
The Sgàil Cryptographic Hash Function

Peter Maxwell
peter@allicient.co.uk

January 2009 : v0.4

i

Abstract

Sgàil is a new hash algorithm based upon the Merkle-Damg̊ard con-
struction operating with a 2048-bit chaining state and a compression
function that accepts 4096-bit message blocks. Sgàil can produce di-
gest lengths of 224-bits, 256-bits, 384-bits, 512-bits, 768-bits, 1024-bits,
1536-bits and 2048-bits. Sgàil is both amenable to established analytical
techniques to verify a lower security bound while incorporating additional
features such as keyed diffusion to improve the security properties of the
hash.

dedicated to Katharine, in gratitude for her compassion, support and insight

Contents

1 Preliminaries 1
1.1 Pre-amble . 1
1.2 Generic Notation & Conventions 1

1.2.1 Definitions . 1
1.2.2 Variable Representations 2
1.2.3 Variable & Constant Notation 2
1.2.4 Function Notation . 4
1.2.5 Operators . 5
1.2.6 Endianness . 5

1.3 Finite Fields in Sgàil . 5
1.3.1 Finite Field Definitions 5
1.3.2 Finite Field Addition . 6
1.3.3 Finite Field Multiplication 6
1.3.4 Finite Field Multiplicative Inverses 6

1.4 Maximum Distance Separable Codes, Matrices & Cauchy Matrices 7
1.4.1 Linear Codes, The Singleton Bound & MDS Matrices . . 7
1.4.2 Cauchy Matrices as MDS Matrices 7

2 Design Objectives & Constraints 8
2.1 High-level Objectives . 8
2.2 First Pre-image Resistance . 8
2.3 Collision Resistance . 8
2.4 Second Pre-image Resistance . 8
2.5 Protection Against Length Extension & Message Input Block Ma-

nipulation . 8
2.6 Bijectivity . 9
2.7 Non-degeneracy . 9
2.8 Parallelisation Opportunities . 9
2.9 Randomimity . 10
2.10 Resistance to Standard Differential & Linear Cryptanalysis . . . 10
2.11 Local & Global Intra-block Properties 10
2.12 Optimal & Non-linear Intra-round Diffusion 11
2.13 Keyed Diffusion . 11
2.14 Large State Size . 11
2.15 Position Dependence . 11
2.16 Non-commutivity & Non-associativity 11
2.17 Performance . 12

3 Algorithm 12
3.1 Overview . 12
3.2 Substitution Box Construction & Minibox Generation 13
3.3 Cauchy (MDS) Matrices . 14

3.3.1 Round Constants . 14
3.4 General Structure . 14

3.4.1 Word, Row, Quadrant & Byte Numbering 14
3.5 Low-level Transform Layers . 15

3.5.1 ε - The Permutation Matrix Generation Function 15
3.5.2 τ - The Permutation Transform 16

iv

3.5.3 ψ8 - The 64-bit Adapted MDS Transform 17
3.5.4 ψ16 - The 128-bit Adapted MDS Transform 18
3.5.5 θ8 - The 64-bit Adapted MDS Layer 18
3.5.6 θ16 - The 128-bit Adapted MDS Layer 19
3.5.7 ς - Two Word Pseudo-Hadamard Transform 19
3.5.8 φα - The First PHT Layer 19
3.5.9 φβ - The Second PHT Layer 20
3.5.10 γ - The Quadrant Diffusion Transform 21
3.5.11 ϕ0 - The First Quadrant Diffusion Layer 22
3.5.12 ϕ1 - The Second Quadrant Diffusion Layer 22
3.5.13 ϕ2 - The Third Quadrant Diffusion Layer 22
3.5.14 ϕ3 - The Fourth Quadrant Diffusion Layer 23
3.5.15 µ - The Preliminary Key Processing Function 23
3.5.16 πp - The Pair Block Principle Key Extraction 24
3.5.17 πs - The Single Block Principle Key Extraction 25
3.5.18 κ4 - The x4 Round Key Extract Function 25
3.5.19 κ2 - The x2 Round Key Extract Function 26
3.5.20 κpre - The Pre-Whitening Round Key Extract Function . 28
3.5.21 κpost - The Post-Whitening Round Key Extract Function 29
3.5.22 %224, %256, %384, %512, %768, %1024, %1536, %2048 - The Finalise

Layer . 29
3.6 High-level Transform Layers . 30

3.6.1 Γpre,Γpost - The Pre and Post Permutation Function Groups 30
3.6.2 Υ - The Main Round Function Group 30
3.6.3 Ψ - The Compression Function 30
3.6.4 Σ - The Full Algorithm 32

4 Design Rationale 32
4.1 High-level Priorities . 32
4.2 Target Platform Priorities . 32
4.3 Trade-offs . 33
4.4 Tunable Parameters . 34

5 Performance and Implementation 34
5.1 General Performance . 34
5.2 NIST Reference Platform . 34
5.3 Hardware . 35
5.4 Embedded . 35
5.5 Parallelisation . 35

6 Security Analysis 36
6.1 Resistance to Standard Linear and Differential Cryptanalysis . . 36
6.2 Orthogonality . 36
6.3 Complexity Argument . 36

7 Appendices 36
7.1 Constants . 36
7.2 Cauchy Matrices . 37
7.3 Round Constants . 38

v

1 Preliminaries

1.1 Pre-amble

Sgàil 1 is essentially based on the Merkle-Damg̊ard construction, built around a
substitution-permutation network type cipher and the Davies-Mayer compres-
sion function. The algorithm operates on 4096-bit (512 byte) input blocks for
all but possibly the final input block (which may be zero padded to 4096-bits or
2048-bits). The internal state is always 2048-bits (256 bytes) and the algorithm
can produce digest lengths of 224-bits, 256-bits, 384-bits, 512-bits, 1024-bits,
1536-bits and 2048-bits.

The design of the SPN cipher at the heart of Sgàil takes a lot of inspiration
from Whirlpool [Rijmen and Barreto(2001)]. However the design is divergent
on a number of aspects. Firstly, Sgàil makes use of keyed diffusion, in that
critical elements of the diffusion of the cipher are sensitively dependent on the
key (input message blocks). Secondly, Sgàil incorporates a far more involved
diffusion layer utilising exclusive-or, modular addition and rotation operations.
While the diffusion layer in Whirlpool (and AES for that matter) is entirely
linear over F2 , the diffusion layer in Sgàil has a small amount of non-linearity
due to the implicit use of the multiplicative operation over F2 arising from the
modular addition. It is felt that an entirely linear diffusion layer over F2 could
be paving the way for easier algebraic attacks, and that the mixing of operations
from different fields may defeat these types of attack while at the same time not
changing the security analysis.

1.2 Generic Notation & Conventions

Some generic notation and conventions used throughout this document are now
defined.

1.2.1 Definitions

The following general definitions that shall be used throughout this document:

• “state array” shall denote a 256 byte element array containing the state
of the compression function or the intermediate chaining state;

• “state buffer” shall be synonymous with “state array”;

• “state matrix” shall be synonymous with “state array” but to be consid-
ered as a 16 x 16 matrix of elements of F28 ;

• “input message block” shall be a 4096-bit (512 byte) or 2048-bit (256 byte)
block of plain text message;

• “secret key” is a 256-bit (32 byte) user specified key for use in MAC
constructions and the like, it is set to zero if used as drop in replacement
for SHA family;

1Sgàil is a Scottish Gaelic word meaning shadow or veil

1

• “serial number” is a 64-bit user specified number which may be useful in
certain instances, it is set to zero if used as a drop in replacement for SHA
family;

• “block count high, block count low“ is a 128-bit counter used for the cur-
rent 2048-bit block of input which is stored as two 64-bit words (normally,
the input block is considered as a 4096-bit block, however the counter
counts on 2048-bit blocks);

• “final block bit count” this is always set to zero unless it is the last block,
in which case it represents the actual number of bits in the message block
before it is zero padded up to 2048-bits or 4096-bits;

• “preliminary key” is a 512-bit (64 byte) key which is independent of the
data but depends on the block counter, serial, secret key and final block
bit count;

• “principle key” is a 2048-bit master key derived from the input message
block and preliminary key(s), it is used to generate the round keys;

• “extracted key” is a round key (which may be a pre or post whitening
key) dervied from the principle key, preliminary key and round number
using fast and simple operations;

• “permutation matrix” in the context of this document is a 256 element
matrix containing a permutation of the numbers 0...255;

• “layer” in the context of this document means an operation that generally
applies to the whole of the state matrix at once.

1.2.2 Variable Representations

In this document, a single variable may in general represent either a bit quantity,
a byte quantity, a binary word of 64-bits in length, or a 16 x 16 matrix of bytes.
A byte should be considered as an element of the field F28 , see sec 1.3 for more
information on how F28 is used in Sgàil.

1.2.3 Variable & Constant Notation

There are some general conventions used for notation throughout this document:

• fields, groups or rings shall be denoted with caps, for example F28 or an
arbitrary ring R.

• in general, sets shall be denoted with bold caps, for example S, T ,R;

• specifically the set of all n by n matrices with elements from F28 shall be
denoted as Mn×n ;

• the set of arrays of with n elements that contain as each of their ele-
ments exactly one of the sequence (0, 1, . . . , n − 1) (or more succinctly,
a permutation) shall be denoted as Rn (note: this is not the same as
the mathematical definition of a permutation matrix, which is something
completely different);

2

• the set of all 64 bit words shall be denoted asW8 and should be considered
as the set of 8-tuples of F28 , W8 = F 8

28 ;

• matrices will be denoted in bold caps, for example we could quickly define
a matrix M ∈M16,16;

• the state matrix for block index i shall be denoted as Si;

• the input message block for block index i shall be denoted as Di, usually
Di ∈M2

16,16 with Dl,i indicating the left 2048-bit half and Dr,i indicating
the right 2048-bit half, however the last block may be Di ∈ M16,16 - the
difference is usually silently ignored unless required to avoid any additional
notation complexities;

• the principle key that is used for state matrix block i shall be denoted Ki;

• an extracted key that is used for state matrix block i, and round j shall
be denoted Ei,j ;

• an extracted key that is used for state matrix block i, and for either the pre
or post permutation or whitening shall be denoted either Ei,pre, Ei,post;

• a preliminary key consists of eight 64-bits words and shall be written as
P = 〈p̄0, p̄1, p̄2, p̄3, p̄4, p̄5, p̄6, p̄7〉;

• there are three preliminary keys defined: left, right and combined - Pl, Pr, Pc

• the matrix that is derived for permutating state matrix block i shall be
denoted Ri ∈ R256;

• the Cauchy or MDS matrices shall be denoted C8 for the 8 × 8 matrix,
and C16 for the 16× 16 size matrix;

• individual variables or elements will be donated with lower case letters,
for example f ∈ F may denote an element of some field F ;

• variables representing byte elements, or more appropriately elements of
F28 , shall be written with no accent, e.g. a ∈ F28 ;

• variables representing word quantities shall be accented with a bar above,
e.g. w̄ ∈ W8;

• variables representing bits shall be written as â, b̂, ĉ ∈ F2 ;

• vectors shall be written in bold lower case letters, for example if we define
a set of n-tuples of the field F as Fn, then u ∈ Fn would be a vector with
elements of F of length n;

• when the element of a vector need to be written explicitly, angled brackets
are used, e.g., u = 〈a, b, c, d, e, f〉;

• later, the notion of a quadrant shall be used and denoted as Qi, i ∈ 0, 1, 2, 3
which represents a column vector of eight 64-bit words;

• each 2048-bit matrix is composed of four quadrants, the functions ϑ0(M),
ϑ1(M), ϑ2(M), ϑ3(M) return the respective quadrants from the matrix
M;

3

• matrix elements can be referenced with subscripts, however the subscripts
are zero based, for example mi,j could denote the (i+1), (j+1)th element
of the matrix M, or using square bracket notation, e.g. M[i][j] would also
denote the (i+ 1), (j + 1)th element;

• the ith element of a vector may be denoted with square bracket notation,
e.g. u[4] would denote the fifth element of the vector u (remember, it is
zero based);

• matrices may be considered as a one-dimensional array and referenced
using zero based square bracket notation, for example given a matrix
M16,16 and an element of that matrix M[3][5], then it could be written as
M[(3 ∗ 16) + 5] = M[53];

• where appropriate, the sub-bytes of a word may referenced using square
bracket notation as if the word were an array of bytes, endianness is as-
sumed to be preserved in the manner as described in sec 1.2.6;

• the following specific variables are defined, bh is the 64-bit high word of
the 128-bit block counter, bl is the 64-bit low word with the block counter
corresponding to the number of 2048-bit blocks processed (not 4096-bit
blocks as there needs to be a preliminary key processed for each 2048-bit
block);

• u is the 64-bit serial number;

• t̄0, t̄1, t̄2, t̄3 are the four 64-bit secret key words of T, the 256-bit secret
key.

Note : A reference to an element of a matrix, array or sub-byte of a word
shall be zero based - which is not the way that normal notation is written.
The reason this has been done is that matrix and array references are used
heavily throughout this document and the C source code, so to preserve notation
between the two it was thought more beneficial than using normal ’one’ based
notation here and ’zero’ based in the source code.

1.2.4 Function Notation

We shall define all intra-round transforms, functions or layers with uncapitalised
Greek letters, and inter-round transforms or functions with capitalised Greek
letters. Sub-scripts will denote any additional details, relevant constants or
in certain instances parameters (to aid readability) under which that function
operates. For example:

• ΨK :M16,16 →M16,16, may represent the state update under key K;

• φα :M16,16 →M16,16, would usually represent some form of intra-round
transformation, say a PHT layer.

Although ξ is used to represent the function invoked by a S-Box, the notation
will be used as if it were synonymous with the S-Box itself.

4

1.2.5 Operators

The definition of some basic operators that shall be used in this document:

• ⊕ is to be construed as the standard bitwise “exclusive-or” operation,
or additive operator in the field F2 with the natural extension to binary
vectors and words of arbitrary length;

• � is to be construed as the standard bitwise “and” operation, or multiplica-
tive operator in the field F2 with the natural extension to binary words
of arbitrary length;

• ¬ is to be construed as the standard bitwise “not” operation or bit com-
plementation;

• + is to be construed as the standard arithmetic modular addition of two
64-bit words;

• ≪ shall define bitwise left rotate of the 64-bit word;

• ≫ shall define bitwise right rotate of the 64-bit word;

• s[i] where s is an array of byte elements shall denote the (i+1)th element
(zero based indexing).

1.2.6 Endianness

Endianness is 64-bit word “little-endian” throughout the algorithm.

1.3 Finite Fields in Sgàil

1.3.1 Finite Field Definitions

A finite field is a field of finite order. Finite fields are also named Galois fields
after the French mathematician Évariste Galois. The order of a finite field is
always a prime number or prime power, with each finite field of a specific prime
power being unique up to isomorphism. Finite fields are written Fp or GF (p)
for a field of order p, and Fpn or GF (pn) for a field of order pn. The pn must
not be evaluted as it is important to know what p is, i.e. F28 should not be
written as F256 .

The characteristic of a field Fpn is p. The characteristic of a finite field has
several important consequences, not least that in a field of characteristic p,
(x+ y)p = (xp + yp).

Although a finite field of a specific order is unique up to isomorphism, the rep-
resentation and identification of elements is important when performing actual
calculations.

Consider Fp[X], a polynomial with co-efficients in Fp and let q ∈ Fp[X] be
an irreducible polynomial of degree n, then Fp[X]/(q) forms a field which is
really just Fpn . In Sgàil the field F28 is used and the representation is de-
fined by F2[X]/(q) where q = X8 + X4 + X3 + X + 1, and the co-efficients

5

of Fp[X] correspond naturally to the binary bits of a byte value - i.e., the
polynomial a7X

7 + a6X
6 + . . . + a2X

2 + a1X + a0 equates to the byte a =
〈â7, â6, â5, â4, â3, â2, â1, â0〉.
In Sgàil, F28 is used to generate the Cauchy matrices that are used as the MDS
matrices, and for performing calculations with the MDS matrices.

1.3.2 Finite Field Addition

If we consider the elements of F28 as elements of F2 [X], then arithmetic opera-
tions in F28 are easily defined.

Addition is just addition of the two polynomials in F2 [X], where the co-efficients
are summed for each degree - in the field F2 ofcourse. The possible co-efficients
in F2 are just 0 and 1, with 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0 and
0 � 0 = 0, 0 � 1 = 0, 1 � 0 = 0.1 � 1 = 1.

For example, a, b ∈ F2 [X], let a = X6 +X5 +X4 + 1 and b = X7 +X4 +X,
then with co-efficients explicitly shown:

a+ b = 1.X7 + 1.X6 + 1.X5 + (1 + 1).X4 + 1.X + 1.1 (1)

= X7 +X6 +X5 +X + 1 (2)

Bitwise, this is just the familiar exclusive-or operation, ⊕. The above example
would look like a+ b = 01110001⊕ 10010010 = 11100011

1.3.3 Finite Field Multiplication

Multiplication of two elements of F28 is similar to addition, except that this time
the two polynomials are multiplied together modulo an irreducible polynomial,
which we shall call the reduction polynomial.

Given a, b, r ∈ F2 [X], with a, b as above and r = X8 +X4 +X3 +X + 1, then

a � b = X13 +X12 +X11 +X7 +X10 +X9 +X8 +X4 +X7 +X6 +X5 +X (3)

= X13 +X12 +X11 +X10 +X9 +X8 +X6 +X5 +X4 +X (4)

Now do polynomial long division by the reduction polynomial and keep the
remainder as the result:

X13+X12+X11+X10+X9+X8+X6+X5+X4+X(modX8+X4+X3+X+1)
(5)

= X3 +X2 +X + 1 (6)

1.3.4 Finite Field Multiplicative Inverses

For an element a ∈ F28 , a 6= 0, the multiplicative inverse b ∈ F28 is the unique
element such that a � b = 1. The inverse of the zero element is conveniently
defined to be the zero element. Computationally, the inverse can be found by
exhaustive search, the extended Euclidean algorithm or by taking logarithms
and performing a subtraction.

6

1.4 Maximum Distance Separable Codes, Matrices & Cauchy
Matrices

1.4.1 Linear Codes, The Singleton Bound & MDS Matrices

Let F be a field, then we denote Fn as the set of n-tuples of elements of F .
Naturally, Fn forms a vector space over F .

We define the hamming weight of a vector ωw(u),u ∈ Fn as the number of non-
zero elements of u. The definition of hamming distance between two vectors u
and v is ωd(u,v) = ωw(u−v). The hamming distance function ωd : Fn×Fn →
N forms a metric on Fn.

The definitions to follow are obtained from [Rijmen and Barreto(2001)], as it is
the most succinct explanation of the terms I have seen to date.

A linear [n, k, d] code C over F is a k-dimensional subspace of Fn, where the
hamming distance between any two distinct vectors is at least d. All linear
codes obey the Singleton bound, d ≤ n − k + 1. If the upper bound is met,
d = n− k + 1, then the code is said to be “maximum distance separable”.

For a given [n, k, d] linear code C, a generator matrix in the form Gk,n is a
matrix with rows which form a basis for the code; or in other words, the span
of G forms the vectorspace C. The generator matrix is in “reduced echelon
form” if it can be written as a partition matrix G = [Ik,k|Mk,n−k] where, I is
(in this case at least) the identity matrix. The arbitrary matrix M is termed
“maximal distance separable” (or MDS) iff every square submatrix of M is non-
singular. Or in other terms the matrix M is MDS iff every square submatrix
has a non-zero determinant (which is probably more useful when considering
Cauchy Matrices).

1.4.2 Cauchy Matrices as MDS Matrices

For a field F and two sequences, x = (x0, x1, x2, x3, . . . , xn−1), xi ∈ F and
y = (y0, y1, y2, y3, . . . , ym−1), yj ∈ F , we define a matrix Cn,m with entries
defined by the following equation:

ci,j = (xi − yj)−1, (0 ≤ i ≤ (n− 1), 0 ≤ j ≤ (m− 1)) (7)

where

xi 6= xj ∀(0 ≤ i ≤ (n− 1), 0 ≤ j ≤ (n− 1), i 6= j)
yi 6= yj ∀(0 ≤ i ≤ (m− 1), 0 ≤ j ≤ (m− 1), i 6= j)
xi 6= yj ∀(0 ≤ i ≤ (n− 1), 0 ≤ j ≤ (m− 1))

A matrix C of this form is termed a “Cauchy Matrix” and has some useful
properties. Firstly, all Cauchy Matrices are non-singluar and any submatrix of
a Cauchy Matrix is also a Cauchy Matrix; hence any sub-matrix of a Cauchy
matrix is non-singluar, the result of which means that any Cauchy Matrix is

7

automatically an MDS matrix. A good reference for the use of Cauchy matrices
in cryptography is [Youssef et al.(1997)Youssef, Mister, and Tavares].

The MDS matrices used in Sgàil are actually Cauchy Matrices and hence guar-
anteed to be MDS. The MDS matrix is a critical security element, as such gener-
ating the matrix in a consistent manner increases confidence that no weaknesses
were deliberately introduced. Furthermore, although the implementation cost
in embedded devices may be greater, the hamming weight over F28 of the entries
is more balanced than is likely to be achieved in a hand optimised matrix.

2 Design Objectives & Constraints

2.1 High-level Objectives

2.2 First Pre-image Resistance

This is the first of the NIST core requirements for a cryptographic hash algo-
rithm (these are also the minimal criteria one would expect). Given H = Σ(m),
where Σ is the hash function, m is an arbitrary message and H is the hash
result of length n bits, then it should be infeasible to compute m given only H.
More accurately, it should take at least 2n work to recover m from H.

2.3 Collision Resistance

This is the second of the NIST core requirements, and is the requirement which
is generally of most practical importance. It should be infeasible to find to
messages, ma,mb with hash values Ha = Σ(ma),Hb = Σ(mb) respectively,
such that Ha = Hb. More accurately, it should take at least 2n/2 work to find
such m1 and m2.

2.4 Second Pre-image Resistance

This is the third NIST core requirements. Given a fixed ma, it should be infea-
sible to find another message mb such that Ha = Hb given Ha = Σ(ma),Hb =
Σ(mb). Any hash algorithm which is susceptible to a second pre-image attack
is consequentially susceptible to a collision attack (the only difference here is
the first m is fixed so there is only one degree of freedom to use). It should take
at least 2n work to find such a mb for fixed ma.

2.5 Protection Against Length Extension & Message In-
put Block Manipulation

There are several requirements here:

• given H = Σ(m), it should not be possible to compute H′ = Σ(m|m′) for
an arbitrary m′ with less effort than the equivalent first pre-image attack
on H = Σ(m);

8

• given H = Σ(m) and the length of m, l = ‖m‖, then it should not be
possible to compute H′ = Σ(m|m′) for arbitrary m′ with any work less
than 2(l−1) full hash computations;

• given Ha = Σ(ma), Hb = Σ(mb), with respective lengths la = ‖ma‖, lb =
‖mb‖ and Ha = Hb, la 6= lb, then for arbitrary message m′ the identity
H′

a 6= H′
b where H′

a = Σ(ma|m′), Hb = Σ(mb|m′) should hold with
overwhelming probability, i.e. it should take 2(n−1) work to find a m′

such that the identity does not hold where n is the digest length of the
hash function.

2.6 Bijectivity

The notion of bijectivity is essential to the creation of a secure hash algorithm.
There are two requirements specified in this respect:

• given a fixed message input block Di and a state matrix Si, then the ap-
plication of the compression function Si+1 = ΨDi(Si) should be bijective
with respect to Si;

• given either the left or right half of the message input block (2048-bit)
Dl,i, or Dr,i, and a fixed state matrix Si, then the application of the
compression function Si+1 = ΨDi(Si) should be bijective with respect to
Dl,i, or Dr,i.

2.7 Non-degeneracy

Cryptographic hash functions are used in a very wide spectrum of applications
including pseudo-random functions or pseudo-random number generators. For
these purposes, it is desirable that if the output of the hash algorithm is re-
peatedly reused as an input then no short length cycles (degenerate cycles)
be produced. Assuming that given an arbitrary input m then compute the
sequence:

(H0 = Σ(m),H1 = Σ(H0),H2 = Σ(H1), . . . ,Hi = Σ(Hi−1))

we should optimally have H0 6= H1 6= H2 6= · · · 6= Hi−1 for i < 2n where n is
the digest length, viz maximal cycle length. Note that if the previous condition
holds, then it not only holds for the M we chose, but for any message.

Unfortunately, in practice it is generally very difficult to ensure (or at least
prove) maximal cycle length. However, it is worthwhile to note that it is a
necessary condition (although not sufficient) that the hash function Σ be a
bijective mapping to achieve maximal cycle length. If the hash function is not
bijective, then it is assured that its cycle length is non-maximal.

2.8 Parallelisation Opportunities

The trend in modern CPU design seems to be moving towards the use of multi-
ple cores - it is common to see dual or quad core processors today. For a more ex-
treme example and possible insight into where we’re going [TheRegister(Sept2006)]
as regards CPU design may be of interest.

9

The use of multiple cores and multiple CPUs in the same server or desktop
implies that any software that wants to utilise the full processing power available
must be able to run in a parallel manner. As such the candidate algorithm should
offer opportunities of parallelism at both the intra-block calculations and the
inter-block arrangements.

2.9 Randomimity

In a somewhat ambiguous notion, the output of the hash algorithm should pass
any standard randomimity tests. More formally:

• given the situation where the output digest of the hash function is re-
peatedly reused as the input, then the resulting stream of outputs should
satisfy standard randomimity tests;

• given the same situation where the output digest of the hash function is
repeatedly reused as the input, then the entropy preserved in any digest
result should be identical to the previous digest;

• given an arbitrary series of non-repeating input messages with and the
resultant hash for each message, the stream of output digests should satisfy
standard randomimity tests.

Disregarding the problems inherent in the use of the definition to follow; the
algorithm should be indistinguishable from a random oracle.

2.10 Resistance to Standard Differential & Linear Crypt-
analysis

The compression function Ψ should be demonstrably resistant to standard dif-
ferential and linear cryptanalysis.

2.11 Local & Global Intra-block Properties

The output of the hash function should be unbiased in the number of ones or
zeros in the output. More precisely, chose k arbitrary messages, each of arbitrary
length, (m0,m1, . . .mk−1), with outputs

(H0 = Σ(m0),H1 = Σ(m1), . . . ,Hk−1 = Σ(mk−1))

Then the following limit should hold:

lim
k→∞

1
k

k−1∑
i=0

ω(Hi) ∼=
n

2
(8)

where n is the digest size. The above limit should also hold where the evaluation
of the hamming weight ω() is restricted to only a subset of the bits of Hi (with
the n

2 term being altered accordingly).

10

2.12 Optimal & Non-linear Intra-round Diffusion

Joan Daemen and Vincent Rijmen in the “wide trail design” emphasised the
use of an optimal diffusion layer. All diffusion layers utilised in the algorithm
should be either optimal or near optimal with respect to the definition of “branch
number” (whether that be linear or non-linear branch number).

Additionally, the diffusion layer should not be completely linear over F2 . There
is no requirement on the algebraic degree other than it must not be totally linear
or affine.

2.13 Keyed Diffusion

Algorithms such as Two-Fish [Schneier et al.(1998)Schneier, Kelsey, Whiting, Wagner, Hall, and Ferguson]
use key-dependent substitution boxes. In a similar sense, the algorithm should
employ key-dependent diffusion in a manner such that a small change in the
input message block causes a major change in the arrangement of the diffusion.

2.14 Large State Size

The state size should be made as large as possible given the technical capabilities
of the target systems the algorithm is to be implemented on. There are several
reasons for using a large state size:

• it makes the process of finding collisions in the compression function
far more difficult, hence it renders most generic attacks on the chaining
scheme inapplicable;

• it hinders the ability of any potential advances in algebraic attacks by
(hopefully exponentially) increasing the number of equations necessary to
solve;

• assuming an optimal or near optimal diffusion layer, then the compression
function’s resistance against differential or linear cryptanalysis increases
polynomially with the size of the state matrix given a fixed number of
rounds in the compression function.

2.15 Position Dependence

The input to the hash function, or indeed intra-round operations, should be po-
sition dependant. More specifically, if identical inputs are passed to a function or
transform but in a different position, be that a different block or a different row,
then the output should be different. This stipulation makes it somewhat harder
for an attacker to exploit any regularities or predictability in local behaviour if
it is found.

2.16 Non-commutivity & Non-associativity

It is desirable that as many of the operations as possible are non-commutative
and/or non-associative.

11

2.17 Performance

The algorithm should provide acceptable performance on the target platforms.
By acceptable, it is considered that in normal conditions it may not be the
fastest hash algorithm available but it should be of the same order of magnitude
in performance to any other algorithm offering equivalent security. However,
it should also offer means of improving its performance through the ability
to parallelise the implementation. The design should also pay attention to
preferential methods of achieving a desired result as not to adversely impede
any specific target implementation (e.g. implementing S-Boxes in a manner
amenable to fast hardware implementation).

3 Algorithm

3.1 Overview

Each element of Sgàil will be defined in isolation and then put together in the
definition of the compression function and full algorithm.

For each state update, the algorithm takes the current 2048-bit state and en-
crypts it using a substitution-permutation network block cipher supplying a
4096-bit (possibly 2048-bit if it is the last input block) of message input as the
key. Mayer-Davies chaining is then applied by exclusive-or’ing the original state
onto the new state.

The key schedule is somewhat involved; unless it is the last block the compres-
sion function accepts a 4096-bit message input, which can be considered as two
2048-bit halves. Firstly, three data independent 512-bit preliminary keys are
generated: the left, right and combined preliminary keys. The the left and right
preliminary keys are each derived from a user supplied 256-bit secret key, two
64-bit block counters and a user supplied serial number; if it is the last input
message block that is being processed, then the number of message bits used in
the last block (normally this is set to zero) is also included in the preliminary
key derivation. The block counter used for each preliminary key indicates the
number of 2048-bit input message blocks processed, so the block counter for
the right preliminary key is just the block counter for the left preliminary key
plus one. The combined preliminary key is the xor sum of the left and right
preliminary keys.

The left and right input message blocks are then processed along with the left
and right preliminary keys to produce a single 2048-bit principle key which is
essentially what all round keys are extracted from. There are several round
keys, or extracted keys, used; a pre-whitening extracted key, a post-whitening
extracted key and one extracted key for each round. The combined preliminary
key is used in the round key extraction.

The compression function uses a key based permutation near the beginning and
end of the update. The actual permutation used is derived from the princi-
ple key. The compression function is initiated by first exclusive-or’ing the pre
whitening key onto the state. It then applies the key based permutation to re-
order the arrangement of the matrix. The state matrix is then passed through

12

a S-Box and a 64-bit MDS transform applied to each of the 64-bit words in
turn. The main rounds are then performed. Each round consists of applying a
parallel list of pseudo-Hadamard transforms to the state matrix, followed by a
special diffusion primative, more pseudo-Hadamard transforms, exclusive-or’ing
the round key, and finally applying a S-Box and parallel 128-bit MDS trans-
form. In the standard implementation there are usually four rounds for 512-bit
or less digest sizes, six rounds for 768-bit or 1024-bit digests, and eight rounds
for 1536-bit and 2048-bit digests. The compression function is finalised by ap-
plying the key based permutation and then exclusive-or’ing the post whitening
key and the original state matrix.

The initial state IV is a copy of AES’s S-Box (ξg). The initial IV must not be
user definable.

3.2 Substitution Box Construction & Minibox Generation

In Sgàil, there is one generic 8x8bit S-Box which is used for the key derived
permutation generation, namely the ε transform, and for initialisation values.
This generic S-Box is can be written as a function ξg. The actual S-Box lookup
table for ξg is the S-Box as used in AES as this has excellent properties and is well
known. Efficiency in hardware for this S-Box is not a significant consideration
as the ε generation will probably have to use RAM anyway so there is already
a performance hit.

There are another 24 main 8x8bit S-Boxes, eight of which are used in ψ8 and
sixteen in ψ16. These S-Boxes are designed with hardware implementation in
mind as they are used in the core of the algorithm. Each S-Box was generated
from 16 4x4bit miniboxes which have in turn been randomly generated.

There is little point in duplicating the full algorithm used here, but in the
development source code included in the submission package, the code used to
generate and test the miniboxes and S-Boxes is included in full. However it is
necessary to make a number of assertions:

• the miniboxes were generated using a pseudo-random generator in a con-
sistent and repeatable fashion;

• only the miniboxes which had a DPmax = 1/4, LPmax = 0, full nonlin-
earity and no fixed points were chosen;

• 16 miniboxes were generated to create one S-Box, resulting in the necessity
to generate 384 separate miniboxes;

• the S-Boxes are generated by taking a loop from 0...255, and for each
iteration to take the loop value and pass the high nibble through the first
minibox and the low nibble through the second and then rotate left by 2
bits, repeat until the 16 miniboxes are used up and then go onto the next
iteration in the loop;

• the worst DPmax for the S-Boxes is a single S-Box at 14/256, most are at
10/256 or 12/256;

• the LPmax of the S-Boxes is always 4/256 or less;

13

• the nonlinearity of the S-Boxes is always 100 or more (as measured as the
distance from a linear or affine function);

• the maximum number of fixed points in any of the S-Boxes is 1;

• full stats are included in the supporting documentation directory.

The S-Boxes will generally be written as functions in this document labelled
ξ0, ξ1, . . . , ξ23. The S-Boxes are included explicitly in the source code in the
tables file.

3.3 Cauchy (MDS) Matrices

The C8 matrix is created from the two sequences:

(1, 2, 3, 5, 8, 13, 21, 34) (9)

(222, 235, 243, 248, 251, 253, 254, 255) (10)

The first sequence is the Fibonacci sequence starting from (1, 2), the second
sequence is just the first sequence subtracted from 256 (sorted in ascending
order).

The C16 matrix is created from the two sequences:

(0, 3, 8, 15, 24, 35, 48, 63, 80, 109, 120, 143, 168, 195, 224, 255) (11)

(1, 31, 60, 87, 112, 135, 146, 175, 192, 207, 220, 231, 240, 247, 252, 254) (12)

The first sequence is generated from n2− 1, and the second sequence is the first
sequence sorted in ascending order and subtracted from 256 (except for the last
entry which was tweaked to make the Cauchy matrix valid).

The matrices are explicitly included in the appendix.

3.3.1 Round Constants

There is an array of “rounds constants” defined as the hexadecimal representa-
tion of the fractional digits of Pi. These are used in certain places throughout
the algorithm, mainly to ensure that it is difficult for an attacker to artificially
lower the hamming weight in any part of the key schedule. The exact represen-
tation is defined in the appendices.

3.4 General Structure

3.4.1 Word, Row, Quadrant & Byte Numbering

Almost all of the operations in Sgàil work on matrices inM16,16. These matri-
ces can be conceptually considered as thirty-two words (w0 . . . w31), or sixteen
rows numbered (r0 . . . r15), or four quadrants denoted (q0, q1, q2, q3). This seg-
mentation - conceptually at least - renders the algorithm more easily amenable

14

to security analysis as a lot of the algorithm is designed on the basis of ensuring
good properties locally (which is fast) and then applying appropriate mixing
across these boundaries.

q0 q1

r0 w0: 7, 6, 5, 4, 3, 2, 1, 0 w1: 15, 14, 13, 12, 11, 10, 9, 8
r1 w2: 23, 22, 21, 20, 19, 18, 17, 16 w3: 31, 30, 29, 28, 27, 26, 25, 24
r2 w4: 39, 38, 37, 36, 35, 34, 33, 32 w5: 47, 46, 45, 44, 43, 42, 41, 40
r3 w6: 55, 54, 53, 52, 51, 50, 49, 48 w7: 63, 62, 61, 60 ,59, 58, 57, 56
r4 w8: 71, 70, 69, 68, 67, 66, 65, 64 w9: 79, 78, 77, 76, 75, 74, 73, 72
r5 w10: 87, 86, 85, 84, 83, 82, 81, 80 w11: 95, 94, 93, 92, 91, 90, 89, 88
r6 w12: 103, 102, 101, 100, 99, 98, 97,

96
w13: 111, 110, 109, 108, 107, 106,
105, 104

r7 w14: 119, 118, 117, 116, 115, 114,
113, 112

w15: 127, 126, 125, 124, 123, 122,
121, 120

q2 q3

r8 w16: 135, 134, 133, 132, 131, 130,
129, 128

w17: 143, 142, 141, 140, 139, 138,
137, 136

r9 w18: 151, 150, 149, 148, 147, 146,
145, 144

w19: 159, 158, 157, 156, 155, 154,
153, 152

r10 w20: 167, 166, 165, 164, 163, 162,
161, 160

w21: 175, 174, 173, 172, 171, 170,
169, 168

r11 w22: 183, 182, 181, 180, 179, 178,
177, 176

w23: 191, 190, 189, 188, 187, 186,
185, 184

r12 w24: 199, 198, 197, 196 ,195, 194,
193, 192

w25: 207, 206, 205, 204, 203, 202,
201, 200

r13 w26: 215, 214, 213, 212, 211, 210,
209, 208

w27: 223, 222, 221, 220, 219, 218,
217, 216

r14 w28: 231, 230, 229, 228, 227, 226,
225, 224

w29: 239, 238, 237, 236, 235, 234,
233, 232

r15 w30: 247, 246, 245, 244, 243, 242,
241, 240

w31: 255, 254, 253, 252, 251, 250,
249, 248

3.5 Low-level Transform Layers

3.5.1 ε - The Permutation Matrix Generation Function

The function ε : R256×M16,16×Z→ R256 is the core of the principle of keyed
diffusion in Sgàil- it creates a keyed method of permutating the order of the
entries in the state matrix. 2

The definition of ε is somewhat involved and best explained in prose rather than
terse notation.

Let the initial supplied array R0 be a permutation - i.e., each of the values
0, 1, 2, . . . , 245, 255 is expressed exactly once in the array. Let K256 be an arbi-
trary array of byte values which will act as the key in this scenario.

2Note: When then term “permutation matrix” is used in this document - it is not the same
as the permutation matrices found in Mathematics

15

The objective is to alter the array R0 according to the key K and still maintain
R as a permutation. The result should be a permutation and should display
sensitive dependence on the input key K and R0. The resulting permutation
can then be used to translate the elements of the state matrix.

This modification of the permutation matrix is accomplished by taking inspi-
ration from the RC4 stream cipher, with a few tweaks. It is probably best to
display the pseudo-code used and then explain any relevant points.

Let i, j ∈ F28 , i is assumed to be zero and j is set to a seeding parameter to
start with. Let S256 temporarily stand for ξg, R0 be the start permutation array
(which is always a copy of ξg), K256 be an arbitrary byte array to be used as
the key. Then the ε can be described with the following pseudo-code:

1: j = S[j];
2: for i = 0 ... 255 {
3: j = j + R[j] + K[i];
4: j = S[j];
5: swap(R[S[i]], R[j]);
6: }

The counter i makes sure we use every key value and that we permutate every
entry in R. When we reach the swap however we use the S-Box entry at i
rather than i directly - both methods touch every entry of R, however the S-
Box lookup avoids the usual problem of the initial swap (and cryptographically
weaker) results being clustered around the start of the array. The benefit of
distributing the initial results throughout R is more apparent when combined
with the 64 bit MDS layer that immediately follows; if the initial values were
to remain at the beginning of the array then the first 64 bit word would be
somewhat more predicable than required, by distributing these initial results
any weakness is still present but is dispersed throughout the R matrix.

The counter j plays the rôle of introducing non-linearity into the permutation.
Each iteration is in effect a non-linear transform on the previous value of j, a
value of R, and a key entry. The j counter is a parameter set by the caller. The
transform is highly sensitive to the initial value of j.

Usually the permutation array R0 is initialised with a copy of the ξg S-Box - it
would be just as easy to start with the sequence (0, 1, 2, . . . , 245, 255) or for that
matter any permutation, however it is still assumed to be a parameter. Using
the S-Box as R0 is easy, in C its just a simple memcpy and it also avoids any
regularities that using an easier sequence would entail.

3.5.2 τ - The Permutation Transform

The function τ :M16,16×R256 →M16,16 takes a matrix M and a permutation
matrix R and rearranges the elements of M according to the permutation R.

τ can be defined as follows:

M = τ(M0)⇔M[i] = R[M0[i]], 0 ≤ i < 256 (13)

16

It would be possible to permutate the state matrix with a key directly, however
by using an intermediate matrix R as generated by ε several advantages are
reaslised: (i) the permutation array R once calculated can be efficiently reused
later, (ii) the method reduces the chance of creating degenerate, or low entropy
permutations of the state matrix, and (iii) it is more elegant when used with
the S-Box and MDS transform immediately afterwards as defined in sec 3.5.3.

3.5.3 ψ8 - The 64-bit Adapted MDS Transform

The canonical method of utilising MDS matrices in cryptography to provide
intra-word diffusion is the simple pre-multiplication by an MDS matrix of a
column matrix representing the elements of an input word. The net effect
being that each element of the input column (input word) is essentially acting
as a scalar multiple of a specific column of the MDS matrix, the collection of
resulting columns corresponding to each element of the initial word are then
summed. As the summation is over F28 , this is just the familiar exclusive-or
operation. This effect can be exploited to combine the S-Box lookups and MDS
multiplication in a highly optimised manner; by pre-calculating the result for
each possible entry to an S-Box and then using the resulting scalar to multiply
the appropriate column of the MDS matrix and storing it in a lookup table,
explicit full calculations can be avoided. When it comes to implementation, all
that needs to be done is to lookup each element of the input word in the table
and exclusive-or the results together. So for an n element word (which requires
an n, n MDS matrix) all that is required is n table lookups and n−1 exclusive-or
operations - which is very fast on modern processors.

The approach taken in Sgàil takes a slight diversion from this. While retaining
the table lookup structure, the arrangement is not a simple pre-multiply by the
MDS matrix.

The first difference is that separate S-Boxes are used, one for each element of
the input word to be precise. So for the ψ8 transform there are eight separate S-
Boxes, which shall be represented as functions ξ0, ξ1, . . . , ξ7. The second major
difference is that instead of performing an S-Box lookup on an element of the
input word and then using the result to scalar multiply a column of the MDS
matrix, the elements of the input word are passed through the different S-Boxes
in turn so creating a new word - each element of this new word is then multiplied
by the corresponding element in the column from the MDS matrix and stored
as a word in the lookup table.

This can be written more formally as a function ψ8 :W8 →W8, and is defined
by:

ψ8 : x 7→ diag(c0,0, c1,0, . . . , c7,0)× col(ξ0(x0), ξ1(x0), . . . , ξ7(x0))
+ diag(c0,1, c1,1, . . . , c7,1)× col(ξ0(x1), ξ1(x1), . . . , ξ7(x1))

+
...

...
...

...
+ diag(c0,7, c1,7, . . . , c7,7)× col(ξ0(x7), ξ1(x7), . . . , ξ7(x7))

where ci,j are the elements of the MDS matrix C8, x ∈ W8, diag() indicates the
creation of a diagonal matrix from the entries, col() indicates the column vector

17

of the entries, and finally × is just matrix multiplication (written in explicitly
in this case to make things more readable).

The natural question is: why use this construction? Well, if an attacker has
found limited ability to control the entries to the S-Boxes then setting the input
to the S-Box to the appropriate value so that the result is zero would be an
obvious place to start. In the original construction this effectively zeros out an
entire column of the MDS calculation (one word entry in the lookup table) -
which may be useful when looking for collisions, especially if the effect can be
cumulative. In the ψ8 construction, it is not possible - or at least significantly
more difficult - to judiciously select the inputs of the S-Box in this manner. As
the same value goes through multiple S-Boxes it is impossible to make more
than one of the results zero - hence that column of the MDS (or that word in
the lookup table) is not nulled out, it is only one single element of that word
that is affected which is good behaviour. Whether this has any real advantages
remains to be seen, but it does introduce a certain degree of orthogonality to
the setup.

Once the adapted MDS transform is complete, each of the 64-bit words is also
rotated and exclusive-or’ed with itself (the rotation constants for this are listed
in the appendices). The only reason for doing this is to destroy any byte align-
ment properties (and frustratingly complicate notation and description). As the
rotation is fixed and commutes with exclusive-or, it can (and is) precomputed
into the MDS tables.

3.5.4 ψ16 - The 128-bit Adapted MDS Transform

The 128-bit MDS is defined in an equivalent manner to ψ8. The ψ16 : W16 →
W16 transform can be defined by:

ψ16 : x 7→ diag(c0,0, c1,0, . . . , c15,0)× col(ξ8(x0), ξ9(x0), . . . , ξ23(x0))
+ diag(c0,1, c1,1, . . . , c15,1)× col(ξ8(x1), ξ9(x1), . . . , ξ23(x1))

+
...

...
...

...
+ diag(c0,15, c1,15, . . . , c15,15)× col(ξ8(x15), ξ9(x15), . . . , ξ23(x15))

Again each of the 64-bit words are rotated and exclusive-or’d with itself (con-
stants defined in the appendix).

3.5.5 θ8 - The 64-bit Adapted MDS Layer

The 64-bit adapted MDS layer is the parallel application of the 64-bit adapted
MDS transform, ψ8, to the 32 words of a matrix and can be defined as a function
θ8 :W32

8 →W32
8 . 3

θ8 : 〈x0,x1, . . . ,x31〉 7→ 〈ψ8(x0), ψ8(x1), . . . , ψ8(x31)〉, (x0,x1, . . . ,x31 ∈ W8)
(14)

3Note the Endianness as defined in sec 1.2.6 for translation of byte values to word values.

18

or equivalently,

Y = θ8(X)⇔ yi = ψ8(xi), (X,Y ∈ W32
8 ,xi,y ∈ W8, 0 ≤ i < 32) (15)

3.5.6 θ16 - The 128-bit Adapted MDS Layer

The 128-bit adapted MDS transform layer is the parallel application of the 128-
bit adapted MDS transform, ψ16, to the 16 rows of a matrix and can be defined
as a function θ16 :W16

16 →W16
16 .

θ16 : 〈x0,x1, . . . ,x15〉 7→ 〈ψ16(x0), ψ16(x1), . . . , ψ16(x15)〉, (x0,x1, . . . ,x15 ∈ W16)
(16)

or equivalently,

Y = θ16(X)⇔ yi = ψ16(xi), (X,Y ∈ W16
16 ,xi,y ∈ W16, 0 ≤ i < 16) (17)

3.5.7 ς - Two Word Pseudo-Hadamard Transform

Pseudo-Hadamard transforms, or PHTs, are a fast method of providing diffu-
sion. Although addition in Z is obviously linear in Z, over F28 this is a non-linear
operation (although of fairly low algebraic degree), which can quickly make al-
gebraic attacks non-trivial.

The function ς :W8 ×W8 →W8 ×W8 can be defined as:

ς : 〈ū, v̄〉 7→ 〈ū+ v̄, ū+ 2 · v̄〉 (18)

The diffusion obtained by using PHTs is generally sub-optimal, but the relative
execution speed of the transform compared to other more involved methods
renders it an exceedingly useful operation.

3.5.8 φα - The First PHT Layer

The φα :M16,16 →M16,16 layer of PHTs is the first of two layers in Sgàil that
consists of the parallel application of PHTs. In this φα layer, the words in Q0

are transformed with the words in Q3, while the words in Q1 are transformed
with the words in Q2.

The complete equation list is as follows:

Q0 ←→ Q3 :
〈w̄0, w̄17〉 = ς(w̄0, w̄17) (19)

〈w̄2, w̄19〉 = ς(w̄2, w̄19) (20)

〈w̄4, w̄21〉 = ς(w̄4, w̄21) (21)

〈w̄6, w̄23〉 = ς(w̄6, w̄23) (22)

19

〈w̄8, w̄25〉 = ς(w̄8, w̄25) (23)

〈w̄10, w̄27〉 = ς(w̄10, w̄27) (24)

〈w̄12, w̄29〉 = ς(w̄12, w̄29) (25)

〈w̄14, w̄31〉 = ς(w̄14, w̄31) (26)

Q1 ←→ Q2 :
〈w̄9, w̄16〉 = ς(w̄9, w̄16) (27)

〈w̄11, w̄18〉 = ς(w̄11, w̄18) (28)

〈w̄13, w̄20〉 = ς(w̄13, w̄20) (29)

〈w̄15, w̄22〉 = ς(w̄15, w̄22) (30)

〈w̄1, w̄24〉 = ς(w̄1, w̄24) (31)

〈w̄3, w̄26〉 = ς(w̄3, w̄26) (32)

〈w̄5, w̄28〉 = ς(w̄5, w̄28) (33)

〈w̄7, w̄30〉 = ς(w̄7, w̄30) (34)

Which words are transformed with which is important - the φα combined with
the φβ are designed with the row nature of the ψ16 transform in mind. A change
in one of the inputs to ψ16 results in a change across all 16 elements of that row,
which in turn due to the two PHT layers will cause a change in four other words
which always sit in different rows (this is all neglecting the Quadrant Diffusion
layer that is executed in between the two PHT layers). So with just the ψ16, φα

and φβ , a change in one element at the input will cause a change in 6 · 8 = 48
of the byte inputs to the next round.

3.5.9 φβ - The Second PHT Layer

The φβ : M16,16 → M16,16 layer of PHTs is the second of two layers in Sgàil
that consists of the parallel application of PHTs.

The complete equation list for the φβ layer is as follows:

〈w̄0, w̄3〉 = ς(w̄0, w̄3) (35)

〈w̄2, w̄7〉 = ς(w̄2, w̄7) (36)

〈w̄4, w̄1〉 = ς(w̄4, w̄1) (37)

〈w̄6, w̄5〉 = ς(w̄6, w̄5) (38)

〈w̄8, w̄11〉 = ς(w̄8, w̄11) (39)

〈w̄10, w̄15〉 = ς(w̄10, w̄15) (40)

〈w̄12, w̄9〉 = ς(w̄12, w̄9) (41)

〈w̄14, w̄13〉 = ς(w̄14, w̄13) (42)

〈w̄16, w̄19〉 = ς(w̄16, w̄19) (43)

〈w̄18, w̄23〉 = ς(w̄18, w̄23) (44)

20

〈w̄20, w̄17〉 = ς(w̄20, w̄17) (45)

〈w̄22, w̄21〉 = ς(w̄22, w̄21) (46)

〈w̄24, w̄27〉 = ς(w̄24, w̄27) (47)

〈w̄26, w̄31〉 = ς(w̄26, w̄31) (48)

〈w̄28, w̄25〉 = ς(w̄28, w̄25) (49)

〈w̄30, w̄29〉 = ς(w̄30, w̄29) (50)

3.5.10 γ - The Quadrant Diffusion Transform

The γ :W8
8 →W8

8 transform takes a quadrant and repeatedly applies addition,
exclusive-or and rotation operations to achieve a fast and near optimal level of
diffusion.

For this section, words of the quadrant are labeled 〈v̄0, v̄1, v̄2, v̄3, v̄4, v̄5, v̄6, v̄7〉
instead of the numbering used in the state matrix. We also define r0, r1, r2, the
three rotation constants used (see appendices for actual constants).

The function γα :W8 ×W8 × Z→W8 is defined by:

γα : (x̄, ȳ, r) 7→ x̄+ ((x̄⊕ ȳ) ≪ r) (51)

The function γβ :W8 ×W8 × Z→W8 is defined by:

γβ : (x̄, ȳ, r) 7→ x̄⊕ ((x̄+ ȳ) ≪ r) (52)

The transform γ is then defined by the sequential evaluation 4 of:

v0 = γα(v0, v7, r0) (53)

v1 = γα(v1, v0, r1) (54)

v2 = γα(v2, v1, r2) (55)

v3 = γα(v3, v2, r0) (56)

v4 = γα(v4, v3, r1) (57)

v5 = γα(v5, v4, r2) (58)

v6 = γα(v6, v5, r0) (59)

v7 = γα(v7, v6, r1) (60)

v0 = γβ(v0, v7, r2) (61)

v1 = γβ(v1, v0, r0) (62)

v2 = γβ(v2, v1, r1) (63)

v3 = γβ(v3, v2, r2) (64)

v4 = γβ(v4, v3, r0) (65)

4The “sequential evaluation” part is important, as each evaluation of a function relies on
previous results

21

v5 = γβ(v5, v4, r1) (66)

v6 = γβ(v6, v5, r2) (67)

v7 = γβ(v7, v6, r0) (68)

While the γ transform was described as “near optimal”, it can be stated more
formally. The rotation constants were derived empirically to be optimal (under
certain conditions). In the samples performed the mean byte hamming weight
of the γ transform is around 63 (out of a possible 64) which is near optimal,
and is lower bounded by 25. This was tested by setting the entire quadrant to
zero and doing a “walking one” through each of the 512-bits and applying a
reduced version of the quad diffuse at each step and calculating the hamming
distance (the reduced version replaced the addition operations with exclusive-or
operations to reliably determine how many bit positions were modified). This
was done for each of the possible (264)3 combinations and the results with the
highest minimal hamming distance were chosen (which was 25).

In practice these results will be a lot better as the tests were performed on a
reduced version of γ and the introduction of normal non-zero data increases the
diffusion provided by the addition operations.

3.5.11 ϕ0 - The First Quadrant Diffusion Layer

The ϕ0 applies γ to Q0 with rotation constants as specified in the appendices.
Q0 is then exclusive-or’ed over each of the other three quadrants with the words
of Q0 rotated by a different amount for each quadrant, again see appendices for
the constants used.

If one considers that the application of ψ16 then φα which are performed immedi-
ately before ϕ0, then it becomes obvious why the results of γ are exclusive-or’ed
over the other quadrants. Just before γ is applied, each word of Q0 is depen-
dant on at least one word of the other three quadrants. So if the γ transform is
applied and has a byte hamming distance of n, then we can say that a change
to one input element to ψ16 will induce a change in at least n elements of Q0

after γ is applied. When the contents of Q0 are exclusive-or’d over the over
three quadrants then they also share this property and near optimal diffusion
is achieved.

The different rotation constants for each quadrant means that the inputs to the
S-Boxes is in a small sense orthogonal across the different quadrants.

3.5.12 ϕ1 - The Second Quadrant Diffusion Layer

ϕ1 is identical to ϕ0 except γ is applied to Q1 and the constants are changed.

3.5.13 ϕ2 - The Third Quadrant Diffusion Layer

ϕ2 is identical to ϕ0 except γ is applied to Q2 and the constants are changed.

22

3.5.14 ϕ3 - The Fourth Quadrant Diffusion Layer

ϕ3 is identical to ϕ0 except γ is applied to Q3 and the constants are changed.

3.5.15 µ - The Preliminary Key Processing Function

The preliminary key function takes a 256-bit secret key, a 64-bit serial number,
two 64-bit words representing the current block count (of processed 2048-bit
input blocks) and a 64-bit word representing the number of bits used in the
final block (is otherwise always zero). The results of the preliminary key are
used in the principle key extraction and round key extraction.

The 256-bit secret key can be used to create a keyed hash function and the
format is user defined, however if used as a direct drop-in replacement to the
SHA family of algorithms it should be set to zero. The serial number is user
definable, but if being used as a drop-in replacement to SHA it should be set
to zero. The two words representing the block count are the 128-bit represen-
tation of the 2048-bit message block to which the preliminary key is to be used
with, which means that Sgàil can hash a theoretical maximum of 2127 4096-bit
blocks or 4096 · 2127 input bits - this theoretical limit could obviously never be
reached in reality (it was however thought that it may be necessary in extreme
circumstances to hash 264 blocks, hence the 128-bit representation). The last
word, the final bit count, is normally set to zero and is only non-zero for the last
input block in which case its value should be the bit length of the last message
block.

The four words of the 256-bit key T shall be labeled as t̄0, t̄1, t̄2, t̄3. The serial
number shall be labeled as u. The block counter words shall be labeled as a
high-word and a low-word, bh, bl. The final block bit count word shall be labeled
as fb.

The result of the µ function is the preliminary key vector P=〈p̄0, p̄1, p̄2, p̄3, p̄4, p̄5, p̄6, p̄7〉.
The function µ : W4

8 × W8 × W8 × W8 × W8 → W8
8 can be defined by the

sequential evaluation of:

23

w̄ = u

p̄0 = ψ8(w̄)
w̄ = p̄0 + T0

p̄1 = ψ8(w̄)
w̄ = p̄1 + bl

p̄2 = ψ8(w̄)
w̄ = p̄2 + T1

p̄3 = ψ8(w̄)
w̄ = p̄3 + fb

p̄4 = ψ8(w̄)
w̄ = p̄4 + T2

p̄5 = ψ8(w̄)
w̄ = p̄5 + bh

p̄6 = ψ8(w̄)
w̄ = p̄6 + T3

p̄7 = ψ8(w̄)

p̄0 = p̄0 + p̄7

p̄1 = p̄1 + p̄0

p̄2 = p̄2 + p̄1

p̄3 = p̄3 + p̄2

p̄4 = p̄4 + p̄3

p̄5 = p̄5 + p̄4

p̄6 = p̄6 + p̄5

p̄7 = p̄7 + p̄6

3.5.16 πp - The Pair Block Principle Key Extraction

All input message blocks are 4096-bits and are reduced to a 2048-bit principle
key with πp. The only exception is if the finalise (last) block is being processed
in which case, if there are 2048-bits or less, the block is passed directly through
πs (with the left preliminary key being used) and the result used as the principle
key.

πp : M16,16 ×M16,16 × W8
8 × W8

8 → M16,16 takes the 4096-bit input block
(considered as two 2048-bit blocks) and the left and right preliminary keys
returning a 2048-bit principle key:

πp : Xl,Xr,Pl,Pr 7→ πs(Xl,Pl, ε(ξg,Xr, 0), ε(ξg,Xl, 0)) (69)
+∗ πs(Xr,Pr, ε(ξg,Xl, 0), ε(ξg,Xr, 0)) (70)

24

where +∗ in this case means addition of each 64-bit word in parallel of the two
matrix operands.

3.5.17 πs - The Single Block Principle Key Extraction

The function πs :M16,16×W8
8 ×R256×R256 →M16,16 acts on 2048-bit blocks

and is used either as part of πp to reduce input 4096-bit blocks to a 2048-bit
principle key, or on a final input block of 2048-bits or less in length to obtain a
principle key.

If ⊕q0 is taken to mean exclusive-or quadrant zero of the left operand (16,16)
with the right operand (8,8), then πs can be defined as:

πs : X,P,Rpre,Rpost 7→ X⊕(θ8◦τRpost)(θ16((φβ◦ϕ0◦φα)((θ8◦τRpre)(X)⊕q0P))⊕q0P)
(71)

πs has a natural extension to two or three rounds, but is not used. It is however
included in the development source code included in the submission package.

3.5.18 κ4 - The x4 Round Key Extract Function

The κ4 : W8
8 ×W8

8 × Z → M16,16 round key extraction takes as its input one
quadrant of the principle key, a preliminary key and a round index. It then does
a very light transform and returns a full round key.

If E is the resultant extracted round key with words ē0, ē1, . . . , ē31, the words of
the supplied principle key quadrant K are labeled k̄0, k̄1, . . . , k̄7 and the words
of the preliminary key P are labeled p̄0, p̄1, . . . , p̄7. The round constants are used
here and will be labeled as c̄0, c̄1, . . . , c̄63. There are three rotation constants
used (and listed in the appendix), which shall be labeled r0, r1, r2. The round
index shall be denoted i. Then κ4 is defined by the sequential evaluation of
(note the indexing of principle key quadrant here is relative to the quadrant as
passed, not the global principle key):

ē0 = k̄0 ⊕ p̄0 ⊕ c̄i(mod 64)

ē2 = k̄1 ⊕ p̄1 ⊕ c̄(i+1)(mod 64)

ē4 = k̄2 ⊕ p̄2 ⊕ c̄(i+2)(mod 64)

ē6 = k̄3 ⊕ p̄3 ⊕ c̄(i+3)(mod 64)

ē8 = k̄4 ⊕ p̄4 ⊕ c̄(i+4)(mod 64)

ē10 = k̄5 ⊕ p̄5 ⊕ c̄(i+5)(mod 64)

ē12 = k̄6 ⊕ p̄6 ⊕ c̄(i+6)(mod 64)

ē14 = k̄7 ⊕ p̄7 ⊕ c̄(i+7)(mod 64)

25

ē1 = ē2 ≪ ((r0 + i)(mod 64))
ē3 = ē0 ≪ ((r0 + i)(mod 64))
ē5 = ē6 ≪ ((r0 + i)(mod 64))
ē7 = ē4 ≪ ((r0 + i)(mod 64))
ē9 = ē10 ≪ ((r0 + i)(mod 64))
ē11 = ē8 ≪ ((r0 + i)(mod 64))
ē13 = ē14 ≪ ((r0 + i)(mod 64))
ē15 = ē12 ≪ ((r0 + i)(mod 64c))

ē16 = ē6 ≪ ((r1 + i)(mod 64))
ē18 = ē4 ≪ ((r1 + i)(mod 64))
ē20 = ē2 ≪ ((r1 + i)(mod 64))
ē22 = ē0 ≪ ((r1 + i)(mod 64))
ē24 = ē14 ≪ ((r1 + i)(mod 64))
ē26 = ē12 ≪ ((r1 + i)(mod 64))
ē28 = ē10 ≪ ((r1 + i)(mod 64))
ē30 = ē8 ≪ ((r1 + i)(mod 64))

ē17 = ē14 ≪ ((r2 + i)(mod 64))
ē19 = ē12 ≪ ((r2 + i)(mod 64))
ē21 = ē10 ≪ ((r2 + i)(mod 64))
ē23 = ē8 ≪ ((r2 + i)(mod 64))
ē25 = ē6 ≪ ((r2 + i)(mod 64))
ē27 = ē4 ≪ ((r2 + i)(mod 64))
ē29 = ē2 ≪ ((r2 + i)(mod 64))
ē31 = ē0 ≪ ((r2 + i)(mod 64))

3.5.19 κ2 - The x2 Round Key Extract Function

The κ2 :W8
8 ×W8

8 ×W8
8 ×Z→M16,16 round key extraction takes as its input

two quadrants of the principle key, a preliminary key and a round index. It then
does a very light transform and returns a full round key. The first principle key
quadrant passed shall be labeled k̄a,x, and the second as k̄b,x where x is the
index relative to the passed quadrant.

κ2 is defined in a similar manner to κ4:

26

ē0 = k̄a,0 ⊕ p̄0 ⊕ c̄i(mod 64)

ē2 = k̄a,1 ⊕ p̄1 ⊕ c̄(i+1)(mod 64)

ē4 = k̄a,2 ⊕ p̄2 ⊕ c̄(i+2)(mod 64)

ē6 = k̄a,3 ⊕ p̄3 ⊕ c̄(i+3)(mod 64)

ē8 = k̄a,4 ⊕ p̄4 ⊕ c̄(i+4)(mod 64)

ē10 = k̄a,5 ⊕ p̄5 ⊕ c̄(i+5)(mod 64)

ē12 = k̄a,6 ⊕ p̄6 ⊕ c̄(i+6)(mod 64)

ē14 = k̄a,7 ⊕ p̄7 ⊕ c̄(i+7)(mod 64)

ē1 = k̄b,0 ≪ ((r0 + i)mod 64))
ē3 = k̄b,1 ≪ ((r0 + i)mod 64))
ē5 = k̄b,2 ≪ ((r0 + i)mod 64))
ē7 = k̄b,3 ≪ ((r0 + i)mod 64))
ē9 = k̄b,4 ≪ ((r0 + i)mod 64))
ē11 = k̄b,5 ≪ ((r0 + i)mod 64))
ē13 = k̄b,6 ≪ ((r0 + i)mod 64))
ē15 = k̄b,7 ≪ ((r0 + i)mod 64))

ē16 = ē2 ≪ ((r1 + i)mod 64))
ē18 = ē0 ≪ ((r1 + i)mod 64))
ē20 = ē6 ≪ ((r1 + i)mod 64))
ē22 = ē4 ≪ ((r1 + i)mod 64))
ē24 = ē10 ≪ ((r1 + i)mod 64))
ē26 = ē8 ≪ ((r1 + i)mod 64))
ē28 = ē14 ≪ ((r1 + i)mod 64))
ē30 = ē2 ≪ ((r1 + i)mod 64))

ē17 = ē7 ≪ ((r2 + i)mod 64))
ē19 = ē5 ≪ ((r2 + i)mod 64))
ē21 = ē3 ≪ ((r2 + i)mod 64))
ē23 = ē1 ≪ ((r2 + i)mod 64))
ē25 = ē15 ≪ ((r2 + i)mod 64))
ē27 = ē13 ≪ ((r2 + i)mod 64))
ē29 = ē11 ≪ ((r2 + i)mod 64))
ē31 = ē9 ≪ ((r2 + i)mod 64))

27

3.5.20 κpre - The Pre-Whitening Round Key Extract Function

The κpre : W32
8 × W8

8 → M16,16 round key extraction takes as its input the
entire principle key and a preliminary key. It then does a very light transform
and returns a full round key.

Similar to the other key extract functions (note that the normal indexing is
used here for the principle key, whereas in κ4 and κ2 the indexing was just
incremental) :

ē0 = k̄0 ⊕ p̄0

ē2 = k̄2 ⊕ p̄1

ē4 = k̄4 ⊕ p̄2

ē6 = k̄6 ⊕ p̄3

ē8 = k̄8 ⊕ p̄4

ē10 = k̄10 ⊕ p̄5

ē12 = k̄12 ⊕ p̄6

ē14 = k̄14 ⊕ p̄7

ē1 = k̄1 ⊕ p̄7

ē3 = k̄3 ⊕ p̄6

ē5 = k̄5 ⊕ p̄5

ē7 = k̄7 ⊕ p̄4

ē9 = k̄9 ⊕ p̄3

ē11 = k̄11 ⊕ p̄2

ē13 = k̄13 ⊕ p̄1

ē15 = k̄15 ⊕ p̄0

ē16 = k̄16

ē18 = k̄18

ē20 = k̄20

ē22 = k̄22

ē24 = k̄24

ē26 = k̄26

ē28 = k̄28

ē30 = k̄30

28

ē17 = k̄17

ē19 = k̄19

ē21 = k̄21

ē23 = k̄23

ē25 = k̄25

ē27 = k̄27

ē29 = k̄29

ē31 = k̄31

Then there is a single PHT layer,

E = φα(E0) (72)

3.5.21 κpost - The Post-Whitening Round Key Extract Function

This is exactly the same as κpost , except the φα is changed for φβ .

3.5.22 %224, %256, %384, %512, %768, %1024, %1536, %2048 - The Finalise Layer

The finalise layer is used on the final state matrix to convert it to the hash digest
value. If the required digest length is 512-bits or less, a reduction operation is
first performed. Continuing to use the word numbering as defined in 3.4.1 then
the reduction operation is defined as:

w̄0 = w̄1 ⊕ w̄16 ⊕ w̄17

w̄2 = w̄3 ⊕ w̄18 ⊕ w̄19

w̄4 = w̄5 ⊕ w̄20 ⊕ w̄21

w̄6 = w̄7 ⊕ w̄22 ⊕ w̄23

w̄8 = w̄9 ⊕ w̄24 ⊕ w̄25

w̄10 = w̄11 ⊕ w̄26 ⊕ w̄27

w̄12 = w̄13 ⊕ w̄28 ⊕ w̄29

w̄14 = w̄15 ⊕ w̄30 ⊕ w̄31

If the required digest length is more than 512-bits then the reduction operation
is omitted.

The final step is to truncate the state array to the desired length.

29

3.6 High-level Transform Layers

3.6.1 Γpre,Γpost - The Pre and Post Permutation Function Groups

The function Γpre : M16,16 × R256 ×M16,16 → M is performed at the start
of the compression function - it applies the pre-whitening key, permutates the
state matrix and performs a 64-bit adapted MDS transform layer. It can be
defined as:

Γpre : M,R,E 7→ (θ8 ◦ τ)((M⊕E),R) (73)

In a similar way we define the post permutation Γpost by:

Γpost : M,R,E 7→ (θ8 ◦ τ)(M,R)⊕E (74)

3.6.2 Υ - The Main Round Function Group

The main round function Υ : M16,16 ×M16,16 × {0, 1, 2, 3} → M16,16 is the
main round update and takes the state matrix, a key and an index for which
quad diffuse layer to use and returns the updated state matrix. The operation
consists of applying a PHT layer, followed by the quad diffuse layer, then a PHT
layer, exclusive-or in the key and then pass through the adapted 128-bit MDS
layer. It can be defined as:

Υ : M,Er, rq 7→ θ16((φβ ◦ ϕrq
◦ φα)(M)⊕Er) (75)

3.6.3 Ψ - The Compression Function

The main compression function Ψ :M16,16 ×M2
16,16 × Z will now be defined.

If Di is the current input message block (4096-bit) then we define Dl,r as the
2048-bit left hand half and Dr,i as the 2048-bit right hand half. If the message
block is the last block and it is less then 2048-bits in length, then we just write
Di. Let bh, bl be the 64-bit high and low word of the left hand side block counter
(i.e the first of the two 2048-bit input message block halves). Then bh, bl + 1
is the block counter values for the right hand side (i.e the second of the two
2048-bit halves). Let fb represent the bit count of the final block (otherwise
it is zero), and u be the serial number. The secret key T words are denoted
t̄0, t̄1, t̄2, t̄3.

To apply the compression function at input block i, the keys must first be
derived:

The preliminary keys are defined as Pl,i = µ(T, u, bh, bl, fb), Pr,i = µ(T, u, bh, bl+
1, fb) and Pc,i = Pl,i ⊕ Pr,i. Where Pl,i is the left preliminary key, Pr,i is the
right preliminary key and Pc,i is the combined preliminary key.

If it is not a finalise block or if it is a final block with more than 2048-bits
then principle key Ki = πp(Dl,i,Dr,i, Pl,i, Pr,i), else Ki = πs(Di, Pl,i) where
the message data is padded with zero bits to make up to a 2048-bit block (there

30

is no need to do the normal MD length padding as the final bit length is already
used in the preliminary key processing).

The number of rounds is always of the form 4n or 4n + 2 with n ≥ 1. If the
current round number setting is of the form (4n) rounds, r is taken to be the
round number and 0 ≤ m < n then generate the round keys as:{

Ei,pre = κpre(Ki, Pc,i)
}

m = 0, 1, . . . , n− 1

Ei,r = κ4(ϑ0(Ki), Pc,i, r) r = 4m
Ei,r = κ4(ϑ1(Ki), Pc,i, r) r = 4m+ 1
Ei,r = κ4(ϑ2(Ki), Pc,i, r) r = 4m+ 2
Ei,r = κ4(ϑ3(Ki), Pc,i, r) r = 4m+ 3

{
Ei,post = κpost(Ki, Pc,i)

}

If the current number of rounds being used is of the form (4n + 2), r is taken
to be the round number and 0 ≤ m < n then generate the round keys as:{

Ei,pre = κpre(Ki, Pc,i)
}{

Ei,0 = κ2(ϑ0(Ki), ϑ1(Ki), Pc,i, r) r = 0
}

m = 0, 1, . . . , n− 1

Ei,r = κ4(ϑ0(Ki), Pc,i, r) r = 4m+ 1
Ei,r = κ4(ϑ1(Ki), Pc,i, r) r = 4m+ 2
Ei,r = κ4(ϑ2(Ki), Pc,i, r) r = 4m+ 3
Ei,r = κ4(ϑ3(Ki), Pc,i, r) r = 4m+ 4

{
Ei,4n−1 = κ2(ϑ2(Ki), ϑ3(Ki), Pc,i, r) r = 4n− 1

}{
Ei,post = κpost(Ki, Pc,i)

}

Now that the key schedule has been established, the the shorthand of writing
the compression function Ψi,Di(Si) = Ψ(Si,Di, i) shall be used.

Once the round keys are created, the only other preparation is the permutation
matrix, which is created as Ri = ε(ξg,Ki, bl)

If we let Γpre,Ri
(M) = Γpre(M,Ri,Epre), Γpost,Ri

(M) = Γpost(M,Ri,Epost),
and ΥE,r(M) = Υ(M,E,r) for notational convenience, then Ψ : M16,16 ×
M16,16 →M16,16 can now be defined.

If the current number of rounds being used is of the form r = 4n then,

Ψi,Di : Si 7→ (Γpost,Ri◦ ΥEr,r(mod4)︸ ︷︷ ︸ ◦Γpre,Ri
)(Si)

repeated r times

If the current number of rounds being used is of the form r = 4n+ 2 then,

Ψi,Di : Si 7→ (Γpost,Ri ◦ΥE4n−1,3◦ ΥEr+1,r(mod4)︸ ︷︷ ︸ ◦ΥE0,0 ◦ Γpre,Ri)(Si)

repeated r − 2 times

31

3.6.4 Σ - The Full Algorithm

For the full algorithm the initial state is set to a copy of the generic S-Box ξg
(the AES S-Box) which will be identified as S0. The IV value must not be user
specified as it may have a detrimental on the algorithm’s security.

The full algorithm

Σ : {0, 1}∗×{224, 256, 384, 512, 768, 1024, 1536, 2048} → {0, 1}{224,256,384,512,768,1024,1536,2048}

(76)

for n message blocks, where h is the required digest length is defined by:

Σ : D0,D1, . . . ,Dn−1, h 7→ %h(Ψn−1,Dn−1 ◦ . . .Ψ1,D1 ◦Ψ0,D0)(S0) (77)

4 Design Rationale

4.1 High-level Priorities

The fundamental priority when designing Sgàil was that of security. Given that
the successful candidate for SHA-3 is likely to be in service for several decades,
security considerations must trump any potential marginal performance gains.
SHA-3 must also be resistant not only to attacks existing today, but any likely
attack to be developed in the future. In light of this it is prudent to design in
several orders of magnitude of safety, to create a design that is simple to verify
against today’s cryptanalytic techniques but not so simple that it is easy to base
or apply new attacks against, and most importantly to rely on computational
complexity as far as possible. Computationally hard problems generally stand
the test of time better than clever short-cuts.

The next priority in line was flexibility. In the event of an unexpected require-
ment or weakness, the ability for the successful algorithm to be easily modified
or adapted, or even for a parameter to be changed may make the difference
between the necessity for a complete redesign and an easy modification.

The third priority was purposefulness. Every element of the design should be
there for a specific and definite purpose. Using something because it looks nice
or without reason will lead to disaster. Sounds obvious, but it should really be
mentioned explicitly.

The final priority considered was that of ease of implementation and perfor-
mance. As long as the algorithm isn’t obtusely complex and will run in reason-
able speed, then it should be acceptable.

4.2 Target Platform Priorities

Sgàil while implementable in software, hardware and embedded devices, is def-
initely orientated towards performance on 64-bit general purpose CPUs. The
following shows in descending order, the design priorities for target platforms.

32

1. 64-bit general purpose CPUs : Native 64-bit CPUs are now becoming the
norm in both desktop and server hardware with the idea of using multiple
execution cores to replace the focus on raw clock frequency becoming
wide spread. It is submitted that any performance improvement in a
cryptographic hash algorithm would be most beneficial being targeted
towards these CPUs, principally due to their ubiquity of use from server
applications to VPN devices. As such the native word size of Sgàil is
64-bits wide, it makes extensive use of native 64-bit word operations and
it has been designed from the ground up to be parallelisable to many
execution threads.

2. Hardware : The design of the Sgàil was with hardware implementation
in mind - standard bitwise operations are used extensively, most of the
table lookups can be reduced to bitslice operations (the 8x8 S-Boxes are
generated from smaller 4x4 mini-boxes) and be run in parallel and there is
a lot of opportunity to duplicate operations. The major hurdle to efficient
hardware implementation is the generation of the matrix used to permu-
tate the state array which is created from an RC4 style algorithm; it is
expected that this will unfortunately have to be performed using RAM
(however as it is not dependent on the state matrix it is parellelisable on
the message block level).

3. Embedded processors : With embedded processors, it is unlikely that any
vast amount of data will need to be processed. As such, as long as it is
possible to implement the algorithm and that it executes in an acceptable
amount of time, then it will suffice. The principle hindrance to implemen-
tation in embedded processors would be the available RAM, however with
devices offering 1Kb or more of RAM now widely available and the fact
that processing power is only going in one direction - it is unlikely the
RAM requirements of Sgàil would pose any significant hindrance. There
is a significant requirement for storage of the S-Boxes, MDS matrices and
code - however, again any real practical difficulty will be minimal and
would be expected to decrease over time.

4.3 Trade-offs

There are a number of trade-offs that can conceivably be made, dependent on
the target environment. The MDS tables can be pre-calculated or the transform
could be performed explicitly (as would probably be required in a embedded
implementation). The generation of the Cauchy matrices can even be done
online, although this is probably for entertainment purposes only.

On most implementations, if the tables can be stored in memory it is probably
best to do so. There was effort made to separate the key processing from the
compression function so that it may be performed separately (e.g. in separate
memory space) if resources are limited.

33

4.4 Tunable Parameters

The main tunable parameters would be the number of rounds in the state update
and the number of rounds in the principle key processing. It is unlikely that
this would be required, however the option is supplied in the development code
for assessment purposes. Essentially, the number of rounds in the state update
controls protection against pre-image attacks, while the number of rounds in the
key derviation controls protection against collision attacks. If either of these ever
needed to be increased, it would likely be the number of key derivation rounds.

Using the τ with θ8 in each round (whether that be state update or key deriva-
tion) would improve the security however it would also have a severe perfor-
mance penalty. An additional quad diffuse in each layer would also increase the
security, again this would incur a significant performance hit.

5 Performance and Implementation

5.1 General Performance

Sgàil was designed to give a high level of security with good performance for
large quantities of data. Taking Whirlpool as a standard, then Sgàil suffers
quite badly for short message lengths, however when the quantity of input data
starts to rise then Sgàil becomes more efficient and the performance levels out.
This will be due in part to Whirlpool’s input block size being 512-bits and the
minimum input block size that Sgàil can accommodate is 2048-bits - even at
input message sizes between 1536 and 2048 bits, Whirlpool is faster by a good
margin. However when the input size starts to hit near the 4096-bit mark and
for much larger data sets, then Sgàil exhibits the same speed. With an optimised
implementation, on asymptotic behaviour, it is expected that Sgàil will be faster
than Whirlpool for large data sets.

Sgàil has consistent timings on most new processors, although older processors
with smaller on chip caches can hit a performance barrier if other processes are
also using the cache.

5.2 NIST Reference Platform

The following test was done on a Intel Dual Core 2.6Ghz server running FreeBSD
amd64 7.0 and compiled with gcc 4.2.1. This should be fairly close to the
reference platform.

The test was the time taken to hash 10, 000, 000 instantiations of increasing
input sizes. The left hand column is the number of input bytes, the next two
columns indicate the time taken for the Sgàil and Whirlpool’s reference imple-
mentation, and the last two columns are the corresponding cycles per byte for
Sgàil and Whirlpool.

34

Bytes Sgàil (secs) Whirlpool (secs) Sgàil (cpb) Whirlpool (cpb)
64 112 34 455 136
128 113 51 230 104
256 113 86 114 88
384 143 121 96 82
512 257 156 130 79
1024 398 296 101 75
2048 684 576 87 73
4096 1257 1136 80 72
8192 2401 2256 76 72
16384 4642 4498 74 71
32768 9141 8978 72 71
65536 18190 17900 72 71
131072 36108 35880 71 71
262144 72080 71720 71 71

As you can see, Sgàil suffers for small block sizes but the performance quickly
becomes appreciable with larger quantities of data.

The asymptopic speed for the reference implementation of Sgàil is roughly 71
cycles per byte; better perfomance would be expected with an optimised imple-
mentation.

5.3 Hardware

The core of the state update should run efficiently in hardware, the only word
operations used are modular addition, exclusive-or and fixed rotations. The
S-Boxes used in the core of the state update are all generated from smaller
miniboxes which should make optimisation easier. The main sticking point is
the permutation layer and generation of the permutation matrix - which will
probably be the main impedance to performance.

Any estimate of gate count would be a total guess, but something like 10-15
times the count of an algorithm like TwoFish would likely be in the right ball
park.

5.4 Embedded

The performance on embedded (8-bit) processors is not likely to be good. The
algorithm is optimised for 64-bit architectures. However it should run in similar
times to comparable hash algorithms, and in available RAM. There will be a
substantial amount of ROM required for the code, S-Boxes and MDS Matrices
- almost 7Kb for the S-Boxes and MDS matrices alone.

5.5 Parallelisation

Sgàil offers parallelisation opportunities both within the compression function
and at the inter block level. The key processing for message blocks can be done
in advance with the key processing accounting for roughly 30% of the work load
of the algorithm, it is an appreciable amount to be able to offload.

35

6 Security Analysis

6.1 Resistance to Standard Linear and Differential Crypt-
analysis

Using the same argument as in [Rijmen and Barreto(2001)], we can use the
branch number of the diffusion layer and S-Box strength to estimate the upper
bound on a differential or linear characteristic.

The worst S-Box in Sgàil has a DPmax = 14/256, also the 128-Bit MDS com-
bined with assured diffusion gives the maximal branch number of η = 17. Using
these figures gives any differential characteristic an upper probability bound
of δη2

= (2−5.5)289 ' 2−1590 which already far exceeds the requirements for a
512-bit digest (for which four inner rounds are used). This calculation excludes
additional beneficial factors including; the nonlinearity in the diffusion layer, the
two S-Box and 64-bit MDS transforms at the start and end of each round (so
the number of rounds is really nearer 6), and the keyed diffusion. It is also only
applicable to pre-image attacks. Collision attacks would have to be considered
seperately and focus on how the principle key is arrived at.

6.2 Orthogonality

Hash algorithms have different pitfalls as compared to block cipher design - one
eye has to be kept on ensuring that collision attacks are not feasible. One of the
very deliberate techniques employed in Sgàil is the use of orthogonality - that is
using the same input to alter two things at once in an assuredly different way.
At least conceptually, this should make it harder to manipulate any inputs as
achieving the desired effect in one area will totally destroy it in another. If one
looks at the design of Sgàil this concept is tied into almost every operation from
the key extraction routines to the design of the non-linear layer.

6.3 Complexity Argument

While obscurity is almost always a very bad idea, precisely ordered complexity
is generally a very good thing. Given that most public key systems are based on
the value of computational complexity, then an algorithm presenting with high
computational complexity to break and no easy way of simplification should be
something that can be relied upon.

7 Appendices

7.1 Constants

The quad diffuse rotation constants are as follows:

QD_0_ROT_0 28
QD_0_ROT_1 6

36

QD_0_ROT_2 55
QD_1_ROT_0 36
QD_1_ROT_1 58
QD_1_ROT_2 9
QD_2_ROT_0 8
QD_2_ROT_1 24
QD_2_ROT_2 43
QD_3_ROT_0 9
QD_3_ROT_1 47
QD_3_ROT_2 39
QD_X_ROT_0 9
QD_X_ROT_1 18
QD_X_ROT_2 27
QD_X_ROT_3 36

The main rotation constants are empirically optimised and the ”X” constants
are just (1 · 8) + 1, (2 · 8) + 2, (3 · 8) + 3, (4 · 8) + 4 with a view to making sure
the result of the quad diffuse affects different S-Box inputs in each quadrant.

The key extract rotate constants are chosen as odd numbers near 0, 16 and 32
- in implementation the round number is added anyway, so as long as they are
well spread out - that is the main thing.

KE_ROT_1 3
KE_ROT_2 17
KE_ROT_3 29

The MDS post rotate constants are chosen pretty much at random - prime
numbers spread over the range were thought to be good. They can be replaced
by almost anything, the main purpose is to destroy the byte alignment - so
anything other than zero can be chosen.

MDS__64BIT__ROTATE 23
MDS__128BIT__ROTATE_LHS 11
MDS__128BIT__ROTATE_RHS 37

7.2 Cauchy Matrices

This is the C16 matrix:

01 b2 77 bf 79 56 32 62 0b e6 9d ad 5b 8c cd 41
8d ff 19 4c 85 96 6a ce a3 1b 6b c6 34 68 1c 1a
4f 5f f3 17 b6 a4 9f 48 a9 0f c5 b3 dd 1c 68 03
e5 74 6c 18 82 9b dc fb e6 0b 63 08 1c dd 34 23
3f d1 55 09 f4 9a 95 71 94 ea da 1c 08 b3 c6 cf
5a 77 b2 10 ca 8f e0 f7 eb 5d 1c da 63 c5 6b f8
45 c2 b0 43 1d 71 2e 9a 5b 1c 5d ea 0b 0f 1b ac
59 3a f6 f4 09 a5 e7 de 1c 5b eb 94 e6 a9 a3 28

5c 09 33 d1 3a ea 2f 1c de 9a f7 71 fb 48 ce d2

37

33 97 5c 20 40 d7 1c 2f e7 2e e0 95 dc 9f 6a 6d
70 43 2d c2 e8 1c d7 ea a5 71 8f 9a 9b a4 96 be
b9 de ef 94 1c e8 40 3a 09 1d ca f4 82 b6 85 b7
c8 71 d8 1c 94 c2 20 d1 f4 43 10 09 18 17 4c 87
2f 9d 1c d8 ef 2d 5c 33 f6 b0 b2 55 6c f3 19 bb
0d 1c 9d 71 de 43 97 09 3a c2 77 d1 74 5f ff ee
41 b1 a3 26 a4 b6 93 ed 19 2c f1 58 c7 e8 f6 01

This is the C8 matrix:

01 b2 77 bf 79 56 32 62
0b e6 9d ad 5b 8c cd 41
8d ff 19 4c 85 96 6a ce
a3 1b 6b c6 34 68 1c 1a
4f 5f f3 17 b6 a4 9f 48
a9 0f c5 b3 dd 1c 68 03
e5 74 6c 18 82 9b dc fb
e6 0b 63 08 1c dd 34 23

7.3 Round Constants

Probably badly named, the round constants are used in certain places through-
out Sgàil and is an array of 64 x 64-bit words, which is just the hexadecimal
representation of Pi after the decimal point. The array is reproduced here

0x25d479d8f6e8def7
0xe3fe501ab6794c3b
0x976ce0bd04c006ba
0xc1a94fb6409f60c4
0x5e5c9ec2196a2463
0x68fb6faf3e6c53b5
0x1339b2eb3b52ec6f
0x6dfc511f9b30952c
0xcc814544af5ebd09
0xbee3d004de334afd
0x660f2807192e4bb3
0xc0cba85745c8740f
0xd20b5f39b9d3fbdb
0x5579c0bd1a60320a
0xd6a100c6402c7279
0x679f25fefb1fa3cc
0x8ea5e9f8db3222f8
0x3c7516dffd616b15
0x2f501ec8ad0552ab
0x323db5fafd238760
0x53317b483e00df82
0x9e5c57bbca6f8ca0
0x1a87562edf1769db
0xd542a8f6287effc3

38

0xac6732c68c4f5573
0x695b27b0bbca58c8
0xe1ffa35db8f011a0
0x10fa3d98fd2183b8
0x4afcb56c2dd1d35b
0x9a53e479b6f84565
0xd28e49bc4bfb9790
0xe1ddf2daa4cb7e33
0x62fb1341cee4c6e8
0xef20cada36774c01
0xd07e9efe2bf11fb4
0x95dbda4dae909198
0xeaad8e716b93d5a0
0xd08ed1d0afc725e0
0x8e3c5b2f8e7594b7
0x8ff6e2fbf2122b64
0x8888b812900df01c
0x4fad5ea0688fc31c
0xd1cff191b3a8c1ad
0x2f2f2218be0e1777
0xea752dfe8b021fa1
0xe5a0cc0fb56f74e8
0x18acf3d6ce89e299
0xb4a84fe0fd13e0b7
0x7cc43b81d2ada8d9
0x165fa26680957705
0x93cc7314211a1477
0xe6ad206577b5fa86
0xc75442f5fb9d35cf
0xebcdaf0c7b3e89a0
0xd6411bd3ae1e7e49
0x00250e2d2071b35e
0x226800bb57b8e0af
0x2464369bf009b91e
0x5563911d59dfa6aa
0x78c14389d95a537f
0x207d5ba202e5b9c5
0x832603766295cfa9
0x11c819684e734a41
0xb3472dca7b14a94a

References

[Rijmen and Barreto(2001)] Rijmen, V., Barreto, P. S. L. M., 2001. The
WHIRLPOOL hash function. World-Wide Web document.
URL http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html;
http://planeta.terra.com.br/informatica/paulobarreto/whirlpool.zip

39

[Schneier et al.(1998)Schneier, Kelsey, Whiting, Wagner, Hall, and Ferguson]
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.,
1998. Twofish: A 128-bit block cipher. In: in First Advanced Encryption
Standard (AES) Conference.

[TheRegister(Sept2006)] TheRegister, Sept2006. Intel fabs 80 core teraflop
processor.
URL http://www.reghardware.co.uk/2006/09/26/intel teraflop processor/

[Youssef et al.(1997)Youssef, Mister, and Tavares] Youssef, A. M., Mister, S.,
Tavares, S. E., 1997. On the design of linear transformations for substitution
permutation encryption networks. In: School of Computer Science, Carleton
University. pp. 40–48.

40

