and risht portion bib 2 • • " bn {from the symbol 

being scanned to the end), is the term 

C(am " ' "  a2a ln,qblb2 "-" b,, n ,machine) ,  

where machine is a term encoding transitions as subterms of the form 

signifying "if the machine is in state 0 reading the symbol/3 and the symbol immediately to 

left of/~ is a, then replace the tape segment a/3 with ,y~/g~, position the head on g, and go 

into state 0~. ' '  Any extra tape symbols introduced in this way, are placed within an "erase" 

term 0. Thus, for each left-moving instruction of the form "if in state q reading a,  write a ~, 

move left, and go into state qt,, there are subterms of the form 

O(sqa 0 ( #  ) 0 ( #  )qtsa') 

for every tape symbol s, as well as an extra subterm of the form 

O(nqa n 0 ( #  )q '#a ' )  

{where # is the blank symbol) to handle the left end of the tape. For each right-moving 

instruction of the form "if in state q reading a, write a ~, move right, and go into state ql,,, 

there are subterms of the form 

O(sqa salqlcg(# )O(# )) 

for every tape symbol s,  as well as extra subterm of the form 

O(sqn sa'q'O(# )v ) 

when a is the blank symbol # (to handle the right end of the tape). The term machine  is 

ICf. [Bergstra-Tucker-80], where it is shown that siz "hidden" functions suffice for the specification of com- 
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the concatenation of all transitions. 

The rewrite system R ~  consists of exactly two rules: 

C(aX,eyt3p,O(acq3 T{oS~6)r) --) C(~,TX,~6p,machine).  

The first rule erases transitions from the machine description until  an appl ieabh one reaches 

the beginning of the description, at  which time the second rule can be applied to simulate a 

move. Though there are rewrite sequences that  erase all applicable transitions and therefore 

do not correspond to a machine computation, those sequences all terminate.  Clearly, if the 

machine ~ does not terminate for some input tape, then the system R ~  does not terminate 

for the corresponding input  term. Note that  no rewrite step can increase the number of 

occurrences of the operator  C in a term. Thus, the only way for R~t not to terminate is for 

one of the occurrences of C to be infinitely rewritten, in a manner corresponding to an infinite 

computation of :M. [2 

An alternative proof of undecidabili ty of termination is given in [Huet-Lankford-78]; see Sec- 

tion 9. The number of rules in that  proof depends on the number of machine transitions. 2 

Though termination of a rewrite system means that  all (infinitely many) possible deriva- 

tions are finite, one need only consider derivations tha t  begin with certain terms: 

L e m m a  1. A rewrite system is terminating (for all terms) if ,  and only if ,  it ter- 
minates for all instances o f  its left-hand sides. 

By an instance of a left-hand side I we mean a term la with terms subst i tuted for the vari- 

ables of the left-hand side. Certainly, if a derivation repeats  a term, the system is nonter- 

minating. We say tha t  

D e f i n i t i o n  2. A derivation t l ~ t 2 = ~ ' " = ~ t T ~ ' " = a t k = * " "  cycles if t y=t  k for 
some j < k .  A rewrite system cycles if it has a cycling derivation. 

Cycling is a special case of "looping": 

D e f i n i t i o n  3. A derivation tl=at2=~ "" • ~ t j=* " • • =~tk~ "" " loops if t i is a (not 
necessarily proper) subterm of t k for some j < k .  A rewrite system loops if it has a 
looping derivation. 

It is also obvious that  looping systems do not terminate.  But a system need not be looping to 

be nonterminating. 

Ezample. System (4) does not terminate.  The following infinite derivation begins with an 

instance of its left-hand side, but  the system is nonlooping: 

putable data types. In fact, three do. 

2Perhaps a proof along the lines of the one given above was intended by [Lipton-Snyder-77] when they as- 
serted, sans proof, that three rules suffice for undeeidability. 
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- ( ( - - 0 + 1 ) + 1 )  
( - - ( - - - 0 + 1 ) + 1 ) + 1  
( - ( (  . . . .  0 + 1 ) + 1 ) + 1 ) + 1  

= ( ( ( - - (  . . . .  0 + 1 ) + 1 ) + 1 ) + 1 ) + 1  

To characterize nontermination, therefore, a notion weaker than looping is needed. View- 

ing terms as ordered trees suggests the following definition: 

D e f i n i t i o n  4. A term s is homeomorphieally embedded in a term t writ ten s <1 t ,  if, 
and only if, s is of the form f ( s l , s 2 ,  . . . ,sin) , t is of the form g(tl , t2,  . . . , tn) ,  and 
either 
(a) f-----g and s i ~ t]~ for all i ,  l < i ~ m ,  where l < j l < j 2 <  • . • < j m ~ n ,  or 

(b) s _<I t j  for some j ,  l < j < n .  

Thus, this relation embodies a notion of "syntactic simplicity": s <1 t if s may be obtained 

from t by deletion of selected operators and operands. If s is embedded in t ,  but  s ¢ t ,  then 

we write s <I t.  For example, 

- - ( 0 + 1 )  <I ( ( ( - - (  . . . .  0 + 1 ) + 1 ) + 1 ) + 1 ) + 1 .  

D e f i n i t i o n  5. A derivation t l ~ t 2 ~ ' . ' ~ t j ~ " ' ~ t k ~ ' . ,  is self-embedding if 
t j  _<1 tk for some j < k .  A rewrite system is self-embedding if it  allows a self-embedding 
derivation. 

T h e o r e m  2 [Dershowitz-82]. I f  a rewrite system is nonterminating, then it is sel f-  
embedding. 

The proof of this is based on the Tree Theorem [Higman-52, Kruskal-60, Nash-Williams-63]. s 

This theorem means that,  to show termination of a system, one can prove it to be non- 

self-embedding. The converse, however, does not hold: self-embedding does not imply nonter- 

mination. 

Example. The rewrite system 

f ( f ( a ) )  --~ f ( g ( f ( a ) ) )  (6) 

is both self-embedding and terminating. 

Unfortunately, even this sufficient condition for termination is undecidable: 

T h e o r e m  3 ~laisted-85].  I t  is undeeidable whether a rewrite sys tem is sel f-  
embedding. 

Of course, self-embedding is partially decidable: just  search through all derivations until  an 

embedding is discovered. I t  is similarly undeeidable if a system cycles or loops. (For details, 

SA weaker form of "embedding" and correspondingly weaker results appear as an exercise in [Knath-73], 
where it was suggested that embedding has applications to proofs of termination. 
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see [Plaisted-85].) 

3. T E R M I N A T I O N  

To express proofs of termination, we need the following concepts: A partially-ordered set 

(S,~-) consists of a set S and a transit ive and irreflexive binary relation ~- defined on ele- 

ments of S.  4 As usual, s~-t  means tha t  either s~-t  or s----t, s-~t  means the same as tY.-s, 

and s ~ t  means t _ s .  A partially ordered set is said to be totally ordered if for any two dis- 

t inct  elements s and s t of S,  either s > - s  t or st).-s. For example, both the set of integers and 

the set of natural  numbers are total ly ordered by the "greater- than" relation > .  The set of 

all subsets of the integers is part ial ly ordered by the "proper  subset" relation ~ .  An exten- 

sion of a part ial  ordering ~ on S is a part ial  ordering ~.r also on S such that  s ) - s  I implies 

s ~ s  ~ for all s,s*E S.  Part ia l  orderings of component elements can also be extended to a par- 

tial ordering of tuples of elements: a tuple (sl ,s2,  . . .  , s , )  in (Sl,>-l)x(S2,Y-2)x • • • (S , ,~ -n)  

is lexicographically greater than another tuple ( t l , t 2 , . . . ,  t ,)  if for some i ( l ~ i ~ ; n )  s i ~ i t l  

while s / ~ t /  for all j < i .  

A partially ordered set (S,>-) is said to be well-founded if there are no infinite descending 

sequences sl~-s2>-sa~- . . .  of elements of S.  Thus, the natural  numbers N under their 

"na tura l"  ordering > is well-founded, since no sequence of natura l  numbers can descend 

beyond 0. But > is not a well-founded ordering of all the integers, since, for example, 

- 1 > - 2 > - 3 >  • • • is an infinite descending sequence. Nor is > a well-founded ordering of 

the reals. If (SI,>-I) and ($2,>-2) are two well-founded sets, then their lexieographically 

ordered cross-product (SIxS2,~'*) is also well-founded, where a pair (s l ,s2)  in S l X S  2 is 

greater than another pair (tl , t2) in S I x S  2 !f either s l ~ l t l  or else sl----~t I and s 2 ~ z t  2. Simi- 

larly, a lexicographic ordering of tuples of any fixed length is well-founded, if the orderings of 

the components are. For example, the tuple (2,5,1,6) is greater than (2,4,9,8) in the well- 

founded lexicographic ordering of tuples of naturally ordered natural  numbers. (See, e.g., 

[Manna-74].) 

The notion of well-foundedness suggests the following straightforward method of proving 

termination: 

T h e o r e m  4. A rewrite system R over a set o f  terms T is terminating if,  and only 
if,  there exists a well-founded ordering >- over T such that 

t ~ u  implies t >-u 

for all terms t and u in T.  

Example. System (0) terminates, since the lexicographic ordering of tuples of colors (with 

blue >white >red) is well-founded and the tuple of colors corresponding to a sequence of mar- 

bles is reduced with each rule application. By the nature of the lexicographic ordering, one 

4Asymmetry of a partial ordering follows from transitivity and irreflexivity. 
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need only consider the change in the teftmost of the two affected components: if it was white 

before, then it is red after; if it was blue before, then it is either red or white after. 

The following equivalent formulation (see[Kamin-Levy-80]) takes advantage of the structure of 

terms: 

Coro l l a ry  . A rewrite system R over a set o f  terms T is terminating i f ,  and only i f ,  
there exists a well-founded ordering ~ over T such that 

l > - r  

for  each rule l--->r in R and for  any substitution o f  terms in T for  the variables o f  
the rule, and such that 

t ~ u  a n d t ~ - u  imply f ( . . . t . . . ) > - f ( . . . u  " " )  

for  all terms in 7". 

Example. The system 

f ( f ( c ~ ) )  ~ f ( g ( f ( ~ ) ) )  (6) 

is terminating, since the number of adjacent f ' s  is reduced with each application. Note that  

counting the number of adj acencies makes g ( f  ( f  ( a ))) > f (a), though 

f ( g ( f ( f ( a ) ) ) ) ~  f ( f ( a ) ) .  

The following definition and theorem eliminate the need to consider all derivations t=*u 

and are often used to prove termination: 

Definition 6. A partial ordering N over a set of terms T is monotonic (with respect 
to term structure) if it has the replacement property, 

t ~ u  implies f ( " " " t " " " )~- f ( " " " u ' ' ' ) ,  

for all terms in T. 

In other words, reducing a subterm, reduces any superterm containing it. 

Theorem 5 [Manna-Ness-70]. A rewrite system R over a set o f  terms T is terminat-  
ing i f ,  and only i f ,  there exists  a monotonic well.founded ordering ~- over T such 
that 

l > - r  

for  each rule l --->r in R and for  any substitution o f  terms in T for  the variables o f  
the rule. 

Note that the ordering ~- is defined on T, not on terms like ! and r containing variables. 

That  is why we require that l >-r for all substitutions that  yields terms in T. With monotoni- 

city, this ensures that t ~-u whenever t reduces to u.  As we will see, it is sometimes possible 

to "lift" an ordering on T to an orderings on terms with variables so that  I >--r in the lifted 

ordering guarantees that in fact l >-r for all substitutions. 

Example. The system 
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y{g{~)) --> g(f(a)) (7) 

terminates.  To see this, consider the following well-founded monotonic ordering on monadie 

terms: given an ordering on operators, a term s is greater than a term t if s has more opera- 

tors than does t ,  or if they have the same number of operators,  but  the outermost  operator of 

s is greater than that  of t ,  or if they are of the same length and their outermost  operators are 

identical, but  the operand of s is (recursively) greater than that  of t.  Choosing an operator 

ordering f > g ,  the above rule is a reduction. 

It is frequently convenient to separate a well-founded ordering on terms into two parts: a 

termination funct ion r that  maps terms in T to a set ~ and a "s tandard"  well-founded ord- 

ering ~ on ~. 

Def in i t ion  7. A termination funct ion r : T - - > ~  is composed of a set of functions 
f~:~-->~), one for each operator f ,  and is defined by 

r ( / ( t l , . . . , t , ) )  = f ~ ( r ( t t ) , . . . , r ( t , ) )  

for every term f ( t l ,  . . .  , t , )  in T, and for which 

x ~ z ' i m p l i e s  f r ( ' " a c  " ' ) > - f ~ ( " ' x  ~ ' ' ' )  

for all x , x  t, * • • in )1/. 

In other words a termination function is a monotonic morphism on terms. 

T h e o r e m  6 ~anna-Ness-70] .  A rewrite system R over a set o f  terms T is terminat- 
ing i f ,  and only i f ,  there exists a well-founded set (Y~,~) and termination function 
r:T--> Y~, such that 

ry) ~- r(r) 

for  each rule I-->r in R and for  any substitution o f  terms in T for  the variables o f  
the rule. 

The use of monotonic polynomial interpretations was suggested in [Manna-Ness-70, 

Lankford-75, Lankford-79]. Using this method, an integer polynomial F ( x  1 . . . . .  x , )  of 

degree n is associated with each n-a ry  operator f .  The choice of coefficients must ensure 

monotonicity and that  terms are mapped into nonnegative integers only; this is the case if all 

coefficients are positive. (A number of examples may be found in [Dershowitz-Manna-79]; 

some work on automated polynomial proofs is in progress [BenCherifa-84].) The use of rewrite 

systems as termination functions and the formulation of abstract  monotonicity conditions are 

explored in [Bachmair-Dershowitz-85, Gnaedig-85]. 

Example. Consider the following system (for symbolic differentiation with respect to x ): 
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D z x ->  1 
Dz a --> 0 

D= (a+f l )  --> Dx a + D z / ~  
D= (a-fl) -> D= a-Dx  fl 

D:~ (-a)  "--> -Dx a 
D x (axfl )  -> I~xD x a+axD x/~ 

D z a D r # 
D = ( ~ )  --> # 'a ---~-- 

D z 
Dr  (In a)  --> 

Ot 

Dx (a p) --> flxa~-lDx a + a ~ x ( l n  a)xD=/~ 

where a is any constant symbol 

defined as follows: 

(8) 

other than x.  Let the termination function r : T - > N  be 

r( .+ /~)  = ~ ( . )  + ~(~) 
T(~x/~) = r ( . )  + T(Z) 
, ( . - / ~ )  = , ( . )  + , ( Z )  

~ ( ~ )  = ~(~) + ~ ( ~ )  

~(~) = r(~)  + ~ ( ~ )  
• ( D ~ . )  = ~(.)~ 

~ ( - ~ )  = r ( ~ ) + l  
• ( l n ~ )  = ~ ( ~ ) + 1  

r(u)  = 4 

where u is any constant (including x). For each of the nine rules l->r, the value of r 

decreases, i.e. r(l)>r(r). For example, 

r(Dx (~")) ~- r(-~-) 2 _-- (r(a)+r(]~))  2 ---- r(a)2+r(fl)2+2r(a)r(fl), 
p p 

while 

D ~ D A 
= + , ( o / +  + ,  

This is a decrease, since r(a} and r(/~) are at  least 4 and therefore 

2~(~)~(~) > 4T(~)+4~(~)  > ~ (~ )+2~(~ )+4 .  

Integer polynomials cannot, however, suffice for termination proofs in general, since tha t  

would place a polynomial bound on computations {see, e.g., [Huet-Oppen-80 D. 

Example. It seems that  System (1) cannot be proved to terminate with any monotonic polyno- 

mial interpretat ion [Dershowitz-83]. But termination can he proved using exponentials 

[Filman-78], defining ~': T - >  N as follows: 
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~ ( . + : )  = ~( . )  + r ( : ) + l  

r ( - . )  = 
• (u) = 3, 

where u is any constant. Since the value of any term is at least 3, each rule is a reduction. 

Proving termination of rewriting modulo equations is, in practice, considerably more 

difficult than for plain rewrite systems. Here, given an equational theory (congruence relation) 

E ,  a rule l - ->r  in R applies to a term t E T if there is a substi tution a such that  l a~ - s  for 

some subterm s of a term v such that  V ~ E t  in the theory E .  If i - -> r  applies in this sense, 

then we write t ~ R / E  u,  where u is any term equal (in E)  to that  v with s replaced by ra. 

The question then is: for given R and E ,  does there exist an infinite sequence of terms t~ ¢ T 

such that  t l ~ R / E t 2 ~ R / E  " "" ? 

Example. Let I denote the equational theory (idempotence): 

For any nonempty R ,  R / / I  cannot be terminating, since there must be an infinite derivation 

1.~-tl + l ~ R l  +r----l(l + l ) + r ~  R . • • for any l - -> r  ER. 

The equational theory A C ,  consisting of the associative and commutative axioms, 

f (oqf (/3,"/)) = f (f (a,~),'/) 
f (oq:3) --- f (/3,oI), 

is particularly impor tan t  in practice. Let t" denote the flattened version of a term t ,  with all 

nested occurrences of associative-commutative operators stripped, and where the order of 

arguments of such operators is not significant, and let T ~ { t : t  E T}. Two terms u and v are 

equal in A C  if, and only if, ~" and ~" are the same. It is natural,  therefore, to consider order- 

ings on flattened terms. 
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T h e o r e m  7 [Dershowitz,etal.-83]. Let R be a rewrite sys tem over some set o f  terms T 
and F a set o f  associat ive-commutative operators. The rewrite relation R / A C  is ter- 
mina t ing  i f ,  and only i f ,  there exists  a well- founded ordering >-- on T such that 

T>-F 
for  each rule l-->r in R and for  any subst i tut ion o f  terms for  the variables o f  the 
rule, and 

f (l,~) ~- f (r,~) 

for  each rule l - > r  in R whose lef t -hand side l or right-hand side r has outermost  
associat ive-commutative symbol f C F or whose right-hand side is j u s t  a variable 
(where ~ is a variable otherwise not occurring in the rule), and such that 

u ~ R / A C V  and ~ - ~  imply f (  • ' '  ~ "  ' '  ) > - f (  • ' '  ~ ' '  • ) 

for  all terms u and v in T and f ( " " u " " ) and f ( " . " ~ . " . ) in "T. 

Since addition and multiplication are themselves associative and commutative, monotonic 

polynomial interpretat ions are frequently helpful. To provide an ordering for flattened terms, 

a polynomial interpretat ion of a term should preserve its value under associativity and eom- 

mutativity.  The interpretations,  F ( x , y ) : x y  and F ( z , y ) ~ - x + y + l ,  for example, preserve 

value, whereas F(x ,y) - -~xy  + 1, though symmetric,  does not. 

Example. Consider the following system (for Boolean rings): 

(~-1 ---) a 
~ - 0  --> 0 
~.ol --)- (~ 

~ + 0  --~ 
a + ~  --) 0 

(~+fl ) '~  --> (~'~'1 + 0 ' ~ )  

(9) 

One can use the following polynomial interpretat ion to prove its termination: 

~(.+Z) = ~ ( . ) + T ( Z ) + I  
r(..Z) = r ( - ) rO)  

r(u)  = 2, 

where u is any constant. 

4. S I M P L I F I C A T I O N  O R D E R I N G S  

In proving termination, one can use any ordering ~- that  is well-founded over all terms 

tha t  could appear in any one derivation; the  ordering need not be well-founded over all terms 

that  appear in all derivations. We call an ordering for which >-N=** is always well-founded, 

regardless of what rules are in R ,  well-founded for  derivations. Thus, to apply Theorem 4, 

we need only that  >- be a well-founded ordering for derivations. In particular,  Theorem 2 

implies the following: 
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T h e o r e m  8. A partial ordering ~- is well-founded for  derivations i f  it has an exten- 
sion that contains the embedding relation t>. 

To apply Theorem 5, we need ~ to be monotonic, as well as well-founded for derivations. 

The following definition describes monotonic extensions of I>: 

D e f i n i t i o n  8 [Dershowitz-82]. A monotonic part ia l  ordering >- is a simplification 
ordering for a set of terms T if it  possesses the subterm property, 

f ( ' ' ' t ' ' ' )  ~ t ,  

and the deletion property, 

f ( ' ' ' t ' ' ' )  >- f (  . . . . . .  ), 

for all terms in T. 

By i terat ing the subterm property,  any term is also greater than any of the (not necessarily 

immediate) subterms contained within it. The deletion condition asserts that  deleting sub- 

terms of a {variable arity) operator reduces the term in the ordering; if the operators f have 

fixed arity, the deletion condition is superfluous. Together these conditions imply that  "syn- 

tactically simpler" terms are smaller in the ordering. 

T h e o r e m  9 [Dershowitz-79]. Any  simplification ordering is a monotonic well- 
founded ordering for derivations. 

In the previous section, we saw the use of polynomial interpretat ions for termination 

proofs. That  method requires that  terms be mapped onto the well-founded nonnegative 

integers; using simplification orderings, on the other hand, allows the methods to be extended 

to domains that  are not themselves well-founded. For example, one can associate a monotonic 

polynomial F(x j ,  . . . , x  n) over the reals with each n -a ry  operator  f [Dershowitz-79]. For 

any given choice of polynomials F to provide a simplification ordering, we must have that  

x i > x i  l i m p l i e s F ( ' ' ' z  i ' ' ' )  > F ( ' ' ' x i " ' ' )  

and i 

F ( - . -  =i " " )  > x~ 

for all positions i and for all real-valued xs. 5 For  termination, we need 

r( l )  > tau(r), 

for all rules I - ->r  and for all real value assignments to the variables r (a )  in r(l). Allowing the 

x ' s  to take on any real value is usually too strong a requirement; instead one may show tha t  

terms always map into some subset R I of the reals, i.e. x l ,  ..., x n in R ~ implies F(xl ,  . . . ,xn)  

in R (  Then one need only show that  the conditions hold for all x in R I. The above condi- 

tions are all decidable {albeit in superexponential time), since they are logical combinations of 

mult ivariate polynomial inequalities over the reals [Tarski-51] (see [Cohen-69] for a much 

~rhe methods of the next section allow the strict inequalities > in these two conditions to be replaced by ~. 
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briefer decision procedure and [Collins-75] for a more efficient one). Thus, the polynomial ord- 

ering can be effectively "lifted" to open (i.e. nonground) terms. It is similarly decidable if 

there exists polynomials (and a suitable definition of R t) of a given maximum degree that 

satisfy the conditions and thereby prove termination. (The decision procedure, however, can- 

not point to the appropriate polynomials). For polynomials over the natural numbers, these 

conditions are not decidable (see [Lankford-79]). 

Example. Consider the set of expressions T constructed from some set of constants and the 

single operator x and the system (for semigroups) 

(o~x/3)x 9 "~ ax(flx,-/) (10) 

Terms t and u are compared by comparing their real value interpretations, r(t)  and r(u).  

The real polynomials used are 

~(~x/3) = d . r (~)  + ~(/3) 

for some real d > 1, for products, and 

~ ( u )  = e 

for some e >0,  for constants u. The value of the function r decreases for the subexpression 

that the rule is applied to: for any terms a,/3, and 9, 

r((olx/3)x'/) = d'~'(~x/3)xr('7) ~-- d2"z(cQ + d'r(/3) + r(9), 

while 

r ( ~ × O × ~ ) )  = d ' r ( ~ ) + ~ O x ~ )  = d - r ( ~ ) + d ' ~ ( ~ ) + ~ ( ~ ) .  

This is a reduction, i.e. 

r((c, xjS)x,'t) > ~'(c~x(/3x-r)), 

since d2>d and r ( a )>0 .  

Most orderings used in conjunction with Theorem 5 to prove termination of rewrite sys- 

tems are simplification orderings. In fact: 

T h e o r e m  10. Any total monotonic ordering >- is well-founded for derivations if, 
and only if, it is a simplification ordering. 

In general, however, total monotonic orderings, and hence simplification orderings, do not 

suffice for termination proofs. 

Example. Consider the system 

f (a ) -~ f (b ) (11) 
g(b ) --) g(a ). 

If an ordering > is total, then either a>b or b>a.  If a>b,  then we would also have 

g(a)>g(b), and the second rule would not be a reduction; analogously, if b > a ,  the first rule 
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would not be. 

We have seen above (Theorem 1) that  termination is undecidable for two-rule systems; 

for one-rule systems, the question of decidabili ty is open. On the other hand, 

T h e o r e m  11 [Jouannaud-Kirchner-82]. It is decidable i f  a system of only one rule 
reduces under any simplification ordering. 

5. Q U A S I - O R D E R I N G S  

This section describes methods for proving termination using quasi-orderings. A quasi- 
ordered set ( S , ~ )  consists of a set S and a transit ive and reflexive binary relation ~ defined 

on elements of S.  For example, the set of integers is quasi-ordered under the relation "greater 

or congruent modulo 10." Given a quasi-ordering ~ on a set S,  define the equivalence relation 

as both ~ and ~ and the part ial  ordering ~- as ~ but  not ~ .  A quasi-order ~ on S is 

total if, for any two elements s and s t in S ,  either s ~ s '  or else s ~ s ' .  Note that  the strict  

part  ~ is well-founded if, and only if, all infinite quasi-descending sequences s l ~ S 2 ~ S 3 ~  • • • 

of elements of S contain a pair s j~s  k for some j < k .  In other words, if ~ is well-founded, 

then from some point on, in any infinite quasi-descending sequence, all elements are 

equivalent. 

A stronger notion than well-foundedness is accordingly the following: 

Def in i t ion  9 [Kruskal-60]. A set S is well-quasi-ordered under a quasi-ordering ~ if 
every infinite sequence s i,s2, " • • of elements of S contains a pair of elements s j  and 
sk, j < k ,  such that  s j~s  k. 

Thus, the strict part  of any well-quasi-ordering is well-founded. Well-quasi-ordered sets are 

said to have the finite basis property in [Higman-52]; for a survey of the history and applica- 

tions of well-quasi-orderings, see [Kruskal-72]. A generalization, limiting the contexts in which 

an embedding may occur, and possibly having applications to proofs of termination, can be 

found in [Ehrenfeucht,etaL-83, Bucher,etal.-84, Puel-85]. A even stronger notion than well- 

quasi-ordering, namely better-quasi-ordering, is exploited in [Laver-78]. 

Note that  any finite set is well-quasi-ordered under any quasi-ordering (including equal- 

ity). I t  follows from the definitions that  if a set is well-quasi-ordered under ~ ,  then it is well- 

founded under (any extension of) the part ia l  ordering ~-; the converse is true for total  order- 

ings, i.e. if a set is well-founded under a total  ordering )--, then it is well-quasi-ordered under 
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T h e o r e m  12. A rewrite system R over a set o f  terms T is terminating i f  there ex- 
ists a quasi-ordering ~,  which extends a well-founded ordering ~- and has the strict 
subterm property 

f ( - ' . t . ' . )  >.-t, 

such that 

l ~ . - r  

for each rule l ->r in R and for any substitution o f  terms in T for the variables o f  
the rule, such that 

s ~ t  a n d s ~ t  imply f ( ' ' ' s  ' ' ' ) ~ f ( ' ' '  t ' ' ' ) .  

(Cf. [Kamin-Levy-80].) 

The quasi-ordering used in the above theorem can be a combination of two quasi- 

orderings, one used to show that  eventually all terms in a derivation are equivalent and the 

second to show that there can only be a finite number of equivalent terms in any such deriva- 

tion. 

Definit ion 10. A rewrite system R is quasi-terminating for a set of terms T, if all 
(infinite) derivations contain only a finite number of different terms. Equivalently (for 
finite systems), any infinite derivation must cycle. 

Quasi-terminating systems are also referred to as globally finite. To prove that  a system is 

quasi-terminating, one can use quasi-orderings in the obvious way: 

T h e o r e m  13. A rewrite system R over a set o f  terms T is quasi-terminating i f  there 
exists a quasi-ordering ~,  which extends a well-founded ordering ~- and whose 
equivalence relation ~-~ admits only finite equivalence classes, such that 

t ~ u  implies t ~ u  

for all terms t and u in 7". 

The following theorem gives one method for establishing finiteness of equivalence classes: 

T h e o r e m  14. I f  the strict part ~- of  a quasi-ordering ~ on a set o f  terms T is an 
extension of  the embedding relation ~>, then ~-~ admits only finite equivalence 
classes. 

Example. Consider the polynomial interpretation 

r(if( ,~ ,~, ,~))  = r ( cOx(r (~ )+r ( '~ ) )  

with constants assigned the value 2. The partial ordering t >-u if, and only if, r ( t ) > r ( u )  does 

contain the embedding relation. Since, for the system (for normalizing conditionals) 

i f (i f (c~,fl,q),8,e) --> i f (a,i f (~,6,,),i f (%6,¢)) (12) 

r(l)=r(r) ,  the system is quasi-terminating. 

Another method is the following: 
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T h e o r e m  15. I f  the strict part ~ of  a quasi-ordering ~ on a set o f  terms T is 
well-founded and has the subterm property 

f ( ' ' ' t ' ' ' )  >-t ,  

the deletion property 

f ( . . . t . . . )  >- f (  . . . . . .  ), 

and admits only a finite number o f  terms smaller than any given one, then ~ admits 
only finite equivalence classes. 

Note that the ordering need not be monotonic. (Cf. [Lipton-Snyder-77].) 

Example. Consider the following system (for distributivity): 

.x(jS+u) ~ (o, xH)+(,~x~) 
(~+~)x. --> (~x.)+(~x.) 

Ixc~ ~ 

(13) 

Under the natural interpretation (+ as addition and x as multiplication, but constants as 2) 

terms can be mapped into natural numbers (and hence the term ordering has order-type w) 

while satisfying the subterm property. Since l ~ r  under this interpretation the system quasi- 

terminates. 

Of course: 

T h e o r e m  16 [Guttag, etal.-83]. Quasi-termination o f  rewrite systems is undecidable. 

On the other hand, nontermination of any quasi-terminating system is clearly semi-decidable. 

Also, termination of a quasi-terminating system for a given input term is decidable (construct 

all derivations initiated by that term until they terminate or cycle). 

Example. System (10) quasi-terminates, as does any (finite) system that never increases the 

size of terms. 

Another notion that has been investigated is fair termination (of quasi-terminating sys- 

tems), in which all infinite derivations must include an application of each rule that is 

infinitely often applicable. See [Porat-Francez-85]. 

Using a definition of monotonicity, we can give a local condition for quasi-termination: 

Def in i t ion  11. A quasi-ordering ~ over a set of terms T is monotonic if 

t ~ u  implies f ( ' ' '  t ' ' '  ) ~ f ( ' ' ' u  ' ' ' )  

for all terms in 7". 
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T h e o r e m  17 [Dershowitz-82]. A rewrite system R over a set o f  terms T is quasi- 
terminating i f  there exists a monotonic quasi-ordering ~,  which extends a simplifica- 
tion ordering ~-, such that 

l ~ r  

for each rule l-->r in R and for any substitution o f  terms in T for the variables o f  
the rule. 

Example. System (13) can be shown to be quasi-terminating using the "natural" interpreta- 

tion which preserves the value of a term under rewriting, i.e. r ( l ) : r ( r )  for both rules. By 

letting constants have a positive value, the quasi-ordering m is an extension of the 

simplification ordering > .  

Given quasi-termination, the following method may be used to prove full termination: 

T h e o r e m  18.  A quasi-terminating rewrite system R over a set of terms T is ter- 
minating i f  there exists a monotonic quasi-ordering ~ such that 

l N r  

for each rule l--->r in R and for any substitution of  terms in T for the variables o f  
the rule. 

Thus, to prove termination one can first find a monotonic quasi-ordering ~ guaranteeing 

quasi-termination, and then find any monotonic quasi-ordering ~t  under which each rule is a 

reduction. 6 

Example. The proof of termination of System (12) may be completed using the monotonic 

quasi-ordering t~ 'u  if, and only if, It I~ lu  I, which "decreases" with application of the 

length-increasing rules. 

Example. To complete a proof of termination for the quasi-terminating System (10), a mono- 

tonic quasi-ordering ~ can be used, under which t l x t2~ t l l x t2  ~ if, and only if, 

I t ,xt=l-- I t l 'Xt=' l  and It,[="It1' I. 
Extending the results of the previous section, we have 

D e f i n i t i o n  12 [Dershowitz-82]. A monotonic quasi-ordering ~ is a quasi- 
simplification ordering for a set of terms T if it possesses the subterm property 

f ( . . . t . . . )  ~ t ,  

and deletion property, 

f ( ' ' . t  . ' . )  ~ f (  . . . . . .  ), 

for all terms in T. 

That is, a quasi-simplification ordering is a monotonic extension of the embedding relation I:> . 
m 

A quasi-simplification ordering for fixed-arity operators is called a divisibility order in 

[Higman-52]. The strict part ~- of any quasi-simplification ordering ~ is well-founded for 

SILipton-Snyder-77 , Guttag, etaL-83] use "increasing length" where any monotonic quasi-ordering would do. 
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derivations. For proving termination, it is enough that  ~ be monotonic: 

T h e o r e m  19 [Dershowitz-82]. A rewrite system R over a set o f  terms T is terminat- 
ing i f  there exists a quasi-simplification ordering ~ such that 

l ~ - r  

for each rule i ->r  in R and for any substitution o f  terms in T for the variables of  
the rule. 

6. M U L T I S E T  O R D E R I N G S  

Multisets, or bags, are like sets, but  allow multiple occurrences of identical elements. A 

part ial  ordering >- on any given set S can be extended to form an ordering ~ on finite mul- 

tisets over S.  In this extended ordering, M>~-M ~, for two finite multisets M and M I over S ,  

if M I can be obtained from M by replacing one or more elements in M by any (finite) 

number of elements taken from S, each of which is smaller than one of the replaced elements. 

More formally, let ~ ( S )  denote the set of finite multisets of elements of S.  Then: 

Def in i t ion  13 [Dershowitz-Manna-79]. For  a partially-ordered set ( S , ~ ) ,  the multiset 
ordering >-~ on ~{(S) is defined as follows: 

M>-~.-M I 

if, and only if, for some multisets X , Y  ¢ ~ ( S ) ,  where X is a nonempty subset of M,  

M '  = ( M -  X )  U Y  

and for all y E Y there is an x E X such that  

x~ . - y .  

Def in i t ion  14. For a quasi-ordered set (S ,L) ,  the multiset quasi-ordering ;~z on 
J~(S) is defined as follows: 

M 2 ~ : M  I 

if, and only if, for some multisets X , Y E  ,M(S), 

M ' ~ ( M - X )  O Y  

and for all y ( Y  there is an x EX such that  

x ~ y ,  

where two multisets are considered equivMent if the equivalence classes of their ele- 
ments (under ~.) are the same. 

For example, the multiset  {3,3,3,4,0,0} of natural  numbers is identical to the multiset 

{0,3,3,0,4,3}, but  distinct from {3,4,0}. If  N is the set of natura l  numbers 0, 1, 2, ... with the 

> ordering, then under the corresponding multiset ordering >> over N, the multiset {3,3,4,0} 

is greater than each of the three multisets {3,4}, {3,2,2,1,1,1,4,0}, and {3,3,3,3,2,2}. In the first 

case, two elements have been removed (i.e. replaced by zero elements); in the second case, an 

occurrence of 3 has been replaced by two occurrences of 2 and three occurrences of 1; and in 

the third case, the element 4 has been replaced by two occurrences each of 3 and 2, and in 
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addition the element 0 has been removed. (See also [Smullyan-79, Gardner-83].) 

This ordering on multisets enjoys the following minimality property: 

T h e o r e m  20 [Lescanne-Jouannaud-82]. For a given partial ordering >- on a set S,  
any partial ordering ~,.~l on ,M(S) that satisfies the property 

s >-s t implies {" ' '  s " ' '  }>.>-l{. . .  s t . . .  } 

is contained in the multiset ordering >->-. 

Multiset orderings are used in termination proofs on account of the following: 

T h e o r e m  21 IDershowitz-Manna-79]. The multiset ordering ~ is well-founded if, 
and only if, ~- is. 

Example. To prove termination of System (8), we use a simple path ordering of [Plaisted-78]. 

Terms are mapped into multisets of sequences of operators; sequences are compared in the 

monadic path ordering >mpo, as we did for System (7}. The monotonic termination function 

used for the simple path ordering is 

r(t) ~- { ( f l , f 2 , . . . ,  f k )  I ( f l , f 2 , . . . ,  f k )  is a path in t}, 

where a path is a sequence of operators, starting at the outermost one of the whole term (the 

root, viewing terms as trees) and taking subterms until a constant (leaf) is reached. For the 

operator ordering, we take D to be greater than all else. For example, consider the expression 

t = D= D= (Dz y x(y +D.  D= x)), 

or with the D ' s  numbered for expository purposes, 

t = D 1 D 2 ( D a y x ( y + D 4 D s x ) ) .  

There are three paths, and 

r(t)  = {(D1,D2,x,Da,y),(DI,D2,x,+,y),(D1,D2,x,+,D4,Ds,x)}.  

Applying the rule 

to t yields 

u = Dl ( ( (y  + D 4 D s x ) x D 2 D 3 y  ) + ( D a y x D 2 ( y  + D4D~x) )  ) 

(with the labeling of the Dx's retained), and accordingly 

r(u)  --~ { (DI ,+,x ,+,y) , (DI ,+,x ,+,D4,Ds ,x) , (DI ,+,x ,D2,D3,y) ,  

( D I, + , x ,D 3,y ), ( D I, + , x ,D 2, + ,y ), ( D I, + , x ,D 2, + ,D 4,D s,x ) }. 

We have r(t)>>rapor(u), since 
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(DI,D2,×,Da,y) >mpo 
(DI,+,x,D2,+,D4,Ds,x) >,npo 

(DI,D2,x,D3,Y) >rnpo 
(DI,D2,×,Da,Y) >rapo 
(DI,D2,x,D3,Y) >mpo 

(DI,+,x,D2,+,D4,Ds, x) >~t,o 

(DI,+,X,+,Y) 
(DI,+,x,+,D4,Ds,x) 
(DI,+,x,D2,Da,y) 
(DI,+,×,Da,Y) 
(DI,+,x,D2,+,Y) 
(DI,+,x,D2,+,D 4,Ds,x). 

In the monadic path ordering, sequences are compared left-to-right: At  each step, any opera- 

tor or constant less than or equal to the corresponding one in the other sequence is skipped 

over. Whichever sequence is finished first is smaller; if both finish together, whichever last 

had a smaller operator is largerfl 

If (S,>-) is totally ordered, then for any two multisets M,M~E 14(S), one may determine 

whether M~,~M t by first sort ing the elements of both M and M I in descending order (with 

respect to the relation ~ )  and then comparing the two sorted sequences lexicographically. 8 

For example, to compare the multisets {3,3,4,0} and {3,2,1,2,0,4}, one may compare the sorted 

sequences (4,3,3,0) and (4,3,2,2,1,0). Since (4,3,3,0} is lexicographically greater than 

(4,3,2,2,1,0), it follows that  {3,3,4,0}>>{3,2,1,2,0,4}. [Lescanne-$ouannaud-82] describes an 

implementation of multiset orderings for the nontotal case. 

Consider the case where there is a bound k on the number of replacement elements. Any 

termination proof using this bounded multiset ordering over N may be translated into a proof 

using natural  numbers. This may be done using the termination function 

k" - 1  
¢ (M)  = L '  k - I  

n E M  

which maps multisets over the natural  numbers into the natural  numbers. When exactly k 

elements n -  1 replace one element n ,  the above function gives the exact number of replace- 

ments until termination. 

In general, if (S,~-) is of order type ~, then the multiset ordering ( ~ ( S ) , ~ }  over (S,~-) 

is of order type w e .̀ This follows from the fact tha t  there exists a mapping ¢ from .M(S) onto 

we  ̀that  is one-to-one and order-preserving, i.e. if M~v'~-M I for M,MIE ~(S), then the ordinal 

~b(M) is greater than ¢(M') .  That  mapping is 

¢ ( M )  = S wig(m) 
ra { M  

where V'  denotes the natural  (i.e. commutative) sum of ordinals and ¢ is the one-to-one 

order-preserving mapping from S onto a. 

7[Gorn-73] uses a "stepped" lexieographic ordering (under which longer sequences are larger) to prove termi- 
nation of differentiation, but without using multisets, his proof applies only when D's are not  nested. 

SThis is the ordering I + in [Manna-69]. 
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Example. The simple path ordering does not work for the system: 

-(~+~) --> ---,~ x ---fl 
- ( ~  x~) --> - - - ~  + - -  - ~  

(14) 

Instead, we use Theorem 19 and define the following quasi-simplification ordering: t>->-n for 

two terms t and u if, and only if, 

It I+.~[ ,  I+. and {lal+x:-a in t} ~" {]o~[+x:-a in u}, 

where the multisets contain the value [~[+x (the number of oeeurrenees of operators other 

than - in a) for each subterm of the form - a ,  and multisets are compared using =' .  I i  is 

easy to see that  this quasi-ordering satisfies the replacement and subterm properties of quasi- 

simplification orderings on fixed-arity terms. I t  remains to show that  each rule reduces the 

subterm it is applied to. For  all three rules, the number of operators other than - is the 

same on both sides. To see that  

note that  there are two less elements in the multiset of numbers of operators for the right- 

hand side than for the left-hand side. To see that  

-(~+~) >- - - - ~ x - - - ~  

-(~x~) >- ---~+---~ 

note that  the number of operators other than - in ~+/~ and ~x/3 is greater than that  of 

- - a ,  - ~ ,  a, - - / 3 ,  -/3, and 13. 

7. P R E C E D E N C E  O R D E R I N G S  

We use the muttiset ordering in the following: 

Def in i t ion  15 [Dershowitz-82]. Let >- be a part ia l  ordering on a set of operators F .  
The recursive path ordering >'~o on the set T(F) of terms over F is defined recursive- 
ly as follows: 

s = f ( s l , . . .  , s , , )  ~',~o g ( t l , . . . , t , )  ~- t 

if 

o r  

o r  

sl ~rpo t for some i----1,...,m 

f ~ g and s >-rpo t 5 for all j--~l,. . . ,n 

f = g a n d { s l , . . .  ,sin} ~"rpo {tl . . . .  ,tn}, 

where >'>-rpo is the extension of >-n~o to multisets and ~wo means >',~o or permuta-  
tively congruent (equivalent up to permutat ions of subterms). 

This definition is similar to a characterization of the path of  subterms ordering given in 
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[Plaisted-78b]. ° The idea is that  a term is decreased by replacing a subterm with any number 

of smaller (recursively) subterms connected by any structure of operators smaller (in the 

operator ordering) than the outermost  operator of the replaced subterm. 

To determine, then, if a term s is greater in this ordering than a term t ,  the outermost 

operators of the two terms are compared first. If the operators are equal, then those (immedi- 

ate) subterms of t that  are not also subterms of s must each be smaller (recursively in the 

term ordering) than some subterm of s. If the outermost operator of s is greater than that  of 

t ,  then s must be greater than each subterm of t;  while if the outermost  operator of s is nei- 

ther equal nor greater that  that  of t,  then some subterm of s must be greater or equal to t.  

For example, suppose - > + ,  and let s~- -~-( lx( l+0))  and t - - - - - l + - ( 0 x l ) .  The term s is 

greater than t under the corresponding recursive path ordering >rpo by the following line of 

reasoning: 

s >rpot since -- > + and s >rpo - 1 , - ( 0 x l )  

s > r p o - 1  since l x ( l + 0 ) > r p o  1 

l x ( l + O ) > r p o l  since 1~:~ol  

s >rpo-(Oxl) since l x ( l + 0 ) > r p o 0 X l  

l x ( l + 0 ) > r p o 0 X l  since 1=1  and l + 0 > r p o 0  

1+0>f ro0  since 0>0.  

T h e o r e m  22 [Dershowitz-82]. The recursive path ordering is a simplification order- 
ing. 

Using the recursive path ordering to prove the termination of rewrite systems generalizes the 

(exponential interpretat ion) method in [Iturriaga-67]. 10 

Example. We can use a recursive path ordering to prove termination of System (1). Let the 

operators be ordered by - > x > + .  Since this is a simplification ordering on terms, by 

Theorem 9, we need only show that  

- -  - -¢r  > r p o  c~ 

-(~+/~) >~po -c~x-8 
-(axe) >,po - a + - 8  

ax(~+~) >~,,o (,~x~)+(ax~) 
(~+~)xa >~po (~x~)+(~xa) 

for any terms c~, /3, and ft. The first inequality follows from the subterm condition of 

simplification orderings. By the definition of the recursive path  ordering, to show that  

°This ordering addresses the problem posed in [Levy-80]. 
1°The cases where Iturriaga's method works are those for which the operators are partially ordered so that 

the outermost ("virtual") operators of the left-hand side of the rules are greater than any other operators. 
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- (a+/~)>rpo( -c~x- /~)  when - > x ,  we must show that - (a+/~)~rpo-c~,  and 

- (a+/~)>,~o- /~ .  Now, since the outermost operators of -(a+jO), - a ,  and -/~ are the same, 

one must show that a+/~>,~oa and a+fl:>rpo/~. But this is true by the subterm condition. 

Thus the second inequality holds. By an analogous argument, the third inequality also holds. 

For the fourth inequality, since x > + ,  we must show ax(/~+-~)>~oax/~ and 

,~x(/~+q}>,po~X% By the definition of the recursive path ordering for the case when two 

terms have the same outermost operator, we must show that {a,/~+q}>>rpo{c~,fl } and 

{~,/~+q}>>rpo{~,q}. These two inequalities between multisets hold, since the elements/~+q is 

greater than both /~ and q with which it is replaced. Similarly the fifth inequality may be 

shown to hold. Therefore, by Theorem 9, this system terminates for all inputs. 

The multiset ordering described above, nested multiset ordering [Dershowitz-Manna-79], 

and simple path ordering may all be thought of as special cases of the recursive path ordering, 
in which the multiset constructor { • • • } is greater than other operators. The nested multiset 

ordering is just a recursive path ordering on all terms constructed from one varyadic operator, 

and {with just that one operator) is of order type e0 .ll Gentzen used such an ordering to show 

termination of his "normalization procedure" [Gentzen-38]. Two other interesting examples of 

e 0 termination arguments may be found in [Kirby-Paris-82]. 

The above definition of the recursive path ordering is not particularly well-suited for com- 

putation. The recursive decomposition ordering ~-r,to {defined in [Lescanne-84, Plaisted-79] 

for the case when the ordering ~- on operators is total) "preprocesses" terms in an at tempt to 

improve efficiency. Suppose ~- is total, and let t" denote the term t-~-g(tl, . . . ,tn) with all 

subterms sorted according to ~'rdo, i.e. [=g([i~, ' '" ,tin), where t s~-rdo ' ' '  ~rdot], and 

{ t]~ , . . . , t£}  is permutatively congruent to { t l , . . . , t n } .  Consider two sorted terms 

g = u [ f ( s l , . . . , s m )  ] and [=v[g( t l , . . . , tn )] ,where  f and g are the greatest operators in s 

and t, and u and v are the "contexts" surrounding the leftmost {maximal) occurrences of f 

and g in s and t, respectively. Then, 

S ~'rdo t 

if, and only if, the decomposition of g, 

( f  ,(S 1 . . . .  , Srn },U [o]), 

is greater than the decomposition of [, 

(g , ( t~  . . . .  , t . ) , ~ I o l ) ,  

where the three components are compared lexicographically, the operators f and g according 

to ~ ,  the subterms s i and tj lexicographically {using ~'r~o recursively), and the contexts tt  

and v recursively. In comparing contexts, the operator o is considered to be greater than any 

term not containing o; in choosing greatest f and g, circles are ignored. For example, sup- 

pose 0 > - > x > + > l ,  s-----~-(lx(l+0)), and t - - - = - l + - ( 0 x l ) .  Their sorted terms are 

llThat the nested multiset ordering has the properties of simplification orderings was pointed out in 
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g - ~ - ( ( 0 + l ) x l )  and t ' - - - - - ( 0 x l ) + - l .  The full decomposition of g is 

(0,(),(--,((x,((+,(o,l),o),l),o)),o}); 

that of [ is 

(0,(),(-,((x,(o,1),o)),(+,(o,(-,(),o)),o))).  

The first decomposition is greater, since (+,(o,1),o) is greater than just o. 

With the above definition, the comparison of two sorted terms is essentially lexicographic. 

Sorting a list of sorted terms and building the decomposition are believed to be relatively inex- 

pensive [Dershowitz-Zaks-81, Lescanne-Steyaert-83]. The definition of "decomposition" can be 

extended to the nontotal ease [Jouannaud,etal.-82, Rusinowitch-85]. The recursive decomposi- 
tion ordering as welt as the path of subterms ordering ~laisted-78b] and path ordering 
[Kapur-Sivakumar-83], extend the recursive path ordering somewhat when the ordering N on 

operators is partial. The four are are equivalent in the total case. For example, the path of 

subterms ordering makes h ( f  (c~), f (fl)) >pso h (g (afl),g (c~,/~)) if f > g, but the two are incom- 

parable under >rpo. With a total ordering on operators, terms are also totally ordered. 

Thus, one can determine that h(f(a),f(fl))>rpoh(g(a,fl),g(a,fl))in all three possible cases: 

a>fl, fl>c~, and a~-fl. The exact relation between them is investigated in [Rusinowitch-85]. 

These orderings are also equivalent for monadic terms, even when the operator ordering is 

partial; an efficient implementation of the monadic case is given in [Lescanne-811. 

These precedence orderings may be conveniently lifted to apply to nonground terms (con- 

taining variables) by considering variables as (zeroary) constant symbols, unrelated to any 

other symbol. For the recursive path ordering this idea is illustrated in [Dershowitz-821 and 

formalized in [Ituet-Oppen-80]; for the reeursive decomposition ordering this is done in 

[Jouannaud,etal.-82]; for the path of subterms ordering, see [Plaisted-78b]. For example, we 

have -(a+fl)>rp o - a x - f l ,  where a and fl are variables, since - is greater than x (under > )  

and -((~+fl) is greater than both - a  and - f l  (under >,-po). For -(a+fl)>rvo-a, it must be 

that c~+fl>rpoa , which is true since + ~  a and a~rpoa. Given a partial ordering N of opera- 

tors F, the following lifted ordering can also be used: 

where orderings are viewed as relations and all possible total extensions of the given pre- 

cedence are considered. (See, for example, [Forgaard-84].) 

These orderings are also incremental. That is, one can start with an empty ordering on 

operators, and add to it only as necessary to satisfy given inequalities between terms. How 

this may be done with the recursive decomposition ordering is described in [Jouannaud,etal.- 
82] (see also [AitKaci-83]). When comparing two terms, the comparison may stop when two 

decompositions have incomparable symbols, say f and g, as their first components. The idea 

is to add f > g  to the ordering at that  point. (This method has been implemented in the 

[Scherlis-80 I. For a "constructive" discussion of this ordering, see [Paulson-84]. 
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REVE system [Lescanne-83]. Details may be found in [Choque-83, Detlefs-Forgaard-85].) For 

instance, in order for ~x(f l+ '7)>rdo(axfl )+(ax '7  ) to hold, one needs x~>+; if x > + ,  then for 

- - ( a+f l )>rdo- -ax- - f l  to hold, it must he that  - > x .  But choosing an ordering on operators 

so that two terms are comparable under the recursive path ordering is NP-complete 

[Krishnamoorthy-Narendran-84] in the number of different operators. 

It is sometimes necessary to transform terms before comparing them in the recursive path 

ordering. As long as the ordering on the operators of the transformed terms is well-founded, 

the recursive path ordering on transformed terms will also be: 

T h e o r e m  23 [Dershowitz-82]. The recursive path ordering ~n~o on the set o f  terms 
T(F) is well-founded if, and only if, the partial ordering ~- on the set o f  operators F 
is well-founded. 

But the transform r, which acts as termination function, needs to satisfy the monotonicity 

condition 

r ( t )~por (u )  implies r ( f (  " "  t " " ) )~-~or( f (  . . .  u " ' ) ) .  

Depending on the particular r, this condition may or may not hold. One way in which terms 

may be transformed is to let the kth operand of a term act as its operator. Then to compare 

two terms one must first recursivelg compare their kth operands and then use the recursive 

path ordering. With this transform, the result is a monotonic simplification ordering. (See 

[Dershowitz-82].) 

Ezample. To prove that System (12) terminates we consider the condition to be the operator. 

The condition i f  (a,fl,'7) of the left-hand side is greater (by the subterm property) than the 

condition a of the right-hand side. Thus, we need to show that the left-hand side is greater 

than both right-hand-side operands if(fl,~,E) and i f  ('7,~,E). Again, i f  (a,fl,'7) is greater than 

both operators fl and '7, and now the left-hand side is clearly greater than the remaining 

operands/i and E. 

Ezample. The following system (for a combinator C) terminates: 

(c.((~-~)-'7).~ ~ (~.'7).((~-'7).~). ( is)  

One way to see that is to consider the left operand of • to he the operatorJ 2 

This particular ordering, considering the first operand to be the operator and applied to 

terms constructed only from one varyadic operator f ,  is of order type /'0 (see [Veblen-08, 

Feferman-68].) This can he shown with the following order-preserving mapping ~ershowitz- 

80] ~b from T({f})  onto Fo: 

12This kind of proof is possible when the eombinator has a non-a~eending property described in [Pettorossi- 
78, Pettorossi-81]. 
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¢(f) = 0 

¢ ( f  ( f  , . . . , f )) ~-  n w h e r e  n is the number o f  operands f 

r l  

¢ ( f ( a ,  f l l , f 2 , . - . ,  fir,) = ¢¢(a)( Sw~(~'})+~(t) 
i = l  

where ¢ 0 ( f ) = f ,  ¢1(f)~__~# (the fl-th epsilon number), ¢~(f) is the f t h  fixpoint ~ of ¢~(~)~--~ 

common to ¢~ for all ordinals p < a ,  ~ is the natural  (commutative) sum of ordinals, and 6 is 

1 if ¢(a}~--~-l, n = 1 ,  and ¢(f l )  is an epsilon number and is 0 otherwise. (The purpose of $ is to 

ensure that  ¢ ( f  ( f  , f ) ) > ¢ ( f )  even if ¢(f )  is an epsilon number.) Tha t  this mapping is order- 

preserving follows from the fact ([Feferman-68, Weyhrauch-78]) that  Ca(f)>t,b°'(ff) if and only 

if a = a '  and f > / ~ ,  or else a > a  I and ~ba(f)>fl I, or else a < a  t and f>~,baz(flt). 

More generally, terms may be mapped by replacing their operators with the whole term 

itself, where the new operator is the whole term itself ordered by some other well-founded ord- 

ering: 

Def ini t ion 16 [Kamin-Levy-80, Plaisted-79]. Let ~ be a quasi-ordering on a set of 
terms T. The semantic path ordering ~ p o  on T is defined recursively as follows: 

8 = f ( s l ,  . . .  , s i n )  >*po g ( t l , ' ' '  , t . )  --~ t 

o r  

o r  

si ~epo t for some i =l , . . . ,m 

s >- t and s ~spo tj for all j= l , . . . , n  

s ~-~ t a n d { s l , . . .  ,sin} >'>'spo { t l , . . .  ,tn}, 

where >'>'spo is the extension of >-~o to multisets and ~spo means >'spo or permuta- 
tively congruent (equivalent up to permutations of subterms}. 

To use this semantic path ordering in a termination proof, the monotonicity condition 

t ~ t t  implies f ( - - - t ' - - ) > - f ( - ' ' u - - - )  

must hold. 

Example. Consider the system 

g (a,f)  ->  h (~,f) (18) 
h ( I  (a),f)  --> f (g (a,f)). 

The first rule suggests g > h ;  the second requires h > f  and h ~ g .  This conflict can be over- 

come by letting > be a lexieogTaphic combination of a recursive path ordering with g eeh > f 

and one with g > h .  Comparing terms under the corresponding >,eo shows a reduction for 

both rules. 
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The recursive path ordering has also been adapted to handle associative-commutative 

operators by flattening and transforming terms (distributing large operators over small ones) 

before comparing them [Plaisted-83, Bachmair-Plaisted-85]. Here, too, the difficulty is in 

ensuring monotonicity. Flattening alone would not be monotonic. For instance, if f > g  then 

f(a,a)>rpog(a,a), but f ( f ( a , a ) , a ) = f ( a , a , a )  <rpo f(g(a,b),c)=f(g(a,b),c).  

Another well-founded ordering is the following lexicographic version of the recursive path 

ordering: 

D e f i n i t i o n  17 [Kamin-Levy-S0]. Let >- be a partial ordering on a set of operators F. 
The lexieographic path ordering Y~tpo on the set T(F) of terms over F is defined recur- 
sively as follows: 

s = f ( s ~ , . . . , a m )  >'tpo g ( t l , . . . , t n )  = t  

and either 

or 

s Nlpo tj for all j= l , . . . ,n  

sl )~tpo t for some i= l , . . . ,m 

f = g  and(Sl, . . . ,sm) >"t*po ( t l , . . . , tn) ,  
where >~l*po is the lexicographic extension of >-lpo. 

By the same token, some operators may have their operands compared lexicographically, while 

others are compared using multisets. 13 Multiset and lexicographie versions of these path ord- 

erings have been implemented in REVE [Lescanne-84, Detlefs-Forgaard-85] and RRL [Kapur- 

Sivakumar-83]. In [Kamin-Levy-80] it is pointed out that any well-founded manner of com- 

paring operands that depends only on recursive comparisons of subterms would work as well. 

Example. The following system (for Ackermann's function) can easily be seen to terminate 

with a lexicographic path ordering with empty precedence: 

a(s(~),s(~)) --> a(~,a(s(~),~)) (17) 

Sometimes, it is possible to adapt one of the above path orderings to work where other- 

wise it would not. 

Example. The lexic%raphic path ordering cannot directly handle 

is'I'he same lexicographic path ordering has been described in [Sakai-84], where it is erroneously claimed to 
be an extension of the recursive path ordering; in fact, the two orderings are incomparable. How one might 
transform terms so that t ~-~p0 u if, and only if, r(t )~rpor(u) is examined in [Pettorossi-81]. 
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(~.Z).~ -> ,.(Z.~) 
(~+~).,~ ---> (c,.~)+(~.~) (xs) 

q.(c~+ f (fl)) --> g(q,i~)'(a+a). 

One needs to differentiate between • in general and g( • • • ) . . . .  , making the operator larger 
in the former case. 

Suppose we are given a quasi-ordering ~ F  on (fixed arity) operators and a quasi- 

simplification ordering ~T  on terms, such that  f (  • • • t . • • ) ) -T t  only when f is unary and 

f ~Fg  all operators g. Then we can define a quasi-simplification ordering ~ in the following 

manner: 

if, and only if, 

s = f ( s ~ , . . . , s m )  ~ g ( t ~  . . . .  , t , )  = t ,  

(s,f ,st,...,sm) ~ (t,g,tl,...,tn) 

where the two tuples are compared lexicographically, first according to the terms s ~ T  t ,  then 

according to the operators f ~Fg ,  and finally according to the subterms S i~Tt i ,  (or, alterna- 

tively, s i ~ t  i recursively). The condition on the operator ordering ~,r ensures that 

possesses the subterm property. To prove termination, one must find appropriate quasi- 

orderings ~F  and ~T for which l )--r for all rules i - > r  in the given system. 

Other examples of simplification orderings are the recursive lexicographic ordering in 

[Knuth-Bendix-70] and the polynomial ordering in [Lankford-79]. The method of [Knuth- 

Bendix-70] assigns a positive integer weight to each zeroary operator and a nonnegative 

integer weight to each other operator, with ...~T comparing terms according to the sum of the 

weights of their respective operators, ~ F  a total ordering of operators, and subterms com- 

pared recursively. Thus, the condition on ~ r  requires that a unary operator have zero weight 

only if it is the largest operator under ~ r .  [Lankford-79] replaces the linear sum of weight 

function with monotonic polynomials having nonnegative integer coefficients. Since both these 

methods use total monotonic orderings, the subterm condition is both necessary and sufficient 

for the orderings to be well-founded; the integer requirements are not themselves necessary. 

Example. For System (10) we can use the Knuth-Bendix ordering, taking t ~ T u  to be 

I t I ~ I u I and ~ r  to be equality, and comparing subterms recursively. 

Example. This method applies also to System (14) with t '~Tu if, and only if, ! t I+~=*lu I+x, 

the largest operator under > F  is --, and subterms compared recursively. 

8.  C O M B I N E D  S Y S T E M S  

In this section we consider the termination of combinations of rewrite systems. If R and 

S are two (strongly or weakly) terminating systems, we wish to know under what conditions 

the system R U S ,  containing all the rules of both R and S, also (strongly or weakly) ter- 

minates. 
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Definition 18. A rewrite relation R commutes over another relation S, if whenever 
t ~ s u  d R v, there is an alternative derivation of the form t ~ R w  ~ u sV. 

With it we can reduce termination of the union of R and S to termination of each: 

T h e o r e m  24 [Bachmair-Dershowitz-85]. Let R and S be two rewrite systems over 
some set o f  terms T.  Suppose that R commutes over S.  Then, the combined system 
R US  is terminating if, and only if, R and S both are. 

For rewriting modulo equations, we have the following analogous results: 

T h e o r e m  25 [Jouannaud-Munoz-84]. I f  the rewrite relation R commutes over the 
congruence relation E ,  then R/ /E is terminating if, and only if,  R is terminating. 

Furthermore, 

T h e o r e m  2{i. Let E be a congruence relation and R and S two E-terminating 
rewrite systems (over some set o f  terms T). I f  whenever t ~ s u ~ R / E  v, there is an 
alternative derivation o f  the form t~R/EW~(*RuS}/EV , then the combined system 
( R U S ) / E  is also terminating. 

Some suggestions of how noncommuting R and E might be handled are given in [Jouannaud- 

Munoz-84]. 

To show that two relations commute, we can make use of the following properties: 

Def in i t ion  19. A system is left-linear if no variable occurs more than once on the 
left-hand side of a rule; it is right-linear if no variable has more than one occurrence 
on the right-hand side. We say that a system is linear if it is both left- and right- 
linear. 

Definition 20. A term u is said to overlap (or superposes) a term t if u can be 
unified with some (not necessarily proper) subterm s of t, i.e. if the two can be made 
the same by substi tuting terms for the variables in t and u (Whenever we speak in 
this section of unifying two terms, we consider their variables to be disjoint and insist 
that neither of the terms be just  a variable.) We say that there is no overlap between 
two terms t and u if neither t overlaps u nor u overlaps t. A rewrite system R is 
said to be non-overlapping if there is no overlap among the left-hand sides of R, i.e. no 
left-hand side I i overlaps a different left-hand side I i and no left-hand side I i overlaps 
a proper subterm of itself. 

Example. The linear system 

(~x~)x~ -~ ~x(~x~) 

is overlapping since (c~x3)x9 is unifiable with a x e .  The system 

~,x(~+,~) --> (,~x/~)+(~,x,~) 

is left-linear but not right-linear; the system 

(~x~)+(~×,~) -> ,~x(~+,~) 

(lO) 

(10) 

(20) 
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is right-linear but not left-linear. Both are non-overlapping. 

Other investigations of some of commuting systems include [Rosen-73, O'Donnell-77, Huet- 

Levy-79, Huet-80, Raoult-Vuillemin-80] 

Using these properties to establish commutation, we have the following results: 

C o r o l l a r y  [Dershowitz-81]. Let R and S be two rewrite systems (over some set of  
terms T). Suppose that R is left-linear, S is right-linear, and there is no overlap 
between left-hand sides of  R and right-hand sides of  S. 7hen, the combined system 
R U S  is terminating if, and only if, R and S both are. 

This generalizes the case exploited in [Bidoit-]. 

Example. The systems 

.x(f~+~) -> (,~x~)+(.x~) 
(~+~)x. -> (~x.)+(.~x.) 

c~xl --> c~ 

Ixc~ --> 

(la) 

and 

axa --> a (21) 
a ÷ a  "-> 

each terminate; therefore their union also does. 

Each of the three requirements of the above theorem is necessary, as evidenced by the follow- 

ing examples of nonterminating systems. 

Example. The system 

f (c~,c~) ~ f (a,b ) (22) 
b ---> a 

has the infinite derivation f ( a , a ) ~ f ( a , b ) ~ f ( a , a ) ~ . . ' ,  though each rule terminates, the 

first is right-linear, the second is linear, and there is no overlap (but the first is not left- 

linear). 

Example. The system 

b - >  a (23) 
f (a,b,~) --~ f (o~,c~,e~) 

has the infinite derivation f (a ,b ,b )=~f (b ,b,b )=--=~ f (a ,b,b ):=~ - • - , though each rule terminates, 

the first is linear, the second is left-linear, and there is no overlap (but the second is not 
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right-linear}. 

Example. The system 

b "-~ g(a) (24) 
a --> g(b) 

has the infinite derivation b~g(a )~g(g(b))~ ' ' ' ,  though each rule terminates and both are 

linear (but there is overlap). 

Similarly for rewriting modulo equations, we have: 

T h e o r e m  27. I f  R / E  is left-linear, S is right-linear, and there is no overlap 
between left-hand sides of R / E  and right-hand sides of S, then the combined system 
(RUS) /E is also terminating. 

Example. Let E be AC, S be 

a ' l  ~ 
a'O --> 0 

~ + 0  - >  a 
~ + a  --> 0 

(Qa) 

and R be 

(~+fl ) 'q  --> (a'ff)+(fl'ff) (gb) 

The system S is right-linear; the relation R/AC is left-linear, since R is left-linear and AC is 

linear. There are no occurrences of 0 on the left-hand sides of R ,  so there is no overlap. 

Therefore, R/AC commutes over S.  If, say, 

(d'(a'a))'(b+c) ~ S  (d'a)'(b+e) :::::$R/AC d'(a'b+a'c) 

then by the same token 

(d.(a.a))'(b+c) ~R/AV d'((a'a)'b+(a.a).c) ~ s ~ s  d.(a.b+a'c). 

Recall that  a system is weakly terminating if every term rewrites to an irreducible term. 

Example. The following system [cf. System (1)] does not always terminate but  is weakly- 

terminating and its irreducible terms are in disjunctive normal form: 
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- - - - 0 /  - ' ) "  
- ( a + / ~ )  -> 
- ( a x a )  --> 

ax(~+ ,~)  --> 
(~+-~)xa --> 

C~ 

------OcX------~ 
- - - a + - - - ~  
(a×~)+(~x-r) 
(~xa)+(,~xa) 

(25) 

To see that  it does not terminate,  consider the derivation 

- - - ( 0 x ( 0 + l ) )  ~ - - - - ( ( 0 x 0 ) + ( 0 x l ) )  ~ - - ( - - - - - ( 0 x 0 ) x - - - - - - ( 0 x l ) )  
• --~-(-(o×o)×-(o×I)) 

~... =~-((---o+---o)×(---o+---I)) 

:=~ ''' =~ - ( ( - O + - O ) x ( - - O + - l ) )  :=~ -((-Ox(-O'l'-l))+(-Ox(--O+-l))) 
---(-o×(-o+-I))x---(-o×(-o+-I)) ~ - - -  . 

Thus, beginning with a term of the form - - ( ax (c~+ /~ ) ) ,  a term containing a subterm of the 

same form is derived, and the process may continue ad infinitum. On the other hand, any 

application of the second or third rule can be followed immediately by two applications of the 

first rule, thus simulating a derivation of System (1) and guaranteeing termination. 

To prove that  a system is weakly terminating, one can choose a part icular evaluation 

strategy and show that  the value of a term is reduced in some well-founded ordering for those 

rewrites allowed by the chosen strategy. Thus, for the union of two weakly terminating sys- 

tems R and S, one can choose to first reduce to an R-normal  form and only then apply S.  

Then, if one can show that  applying S to an R-normal  form results in an R-normal  form, 

weak termination of R U S  follows. 

Example. The nonterminating System (25) is weakly terminating by the following line of rea- 

soning: The first three rules alone are weakly terminating, since applying one of those rules to 

an outermost occurrence of - reduces the multiset of sizes of arguments of - .  (Note that  

this is not, and need not be, a monotonic ordering.) Similarly, the last two rules can be shown 

weakly" terminating. Since the first three rules eliminate all negations of nonconstants and the 

two distr ibutivi ty rules cannot introduce other negations, weak termination is proved. 

9. R E S T R I C T E D  S Y S T E M S  

In this section, we consider how linearity and nonoverlapping of rules make it possible to 

restrict the derivations that  must be considered when proving termination or nontermination 

of a rewrite system. Unfortunately: 

T h e o r e m  28 [Huet-Lankford-78]. Termination of  a rewrite system is undecidable, 
even i f  the system is linear and nonoverlapping and has only monadic operators and 
constants. 

In the extreme case of a single monadic rule with right-hand side no longer than left-hand 

side, deciding termination is trivial. [Metivier-83, Calladine-85] provide upper  bounds on the 

length of a derivation in tha t  ease. Similarly: 
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T h e o r e m  20 [Guttag, etai.-83]. Quas i - terminat ion  o f  a rewrite sys tem is undecidable, 
even i f  the sys tem is l inear and nonoverlapping and has only monadic operators and 
constants.  

We need the following definitions: 

D e f i n i t i o n  21 [Lankford-Musser-78]. The set of forward  closures for a given rewrite 
system R may be inductively defined as follows: Every rule in R is a forward closure. 
Let 

c I :=# C 2 = ~  • . . ~ e m 

and 

d I =*d 2 =, . . .  =:~d n 

be two forward closures already included. If c m has a (nonvariable) subterm s within 
some context u such that s unifies with d I via most general unifier a, then 

c :  =~ c :  = "" • =~ ema = u a [ d : l =  ua[d2a] ~ " ' "  ~ ua[dna] 

is also a forward closure. (Two forward closures are considered equal if they can be 
obtained one from the other by variable renaming.) 

This definition is related to the narrowing process, as defined in [Single-74, Hullot-80]. 

D e f i n i t i o n  22 [Guttag, etal.-83]. The set of overlap closures for a given rewrite system 
R may be inductively defined as follows: Every rule in R is a forward closure. Let 

C I =:~ C 2 =:~ • . . =:# Crn  

and 

d I ~ d  2 =~ ' ' -  ~ d ,  

be two overlap closures already included. If crn has a (nonvariable) subterm s within 
some context u such that s unifies with dl  via most general unifier a, then 

cla =~ c2a =~ • • " =~ cma = ua[d la]=~ ua[dga] =e~ ... =e~ ua[dna ] 

is also an overlap closure. If d 1 has a (nonvariable) subterm t within some context v 
such that t unifies with c m via most general unifier r, then 

vr[c lr ] =* vr[c2 r] ~ . . .  = ,v r [cmr  ] = d lr=* d2r =~ . . .  =~ dn r 

is also an overlap closure. (Two overlap closures are considered equal if they can be 
obtained one from the other by variable renaming.} 

Example. Consider the system 

- - - -~  - ~  c~ 
- - (~+~)  --> - -~+  - ~  (26) 

The derivation 
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- ( ( . + - Z ) + - ~ )  ~ - ( . + - Z ) + - - - ~  
( - . + - - Z ) + - - z  ~ ( - . + ~ ) + - - ~  ~ ( - . + Z ) + ~  

is a forward closure for that  system; the derivation 

- ( ~ + - - ~ )  ~ - ~ + - - - ~  ~ - ~ + - ~  

is an overlap closure, but not a forward one; the derivation 

- ( ~ + - - ~ )  ~ - (~+~)  ~ - ~ + - ~  

is neither. 

T h e o r e m  30 [Dershowitz-81]. A right-linear rewrite system is terminating if, and 
only if, it has no infinite forward closures. 

Example. The self-embedding rewrite system 

f ( h ( a ) )  " )  f (g (h(a) ) )  (27) 

is right-linear and has only one forward closure: 

f(h(c~)) ~ f(g(h(ct)))  

Since this forward closure is finite, the system must terminate. Note that, by Theorem 10, no 

total monotonic ordering could prove termination of this system. 

Example. The forward closures of 

f (g (a ) )  --) g (g( f (a) ) )  (28) 

are all of the form 

f(g(gi(c~))) ~ g(g( f (g i (a)) ) )  ~ . . .  ~ g21(f(ct)) 

where i~0 .  Since the system is right-linear and all its forward closures are finite, by the 

theorem, it must terminate for all inputs. 

Example. The forward closures of 

f (g (a ) )  ---) g(g(f( f(c~))))  (20) 

include 

f (g(~) )  ~ g ( g ( f ( f ( a ) ) ) )  

and the infinite forward closures 

f (g(g(gi(a))) )  ~ g (g ( f ( f (g (g i (a ) ) ) ) ) )  ~ g (g ( f (g (g ( f ( f ( g i (a ) ) ) ) ) ) ) )  ~ . . .  

for all i~0 .  Thus, the system does not terminate. 

T h e o r e m  31 [Dershowitz-81]. A non-overlapping left-linear rewrite system is ter- 
minating if, and only if ,  it has no infinite forward closures. 

It has been conjectured [Dershowitz-81] that left-linearity is unnecessary. 
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Example. None of the forward closures of the non-overlapping left-linear System (8) have 

nested D operators. (This can be shown by induction.) Thus, the finiteness of those forward 

closures--and consequently the termination of the system--can be easily proved by consider- 

ing the multiset of the sizes of the arguments of the D's.  Any rule application reduces that 

value under the multiset ordering. 

In general, though, a term-rewriting system need not terminate even if all its chains do: 

Example. The non-right-linear and overlapping system 

f (a ,b ,~ )  ~ f (~ ,~ ,b )  (30) 
b --) a 

has two finite forward closures. Nevertheless, the system does not terminate. To wit, 

f (a ,b ,b )  ~ f (b ,b ,b)  ~ f (a ,b ,b) .  

Theorem 32 [Guttag, etal.-83]. A quasi-terminating left-linear rewrite system is ter- 
minating if,  and only if,  it has no infinite overlap closures. 

Example. System (30) has the following infinite overlap closure: 

f (b ,b ,b)  ~ f (a ,b ,b )  ~ f (b ,b ,b)  ~ ' ' '  

It is unknown whether quasi-termination and/or left-linearity are necessary in the above 

theorem. 

The above theorems give necessary and sufficient conditions for a left-linear or right- 

linear system to terminate. One of the advantages in using closures is that  nontermination is 

more easily detectable, as the next theorem will demonstrate. First, we must extend the 

definition of "looping." 

Definition 23. A derivation t t ~ t 2 ~  • . .  ~ti---# • . . loops if for some j > i  t~ has a 
subterm that is an instance of t i. 

Theorem 33 [Dershowitz-81]. A right-linear or non-overlapping left-linear rewrite 
system is nonterminating if, and only if, it has infinitely many nonlooping inf ini te  
forward closures or it has a looping forward closure, 

Example. The system 

g(.)  --> h( . )  

f (~ ,~ )  --~ f ( a , ~ )  
b "-) a 

a - - )  b 

has two finite forward closures b ~ a  

f ( ~ , ~ ) ~ f  ( a , b ) ~ f  ( a , a ) ~ "  "" , 

(31) 

and b ~ c ,  one infinite looping forward closure 

and an infinite number of finite forward closures 
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f (a ,a)~ f (a ,b ) ~  f (a ,a ) ~ "  • • ~ f (a ,b ) ~  f (a ,e) with the same initial term. 

Example. Consider again the right-linear System (26). Since forward closures cannot begin 

with a term having - other than as outermost or innermost operator,  the termination of all 

closures can be easily proved using a multiset ordering on the sizes of the arguments to - .  

C o r o l l a r y  . The termination of a right-linear or non-overlapping left-linear rewrite 
system is decidable i f  the number of forward closures issuing from different initial 
terms is finite. 

Example. The non-overlapping left-linear system 

f (a,o~) - ~  
g(a) - >  

has three forward closures: 

f (a,g(ot)) (32) 
a 

g ( a )  ~ a 

f (a ,a )  =~ f(~,g(~)) 
f (a ,a )  ~ f(a ,g(a))  ~ f (a ,a )  ~ ' ' '  

Since its third forward closure cycles, it does not terminate.  On the other hand, the system 

f ( a , a )  ~ f ( ~ , g ( ~ ) )  
g(a) --> b 

has the forward closures: 

g(a) ~ b 
f (a ,~)  ~ f(a,g(c~)) 
f (a ,a)  ~ f(a,g(a)) ~ f (a,b)  ~ f(b,g(b)) 

Since none of its three forward closures loops, it does terminate.  

Example. The forward closures of 

f (o,ct) -'> f (a,b ) 
b "-> e 

(33) 

are 

and 

b =~c 

f ( a , ~ )  ~ f (a,b)  ~ f (a ,c)  

(34) 
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Since the forward closures do not loop, the system terminates. 

In particular, 

Corollary IHuet-Lankford-78]. The termination o f  a rewrite system containing no 
variables (a ground system) is decidable. 

Quasi-termination of ground systems is similarly decidable [Dauchet-Tison-84]. 
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