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NotesIntroduction
The phenotyping of mutant mice for pain-related 
traits (e.g., nociception, drug- and stress‑induced  
antinociception, injury-induced hypersensitivity) is 
an active pursuit, both for pain researchers and for 
others studying phenomena in which pain sensitivity 
may affect results (e.g., learning and memory, toler-
ance, and dependence). We have recently compiled an 
interactive database of mutant mice tested for behav-
ioral pain phenotypes: the Pain Genes Database (http://
paingeneticslab.ca/4105/06_02_pain_genetics_ 
database.asp) (LaCroix-Fralish et al., 2007). As 
of this writing, 212 null mutants (both transgenic 
knockouts and spontaneous mutants) display at least 
one significant difference compared with wild types 
on one or more pain-related trait, findings that are 
described in 456 published manuscripts appearing in 
the literature at a rate of more than 60 papers per 
year. Largely because of the continuing popularity 
of the transgenic knockout mouse, Mus musculus is 
rapidly overtaking Rattus as the “default” subject of 
basic pain research (Mogil et al., 2001; Wilson and 
Mogil, 2001).

Establishing the pain sensitivity of a laboratory 
mouse is far more difficult than it may first appear, 
and more an art than a sci-
ence. We have extensive 
experience testing not only 
mutant mice (Rubinstein 
et al., 1996; Mogil et al., 
2000b; Kest et al., 2001; 
Mogil et al., 2003; Mogil 
et al., 2005b,c) on pain 
traits, but also a large set 
of inbred strains providing 
the genetic background 
on which these mutations 
are placed (Mogil and 
Belknap, 1997; Mogil et 
al., 1998; Kest et al., 1999; 
Mogil and Adhikari, 1999; 
Mogil et al., 1999a,b; Kest 
et al., 2002a,b; Lariviere 
et al., 2002; Chesler et al., 
2003; Mogil et al., 2003; 
Wilson et al., 2003a,b;  
Mogil et al., 2005a,d;  
Mogil et al., 2006). We 
have learned from these 
experiments that genotype 
robustly affects pain, but 
that interindividual vari-
ability is affected by a large 
number of additional or-
ganismic and environmen-

tal factors. In this syllabus, I present the state of this 
art, with an introduction to the myriad complexities 
that attend pain phenotyping in the mouse.

Algesiometry
Acute and tonic pain (seconds to days) is induced by 
noxious stimuli of three modalities: thermal (hot or 
cold), mechanical, and chemical (including protons 
released during inflammatory states, ATP released 
from damaged cells, and any number of exogenous 
and endogenous compounds that activate and/or 
sensitize nociceptors). The etiology of chronic pain 
(weeks to years) is less clear but can generally be 
classified as either inflammatory (e.g., arthritis), neu-
ropathic (e.g., postherpetic neuralgia), or idiopathic/
functional (e.g., fibromyalgia). Although most re-
search attention, for reasons of practicality, is paid 
to somatic pain to the trunk and limbs, of equal or 
greater clinical importance are visceral pain and oro-
facial pain.

Reflecting the diversity of pain etiologies and char-
acteristics is a panoply of available animal models 
(Walker et al., 1999; Le Bars et al., 2001; Wilson and 
Mogil, 2001; Negus et al., 2006). Table 1 provides in-
formation on popular models. The general trend over 
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Duration Modality Assay Intensity Rangea

Acute  
(seconds)

Heat Hot plate
Radiant heat paw withdrawal
Tail-flick/withdrawal

46–56°C
not reported
46–56°C

Cold Acetone drop
Cold plate
Cold tail-flick

20 μl
0–5°C
–10–0°C

Mechanical Paw pressure (Randall-Selitto)
Tail clip
von Frey

variable
100–500 g
0.1–1.5 g

Tonicb  
(minutes to hours)

Chemical Acetic acid
Bee venom
Capsaicin
Formalin
Magnesium sulfate

0.1–1.0%
0.05–0.5 mg
0.1–50 μg
1–5%
120 mg/kg

Chronicc  
(hours to weeks)

Inflammatory Carrageenan
Complete Freund’s Adjuvant
Prostaglandins
Zymosan

1–5%
50%
10 ng
0.25–1.0 mg

Neuropathic Chronic constriction injury
Partial sciatic nerve ligation
Spared nerve injury
Spinal nerve ligation

N.A.
N.A.
N.A.
N.A.

Table 1. Common algesiometric assays (excluding orofacial models)*

aBased on a search of null mutant studies (Lacroix-Fralish et al., 2007).
bTypically, the dependent measure in these experiments is the total duration of licking or 
stretching responses of the affected part, though subsequent hypersensitivity to evoking 
stimuli can often be demonstrated as well.
cTypical dependent measures in these experiments, measured weekly or biweekly, include 
changes in sensitivity to acute evoking stimuli.
N.A.=not applicable.
*This list is not intended to be exhaustive.
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Notes the past few decades has been favoring the use of 
chronic-pain models, especially those involving sur-
gical injuries to peripheral nerves, over acute mod-
els. However, acute testing paradigms are still highly 
relevant, because surgical and inflammatory injuries 
produce robust hypersensitivity to acute pain–evok-
ing stimuli (i.e., radiant heat, cooling stimuli, von 
Frey fibers), and thus, measuring “chronic pain” in 
rodents involves, de facto, the measurement of injury-
induced changes in acute nociceptive sensitivity.

We have argued that the apparent lack of measurable 
spontaneous pain represents an important limitation 
of existing models (Mogil and Crager, 2004), given 
that spontaneous pain is likely the most important 
symptom of human clinical pain pathology. Others 
have complained that the reliance of the chronic 
pain models on purely reflexive, dependent measures 
ignores the important cognitive and emotional rich-
ness of the human pain experience, which might be 
better modeled in animals using operant techniques; 
indeed, such techniques are being increasingly ad-
opted (e.g., Sufka et al., 1996; Jabakhanji et al., 
2006; Neubert et al., 2006; Pedersen and Blackburn-
Munro, 2006; King et al., 2007; Thut et al., 2007). 

It is important to note that, although pain research 
in general is progressing rather quickly toward the 
use of more sophisticated models, transgenic knock-
out studies of pain are more often than not performed 
by scientists who are not pain researchers. As such, 
these investigations overwhelmingly employ more 
“simple” (but less clinically relevant) assays like 
the hot‑plate and tail-flick tests (Mogil et al., 2006;  
LaCroix-Fralish et al., 2007).

Sex Differences
Women are greatly overrepresented as clinical pain 
sufferers (Unruh, 1996). Meta-analyses of controlled 
laboratory studies have revealed moderate-to-large 
(although modality-dependent) sex differences as 
well (Riley III et al., 1998), with women showing 
higher pain sensitivity, lower pain tolerance, and 
greater pain discrimination than men. In general, 
mice display equivalent sex differences, in that fe-
males usually display higher sensitivity across a num-
ber of stimulus modalities when differences are re-
ported (Mogil et al., 2000a). The relevance of mice 
(or rats, for that matter) as a model species to the 
study of human sex differences in analgesic responses 
is less clear, since male mice usually display higher 
analgesic potency than females, though many stud-
ies suggest that women are more responsive to opioid 
analgesics than men (Craft, 2003). Of potentially 
far greater interest are the repeated demonstrations 
by us (Mogil et al., 1993; Mogil and Belknap, 1997; 

Mogil et al., 1997b; Mogil et al., 2003; Sternberg et 
al., 2004a,b) and other researchers (Liu and Gint-
zler, 2000; Tershner et al., 2000; Blednov et al., 2003; 
Mitrovic et al., 2003) of qualitative (i.e., genetically 
and neurochemically distinct) sex differences in the 
neural processing—possibly including differences in 
neuroanatomical circuitry itself—of pain modulatory 
mechanisms.

Although sex‑specific pain processing represents a 
great opportunity for novel drug development, its 
existence also presents a great challenge to the con-
clusions of the existing literature. For example, an 
entire body of literature was amassed documenting 
the potentiation of morphine analgesia by N-methyl-
D-aspartate (NMDA) receptor antagonists (Kozela 
and Popik, 2002), and the strength of this literature 
was sufficient to inspire a clinical trial of a morphine- 
dextromethorphan combination against postopera-
tive pain. However, this clinical trial failed to show 
efficacy (Caruso, 2000). Virtually the entire preclini-
cal literature used male rats; using male and female 
mice, we found that noncompetitive NMDA antag-
onists like dextromethorphan did indeed potentiate 
morphine analgesia in male mice but were completely 
ineffective in females (Nemmani et al., 2004).

Although sex differences in murine sensitivity to 
pain and analgesia are clearly demonstrable and need 
to be considered seriously, their impact is dwarfed by 
overall genotypic effects, and sex and genotype inter-
act thoroughly (Mogil, 2003). Importantly, the exis-
tence of sex differences is not a good reason to avoid 
using female mice in the study of pain. In fact, the 
vast majority of basic science studies in the field use 
male mice only (Mogil and Chanda, 2005) despite 
the overwhelming epidemiological data suggesting 
that the modal human pain patient is female. The 
likely reason for the continued use of male rodents 
in basic studies of pain, besides sheer inertia, is the 
belief that estrous cyclicity in female subjects ren-
ders their data more variable than those of males. 
With very large data sets at our disposal, we tested 
that hypothesis directly, and found that the coeffi-
cients of variation in each sex were statistically equal 
(if anything, the trend was for male data to show  
higher variance) (Mogil and Chanda, 2005). If  
estrous cyclicity really does affect pain and analgesia 
(and overall, there appears to be very little evidence 
that it does) (Mogil et al., 2000a), we suggest that 
male mice exhibit a source of sex-specific variation as 
well: within-cage dominance hierarchies. Data from 
male mice may be affected by the dominance status of 
the tested subject, and by the time elapsed since there 
was last a fight in the cage, given that defeat in such 
encounters produces analgesia (Miczek et al., 1982).
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NotesGenotypic Effects
Pain and analgesia are no different from other biolog-
ical traits in demonstrating robust variability across a 
strain. We have concentrated on a set of 12 inbred 
mouse strains, and performed a systematic “phenome 
project” by testing pain sensitivity across more than 
22 nociceptive assays (Mogil et al., 1999a,b; Lariv-
iere et al., 2002) and analgesic responses to more 
than 10 different drugs (Chesler et al., 2003; Wilson 
et al., 2003a,b). Narrow-sense heritabilities ranged 
from h2 = 0.24–0.76 (median: h2 = 0.46) for nocicep-
tion and h2 = 0.12–0.45 (median: h2 = 0.34) for drug 
analgesia.

Beyond the simple observation of robust effects 
of genotype in every assay considered thus far, and 
the identification of extreme-responding strains 
as an entrée to gene mapping efforts via quantita-
tive trait locus (QTL) mapping (see below), our 
study of pain and analgesic responses across this 
set of inbred strains has allowed for the examina-
tion of genetic correlations across assays that have 
in turn illuminated some general principles of “pain 
genetics.” For example, 20 of the 22 nociceptive 
assays “cluster” into five groupings when cross-cor-
relations are analyzed using multi-variate tech-
niques. These five groupings appear to be differenti-
ated largely by the noxious stimulus modality used:  
(1) thermal assays, (2) chemical assays, (3) assays of 
mechanical hypersensitivity after injury, (4) assays  
of thermal hypersensitivity after injury, and  
(5) assays of thermal hypersensitivity after injury fea-
turing spontaneous pain prior to the development of 
the hypersensitivity (Lariviere et al., 2002).

Genetic correlations among traits imply common ge-
netic determinants of variability within those traits, 
and so this finding directly predicts the discovery of 
pain symptom–related genes rather than pain etiology–
related genes. With respect to analgesia, we obtained 
compelling evidence that all centrally acting anal-
gesic compounds tested thus far appear to be highly 
genetically correlated with each other, and further-
more highly correlated with the baseline sensitivity 
of that strain to the noxious stimulus (Wilson et al., 
2003a). This suggests that “master” analgesia genes 
may be discovered, and that those genes are far more 
likely to be related to pain circuitry per se than relat-
ed to the binding or metabolism of the drug itself. For  
peripherally acting (“over-the-counter”) analgesics, a 
different pattern was observed, with two nonsteroidal 
anti-inflammatory drugs (NSAIDs; aspirin and indo-
methacin) showing considerable genetic correlation, 
but acetaminophen yielding a completely different 
pattern of strain sensitivity (Wilson et al., 2003b). 
Finally, we (Mogil et al., 1996a; Chesler et al., 2003) 

and others (Elmer et al., 1998) have observed that 
the pattern of strain sensitivities to drug inhibition 
of one noxious stimulus is entirely uncorrelated with 
the pattern of strain sensitivities of that same drug to a 
different noxious stimulus. Again, surprisingly, anal-
gesia genetics seems to have more to do with the pain 
being inhibited and less to do with the drug itself.

As a practical matter, the mouse strain chosen for 
study will have a large impact on the data collected. 
Since most null mutants are engineered using 129-
derived embryonic stem cells and are ultimately 
placed on a C57BL/6 background, a comparison of 
the sensitivities of these two strains is of particular 
importance. Unfortunately for pain researchers, the 
129 and C57BL/6 strains diverge greatly on most 
nociceptive and analgesic phenotypes (Lariviere et 
al., 2001), rendering most transgenic studies of pain 
particularly subject to “hitchhiking donor gene” 
confounds (Gerlai, 1996). It can be argued as well 
that the behaviorally sensitive strain C57BL/6J, de-
spite being the default biomedical research subject, 
is not well representative of inbred (or outbred, or 
wild) mouse strains (Lariviere et al., 2001), and thus 
the interpretation of knockout data in this strain is  
greatly affected by epistatic considerations. Al-
though important differences among 129 substrains 
have been noted (Simpson et al., 1997), we have not 
observed any major substrain differences in pain or 
analgesia phenotypes (Mogil and Wilson, 1997).

Using F2 intercrosses between extreme-responding 
strains (and recombinant inbred strains derived from 
such crosses), supplemented more recently by the use 
of congenic strains and haplotype mapping strategies, 
we have made considerable progress in the identifica-
tion of genes responsible for nociceptive and analge-
sic variability in the mouse (Mogil et al., 1997a,b; 
Wilson et al., 2002; Mogil et al., 2003; Mogil et al., 
2005d; Mogil et al., 2006, unpublished data). Other 
groups have also performed QTL mapping studies on 
pain‑relevant traits (Seltzer et al., 2001; Furuse et al., 
2003; Liang et al., 2006a,b). As a single example, we 
have provided compelling evidence that the gene 
primarily responsible for variability in thermal (heat) 
nociception across the entire set of 12 inbred strains 
is Calca, encoding the calcitonin gene-related poly-
peptide, -subunit (CGRP) (Mogil et al., 2005d). 
QTL mapping in two separate crosses localized the 
gene to mid‑chromosome 7, and an available con-
genic strain (A.B6‑Tyr+/J) confirmed the QTL. Elec-
trophysiological recordings from primary afferent 
neurons from behaviorally sensitive (C57BL/6J) and 
resistant (AKR/J) strains suggested that the relevant 
genetic difference was contained within the noci-
ceptor itself, and we went on to demonstrate strain 
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Notes differences in Calca expression in the dorsal root  
ganglion, differential CGRP content there, and dif-
ferential release of CGRP upon noxious thermal 
stimulation. Pharmacological and antisense knock-
down experiments confirmed that the strain differ-
ence could be “rescued” in each strain by mimick-
ing the Calca expression level of the other. Finally, 
we showed the generalizability of this explanation 
by completely (albeit temporarily) abolishing strain 
differences in noxious thermal sensitivity by admin-
istering CGRP injections into the hindpaw of all 12 
strains (Mogil et al., 2005d).

We have also demonstrated that genetic findings 
gleaned from QTL mapping studies in the mouse 
can be successfully “translated” in humans. Such 
studies have revealed the important role the Mc1r 
gene plays in opioid analgesia and nociception in the 
mouse, and in each case the prediction was confirmed 
in a counterpart human (MC1R) association study  
(Mogil et al., 2003; Mogil et al., 2005c).

Parametric Factors
Although genetic factors are robust in their modula-
tion of pain and analgesic sensitivity in the mouse, 
much interindividual variability is left to explain. 
From one lab to another, it is likely that parametric 
differences in the precise application of these assays 
are primarily responsible, and that the most obvi-
ous varying factor is noxious stimulus intensity. The 
intensity of the noxious stimulus used has obvious 
effects on baseline nociceptive sensitivity; what is 
less well appreciated is that the stimulus has very im-
portant effects on the measurement of both analgesia  
and hypersensitivity (after inflammatory or neu-
ropathic injury). Simply put, the more noxious a  
stimulus is, the harder it is to change responses to it, 
and by their very definition, analgesia and hypersen-
sitivity represent changes in nociceptive responses. 
For example, if a hot plate is very hot, and base-
line latencies to display nocifensive behaviors (e.g.,  
hindpaw licking, hindpaw shaking, jumping) are  
very low, only high doses of opioids will produce 
measurable analgesia, and NSAIDs will be entirely 
ineffective. Furthermore, any attempts to demon-
strate hypersensitivity will likely be foiled by a “floor 
effect.” Lowering the stimulus intensity will solve 
some of these problems, but only to potentially  
replace them with others, such as “ceiling effects” 
(i.e., arbitrary cutoff latencies or pressures imposed 
by ethical constraints) and nonspecific behavioral 
and stress effects (see below). Another unappreci-
ated problem is that of “Lord’s paradox” (the “law 
of initial values”), which states that the analysis  
of correlations between baseline values and change 
values calculated using the baselines is inherently 

problematic (Harris, 1963). As mentioned above, 
there’s no way around this problem in research on 
analgesia and hypersensitivity.

Another parametric factor related to many pain 
studies surrounds the use of intracerebroventricu-
lar (i.c.v.) and intrathecal (i.t.) injections. In the 
rat, administration of drugs via these routes is of-
ten preceded by the surgical installation of in-
dwelling catheters or cannulae. In the mouse, by 
contrast, both intracerebroventricular and intra-
thecal injections are given acutely, under light 
gas anesthesia. Nonetheless, the procedure is very 
likely stressful, and acute stressors are well known  
to produce pain inhibition, a phenomenon known  
as stress-induced analgesia (SIA) (Terman et al., 1984; 
Yamada and Nabeshima, 1995). Failure to appreciate 
the possible existence of SIA can lead to misinter-
pretation of the results of pain studies. In a well-cited 
example, both groups that had originally isolated the 
endogenous ligand of the “orphan” ORL1 receptor 
initially investigated its possible biological role by 
intracerebroventricular injection into mice; both 
groups reported that the peptide, orphanin FQ/noci-
ceptin (OFQ/N), produced hyperalgesia (Meunier et 
al., 1995; Reinscheid et al., 1995). We failed to rep-
licate this finding, instead noting that OFQ/N was 
a functional anti-opioid (Mogil et al., 1996b). The 
original groups erred by not including a no-injection 
control; had they done so, they would have noted 
that the intracerebroventricular injection itself (i.e., 
the vehicle control) produced opioid-mediated SIA, 
which was simply being reversed by the OFQ/N  
(Mogil et al., 1996b; Suaudeau et al., 1998).

Environmental Factors
Generally speaking, within a laboratory, parametric 
factors are held constant. Even so, much variabil-
ity remains. We investigated the possible sources 
of this environmental variability by compiling and 
analyzing a large set of 49°C tail‑withdrawal base-
line latency data from 8 years worth of experiments 
(Chesler et al., 2002a,b). This archival data set con-
tained measurements from more than 8000 mice of 
40 different genotypes, and featured a heritability 
of h2 = 0.24. Besides strain (genotype) and sex, the 
following factors related to both husbandry and test-
ing environment were both varied and recorded on 
the original data sheets: cage density, experimenter, 
humidity, season, time of day, and within-cage order 
of testing. Many other factors affect pain (e.g., age, 
light/sound levels), of course, but these were either 
strictly controlled in our data set or no records were 
available, and thus their influence could not be stud-
ied. Using classification and regression tree (CART) 
analysis followed by linear modeling of a data subset, 
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Notesand confirmed by a fully balanced and crossed experi-
ment performed on a single day, we were able to rank 
the relative importance of these factors in contribut-
ing to variability in the archival data set. We found 
that genotype was only the second most important 
factor, behind experimenter. This should serve to 
remind us of the importance of the experimenter- 
subject interaction, something that can never be ex-
actly reproduced from one lab to another 
(Crabbe et al., 1999). The tail-withdraw-
al test is particularly affected by experi-
menter-specific factors, since the mouse 
is being actively restrained by the experi-
menter while being tested. (Restraining 
the mouse in Plexiglas may solve this par-
ticular problem, but it introduces anoth-
er, since the prolonged restraint required 
yields significant SIA; Mogil et al., 2001.) 
We’ve gone on to demonstrate, however, 
that other nociceptive assays are similarly  
affected by experimenter, even those not 
featuring direct handling of mice during 
or immediately prior to data collection 
itself (Mogil et al., 2006).

Effect of Behavioral State
A potentially important factor modulat-
ing pain sensitivity in animals that has 
been entirely ignored in the literature 
concerns what the animal was doing 	
immediate before and during the applica-
tion of the noxious stimulus. This omis-
sion disregards the fact that attentional 
level can strongly modulate pain percep-
tion in humans (Bushnell et al., 2004), 
and a sleeping animal would traditionally 
be thought of as having reduced sensitiv-
ity to all external stimulation (Dement, 
1965). In a study just completed (BL  
Callahan, ASC Gil, A Levesque, JS Mogil, 
submitted), we compiled an “ethogram” 
of mouse behavior within novel Plexiglas 
cubicles atop a glass or wire grid floor for 
several hours during the middle of their 
quiescent phase, which is essentially the 
modal testing situation in modern mu-
rine pain research. Mice are not testable 
in most assays while moving, and it gen-
erally requires several hours for them to 
reduce their exploration of the cubicle to 
acceptably low levels. Once this habitua-
tion has occurred, we find that CD-1 mice 
spend approximately 25% of their time 
grooming, 25% of their time resting or 
in light sleep, 25% of their time in deep 
sleep, but <15% of their time fully alert 

(Fig. 1A). The relevance of this breakdown is that 
if they are tested during grooming behavior, they are  
significantly less sensitive to noxious thermal stimuli 
(Fig. 1B) and profoundly less sensitive to mechani-
cal stimuli (Fig. 1C). For mechanical stimuli, highest 
sensitivities are seen in resting and lightly sleeping 
mice (Fig. 1C). In general, C57BL/6 and 129 mice 
display similar patterns, except that C57BL/6 mice 
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Figure. 1. A, An ethogram of the behavior of naive, adult outbred CD-1 mice 
of both sexes in Plexiglas observation chambers (5 cm wide × 8.5 cm long 
× 6 cm high) atop a glass floor. Normally, we commence behavioral test-
ing after 2 hours of habituation. Mice (n = 48) were videotaped and scored 
later by sampling (5 s of every minute) for the following behavioral states:  
Exploring (active locomotion), Grooming, Alert (standing on all four paws 
with eyes fully open, with active behaviors but no locomotion), Resting/Light 
Sleep (eyes half-open or closed), Deep Sleep (eyes closed, in a curled or 
hunched position). B, Influence of behavioral state (A) on latency to withdraw 
hindpaw from noxious radiant heat from below (IITC Model 336; 45 W). 
Bars represent mean ± SEM withdrawal latency. *p<0.05 compared with all 
other groups. C, Influence of behavioral state (A) on threshold to withdraw 
hindpaw from mechanical stimuli (von Frey fibers). The standard up-down 
psychophysical method was used (Mogil et al., 2006). Bars represent mean 
± SEM withdrawal thresholds estimated using linear regression. Mice did 
not withdraw from any von Frey fibers while grooming; the threshold in this 
group is thus >2 g. Letters in italics indicate significantly different groupings.
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Notes alone appear to be robustly analgesic during deep 
sleep (data not shown).

These observations have considerable implications. 
Not only do they likely represent a mouse model 
of attentional analgesia, but they suggest that null 
mutations that appear to affect pain sensitivity may 
actually do so by altering gross activity patterns, such 
that data are more or less likely to be collected in a 
particular behavioral state.

Social Context
The fact that within-cage order of testing had any 
measurable impact on hot water withdrawal laten-
cies (Chesler et al., 2002a,b; see above) was a great 
surprise to us. We found that this effect could be 
abolished by not returning each mouse to its cage im-
mediately after testing (Chesler et al., 2002b). This, 
of course, implied social communication among mice 
in the cage as the mediator of the effect: decreasing 
withdrawal latencies with each subsequently tested 
mouse. A serious difficulty in interpreting this and 
many other testing-environment variables is the 
demonstrated existence of both SIA (see Paramet-
ric Factors, above) and stress-induced hyperalgesia 
(SIH) (Imbe et al., 2006) as well as our very limited 
understanding of stress parameters leading to one or 
the other. Thus, the decreased nociceptive sensitiv-
ity displayed by later-tested cage members might rep-
resent either increasing SIA or decreasing (habituat-
ing) SIH. That is, mice returning to the cage might 
be saying to their neighbors, “Oh my God, that was 
horrible!”, but they might also be saying, “No, really, 
I’m fine.” An explanation of this phenomenon is not 
yet at hand, but our interest was piqued by the possi-
bility of social communication among mice affecting 
their pain responses.

We ended up developing a number of paradigms in 
which to study this issue. In one such paradigm, the 
pain behavior of mice tested in dyads was compared 
with those tested in isolation. Two dyadic conditions 
were employed: (1) one mouse in pain/one mouse not 
in pain, and (2) both mice in pain. In the latter con-
dition, of course, each subject was not only in pain 
(using the acetic acid writhing and formalin tests; 
Table 1) but observing another mouse in pain. Was 
this observation of pain enough to alter the observ-
er’s pain sensitivity? In fact, when the two mice in 
the dyad were familiar to each other (i.e., cage mates, 
for at least 14–21 days), a significant pain hyper- 
sensitivity was observed in both mice (Langford et 
al., 2006). Not only did we observe increased pain 
behavior, but we also observed a significant synchro-
nization in the timing of the pain behavior of both 
mice in the dyad. These facts led us to conclude that 

mice were exhibiting “emotional contagion” of each 
other’s pain, a rudimentary form of empathy (Preston 
and de Waal, 2002). In this particular case, stress was 
eliminated as a mediating factor, since stress levels 
(measured behaviorally and via corticosterone radio-
immunoassay) were higher in stranger dyads than in 
cage-mate dyads, but only cage-mate dyads exhibited 
the emotional contagion. To our great surprise, the 
sensory modality implicated in this social communi-
cation was vision, since only a visual blockade abol-
ished the hypersensitivity and synchrony. In another 
paradigm, we demonstrated that mere observation of 
writhing behavior in a cage mate led to hypersensi-
tivity to withdrawal from radiant heat applied to the 
hindpaw (Langford et al., 2006). This latter finding 
is important not only because it eliminates mere imi-
tation as the mediator, but because it suggests that 
social factors have the ability to sensitize pain cir-
cuitry in a general sense.

An intriguing finding from this same study was that, 
compared with mice tested in isolation, male (but 
not female) mice tested in a dyad with an unaffected 
stranger exhibited significantly decreased pain behav-
ior (Langford et al., 2006). This result might repre-
sent a form of SIA, or might actually be evidence of 
a conscious decision to inhibit signs of vulnerability 
in the presence of a strange male mouse.

One way or another, the practical implication for 
pain testing is quite obvious: To avoid social con-
founds, mice should always be tested for pain behav-
ior in visual isolation from all other mice. Of course, 
to completely abolish social confounds would require 
isolation housing, but this itself is a considerable 
stressor repeatedly found to alter pain sensitivity and 
analgesic response (e.g., Katz and Steinberg, 1970; 
Panksepp, 1980). The powerful effects of housing on 
pain behavior were elegantly demonstrated by Raber 
and Devor (2002), who observed that the extreme 
“autotomy” (self-mutilation after limb denervation) 
phenotypes of rats selectively bred over many gen-
erations for high autonomy (HA) and low autonomy 
(LA) levels could be dramatically altered simply by 
housing HA and LA rats together. This simple so-
cial manipulation, apparently mediated olfactorily,  
decreased autotomy behavior in HA rats and increased 
it in LA rats such that no phenotypic difference  
remained between the lines.

Our findings and those of Raber and Devor (2002) 
suggested to us the possibility that long-term expo-
sure to cage mates in pain might itself produce hyper-
sensitivity to pain. To test this theory, we subjected 
two mice per cage of four to either sham surgery or 
spared nerve injury (SNI), producing both thermal 
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Notesand mechanical hypersensitivity (and, presumably, 
spontaneous pain, although this is difficult to confirm 
or quantify). Before surgery and on day 14 postsur-
gery, we tested all mice (in isolation) for thermal and 
mechanical sensitivity. A separate group of mice was 
also tested on day 15 using the acetic acid writhing 
test. As shown in Figure 2, our prediction was very 
clearly refuted; unoperated “neighbor” mice were un-
altered by their constant observation of SNI‑related 
pain behaviors. Although it is possible that our ex-
perimental paradigm was simply insufficiently supple 
to demonstrate the effect, we believe that social  
factors can likely modulate pain only in real time. This 
is no doubt good news for those trying to control the 
confounding influence of social factors.

Conclusions
Compared with other fields of inquiry within neuro- 
science (e.g., depression, schizophrenia), pain is 
generally regarded as relatively straightforward, and 
indeed our field has the advantage of possessing at 
least some models with clear face validity (i.e., I too 
will withdraw my finger from hot water within a cer-
tain number of seconds). Like many issues in biology, 
however, pain is far more complicated than it seems 
at first glance, and the animal models are far more 
subtle than we might suspect. Molecular and cellular 
techniques are far better funded, and thus more re-
spected, than behavioral techniques in pain research 
(as in every other field), but ultimately drug devel-
opment will not proceed without positive and trust- 
worthy behavioral pharmacology data. Sir William 
Osler said in 1892: “If it were not for the great vari-
ability among individuals, medicine might as well 
be a science and not an art” (Roses, 2000). He was 
talking about humans, of course, but if we are to  
understand variability among humans, we must first 
understand variability in animal models of humans. 
For pain, this effort has just begun.
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