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Abstract 

Why do animals learn to perform some behaviors while others are innate? Why do 

animals learn some things more easily than others? And, why do animals remember 

some things better than others? Theoreticians argue that patterns of environmental 

change explain these patterns, but we have little data to support these claims. I used 

statistical decision theory to model behaviors and fitness consequences, and 

experimental evolution studies with fruit flies where I manipulated patterns of 

environmental change across evolutionary time, to address the first two of these 

fundamental questions about the evolution of learning. The first experiment tested the 

effects of the reliability of experience and the fixity of the best action upon the evolution 

of learning and non-learning across 30 generations. I found that indeed, the interaction 

of these two variables determined when learning, and when non-learning evolved. The 

second study was a full factorial experiment manipulating the reliabilities of two modes 

of stimuli: olfactory and visual. After 40 generations, I found that as predicted, flies in 

environments where olfactory stimuli are reliable learned better about olfactory than 

color stimuli, with the same being true for color stimuli. Finally, I addressed the question 

of why animals remember some things better than others using a dynamic programming 

technique and experiment with blue jays, finding interactions between rates of change 

and time. These novel studies show the importance of reliability and change in evolution 

of learning and memory. 
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Introduction  

 

Animals are not omniscient. It is a rare situation when an individual has full knowledge 

of its environment and of the outcomes of its potential decisions, and thus always being 

able to choose the optimal behavior. However, animals can reduce uncertainty about 

their world by acquiring information. Animals can use two types of information: 

information gained genetically and inherited from successful ancestors, and information 

gained from the environment through experience. When should an individual rely on 

experience and when should it come into the world prepared with the appropriate 

behavior? An animal may gain experience to decrease it’s uncertainly about the world, 

but the experience itself becomes unreliable with additional change in the world, 

requiring the acquisition of more information to update its estimates. But, reducing 

uncertainty by gaining new information is not always the best option. If the costs of 

gaining new information outweigh the costs of acting without it, then acting without 

further information is best. When and how should animals acquire new information, and 

how should this information guide their future behavior? In this dissertation, I address 

these basic questions from an evolutionary ecological approach.  

 In chapter 1, I address the problem of when animals should use a genetically fixed 

response or a learned reposnse to guide their behavior. When should learning evolve, 

and when should non-learning evolve?  Learning is thought of primarily as an adaptation 

to a changing environment and evolutionary treatments of learning have stressed the 

importance of environmental variability. But theorists disagree on the exact role of that 



2 

 

variability. Too much variability reduces the selective value of learning because the state 

of the environment may have no relation to the state of the environment tomorrow (e.g. 

Staddon, 1983). However, in an environment that never changes, we might not expect 

learning to evolve because a genetically fixed behavior can meet the challenges of a static 

environment without the opportunity costs or risks associated with learning (e.g. 

Johnston, 1982; Papaj and Prokopy, 1989). A third view resolves this problem by arguing 

that intermediate levels of change promote the evolution of learning (e.g. Slobodkin and 

Rapoport, 1974), something Kerr & Feldman have coined the “Goldilocks principle” 

(2003). Stephens (1991; 1993) provided a more nuanced view, showing that the pattern 

of change is what matters. Moving from theory to experiment poses challenges. First, 

“change” as a principle is rather vague. By breaking change up into well-defined 

components, we can use statistical decision theory to create very specific predictions of 

when animals should use genetically or experientially acquired information.  I present a 

model and an experimental evolution study with fruit flies (Drosophila melanogaster), 

testing how two components of change, the fixity of the best action to take and the 

reliability of experience, interact to favor the evolution of enhanced learning in some 

situations, and the evolution of non-learning in other situations.  

In chapter 2, I address the interaction between inherited and experienced information to 

explain why animals are more prepared to learn some things over others. In a large 

number of studies, animals appear to learn about some relationships better than others 

(e.g. LoLordo, 1979; Seligman, 1970; Shettleworth, 1972). There have been a number of 

attempts to explain these phenomena, but many questions about the evolution of 

prepared learning remain. We can generally agree that learning should enable animals to 

predict when biologically significant events will occur. Throughout the evolutionary 
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history of a given organism, some aspects of the environment will have more reliably 

indicated fitness consequences than others. The most likely hypothesis for the evolution 

of prepared learning is that some stimuli pairings have remained reliable throughout the 

lineage of a given organism, and natural selection has, therefore, favored learning of 

these types of associations.  In chapter 2, I describe a simple model and an experimental 

evolution study with D. melanogaster, in which I test predictions about the evolution of 

prepared learning based upon patterns of stimulus reliability. 

With chapters 3 and 4, I consider patterns of change in the environment on a smaller 

scale: how they affect how animals acquire experience and manage the information they 

gain in multiple iterations over the course of their lifetimes. In chapter 3, I focus on how 

long an animal should retain information in a theoretical treatment of adaptive memory 

length. In this chapter I describe a dynamic programming model addressing the role of 

change in optimal memory length across the lifespan. There is a general consensus that 

remembering everything forever is not ideal: there are physiological costs as well as costs 

with potential interference with the recall of memories. With limited resources, what 

information should animals retain, and for how long? Here the question of what makes 

information valuable becomes important: more reliable information is more valuable 

because it has greater predictive power for future events (Stephens, 1989). The reliability 

of information relates to the pattern of change: when cues in the environment vary, they 

become unreliable. How long learning lasts—memory length—should track the patterns 

of change in the environment. 

While chapter 3 looks solely at memory length, in chapter 4 I address the entire learning 

process, from acquisition to application.  How should animals track changes in the 
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environment? A family of tracking models provides guidance in what to expect 

(Stephens, 1987; Stephens and Krebs, 1986). A key aspect of this work is that reducing 

uncertainty is not necessarily always the best action. Animals can sample the 

environment to acquire new information, but this sampling is not the optimal behavior 

in every case. Thus the task is more a matter of managing uncertainty than reducing it at 

all costs. As rates of change in the environment increase or decrease, when should 

animals sample for new information, and when should they change their behavior to 

track changes indicated by that information? While the theory is well defined, only a few 

empirical studies have manipulated change itself. I present a model and an experiment 

testing how blue jays (Cyanocitta cristata) should sample, track and remember in 

environments that differ in their rates of change. This experiment addresses the role of 

change throughout the acquisition, retention, and application of experienced 

information. 
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Chapter 1 — Components of change in the evolution 

of learning and non-learning1 

 

Introduction 

In a well-known study, John Garcia and his colleagues showed that rats learned an 

association between a sweet tasting water and gastric illness much more readily than 

they learned an analogous association between bright-noisy water and gastric illness 

(Garcia and Koelling, 1966). In the 20 year period following Garcia et al’s influential 

work, investigators identified many similar learning phenomena, variously called 

‘preparedness,’ ‘selective association’ or ‘biological constraints on learning’ (e.g. 

LoLordo, 1979; Seligman, 1970; Shettleworth, 1972). Taken together these observations 

suggested that natural selection has shaped the properties of animal learning. In recent 

years, however, interest in this topic has waned, in part because the key explanatory 

variables seemed experimentally inaccessible.   

To understand the variables that have seemed so problematic, consider why learning 

may make more sense in some situations than others. Although many models have 

addressed this question, they all focus on the nature of statistical relationships between 

stimuli and consequences in the animal’s environment (Kerr and Feldman, 2003; Papaj, 

1994; Stephens, 1991; Stephens, 1993). The simplest and oldest of these ideas focuses on 

change. Learning, the argument goes, exists because environments change and it follows 

                                                        

1 This chapter is currently under review as Dunlap, A.S. & Stephens, D.W. Components of change 
in the evolution of learning and non-learning. 
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that animals must use experience to adjust to this change (e.g. Johnston, 1982; Papaj 

and Prokopy, 1989; Plotkin and Odling-Smee, 1979; Thorpe, 1963). This logic leads to a 

simple claim that we call the ‘learning folk theorem:” changing environments favor 

learning, but stable-fixed environments favor non-learning (innate or fixed behavior) 

(e.g. Anderson, 1995; Mery and Kawecki, 2004a; Plotkin and Odling-Smee, 1979).    

While the folk theorem continues to influence the thinking of casual students of learning 

evolution, recent models argue that it oversimplifies the problem (Borenstein et al., 

2008; Kerr and Feldman, 2003; Stephens, 1991).  According to these models the folk 

theorem mistakenly lumps all forms of environmental change together, when in reality—

these models argue—some components of environmental change select for learning (as 

the folk theorem suggests) but others select against learning. Regardless of which model 

one favors, controlling or observing the statistical relationships in an animal’s 

environment presents a significant empirical challenge. This paper develops a simple, 

experimentally tractable ‘components of change’ model, and presents results from a 

study testing this model experimentally. This experiment varies relevant components of 

‘environmental change’ across many generations and it offers the first experimental 

confirmation of the claim that some types of change promote learning while others 

promote non-learning. 

To develop our model and test its predictions we focus on an experimental preparation 

developed by Mery and Kawecki (2002; 2004a). In this preparation, the experimenter 

presents two types of egg-laying media to a small group of female Drosophila 

melanogaster, one option is flavored with orange juice and the other is flavored with 

pineapple. The experimenter offers this choice twice. In the first presentation the 
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investigator pairs one of the media types with the aversive chemical quinine, so the flies 

experience either (i) orange plus quinine vs. pineapple without quinine, or (ii) orange 

without quinine vs. pineapple plus quinine. We call this first presentation the 

‘experience’ phase, because flies experience the pairing with quinine at this stage. In the 

second presentation the experimenter again offers the orange and pineapple media, but 

now without quinine in either media type. We call this second presentation the 

consequence phase, because—as we will explain—this is when the investigator imposes a 

fitness consequence. Notice that this arrangement creates a relatively simple aversion 

learning problem in which a ‘learning’ fly can use the experience of quinine-pairing in 

the first phase (hence the name ‘experience’ phase) to adjust its egg-laying behavior in 

the second phase.  

Using this preparation an experimenter can control two variables that, according to our 

components of change model, influence the fitness value of aversion learning: the 

reliability of experience and the fixity of the best action. First, the experimenter creates 

the next generation of flies by rearing eggs from one of the media types in the 

consequence phase (eggs laid in the experience phase are discarded). The investigator 

can, for example, create an ‘orange best’ situation by rearing only those eggs laid on the 

orange media. Second, the experimenter can control the extent to which the quinine 

pairing in the experience phase reliably indicates the best action in the consequence 

phase.  

Mery and Kawecki used this preparation to test the learning folk theorem. They created a 

changing environment that should favor learning by alternating orange-best (rear eggs 

only from orange) and pineapple best from one generation to the next. In addition, 
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pairing with quinine in the experience phase reliably indicated the media type that flies 

should avoid in the consequence phase.  In agreement with the folk theorem, Mery and 

Kawecki found enhanced learning (that is increased sensitivity to the experience of 

quinine pairing) in this changing environment.  In a second study, Mery and Kawecki 

created a fixed environment in which they always reared eggs (for example) from the 

orange media type in the consequence phase.  Contrary to expectations of the folk 

theorem, Mery and Kawecki also found increased responsiveness to experience in this 

condition.  Here, again, pairing with quinine in the experience phase reliably indicated 

the best action in the consequence phase.  As we will explain below, according to the 

‘components of change’ view of learning Mery and Kawecki’s ‘fixed environment’ 

situation did not, in fact, select against learning. This is because while fixity of the best 

action does select against learning as the folk theorem claims, fixity of the relationship 

between experience and consequence favors learning.  

The Components of Change Model 

The parameters p and q 

Here, we develop a model based on the Mery-Kawecki preparation (the appendix 

presents the algebraic details). Let p represent the overall probability that the 

experimenter rears eggs from the orange flavored media (so that laying eggs on orange is 

the best action).  We focus on ‘orange’ to simplify the model development; focusing on 

pineapple yields identical results. The parameter p �0.5 � � � 1.0	 specifies the fixity of 

the best action, and we call it the best-action fixity. This is our first component of 

change. For example, p=1.0 gives the highest possible best-action fixity because it means 

that the experimenter always rears eggs from orange, and ‘lay eggs on orange’ is always 
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the best policy.  In contrast, p=0.5 gives the lowest meaningful value of best action fixity 

because it means that laying eggs on orange is the best half the time and laying on 

pineapple is the best half the time.  Similarly, we use the parameter q to represent the 

fixity of the relationship between experience and best action.  Mathematically, q is the 

conditional probability that the experimenter rears eggs from the substrate type that was 

NOT paired with quinine in the first or ‘experience’ phase of the experiment. The 

parameter q �0.5 � 
 � 1.0	  therefore measures the fixity of the relationship between 

experience and the best action. As before we simplify the terminology by calling this 

variable the reliability of experience, which is our second component of change. If q=1, 

the flies can reliably select the best action by avoiding the substrate that was paired with 

quinine in the experience phase; however if q=0.5 pairing with quinine carries no 

information about the fitness consequences of egg-laying choices in the second (or 

consequence) phase of the experiment.  

Model predictions: learning vs. non-learning 

To evaluate the effects of these parameters we compare the fitness of a non-learning 

genotype that always lays eggs on orange (since we have arbitrarily assumed that ‘lay on 

orange’ is the most common best action, i.e. ½ < p < 1.0) to the fitness of a learning 

genotype that uses the pairing with quinine in the experience phase to guide its behavior 

in the ‘consequence’ phase.  Figure 1-1 shows the results of these calculations. The figure 

shows how the two fixity parameters influence the relative fitness obtained by our 

learning and non-learning genotypes. As the figure shows, a diagonal line [running from 

(p,q)=( ½,½) to (1, 1)] separates the learning and non-learning regions; the learning 

genotype does better above the line while the non-learning genotype should prevail 

below the line. For example, the point where p=0.5 and q=1.0 strongly promotes 
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learning because the best action changes randomly (i.e., there is low best-action fixity, 

p=0.5), yet the experience of quinine-pairing reliably signals the best action (i.e there is 

high reliability of experience, q=1.0). This crudely corresponds to Mery and Kawecki’s 

(2002) ‘changing environment’ study, in which they found that learning abilities 

improved within 20 generations of selection. Notice however that the condition that 

most strongly selects against learning is the point where there is high best action fixity 

(p=1.0) and low reliability of experience (q=0.5).  Mery and Kawecki did not test this 

situation. Instead they tested the ‘completely fixed’ case (i.e., p=q=1.0), which following 

the ‘folk theorem’ they argued should select against learning. However, as the figure 

shows this situation is actually selectively neutral (see Appendix 1 for mathematical 

rationale).  In the absence of a learning cost, complete fixity neither favors nor disfavors 

our learning genotype.  
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Figure 1-1. Best-action fixity and reliability of experience influence the fitness value of 

learning. Natural selection favors learning most strongly when the reliability of 

experience is high, but best-action fixity is low (Point D); selection favors non-learning 

when best-action fixity is high, but reliability is low (Point A). We test points A. and D. 

 

 

Experimental Approach and Methods 

The experiment presented here compares selection in the two regimes that most strongly 

favor and disfavor learning.  We assigned small populations of Drosophila melanogaster 

to three conditions: i)  High best-action fixity (p=1.0), low reliability of experience 

(q=0.5).  This strongly disfavors learning because experience is unreliable and the same 

action is always best;  ii) Low best-action fixity (p=0.5) and high reliability of experience 

(q=1.0).  This strongly favors learning because sensitivity to the experience of quinine 
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pairing allows flies to consistently track the best action; iii) In addition, we established 

control populations with the same initial population size and rearing procedures as the 

two experimental groups, but these flies never experienced the fruit-flavored media or 

quinine.  Notice that one can, in principle, fix the best action in two ways: orange always 

best or pineapple always best.  We included both possibilities in our design by randomly 

assigning half of the populations in each treatment to ‘orange initially’ best and half to 

‘pineapple initially’ best conditions.  Although we made this assignment for all three 

treatments, it has different implications for each of the three treatments.  For the ‘high 

best action fixity’ treatment it fixes the best action (lay on orange or lay on pineapple) 

across all thirty generations; for the ‘low best action fixity’ it determines the initial state 

but this changes randomly on subsequent generations; for the control lines—which never 

experienced orange or pineapple—it is simply an arbitrary designation. 

Initial populations and Treatment assignments 

To create our initial stock of flies, we mixed 400 males and 400 females from each of 

four lab-adapted, wild-caught populations from Minnesota and Wisconsin (USA).  We 

maintained them in overlapping generations in a large population cage for five months 

prior to the start of the experiment. We housed all flies at 24C. We reared all eggs at a 

density of 80 eggs per vial, with six vials per line per generation. We established 36 lines 

of 400 flies and randomly assigned twelve lines to each of three treatments.  For each 

treatment we randomly assigned six of the twelve lines to ‘orange best’ and six to 

‘pineapple best.’  As outlined above, our three selection treatments are: (1) best action 

fixed (p=1.0)/experience unreliable (q=0.5)’. (2) ‘best action changing 

(p=0.5)/experience reliable (q=1.0)’ treatment.  (3) Control.   
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Implementing the experimental selection regimes 

Every generation, we transferred 200 female flies (along with a similar number of males) 

from each line to a test cage.  The cages were approximately shoe box size (33.3 cm L x 21 

cm W x 12 cm H), and we equipped each of them with a sliding drawer that could hold 

two petri dishes. We presented petri dishes with standard cornmeal and molasses media 

until we were ready to begin the selection (3 days).  As the introduction explains, the 

experimental selection regime consists of two phases: an experience phase (in which we 

paired quinine with one type of media) and a consequence phase (where quinine was 

never present). The experience phase exposed flies to two fruit flavors of agar-based 

media in a single three-hour session (reconstituted frozen orange or pineapple juice, 12 g 

agar/1 L juice, with 20 mL of juice agar placed in the bottom of each 100 mm x 15 mm 

petri dish). Following our experimentally-determined schedule we paired quinine with 

one of the two flavors (4 g quinine/1 L agar).  In the consequence phase, we presented 

fresh petri dishes of the two flavors of media (using the sliding drawer to change the 

media).  We randomized the locations of orange and pineapple plates within each cage, 

but kept the location the same in the experience and consequence phases for a given line 

in a given generation. An interval of 30 min separated the removal of the experience 

phase plates and the introduction of the consequence phase plates.   

Following an experimentally-determined schedule we reared eggs laid on only one of the 

media flavors in the consequence phase, and we discarded all other eggs. We removed 

eggs selected for propagation from the substrate using a needle and placed them in vials 

on standard cornmeal-based fly food for incubation.  
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End of Selection Assays 

Following 30 generations of selections, we tested each line in a series of assays. We 

reared the flies used in these assays from eggs collected on standard (unflavored) media. 

We conducted two types of assays: learning assays and preference (or non-learning) 

assays. Our learning assays consisted of two tests.  First, we tested a group of 200 naïve 

females (with a similar number of males) from each line with a 3 hr experience phase of 

quinine paired with orange. Second, we tested a different group of naïve flies with 

quinine paired with pineapple. We followed both with a 1.5 hr consequence phase in 

which neither flavor was paired with quinine. (Note that we use the terminology 

“experience phase” and “consequence phase” for simplicity here even though these 

assays differ in some details from the experimental selection procedures). Our 

preference assay tested flies with no quinine present during a 3 hr experience phase, and 

no quinine present during the 1.5 hr consequence phase.  

Results 

Evolution of non-learning (preference) 

We tested the effect of our three selection regimes on unlearned preferences by 

simultaneously presenting orange and pineapple flavored media to naïve groups of flies 

from each of our treatments, and observing the number of eggs laid on each type of 

media.  Figure 1-2 shows these data expressed as the proportional preference for the 

orange media. As our model predicts, the figure shows changes in unlearned preferences 

for the ‘best action fixed (p=1.0)/experience unreliable (q=0.5)’ lines, but not for the 

‘best action changing (p=0.5)/experience reliable (q=1.0)’ treatment.  Focusing on the 

‘best action fixed/experience unreliable’ lines, we see a striking difference between the 
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lines assigned to the orange-best and pineapple-best conditions.  As we would expect, 

lines assigned to the pineapple-best treatments showed a decreased preference for 

orange.  An analysis of variance of all three selection regimes supports this interpretation 

by showing a significant interaction between treatment and best assignment 

(F2,30=3.381, P=0.0474).  In addition, post hoc analyses show a difference between the 

orange-best and pineapple best lines for the ‘best action fixed/experience unreliable’ 

treatments but not for the other treatments.  

 



 

 

 

Figure 1-2. Interaction of treatment by initial best 

following the 30th generation of selection. Error bars are 95% confidence intervals.

 

 

 

. Interaction of treatment by initial best assigned environment during 

following the 30th generation of selection. Error bars are 95% confidence intervals.
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assigned environment during 

following the 30th generation of selection. Error bars are 95% confidence intervals. 
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Evolution of learning  

 To assess differences in sensitivity to experience, we exposed groups of flies from each of 

our treatments to an assay that closely paralleled our selection procedures. In this assay, 

we paired quinine with either orange or pineapple, and then scored oviposition 

preferences in a second presentation of the two types of media without quinine. By 

testing a separate group of flies from each line in both an orange paired with quinine and 

a pineapple paired with quinine condition, we can derive a contingency score for each 

line using Cramer’s Phi. This score measures the extent to which oviposition preferences 

in the second stage of the assay depend on the experience of quinine pairing in the first 

stage. Figure 1-3 shows these data. As our model predicts, we see enhanced sensitivity to 

experience in the ‘best action changing (p=0.5)/experience reliable (q=1.0)’ treatment 

(compared to the control group) and no difference in sensitivity to experience between 

the ‘best action fixed/experience unreliable’ treatment and the control. A one-way 

analysis of variance confirms a significant effect of treatment (F2,33=4.17, P=0.02). In 

addition, post hoc analyses (using Tukey’s LSD) confirm the pattern shown in the figure. 

Specifically, the ‘best action changing (p=0.5)/experience reliable’ (q=1.0) treatment 

shows a higher sensitivity to experience (as measured by phi) than either the control or 

‘best action fixed (p=1.0)/experience unreliable (q=0.5)’ treatments.  

 



 

 

 

Figure 1-3. Significant effect of treatment during the final experiment assays following 

the 30th generation of selection. Error bars are 95% confidence intervals. The 

difference between reliable/unpredictable and the other treatments is statistically 

significant. 

 

 

. Significant effect of treatment during the final experiment assays following 

the 30th generation of selection. Error bars are 95% confidence intervals. The 

difference between reliable/unpredictable and the other treatments is statistically 
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. Significant effect of treatment during the final experiment assays following 

the 30th generation of selection. Error bars are 95% confidence intervals. The 

difference between reliable/unpredictable and the other treatments is statistically 
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General Selection Results  

 Flies never oviposited on a substrate when quinine was present. This avoidance of 

quinine was the same for all treatments, and it did not change during the course of 

selection. Although, the analysis is less tidy, an analysis of data from selection trials is in 

broad agreement with the analyses presented above.  Specifically, we calculated the 

extent to which flies avoided the media type that had been paired with quinine in the 

experience phase of selection trials using the proportion all all eggs laid on this type of 

media (a variable we call P(Response to Experience)).  To account for changes in these 

measure across generations, we calculated P(Response to experience) values  for each 

line in blocks of 2 generations each. Finally, we analyzed these scores in an ANOVA with 

factors of treatment and block, with repeated measures on each line. This analysis 

showed main effects of treatment (F1,22 = 6.51, P =  0.018), with ‘best action changing 

(p=0.5)/experience reliable (q=1.0)’ lines showing higher learning scores than ‘best 

action fixed (p=1.0)/experience unreliable (q=0.5)’ lines; and a main effect of  effect of 

block is also statistically significant (F4,308 = 2.31, P = 0.005), but the interaction between 

the two is not quite significant (F14,308 = 1.62, P = 0.071).  

Discussion 

This study offers an experimental analysis of the selective value of learning. Specifically, 

it asks how two components of change (the reliability of experience, and underlying 

uncertainty about the appropriate action) affect the value of learning.  It is, to our 

knowledge, the first experimental confirmation of the insight that that these two 

statistical relationships can select both for and against learning.  Our result illustrates 

the weakness of the influential claim of the ‘learning folk theorem’ that “change favors 
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learning” while “fixity favors non-learning.” Our results suggest that randomness and not 

fixity is the most powerful and plausible way to select against learning.  Consider, for 

example, the Garcia effect (Garcia and Koelling, 1966) that we discussed in the 

introduction, which shows that rats learn associations between tastes and gastric illness 

more easily than the association between bright-noisy and gastric illness.  Surely this 

does not happen because the relationship between visual stimuli and gastric illness has 

been fixed throughout rat evolutionary history.  It is much more plausible that visual 

stimuli have varied unpredictably in relation to gastric consequences.   

Our study, of course, owes much to the ground-breaking work of Mery and Kawecki 

(2002; 2004a).  Mery and Kawecki’s two studies using this experimental system tested 

the role of change in the evolution of learning, motivated by the learning folk theorem.  

Our ‘best action changing/experience reliable’ treatment replicates Mery and Kawecki’s 

first study in that both studies found that this condition selected for enhanced learning.  

Our study, however, introduced random change while Mery and Kawecki strictly 

alternated orange-best and pineapple-best conditions.  The key difference between our 

approaches, however, follows from different perspectives about the condition that selects 

against learning.  Following the learning folk theorem, Mery and Kawecki tested an 

absolutely fixed condition in which the best action was always the same, and where 

quinine reliably predicted the best action. Contrary to their expectation, they found 

enhanced learning in this situation.  In contrast, following the ‘components of change’ 

view of learning we tested a condition where the best action was always the same, but 

where there was no predictable relationship between quinine pairing and the best action.  

As predicted, we find reduced sensitivity to experience and increased reliance on 

unlearned preferences in this selection regime.   
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While Mery and Kawecki’s work represents the only similar empirical studies, our work 

has deep connections to theoretical work on the selective value of learning (Dukas, 1998; 

Johnston, 1982; Kerr and Feldman, 2003; Papaj, 1994; Stephens, 1991).  As a group 

these papers emphasize the role of change and other statistical properties of the 

environment in learning evolution.  Early work by Johnston emphasizes the learning folk 

theorem even though it acknowledges that animals should not learn in some changing 

environments (e.g. under complete unpredictability).  The later papers take an 

increasingly nuanced view that either recognizes different components of change (e.g. 

Papaj, 1994; Stephens, 1991) or argues that intermediate levels of change favor learning 

(Kerr and Feldman, 2003).  This paper, perhaps unsurprisingly, is most clearly 

connected to the Stephens (1991) model.  The parallels between the Stephens model and 

the Mery-Kawecki experimental preparation (used here) are striking.  Stephens modeled 

a hypothetical organism with a two-stage life history.  In the first stage, the organism can 

choose to obtain experience; while in the second stage the animal can acts in response to 

its experience in the first stage.  Although the Stephens model characterized the 

components of environmental change in a different way, its predictions closely follow the 

model presented here with one key difference: the Stephens model predicts non-learning 

for the absolutely-fixed condition. This difference occurs because the Stephens model 

imposed an opportunity cost on learning.  Specifically, in the Stephens model a learner 

can waste time acquiring experience in the ‘experience phase’ of its life history, when the 

analogous non-learner can begin to acquire fitness benefits in the experience phase.  This 

cannot happen in the Mery-Kawecki preparation, because choices made in the 

experience phase do not affect fitness.  Natural learning surely imposes some costs (both 

opportunity costs and physiological costs), however models suggest—in agreement with 
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our experimental results—that unpredictability is a much more powerful and robust way 

to select against learning than fixity, even when learning imposes costs. 

Summary 

The experimental analysis presented here exploits Mery and Kawecki’s pioneering 

empirical paradigm to test a logically coherent model of learning evolution.  This model 

recognizes two distinct types of ‘fixity’ that have opposing effects on the selective value of 

learning: 1) fixity of the best actions (e.g. it’s always best to lay eggs on orange) selects 

against learning (as the ‘folk theorem’ claims), and 2) fixity of the relationship between 

stimuli and best action (e.g. quinine is always paired with the worst type of media) favors 

learning.  Our results support this more complicated claim.  In treatments with a fixed 

‘best action’ and an unreliable (changing) relationship between stimuli and best action, 

we observed increased non-learning (i.e. simple preferences for media type).  On the 

other hand in treatments where the best action changed and we created a reliable (fixed) 

relationship between stimuli and best action, we observed increased learning.   

Learning is a fundamental mechanism for adjusting behavior to change in the 

environment.  Our results emphasize a richer and more realistic view of the evolutionary 

advantages of this flexibility, recognizing that different components of environmental 

change can have different effects on the evolution of learning and phenotypic plasticity.  

This perspective is significant because it is immediately relevant to the explanation of 

variation in animal learning abilities such the Garcia effect and other examples of 

selective association in animal learning.   
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Chapter 2 — Stimulus reliability in the evolution of 

“prepared” learning 

 

Introduction 

For animals to learn, they must form associations among various stimuli. But in a world 

full of potential stimuli, why does a ‘special relationship’ form between a given stimulus 

and consequence in a way that actually allows the animal to predict future events? 

Animals seem to solve this problem by being born better able to learn some things than 

others. Although the most notable example of this “special” learning is the Garcia effect 

(Garcia and Koelling, 1966), through the years, hundreds of additional examples have 

been cataloged (e.g. Dobrzecka et al., 1966; LoLordo, 1979; Rozin and Kalat, 1971; 

Shettleworth, 1972). Although these “exceptions” originally made up a challenge to the 

general process view of learning (e.g. Logue, 1979), whereby all animals learn all things 

in the same way, explanations eventually centered around animals being born “knowing” 

they should learn about certain things and not others. These explanations include ideas 

of “belongingness” (Thorndike, 1932), species-specific defense reactions (Bolles, 1970), 

biological constraints (e.g. Shettleworth, 1972; Shettleworth, 1979), adaptive 

specializations, and “preparedness” (Seligman, 1970). Clearly an evolutionary approach 

called for to explain these patterns in learning. 

Despite the detailed discussion and thought from many scientists over the years, many 

questions about the evolution of prepared learning remain. Although there are multiple 
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potential explanations, the central question of why differences in associability occur has 

not been resolved. We can generally agree that learning should enable animals to predict 

when biologically significant events will occur. These predictions occur because an 

individual has ascertained causal relationships within the environment. Throughout the 

evolutionary history of a given organism, some aspects of the environment will have 

influenced behavior more than others aspects. The most likely hypothesis for the 

evolution of prepared learning is that some stimuli and consequences have remained 

both reliable and important throughout the lineage of a given organism, and that these 

stimuli pairings are selectively learned over other pairings that do not have such a 

history of being paired. Such a reliable linking across time is what would make some 

stimuli salient, and others a mere part of the background. This type of story explains, for 

instance, the well-cited example that young rhesus monkeys learn fear about snake-like 

objects more quickly than they do about flower-like objects (Cook and Mineka, 1990; 

Cook et al., 1985). 

For such a central unanswered question in the psychology of animal learning, both 

theory and empirical results that test this evolutionary story are completely lacking. Even 

more broadly, however, the question raises a fundamental question about information 

use in animals: how does information an animal is born with interact with the 

information an animal gains through experience? We present a mathematical model 

describing how prepared learning of one type of stimulus over another will evolve, and 

then test the predictions of this model in an experimental evolution study with fruit flies 

(Drosophila melanogaster).  
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Model & Predictions 

Our model is constructed very similarly to the model described in chapter 1. Again, we 

use the basic experimental preparation adapted from Mery & Kawecki (2002). This 

preparation provides a two stage learning process that is both experimentally tractable 

and can be generalized to learning in the broader sense. In this preparation, flies 

experience two phases. The first is an experience phase, where one substrate type is 

paired with quinine (an aversive stimulus), while the second substrate type is not.  The 

second is a consequence phase, where neither substrate is paired with quinine, but where 

an experimenter can enact selection consequences by rearing some eggs, but not others. 

Female flies can use their experience from the first phase to guide their choices in the 

second phase. If flies are choosing in the consequence phase consistently with learning, 

they will lay eggs on the substrate that had not been paired with quinine in the 

experience phase. 

In this case, we envision a system where stimuli from two different sensory modalities 

can predict the “best” substrate on which a female can lay her eggs. Thus, one mode, say 

color, would have stimulus A and stimulus B, while the other mode, odor, would have 

two stimuli, α and β. Thus the potential quinine pairings could be Q+Aα  or  Q+Bβ  or  

Q+Aβ  or  Q+Bα. However, these pairings need not remain the same during the 

consequence phase. Figure 2-1 describes possible ways these pairings can occur. 
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EXPERIENCE PHASE    CONSEQUENCE PHASE 

 

      or                            or                           or 

 

 

Figure 2-1. Assume the best environment is indicated by the box with the dashed lines. 

In the first possibility, both A and α reliably predict the best environment when paired 

with quinine. In the second possibility, only the pairing of α with quinine predicts the 

best environment; an individual attending to/ learning the A pairing would be making 

an incorrect choice. There are two additional possibilities: that A, but not α predicts, 

and that neither predict. 

 

We can assign a probability to the reliability of each stimulus with regards to the quinine 

pairing predicting the best environment, where O  is the probability the odor pairing 

predicts the best environment, and C  is the probability that the color pairing predicts 

the best environment. The details of this model are in Appendix 2. The predictions, 

which take the same basic shape as those from Chapter 1, are in Figure 2-2 below. 

 

Q + A α 

B β B β 

A α B α 

A β 

Possibility 1 Possibility 2 

A β B β 

B α A α 

Possibility 3 Possibility 4 
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Figure 2-2. Predictions from the model. Whenever the probability that odor predicts is 

greater than the probability that color predicts (O >C ), then learning about odor is 

favored. We tested each the points at the four corners of the graph. Two of these points 

fall on the line between color learning favored and odor learning favored, and thus 

either or both could be favored. Intuitively, we predict that when both modalities of 

stimuli predict equally well, learning about both should be favored, while learning 

about neither should be favored when neither modality of stimuli predict the best 

environment. 
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Methods 

Flies and Husbandry 

Our starting population was a mix of wild-caught, lab-adapted flies from four different 

locations in Minnesota and Wisconsin, USA. We combined 400 male and 400 female 

adults from each population and maintained them in overlapping generations in a large 

population cage for 14 months prior to the start of the experiment. We housed all flies at 

24C and tested them at 14 days old (post egg). We reared all eggs at a density of 80 eggs 

per vial, and six vials per line per generation. For each generation, we moved flies to 

population test cages (3.3 cm L x 21 cm W x 12 cm H) upon eclosure as adults, setting up 

populations of 200 females and a comparable number of males per line. Each cage 

featured a removable tray on which we placed two fresh petri dishes of standard 

cornmeal and molasses-based food, and after three days, we tested each cage of flies. 

Aversion Learning & Selection on Populations 

We tested each generation of flies once, testing as groups in the population cages. As 

described in our model, each test consists of two phases: an experience phase and a 

consequence phase. In the first phase, the experience phase, we exposed flies to two petri 

dishes of agar-based media in a single three-hour session (10 mL of agar places into the 

bottom of each 100 mm x 15 mm petri dish). We introduced color into the substrate by 

placing painted disks underneath the petri dishes, using cobalt blue and aqua blue color. 

We introduced odor by mixing amyl acetate and benzaldehyde into the agar (we first 

diluted each into a mixture of 35% odorant, 65% ethyl alcohol, and added each to agar 

(20g sucrose, 10g agar, 1L water; 1mL for amyl acetate and 0.1mL for benzaldehyde). 

Prior to the experiment, we conducted pilot studies to demonstrate learning to the colors 
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and to the odors chosen, and tested that neither mode of stimuli completely 

overshadowed the other during learning trials. Finally, we added quinine at 4g / 1L 

agar). To start the experience phase, we positioned the petri dishes on a sliding tray at 

the bottom of each cage; we could replace these dishes without moving the flies. In the 

second phase, a consequence phase, we present new plates of agar without quinine for 

five hours. The pairing of color and odor could be different, depending on the assigned 

reliability of each (Figure 2-1). We randomized the locations of the plates, with visual 

stimuli always remaining in the same location in both experience and consequence 

phases, and the corresponding odors changing location (depending, again, on the 

assignment of reliability for each modality). We separated the experience and 

consequence phases with a 30 min period of no stimuli. 

We imposed different selective regimes by rearing eggs from one substrate type (e.g. the 

one not paired with quinine in the experience phase) and discarding eggs from the other 

(e.g., the one paired with quinine in the experience phase). We removed eggs selected for 

propagation from the substrate using a needle and placed them in vials on standard 

cornmeal-based fly food for incubation.  

Treatments and Lines 

W set up 40 lines of 200 females and approximately the same number of males from the 

source population, and then randomly assigned 10 lines to each of the four experimental 

treatments. The treatments were 1) both color and odor reliable (C=1.0, O=1.0), 2) color 

but not odor reliable (C=1.0, O=0.5), 3) odor but not color reliable (C=0.5, O=1.0), and 

4) neither color nor odor reliable (C=0.5, O=0.5). At the start of the experiment, we 

randomized the reliability of the quinine cue for each stimulus modality for each 
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generation within blocks of two generations each and did this separately for each line, 

according to its assigned treatment. 

Results 

Selection Data 

We calculated the selection data in terms of the reliability of color cues and in terms of the 

reliability of odor cues. For instance, to calculate scores for flies laying eggs consistent with 

following the odor and quinine pairing, we took the proportion of eggs laid in the 

consequence phase on the substrate with the odor that had not been paired with quinine in 

the experience phase. Because we randomized the experiment in blocks of two generations 

each, we took means for each block. We completed an ANOVA for each, with factors of 

odor-reliable or color-reliable, and repeated measures on the lines. As predicted, there was 

a statistically significant effect of reliability of odor cue (Fig. 2-3; F1,144 = 4.153, P = 0.048). 

Treatments in which odor was reliable showed an increase in learning to odor across the 

course of the experiment, whereas treatments where odor was unreliable did not. The same 

was true for color, where there was a statistically significant effect of reliability of color cue 

(Fig. 2-4; F1,144 = 15.370, P < 0.001).  However, the pattern across the course of selection for 

color was not as orderly as for odor cues. Neither analysis gave a significant interaction of 

block by reliability, as we would expect in a selection process where treatments are selected 

in different directions (Learning to odor, block*odor reliability interaction: F4,144 = 1.905, P 

= 0.112; learning to color, block*color reliability interaction: F4,144 = 1.596, P = 0.178).  

Because these data reflect the selection regime, the scores for the Both Reliable treatment 

resulted in the same calculations in both graphs (because color and odor were both always 

reliable). Thus we have no way of knowing whether flies in this treatment were attending to 



 

 

cues about color, odor, or both together. For this reason, we look to assays we ran

the end of the experiment.

Figure 2-3. Selection data of following the quinine pairing with odor. 

represents means of 2-generation blocks (consistent with the randomization scheme of 

experiment), taken at 10 generation increments.
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Figure 2-4. Selection data of following the quinine plus color cues. Error bars are 

standard errors. The x-axis represe

randomization scheme of the experiment), taken at 10 generation increments.
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. Selection data of following the quinine plus color cues. Error bars are 

generation blocks (consistent with the 

randomization scheme of the experiment), taken at 10 generation increments. 
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End of Selection Assays 

In the set of assays we describe here, we tested different naïve subsets of flies from each 

line in two types of tests. In the first type of test, we assayed learning abilities to color 

stimuli only, with no odors present. We tested one set of flies for quinine with blue and 

one for quinine with aqua. In the second type of test, we assayed learning abilities to 

odor only, testing a set of flies for each of quinine with amyl acetate and quinine with 

benzaldehyde. These assays were similar to the selection procedures, except the 

“consequence” phase lasted 1.5 hours, and there were no consequences since no selection 

occurred. (Note that we use the terminology “consequence phase” for simplicity here 

even though these assays differed from the experimental selection procedures). Figure 2-

5 shows the results of the assays in which we tested learning to color alone and Figure 2-

6 shows the results of the assays in which we tested learning to odor only. 



 

 

 

 

Figure 2-5. This figure presents the data in the factorial form of the experiment’s 

design. Learning about color 

best environment across evolutionary time. The effect of color reliability 

statistically significant (F

did not differ across color reliability levels. The interaction between color and odor 

reliability nears significance (F

 

his figure presents the data in the factorial form of the experiment’s 

design. Learning about color was enhanced when color was a reliable predictor of the 

best environment across evolutionary time. The effect of color reliability 

cant (F1,36=4.189, P=.048). The effect of odor reliability wa

not differ across color reliability levels. The interaction between color and odor 

reliability nears significance (F1,36=3.435, P=0.072). 
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not differ across color reliability levels. The interaction between color and odor 



 

 

 

 

Figure 2-6. Learning to odor alone is enhanced in both treatments where odor is 

reliable. The effect of odor reliable is statistically significant (F

neither the effect of color reliable nor the interaction between 

are statistically significant.

 

 

. Learning to odor alone is enhanced in both treatments where odor is 

reliable. The effect of odor reliable is statistically significant (F1,36=7.8829; P=0.008), 

neither the effect of color reliable nor the interaction between color and odor reliability 

are statistically significant. 
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. Learning to odor alone is enhanced in both treatments where odor is 

=7.8829; P=0.008), 

color and odor reliability 
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Figure 2-7. The same data as in Figures 2-5 and 2-6 ( end of experiment assay data) 

presented together in a single graph to demonstrate the relationship between learning 

the two sensory modes of stimuli. As expected, in each treatment where odor reliably 

predicted the best environment, the flies learned better to odor than to color. Only the 

lines of flies in the color-reliable treatment showed better learning to color than to 

odor. Error bars are standard errors. 
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Discussion  

This study asks how reliability influences which types are stimuli are most easily learned 

about. We have shown that the reliabilities of stimuli from different sensory modalities 

do influence how flies learn about those stimuli over evolutionary time. When color is a 

reliable predictor of the best action, this reliability is a significant factor in how flies learn 

about color; the same result holds for odor. This result was consistent in the selection 

data across the generations and in separate assays of each line after 40 generations of 

selection. This is, to our knowledge, the first model and the first multigenerational study 

demonstrating that patterns of reliability in evolutionary history do in fact influence the 

stimuli that are most easily learned.   

Learning about color was better than learning about odor for flies when color and not 

odor were reliable predictors across time. For each of the other selection regimes, 

learning about odor was better than learning about color. This makes sense for the 

regime where only odor was reliable. The clearest results occurred where we expected 

them, at the areas where we predicted the strongest selective pressure for each type of 

learning (points A and D on figure 2-2). For the remaining two points on the figure, 

which fell on the line separating odor-learning favored and color-learning favored, we 

predicted that neither type of learning would be favored over the other. In the selection 

data, where both sensory modalities of stimuli were simultaneously present, the learning 

results followed the reliability assignments: when color was reliable, color learning was 

comparatively better than where color was not reliable; the same was true for odor. 

However, when we tested learning to each sensory modality alone, the treatments falling 

on that line both showed better learning to odor than to color. A possible explanation for 
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the higher scores in general for learning odor stimuli is that flies are following a rule such 

as, “when in doubt, follow odor.” 

Our basic hypothesis that stimulus reliability over time will predict which sensory 

modalities are most easily learned about was supported the data, however what 

accounted for these differences in learning, and how do the two modes of stimuli interact 

to affect learning in the evolved lines? One interesting question related to the data we 

presented here has to do with multimodal learning and signaling. Why have so many 

signals in nature evolved to use more than one sensory modality (e.g. Guilford and 

Dawkins, 1991)? For instance, floral signals are multimodal: including shape, color, and 

scent, and bumblebees make more accurate decisions when presented with multimodal 

choices than single modality choices (Kulahci et al., 2008). Signals can be costly to 

produce, and arguments about the evolution of multimodal signals generally centers 

around the role of the receiver (e.g. Rowe, 1999). In this experiment, we evolved lines in 

environments where only a single sensory mode was reliable and in environments where 

two sensory modes of stimuli were reliable. During the selections, lines in the treatment 

where both modalities of stimuli were reliable consistently had the highest learning. 

However, when we tested learning to stimuli in one sensory modality at a time, we found 

that flies in these lines seem learned odor best (Figure 2-7). This suggests that in our 

system one modality is sufficient for learning, but the addition of a second improves 

performance. 

This is the first study to demonstrate learning about color during oviposition in fruit 

flies. The vast majority of learning assays in Drosophila use olfactory stimuli, and those 

using visual stimuli are procedurally difficult, involving flight simulators (e.g. Brembs 
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and Heisenberg, 2001; Brembs and Wiener, 2006).  The oviposition procedure used here 

is a promising one for studying sensory integration and learning in Drosophila. We have 

studies ongoing to test decision-making and learning in multiple sensory mode settings. 

Summary 

This novel study tested specific predictions about the role of the stimulus reliability 

across evolutionary time in the formation of relationships between particular stimuli and 

actions. Our central hypothesis for the evolution of prepared learning is that some 

stimuli pairings have remained both reliable throughout the lineage of a given organism, 

and natural selection has, therefore, favored learning of these types of associations. Our 

results throughout  40 generations of experimental evolution with fruit flies support this 

hypothesis. This work provides an important step forward in understanding both 

prepared learning and how inherited tendencies interact with information gained 

through experience.  
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Chapter 3 — Why some memories do not last a 

lifetime: dynamic long-term retrieval in changing 

environments2 

 

Introduction 

Learning is responsible for many of the flexible behaviors animals use when adjusting to 

changing environments. Ultimately, learning depends on an animal’s ability to store and 

retrieve information about its world; that is, learning is tightly entwined with memory 

(Bouton, 1994; Shettleworth, 1998). Consequently, the value of memory often relates to 

the value of learning. On a simple level, learning is valuable when information stored in 

memory (e.g., a good response to a stimulus) remains useful over time (e.g., the same 

response to the same stimulus continues to be good). However, learning (and memory) 

loses value when the environment changes in ways that make learned responses 

unreliable. Indeed, possessing memory might be costly if it repeatedly leads an organism 

to employ inappropriate behaviors (e.g., if the environment changes extremely rapidly 

making remembered responses perpetually inappropriate). If memory is evolutionarily 

adaptive, one would expect that various properties of memory (encoding, consolidation, 

retrieval, etc.) would be tuned to the historical rate of environmental change. Several 

mathematical models have suggested that the amount of environmental variability 

                                                        

2 This chapter is a collaborative work with Benjamin Kerr. It is currently under review as Dunlap, 
A. S., McLinn, C. M., MacCormick, H. A., Scott, M. E. & Kerr, B., “Why some memories do not last 
a lifetime: dynamic long-term retrieval in changing environments.”  
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influences the evolutionary advantages of learning and memory (Arnold, 1978a; 

Bergman and Feldman, 1995; Cohen, 1991; Feldman et al., 1996; Kerr and Feldman, 

2003; Mangel, 1990; McNamara and Houston, 1987; Stephens, 1987; Stephens, 1991). 

Given that memory is employed throughout the lifetime of an individual, should optimal 

memory length change within that lifetime in response to particular patterns of 

environmental variability? For simplicity and tractability, most learning models have 

incorporated memory as a fixed quantity (Kerr and Feldman, 2003; Mangel, 1990; 

McNamara and Houston, 1987; Shafir and Roughgarden, 1996), often as a “sliding 

window” of constant length, but see (Hirvonen et al., 1999). 

However, overwhelming evidence suggests that memory changes over the lifetimes of 

individuals. For instance, aspects of memory have been shown to decline with age in a 

large number of species, from humans to crustaceans (Davis et al., 2003; Punzo and 

Chavez, 2003; Shukitt-Hale et al., 2004; Tomsic et al., 1998). In humans, this trend is 

present in healthy aged adults—it is not attributable solely to the effects of Alzheimer’s or 

dementia (e.g. Craik and Jennings, 1992; Davis et al., 2001; Zelinski and Burnight, 1997). 

One explanation for memory loss suggests that aged individuals acquire such a large 

number of memories that retrieval errors (Cohen, 1996; Spear, 1973; Squire, 1989), 

perhaps caused by mechanisms such as memory interference, become more common 

(Bouton and Moody, 2004; Mery and Kawecki, 2004b)  Another explanation attributes 

memory loss to the inevitable decay of synaptic connections with age (Salthouse, 1996). 

Poor memory or learning abilities are also found at very young ages (Guo et al., 1996; 

Spreng et al., 2002). Known as infantile amnesia, this is often explained as the result of 

the developing brain (Neissen, 2004). In addition to age, the physical state of the 
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individual (such as its energy reserves or stress level) may influence learning and 

memory (Guo et al., 1996; McEwen and Sapolsky, 1995; Xia et al., 1997; Yanai et al., 

2004). For instance, while acute stress might actually improve memory in some cases, 

such as with post-traumatic stress disorder, (McGaugh and Roozendaal, 2002), chronic 

stress and increased cortisol levels can result in memory deficits (Lupien et al., 1998; 

McEwen and Sapolsky, 1995; Seeman et al., 1997).  

In the aforementioned explanations, memory loss results from the inevitable 

degradation or inherent constraints in retrieval caused by advanced age or prolonged 

stress. Another compelling possibility is that memory change might serve some 

evolutionarily adaptive role. Kraemer and Golding (1997) suggest the primary 

mechanism for adaptive forgetting may be in the retrievability of information. 

Importantly, new evidence suggests that forgetting need not be a passive process 

(Anderson et al., 2004; Wylie et al., 2008).  

In order to explore the possibility of evolutionarily adaptive forgetting, we use a dynamic 

programming approach—an established method for determining optimal strategies 

across lifetimes (Clark, 1993; Houston and McNamara, 1999; Mangel and Clark, 1988). 

Within this modeling framework, we focus on the long-term retrieval of information, 

assuming that all experiences of the organism have been successfully encoded and 

consolidated. For effective memory, an organism needs both successful acquisition and 

retrieval. A failure at any point along the way results in forgetting. We do not consider 

mechanism, though in our framework, forgetting may be due to an active process like 

suppression (Anderson et al., 2004), the decreasing availability of stored information 

over time, which Schacter calls transience (1999), or due to a simple failure to retrieve 
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the information (Loftus and Loftus, 1980). We explore the effects of age, physical state, 

and environmental conditions on optimal retrieval. Our model suggests that even if the 

environment changes at a constant rate, optimal memory length may actually decline 

with age.   

The Model 

Here we consider a learning organism that lives for a maximum of T discrete time steps, 

with its age at any point in time given by the variable t (the number of time steps lived so 

far). At each time step, there is a fixed positive probability of death, δ. This organism 

inhabits an environment with N stimuli to which it may respond. At every time step, the 

organism is exposed to one of the N stimuli (chosen at random with equal likelihood and 

independently of past exposures). If the stimulus is unfamiliar, the organism will need to 

spend some time learning how to respond appropriately to the stimulus. This learning 

process within a time step can be thought of as being on the time scale of short-term 

memory. For simplicity, we assume that the organism that learns about an unfamiliar 

stimulus always arrives at a behavior that yields a constant payoff, which we label πu.  

If the stimulus is familiar, then the organism must have interacted with it in a previous 

time step and remembers it from that time step. Here, we use a “window” model for 

memory retrieval—the organism can remember and retrieve information from the 

previous m time steps. If the organism remembers the behavior it employed previously 

for a stimulus, and employs this behavior again when revisiting the familiar stimulus, 

there are two possible outcomes: (1) the appropriate response to the stimulus is the same 

as it was before and the organism receives a payoff πc (a payoff for a correct response) or 
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(2) the appropriate response to the stimulus has changed and the organism receives a 

payoff of πi (a payoff for an incorrect response). Again, for simplicity, we assume that the 

payoffs for an appropriate or inappropriate remembered response each have constant 

value.  

Thus, the expected payoff of a familiar stimulus depends on the rate of change of stimuli. 

Here, we assume that every stimulus changes independently with probability ρ every 

time step (as ρ increases, the stimuli become less reliable). We also assume cui πππ << , 

as a correctly remembered behavior saves the sampling time spent on learning to 

respond appropriately to an unfamiliar stimulus (Lewis, 1986). However, an incorrectly 

remembered behavior wastes more time than learning about a stimulus from scratch 

(e.g., time spent employing the now inappropriate behavior in addition to time spent 

learning the stimulus again). We assume that the payoffs are in terms of energy reserves, 

such that time spent learning about stimuli or time wasted employing incorrect 

behaviors results in a lower energy payoff for the time step. At any time we let the energy 

reserves of our organism be x. We restrict x to a range of values, 0≤x≤X. We also assume 

that there is a cost of living, κ, imposed each time step (i.e., energy reserves removed 

from the organism due to the metabolic demands of living). The parameter κ is 

measured in the same units as x (e.g., calories) and we focus on cases in which the cost of 

living makes memory necessary for x to increase over a time step, that is, 

cui πκππ <<< . 

In this manuscript, we explore the idea that it may be advantageous for the length of the 

memory window, m, to vary as a function of the energy reserves of the organism, x, as 
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well as its age, t (i.e., m=m(x,t)). Here, we use a dynamic programming approach to find 

the function that maximizes reproductive success of our model learner, m*(x,t), where 

the asterisk denotes the optimal memory. That is, we ask how the memory window might 

optimally change with state and age of the organism. 

To this end, it helps to produce another function that measures maximal future expected 

reproduction. We call this function F(x,t,T), the maximal future expected reproductive 

success of an organism at age t in state x (recall that T defines the maximum lifetime of 

an organism). Using F as a “common currency,” the trick to dynamic programming 

involves writing a backwards recursion in time. In Appendix 3 we derive the following 

recursion, 
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The function chop simply keeps the state of the organism in the allowed range between 0 

and X. Generally, chop(x; a, b) gives a if x<a, b if x>b, and x otherwise (Mangel and 

Clark, 1988).  

Equation [3.1] can be understood roughly as follows: If the stimulus at time step t is 

unfamiliar, then the maximal future expected reproductive success from time t+1 on is 

given by ),1),(( TtxuF + . With memory length m at time t, this occurs with probability 

αm (see Appendix 3). Similarly, if the stimulus at time t is familiar and if the organism 

employs an appropriate response, then the maximal future expected reproductive 

success from t+1 on is ),1),(( TtxcF + ; whereas, an inappropriate response at time t 

would give ),1),(( TtxiF + . With memory length m at time t, the probabilities of 

appropriate and inappropriate responses to a familiar stimulus are )1( mβω −  and 

)1(1 mm βωα −−− , respectively. Thus, the quantity in braces in equation [3.1] 

corresponds to the future expected reproductive success of an organism with memory 

length m at time t given that the organism survives the time step (which occurs with 

probability 1−δ) and remembers optimally from time t+1 onwards. To calculate the 

maximal expected future reproductive success at time t (that is, ),,( TtxF ) we simply 

need to find the memory length that maximizes the weighted average in braces—see 

Appendix 3 for details. 

To begin, we assume that our organism is semelparous—it reproduces at the end of its 

lifetime (at age T). The expected number of offspring will be some function of the final 

state of the parent—we call this function Φ(x). At age T, maximal future reproductive 

success is equal to the expected number of offspring such that F(x,T,T)=Φ(x).  If we 
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specify Φ(x), then we can use recursion [3.1] to obtain F(x,T−1,T) for all possible values 

of x. In the process of calculating F(x,T−1,T) we will also reveal m*(x,T−1). This optimal 

memory (for a given x value) is simply the m value that maximizes the quantity in braces 

on the right-hand side of equation [1] with t=T−1. Once we have discovered F(x,T−1,T) 

for all values of x, we can find both F(x,T−2,T) and m*(x,T−2) for all values of x by 

applying recursion [3.1] again (with t=T−2). Then it is a simple matter to generate both 

F(x,T−3,T) and m*(x,T−3) using recursion [3.1] yet again. We can do this over and over 

again, so that these generated F values become the stepping stones enabling us to walk 

backwards further and further in the organism’s lifetime, revealing the optimal memory 

for each possible age and each possible state along the way.      
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Parameters Description 

X number of states for the organism 

T maximum lifetime for the organism (total number of time steps) 

N number of stimuli in the environment 

ρ probability of stimulus change per time step 

κ cost of living for the organism per time step 

δ probability of death for the organism per time step 

πu payoff to the organism for a response to an unfamiliar stimulus 

πc payoff to the organism for a correct response to a familiar stimulus  

πi payoff to the organism for an incorrect response to a familiar stimulus  

Variables  

x state of organism (current level of energy reserves) 

t age of the organism (current number of time steps) 

m 
memory “window” (the number of time steps back that are 

remembered) 

Functions  

u(x) 
state of organism after employing a response to an unfamiliar stimulus, 

given that its state before responding was x 

c(x) 
state of organism after employing a  correct response to familiar 

stimulus, given that its state before responding was x 

i(x) 
state of organism after employing an incorrect response to familiar 

stimulus, given that its state before responding was x 

F(x,t,T) 
maximal expected future reproductive success of an organism in state x 

at age t 

Φ(x) fitness of an organism in state x at age T 

H(x) The function to which  F(x,t,T) converges as t decreases 

B(x,t) potential benefit of memory for an organism in state x at age t  

C(x,t) potential cost of memory for an organism in state x at age t 

m*(x,t) optimal memory for an organism in state x at age t (an integer) 

m**(x,t) 
proxy for the optimal memory for an organism in state x at age t (a real 

number) 

mH(x) 
approximate optimal memory (the m** proxy using H(x) in lieu of 

F(x,t,T)) 

Table 3-1. Table of parameters, variables, and functions used in the model. 
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Results  

In Figure 3-1, we give some examples of the optimal memory surface (the m* function) 

for different rates of environmental change (ρ) and final fitness functions (Φ). In general, 

as the stimuli become more reliable (as ρ decreases), optimal memory increases (the 

surfaces tend to be higher). This is expected to occur because, as ρ decreases, the 

probability of employing a correct response increases. Thus, there is increasing value to 

approaching a stimulus as familiar rather than unfamiliar because the remembered 

response becomes more likely to be correct. This means there is increasing incentive to 

lengthen the memory window. 

For many parameter combinations, we can partition the lifetime into two periods: a 

memory lift at the beginning of the lifetime and a memory plateau in the rest of the 

lifetime that gently drops or lifts towards the end of the lifetime (see Figure 3-1). For 

intermediate values of stimulus change (0.05<ρ<0.25), if Φ is convex ( 022 >Φ dxd ), the 

optimal memory window can increase at the end of the lifetime (Figures 3-1c and 3-1d). 

On the other hand, if Φ is concave ( 022 <Φ dxd ), then the optimal memory window can 

actually decrease at the end of the lifetime (Figures 3-1a and 3-1b). 



 

50 

 

 

Figure 3-1. Optimal 

memory m*(x,t) with X=50, 

N=10, T=40, δ=0.1, κ=12, 

πi=5, πu=10, and πc=15. 

Each surface corresponds 

to a different value of the 

rate of stimulus change (ρ) 

and either a convex final 

fitness function 

Ф(x)=100(x/X)4 or a 

concave final fitness 

function Ф(x)=100(x/X)0.25. 

 

  



 

51 

 

Proxy for Optimal Memory  

To understand the effects of stimulus change (ρ), payoff structure (the π’s), and the final 

fitness function (Φ) it helps to consider the following function:  
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with α, β, and ω given above in [3.2]. From equation [3.1], the integer m value (with 

0≤m≤t) that gives a maximum for G(m,x,t) is m*(x,t). One way to find a proxy for m* is to 

treat G(m,x,t) as a continuous differentiable function of m and find critical points (by 

setting 0=∂∂ mG ). A single critical point exists at 
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The potential benefit of using memory is given by the improvement in future expected 

reproductive success by employing a correct response to a familiar stimulus in lieu of a 

response to an unfamiliar stimulus—this is precisely B(x,t) from equation [3.8]. The 

potential cost of using memory is given by the loss in future expected reproductive 
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success by employing a incorrect response to a familiar stimulus in lieu of a response to 

an unfamiliar stimulus—this is precisely C(x,t) from equation [3.8]. Thus, without 

attention to the probabilities of correct and incorrect responses, ν gives a benefit to cost 

ratio of memory use. 

The quantity m** in equation [3.7] is a proxy for the actual optimal memory window (m*, 

which must be an integer). If m** is between 0 and t, then the integer below or above m** 

gives m* (m* is the integer which yields a larger value for equation [3.6]). If m** is 

negative, then optimal memory is zero and if m** is greater than t, then optimal memory 

is t (see Appendix 4). 

This proxy for optimal memory depends not only on the benefit to cost ratio (ν), but also 

on the probabilities that memory brings benefits versus costs. These probabilities 

depend on the number of stimuli, N, and the rate of stimulus change, ρ (which is why 

there are α, β, and ω terms in equation [3.7]—see equation [3.2]). In Figure 3-2, we show 

how the probability of incorrect familiar responses (red bars), unfamiliar responses 

(green bars), and correct familiar responses (blue bars) change with the size of the 

memory window for different values of ρ. From equation [3.1], as m grows larger, the 

probability of a correct response approaches ω, the probability of an incorrect response 

approaches 1−ω and the probability of an unfamiliar response goes to zero. As ρ 

increases, the probabilities of incorrect responses at any memory level also increases (the 

fraction of red increases), which should favor lower memory values. Indeed, we show in 

Appendix 5A that when our optimal memory proxy, m**, is greater than 0, increasing the 

rate of stimulus change (i.e., decreasing reliability) will promote shorter memory 
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windows; that is, 0** <∂∂ ρm . This result has been derived by treating m in function G 

as continuous; however, when m is constrained to integer values, the same general 

pattern emerges: stimulus changeability promotes shorter memory windows (see Figure 

3-1). 
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Figure 3-2. The probability of a correct response to a familiar stimulus (blue/medium 

gray bars), the probability of a response to an unfamiliar stimulus (green/light gray 

bars), and the probability of an incorrect response to a familiar stimulus (red/dark 

gray bars) as a function of memory size (with N=10). Each chart corresponds to a 

different value of the rate of stimulus change, ρ. These probabilities are ω(1-βm), αm, 1–

αm–ω(1–βm), respectively. 
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Also, m** is an increasing function of ν (i.e., 0** >∂∂ νm ). In order to explore the effects 

of ν, we need to know something about F(x,t,T). While the precise analytical form of 

F(x,t,T) is difficult to derive, it will generally be a non-decreasing function of x, given that 

we assume Φ(x) is a non-decreasing function of x. For pedagogical purposes in the next 

section we will pretend F assumes simple functional forms (e.g., a linear function), 

however this pretence will not affect most of the conclusions for more complicated non-

decreasing forms of F. 

Graphical Approach 

Let us focus on an organism in state x′ at age t (the black circles in Figure 3-3). If it 

employs an incorrect response to a familiar stimulus, its state changes to i(x′) (the red 

solid arrows in Figure 3-3). If it employs a response to an unfamiliar stimulus, its state 

changes to u(x′) (the green dotted lines and arrows). And if it employs a correct response 

to a familiar stimulus, its state changes to c(x′) (the blue dashed lines and arrows). We 

always have i(x)≤u(x)≤c(x) because we assume cui πππ << . In each case, the maximal 

future expected reproductive success is given by the value of F(x,t+1,T) at x=i(x′), 

x=u(x′), or x=c(x′). From the positions of c(x′), u(x′), and i(x′), we can visualize the 

benefit, B(x,t), and cost, C(x,t), of memory use and thus isolate factors that will affect ν. 
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Figure 3-3. Schematics to show 

the costs and benefits of 

memory. (a) We start by 

assuming F(x, t+1, T) is a linear 

function (although generally it is 

not). We assume that the state of 

our organism at age t is x'. A 

solid red arrow points to i(x'), 

the state acquired through an 

incorrect response to a familiar 

stimulus. A dotted green line and 

arrow points to u(x'), the state 

acquired through a response to 

an unfamiliar stimulus. A 

dashed blue line and arrow 

points to c(x'), the state acquired 

through a correct response to a 

familiar stimulus. The potential 

benefit B(x',t) of being familiar 

with a stimulus is F(c(x'),t+1,T)–

F(u(x'),t+1,T) and potential cost 

C(x',t) of being familiar with a 

stimulus is F(u(x'),t+1,T)– F(i(x'),t+1,T). (b) If πu decreases, then u(x') can decrease and 

B can increase while C decreases. (c) If the state of the organism is very low and the 

cost of living is very high (κ>πu), then i(x')=u(x')=0 while c(x')>0. Consequently C=0 

and B>0; that is, there are no costs to memory, whereas there are benefits—thus, the 

memory window should be maximally long. (d) If the cost of living is low (κ<πu, see 

Appendix D), then C>0 and B>0 and maximal memory may not be favored. (e) If 

F(x,t+1,T) is convex, the ratio of B to C increases (relative to the linear F function in (a)) 

and thus an increased memory window is favored. (f) If F(x,t+1,T) is concave, the ratio 

of B to C decreases (relative to the linear function in (a)) and thus a decreased memory 

window is favored. 
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We see that for constant values of correct and incorrect payoffs, πc and πi (i.e., c(x′) and 

i(x′) remain constant), as the value of the payoff for an unfamiliar stimulus, πu, decreases 

(i.e., as u(x′) decreases), ν increases and longer memory windows are favored (compare 

Figures 3-3a and 3-3b). The quantity πu−πi generally scales with the potential cost of 

memory, C(x,t). The potential benefit of memory scales with πc−πu. It stands to reason 

that as the potential cost of memory decreases and the potential benefit of memory 

increases (πu drops while πc and πi both stay constant), the optimal memory window 

should be longer. 

We can also start to understand some of the effects of the state of the organism on 

memory. Given that we assume that the cost of living is high (i.e., uπκ > ), if the state of 

the organism is very low, then both i(x′) and u(x′) will be zero (remember these 

functions “chop” x into the range of 0 to X). This can be seen in Figure 3-3c, where the 

solid and dotted arrows point to the origin. Because i(x′)=u(x′)=0, this means that 

C(x′,t)=0 and ν is infinite. As ν→∞, we know that m**→∞. Thus, when cost of living is 

high, organisms in a very low state should possess maximal memory. Again the idea is 

that employing a correct response to a familiar stimulus is the only way to survive, thus 

there is a premium placed on a maximal memory window. If we had assumed that the 

costs of living are lower (i.e., uπκ < ), then u(x′)>0 for an organism in a very low state 

and optimal memory is no longer necessarily maximal memory (see Figure 3-3d; in 

Appendix 5B, we explore the case when uπκ < ).  

The benefit-to-cost ratio of memory, ν, also depends on the shape of the expected future 

reproductive value function, F. For instance, ν increases as F is made more convex 
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(compare Figure 3-3e with Figure 3-3a). Thus, optimal memory windows are longer for 

convex F functions and shorter for concave F functions (compare Figure 3-3f with Figure 

3-3a). This prompts the question: what is the general shape of the F function at any 

arbitrary age of our organism? For one age the answer to this question is clear. At the 

end of the organism’s lifetime F(x,T,T)=Φ(x) and we specify this final fitness function. In 

Figure 11, we see that a convex Φ leads to a longer optimal memory window at the end of 

the lifetime than a concave Φ (see Appendix 5C). 

Convergence 

As mentioned, an analytical solution of the general form of F(x,t,T) is difficult to derive. 

However, we do observe a convergence property in our model that is common to many 

dynamic programming routines (Houston and McNamara, 1999; Mangel and Clark, 

1988). As we step backwards in time through repeated application of equation [3.1], 

F(x,t,T) assumes a form (once renormalized) that is independent of the final fitness 

function, Φ(x). If we do not constrain m to remain below t (mathematically possible, but 

biologically unjustified), this function is also independent of time (this is a form of strong 

convergence, see (Houston and McNamara, 1999))). The convergence is shown in Figure 

3-4 for the examples from Figures 3-1a and 3-1c. If we assume that F does strongly 

converge to some function, call it H(x), then the proxy for optimal memory m**(x,t) is 

approximated by replacing F(x,t,T) inν with H(x) in equation [3.7]. Let us call this 

approximate optimal memory mH(x). We show an example of H(x) in black dots in 

Figures 3-4a-c. For a given x value, m*(x,t)≈mH(x) for several different t values.  

However, there are a few ages (t values) where the mH(x) approximation fails. First, for 

any state x, if t<mH(x), we know the memory must be smaller than the approximation 
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because the organism cannot remember stimuli from before it was born. Generally, for t 

values below mH(x), we find m*(x,t)=t, that is, the optimal memory window is the 

maximum in the allowable range (incidentally, the constraints on m, which were ignored 

to compute H(x), force F(x,t,T) to deviate from H(x) for the young ages t<mH(x)). 

Second, for ages close to the end of the lifetime, t≈T, there is a strong signature of Φ(x) 

on F(x,t,T) (i.e., backwards convergence to H(x) has not proceeded very far). If Φ(x) is 

more convex than H(x), then the optimal memory window bends up at the end of the 

lifetime. However, if Φ(x) is more concave than H(x), then the optimal memory window 

bends down at the end of the lifetime. In such a case, it would be optimal to reduce long-

term recall at the end of the lifetime; that is, memory loss would be optimal. 

We can now start to understand the age-related phases of optimal memory that we saw 

in Figure 3-1. The memory lift at the beginning of the lifetime occurs because the young 

age of the organism limits its recall. We call this a “constraint deviation” in Figure 3-4d, 

because the young organism is constrained by its age to remember less than mH(x). (The 

other constraint deviation is for organisms in low state where mH(x) is predicted to be 

infinite, but the organism must have finite memory). The memory plateau begins at ages 

larger than mH(x) and gently slopes towards the end of the lifetime. The deviations here 

we call “signature deviations” because the signature of the final fitness function is echoed 

in the optimal memory at the end of the organism’s lifetime, where Φ functions that are 

convex relative to H(x) lift final optimal memory and relatively concave Φ functions (e.g., 

like that used to produce Figure 3-4d) depress final optimal memory.   
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Figure 3-4. (a) The final fitness function 

Ф(x)=100(x/X)4 is given in grey and 

Ф(x)=100(x/X)0.25 is given in black. These 

functions are normalized to range from 0 

to 1. (b) The corresponding renormalized 

F(x,t,T) functions at time t=20, generated 

through backwards iteration of equation 

[1] (with X=50, N=10, T=40, δ=0.1, πi=5, 

πu=10, πc=15, κ=12, and ρ=0.1) starting 

with F(x,T,T)= 100(x/X)4 (in grey) and 

F(x,T,T)= 100(x/X)0.25 (in black). (c) The 

corresponding renormalized F(x,t,T) 

functions at t=5. Both functions are 

approaching an equilibrium function H(x) 

given in black dots in (a)-(c). (d) Using 

H(x) in place of F(x,t+1,T) we calculate 

mH(x,t) by equation [7] for all x and t 

values. Here we show the difference 

between mH and m* to show the 

appropriateness of the mH approximation. 

We see two “types” of deviations between 

mH and m*. The constraint deviations 

occur where the mH approximation is 

outside of the allowed range for memory 

(e.g. mH(x,t)>t) and the signature 

deviations occur when occur when mH is 

near attainable memory values, but other 

memory values are optimal (these 

deviations are due to the fact that H(x) is 

an inappropriate approximation for 

F(x,t,T)). In the case shown, the signature deviations (mH–m*) are positive, suggesting 

that there is optimal decline in memory for large values of t (note that we are dealing 
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with the concave final fitness function shown in black in (a)). 

 

Discussion 

Using a dynamic programming approach, we have suggested that optimal retrieval of 

memories should not be expected to be constant, but rather should change with the age 

and state of the organism. Thus, this model proposes that specific changes in memory 

(e.g., loss of memory retrieval towards the end of the lifetime) could be adaptive. Of 

course, these findings do not deny that there may be other non-adaptive factors or 

constraints that affect memory retrieval, such as the general deterioration of memory for 

older individuals due to inevitable break-down of neural function. Rather, this model 

simply states that it is not necessary to invoke such constraints and that an organism 

that maximizes its future reproductive output is expected to alter its retrieval of 

memories under certain circumstances. 

We should note that, even within the context of our model, there are changes in memory 

retrieval that result from constraints. For instance, an organism is forced to have shorter 

memory windows when it is younger because it cannot have windows that exceed its age. 

Mathematically, we could iterate recursion [3.1] without constraining the memory 

window, m, to be less than the current age of the organism, t. If m can assume any 

positive value, we have a situation that an organism can “remember” events before it was 

born. This exercise, although biologically unrealistic, reveals that our convergence 

approximation, mH, is a good approximation of the optimal m value all the way to the 



 

62 

 

youngest age, thus demonstrating that constraints keep the memory window small early 

in the lifetime.  

However, this same mathematical exercise does not affect results from later in the 

lifetime. Thus, it is not constraints on m that lead to memory decline or increase towards 

the end of the lifetime. Why is optimal memory changing here? Within our model, 

memory generates a variance in payoffs. This means that the concavity of the maximal 

expected future reproductive success function, F, will be important. Specifically, the 

spread in payoffs are translated positively for convex F and negatively for concave F. Of 

course, F changes with age. Specifically, for the oldest age, F is given by Φ, the final 

fitness function, and as age decreases, F converges to another function, which we’ve 

called H. If Φ is more convex than H, then memory tends to increase towards the end of 

the lifetime. If Φ is more concave than H, then memory tends to decrease towards the 

end of the lifetime. When H does not have much curvature (e.g., Figure 3-4), then 

strongly convex or concave final fitness functions will tend to leave “signatures” on the 

optimal memory surface (gradual increase or gradual decline, respectively). The question 

remains whether a convex or concave final fitness function is more biologically realistic. 

If fitness returns consistently diminish (as opposed to accelerate) with energy reserves, 

then a concave function would be apt. In such a case, our model predicts that optimal 

memory should decline with age, an effect due to the signature of the fitness function 

rather than constraints on memory. 

Many theoretical treatments on the evolutionary advantages of learning center on 

environmental variability (Arnold, 1978b; Bergman and Feldman, 1995; Cohen, 1991; 

Dukas, 1998; Feldman et al., 1996; Johnston, 1982; Kerr and Feldman, 2003; Mangel, 
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1990; McNamara and Houston, 1987; Shettleworth, 1998; Stephens, 1987; Stephens, 

1991). Consistent with other models, our model shows that as stimuli in the environment 

become less reliable, optimal recall (at any age or state) tends to decrease. However, the 

rate of stimulus change, ρ, will also have a strong effect on the shape of H, the function to 

which the maximal expected future reproductive success function converges. As the 

concavity of H changes, this will affect the differences in concavity between Φ and H and 

thus will change the potential for optimal memory decline or increase (see above).  

When the organism is in a low state (and the cost of living is high, which we assume in 

our model), maximal memory is optimal. Consistent with this prediction, Pravosudov & 

Clayton (2001) found that mountain chickadees maintained on a limited and 

unpredictable food supply made fewer errors on a cache recovery task than well-fed 

birds  (see also Friedrich et al., 2004;  and Orsini et al., 2004). Of course, the motivation 

of an organism with low energy levels and high costs of living might be very different 

than that of an organism with high energy levels and low costs of living, and cognitive 

performance may vary with motivation.   

While this model provides some novel insights, there are a number of potential 

extensions that could be explored. First, reproduction in the model occurs only at the 

end of the lifetime (a form of semelparity). It is not difficult to incorporate reproduction 

throughout the lifetime (Houston and McNamara, 1999; Mangel and Clark, 1988).  We 

explore an iteroparous extension to our model in Appendix 5D, where we show that 

optimal memory can still decay with age despite repeated individual bouts of 

reproduction. Thus, adaptive memory decay does not depend on an assumption of 

semelparity. Second, we assumed that the cost of living, κ, was constant. However, it has 
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been proposed that memory itself may be explicitly costly (Dukas, 1999; Kuhl et al., 

2007; Mery and Kawecki, 2005), and memory performance is sensitive to imposed costs 

(Balda and Bednekoff 1997; Laughlin and Mendl 2004). We could easily include cost by 

writing κ as an increasing function of memory (κ(m)). We consider this model extension 

in Appendix 5E. While explicit costs to memory depress optimal values, we see that 

optimal memory can still decay with age. With explicit memory costs, we can also 

reorder the payoffs, such that using memory is always more valuable than sampling from 

scratch: ciu πππ << .  Such an ordering could apply to the case where stimulus change 

leads to only a slight decrease in payoff for a remembered behavior. Again, we see that 

optimal memory can still decrease with age in such a case (Appendix 5E). We have found 

that our basic results are robust to alterations in several of our model assumptions 

(Appendices 5D and 5E). 

Our model does offer a new perspective on the evolutionary reasons for deterioration of 

memory with age. The classic theories of senescence (Medawar, 1952; Williams, 1957) 

suggest that deterioration with age occurs either due to selection for genes that are 

beneficial early in life but detrimental later in life (antagonistic pleiotropy) or due to the 

inefficacy of selection to weed out deleterious mutations late in life when reproductive 

output decreases (mutation accumulation). These evolutionary explanations generally 

posit that, all else being equal, decay at any age is selected against (and thus senescence 

is either a side effect or a selectively elusive phenomenon). Some of the classic 

explanations of memory loss (e.g., synaptic decay) fit well within this classic theoretical 

framework. In contrast, our model claims that memory loss can in and of itself be 



 

65 

 

adaptive. We expect this to be the case when condition is poor, the individual is near the 

end of its lifetime, and fitness returns consistently diminish with energy reserves. 

Furthermore, our model makes several specific predictions about changes in memory. 

First, and in agreement with other models, recall should decrease as the environment 

becomes less reliable (Kerr and Feldman, 2003; Mangel, 1990; McNamara and Houston, 

1987). Second, retrieval should roughly increase with the cost of living (see Appendix 

5B).  Third, cost of living should interact with state of the organism. If the cost of living is 

high, organisms in a very poor state should have high memory; whereas if the cost of 

living is low, organisms in a very good state should have little to no memory.  Fourth, 

(and unlike general theories of senescence) our model does not predict inevitable decline 

of memory. The behavior of memory length with age depends on the relationship 

between the state of the organism and its final fitness. However, if fitness shows 

diminishing returns with state, memory should decline gently with age for intermediate 

levels of stimulus reliability.  

The validity of this model can be addressed empirically. For organisms at reproductive 

age, the relationship between energy (or fat) reserves and number of offspring is an 

empirical issue. The predicted changes in memory could be checked (perhaps within a 

comparative framework) against the observed concavity of this relationship. Individuals 

with high metabolic demands of living tend to demonstrate superior memory capability 

while in poor states (e.g. Friedrich et al., 2004; Orsini et al., 2004; Pravosudov and 

Clayton, 2001). It would be interesting to repeat such experiments with organisms that 

possess a low cost of living (where our model predicts the effect will be less dramatic). 

Given the rich history of empirical work on memory, models such as this one will be 
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important in both reconciling seemingly disparate observations and suggesting new 

avenues of research in the behavioral ecology of memory. The essential point 

underscored by this model is that learning is a dynamic process and critical components 

of that process, such as memory length, may change in optimal ways within the lifetime 

of the learner. 
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Chapter 4 — Choice in a variable environment: an 

experimental test of tracking, sampling, and 

memory length3 

 

Introduction 

The world is a variable place. Foraging animals need information to make decisions 

about what and where to forage, but animals are not omniscient; they face the classic 

foraging problem of making decisions with incomplete information. An additional 

complication to this problem is that once an animal gathers enough information to make 

a decision, the environment can change: so they best place to forage right now is not 

necessary the best place four hours from now. Making good decisions in a variable 

environment depend upon a suite of cognitive capabilities. In a changing world, a forager 

needs to sample from possible patches or food sources and track the changes that are 

occurring. Gathering this information requires learning, and the later use of that 

information requires memory and making choices: the forager must decide among the 

potential options at any given point in the future.  

Models predict cost/benefit tradeoffs to sampling and acquiring new information: there 

can be costs to the forager who does not sample the environment frequently enough, but 

there are also costs to foragers who sample too often or over-track the environment 

                                                        

3 This project was approved by the Institutional Animal Care and Use Committee of the University 
of Minnesota. 



 

68 

 

(Stephens, 1987) . A key aspect of when to acquire information is how frequently the 

environment changes. At one extreme, if the environment is completely persistent, there 

is nothing to track: the information currently held is accurate and will be accurate in the 

future. At the other extreme, if the environment changes randomly, tracking is pointless 

and random choice is best. At rates of change in between these extremes, however, the 

broad prediction is that animals should sample and acquire information more frequently 

as change increases: there are more changes to track. Some studies have looked at the 

effect of differing food amounts in options being tracked (e.g. Inman, 1990; Shettleworth 

et al., 1988; Tamm, 1987) , but the aspect of variability has not been as well-tested 

empirically.   

Once they acquire information, animals must often make decisions about that 

information at varying time points after the time of the last sample. The passage of time 

is an important variable in decision making, but most investigators chose to ignore 

changing memory lengths. A few models of memory have tied choice to variable 

environments. The classic approaches use exponential weighting of past experiences, 

linear operators, and often some application of Bayesian analysis (e.g. Harley, 1981; 

Houston et al., 1982; Kacelnik et al., 1987; Killeen, 1981; McNamara and Houston, 1987; 

Valone, 2006). In a more variable environment, animals should choose the most recently 

encountered stimulus, and similarly in a more variable environment, animals should 

forget more quickly (Mangel, 1990; McNamara and Houston, 1985; McNamara and 

Houston, 1987). Kerr and Feldman came to similar conclusions in a model learning 

system focusing in heterogeneous environments (Kerr and Feldman, 2003). A related 

approach to memory length explicitly considers how foragers balance recent and past 
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information and choose appropriately (e.g. Devenport and Devenport, 1994). How does 

environment change affect the balance between recent and past information?  

In this paper, we approach sampling and memory in varying environments through 

model and experiment. We first modeled a very simple two-stimulus task, where 

choosing one stimulus is rewarded with food, while choosing the second results in no 

food and a longer wait until the next choice. We created environmental change by 

reversing which stimulus is rewarded. We then tested our predictions using blue jays in 

an operant setting. By varying the rates of reversal of stimulus reward, we test 

hypotheses about how the jays should sample and learn in the different environments 

and how they should apply the information they have gathered. We hypothesize that 1) 

birds will sample more in environments which change more frequently, 2) birds in more 

variable environments will more closely track those changes, and 3) rates of change will 

interact with the passage of time when birds are tested on after differing retention 

intervals, with birds in more variable environments forgetting more quickly. 

Model 

At any given trial, the subject can select stimulus A or stimulus B. Only two situations are 

possible: A correct and B wrong, or A wrong, B correct. We call these the A correct and B 

correct states. We assume that a symmetric persistence process governs the transition 

between these two states, with q giving the probability of remaining in the same state 

(and 1-q the probability of switching correct states). It would seem that there is nothing 

to track in this situation because an animal can immediately recognize which state is 

true. For instance, if the subject samples stimulus A and fails to obtain a reward, then it 

should immediately switch to choosing stimulus B (because only one stimulus can be 
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correct at a time). It is a simple, but likely unrealistic, result that assumes animals can 

perfectly recognize the current state (A or B correct). Instead, we distinguish between the 

true state and the recognized state. We do this using an error rate, ε, which we define as 

the probability that the recognized state differs from the true state.  

We solved this problem using dynamic optimization, first determining the optimal 

behavior in the final step. Let p be the subjective probability of the A correct state. In the 

final step, then, the optimal behavior is to choose A if p ≥ ½, with a payoff of p, and to 

choose B if p < ½, with a payoff of 1-p). The optimal payoff for the last step is a function 

of p, which we’ll call V0(p). This takes the form of a simple V shape.  

Solving the second to last step is a bit more complicated. The payoffs are the same 

(choose A, get p; choose B, get 1-p). Regarding the state variable, p, four things can 

happen (Table 4-1): 

Event Probability 

A true and A recognized ��1 � �	 

A true and B recognized �� 

B true and A recognized �1 � �	� 

B true and B recognized �1 � �	�1 � �	 

Table 4-1. Possible outcomes concerning the state variable. 

The animal, however can only observe two events: recognizing A or recognizing B, and 

these occur regardless of the actual choice the subject makes (Table 4-2). 
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Event Probability 

A recognized ��1 � �	 
  �1 � �	� 

B recognized �� 
  �1 � �	�1 � �	 

Table 4-2. Events observable by the subject. 

If A is recognized, we can find the probability that A is true by Bayes Theorem: 

 

����������|������������ � ��� !"|�"# 	���"# 	
��� !"|�"# 	���"# 	$ �� !"|%"# 	��%"# 	   [4.1] 

�& � �'()	*
�'()	*$)�'(*	       [4.2] 

Similarly 

����������|+����������	 � )*
)*$�'()	�'(*	    [4.3] 

 

Now we add change. If the animal knows p, the probability that A is correct in the next 

step is: 

,��	 � �" � 
 · �& 
 �1 � 
	�1 � �&	    [4.4] 
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Let VA(p) be the value of choosing A when p is true and let VB(p) be the value of choosing 

B when A is true. So: 

/���	 � � 
 0�1 � �	� 
 ��1 � �	1 · /2 3, 4 �'()	*
�'()	*$)�'(*	56 
 0�� 
 �1 � �	�1 � �	1 ·

/2 3, 4 )*
)*$�'()	�'(*	56      [4.5] 

/%��	 � �1 � �	 
 0�1 � �	� 
 ��1 � �	1 · /2 3, 4 �'()	*
�'()	*$)�'(*	56 
 0�7 


1��1��·/0,����
1��1��      [4.6] 

 

We give /'��	 as the optimal behavior when two steps remain, and 

 

/'��	 � 89:0/���	, /%��	1      [4.7] 

We use /2 to calculate /', and since the logic for the second to last step applies generally, 

we can calculate /���	 from /�('��	 in the same way. We solved the problem numerically 

by finding /���	 for a list of p values, and then found /�$'��	 using the previously 

calculated values of /���	. 

 

Figure 4-1 represents a typical result from the model. In general, memory loses value 

more quickly when persistence, q, is low (and the value starts out at a lower point). With 

changes in error rate, we see few changes in overall effects, except when error rates are 

extremely high (e.g. ε=0.5) and the world is completely persistent (q=1.0). In this case, 
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Figure 4-2. Results for q=0.98186 and ε=0.01. We chose the q value based upon the rate 

of change in the experiment in this paper. In 2b, the sharpest V-shape represents the 

beginning time step, with each of the next time steps following in order with more and 

more shallow V-shapes. 

 

Materials & Methods 

Subjects & Experiment Apparatus 

Eight adult blue jays (Cyanocitta cristata) of unknown sexes and mixed experimental 

histories served as subjects. These birds were captured from the wild as nestlings and 

were hand reared in the laboratory. All birds were between three and ten years old. We 

tested the birds in operant boxes (Fig 4-3). Each box was equipped with two stimulus 

projectors in the front of the box and one stimulus projector in the rear. We placed a 

hinged perch attached to a micro switch under each stimulus projector so that we could 

determine when the subject hopped to each perch.  Choice of a stimulus was registered 

as a hop to the perch beneath the projector. We attached a pellet feeder to each box, and 

food was delivered to a cup in the front of each box, located between the two stimulus 

Time steps 



 

 

projectors. A small light in the food cup (a magazine light) flashed with each food 

delivery. A computer controlled all the equipment, ran the programmed the 

experimental contingencies and collected the resulting data. Prior to the experiment, we 

trained the birds to perform in the operant boxes using shaping techniques. 

Figure 4-3. The experimental apparatus.

We used a modified closed economy system, in which birds received all of their daily 

food within the experimental trials. This allows each bird to experience the consequences 

of their choices: good choices resulted in more food, poor choices in less. Birds 

performed in the experiment for 8 hours each day, and remained in their boxes for 23 

hours each day. We removed the birds for one hour each afternoon to clean the boxes, 

save the data, and weigh the bird and check its health. To ensure that each bird stayed in 

good health, we set a minimum amount of food a bird would receive each day. If a bird 

did not achieve the minimum on any day, we fed the bird the difference between the 

amount gained in the box during trials and the minimum allowance.
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Basic Experimental Design 

We first designed an environment in which we can vary how frequently the relationship 

between two stimuli changes. We did this using a two-choice reversal learning task. A 

choice of one stimulus, say stimulus A, is rewarded with food, while a choice of the 

second stimulus, stimulus B, results in no food and a longer time interval to wait until 

the next trial. The relative values of these stimuli switched according to a prior 

probability, e.g. stimulus A is correct for x minutes, then stimulus B becomes correct. 

Around this basic framework of a varying environment, we built experimental 

contingencies to test additional hypotheses concerning tracking and decision making 

over different time intervals. To do this, birds experienced three phases of trials (Fig. 4-

4). In the first phase, the birds performed in the reversal learning task, where the two 

variability treatments were enacted by changing the rate at which the reversals occurred. 

After experiencing this variability, birds entered the second phase, during which we 

tested tracking behavior. Here, birds learned a final reversal of stimuli values to a set 

criterion. Upon reaching the criterion, the third phase of trials began, during which we 

tested decision-making. During these trials, the birds performed a simple light-following 

task, into which we inserted single probe trials to test the choices the birds made about 

the stimuli.  

We randomized the order of the high and low treatments, such that the order was 

balanced across the eight birds. Within each change treatment, we randomized the 

retention intervals tested in four blocks of five intervals each (one of each interval in each 

block). We did this to ensure that any order effects within the probes tested would be 

balanced across the retention intervals. 
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Figure 4-4. Design of the experimental trials. Birds experience variability in the form of 

stimulus reward reversals. In the low change treatment, birds experience stimulus A 

correct for five hours, then stimulus B is correct for the next five elapsed hours of trials. 

In the high change treatment, stimulus A and B reverse reward on average every 30 

min. Stimuli rewards reverse for a final time in both treatments during the Day 2, and 

this final learning set continues until the bird reaches a criterion of accuracy. Birds 

then began a simple task following white lights and we inserted a single probe trial to 

test one of 5 retention intervals. At the end of the experimental day of the probe trial, 

the bird began the process again with a new stimuli pair. 

 

Testing a Single Retention Interval 

Each stimulus was a combination of a color (red, blue, green, or yellow), and a shape. We 

always presented the stimuli as pairs, with the computer randomly determining the side 

each stimulus appeared on in each trial. Each learning trial would begin with the rear 

light flashing, upon which, the bird would hop to the rear perch. Once the bird was on 

the rear perch, the computer would present the stimuli flashing on the front projectors. A 

choice would be registered by a hop to the perch below the stimulus, at which point both 
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stimulus lights would extinguish and the bird would either be fed one pellet, or fed no 

pellets. A correct choice would be followed by an intertrial interval (ITI) of 40 seconds, 

while an incorrect choice would be followed by a longer ITI of 120 seconds. At the end of 

the ITI, the rear light would flash, beginning a new trial. A trial would abort and begin 

anew following any 20 minute period without hops to perches. 

The rewarded stimulus was chosen by the computer, and remained the same until 

changed according to the assigned treatment. In the low change treatment, the rewarded 

stimulus changed only once, six hours into the first day of each retention interval test. In 

the high change treatment, the time between changes was pulled from a distribution with 

a mean of 60 min, with a new time chosen after each change interval. The birds 

performed learning trials for eight hours during the first day of an interval test and then 

during the morning of the next day.  

Following 2.5 hours of learning trials on the second day, the rewarded stimulus would 

switch for a final time for both treatments. The rewarded stimulus would then remain 

the same for the duration of the retention interval test. We then tested the birds for 

learning the new stimulus values to a criterion of five correct rewarded trials in a row. 

We chose this criterion based on pilot data. Immediately upon meeting the criterion for 

the final set of learning, the computer would switch the bird to a simple light following 

task. In this task, a trial would begin with the rear white light flashing. The bird would 

hop to the rear perch and then only one of the front white lights would flash. Birds 

hopping to the perch in front of the flashing light would be rewarded. This task would 

continue for eight hours each day until the retention interval was reached. At the 

retention interval, the bird would be presented with a single probe trial, with rewards 
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equal to the final learning set they reached criterion on. Following the probe trial, birds 

would continue in the simple light following task until the end of the experimental day.  

On the following day the bird would begin the learning trials for the next retention 

interval. To avoid interference between tests of retention intervals, we rewired the 

stimulus lights to present a new pair following the completion of each retention interval 

test. Series of pairs were randomly assigned before the experiment, such that each box 

would cycle through fourteen possible combinations before repeating the sequence. 

Dependent Measures 

In this simple two stimulus system, we defined sampling as choosing the stimulus that is 

not currently rewarded. To address our hypothesis on sampling, we assess choice of the 

non-rewarded option during the 10 hours of trials during which subjects experience 

variability for each iteration of a retention interval test. To successfully track the 

environment, an individual must quickly switch to more profitable new behaviors and 

abandon old behaviors. With a stimulus switch, a bird must choose the newly rewarded 

stimulus and stop choosing the old stimulus, which no longer provides a reward. To 

analyze tracking behavior, we focused on the second day of learning each new stimulus 

pair. Our measure of tracking is how quickly the subjects acquired the last stimulus 

switch during the final learning set. We measure acquisition by the number of trials 

required to reach the criterion described above. Finally, to assess memory and decision 

making across the five retention intervals we tested, we compare the choice made in each 

probe trial to the correct choice as per the last experience of the final learning set.  
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Results 

Sampling the Environment 

Our first analyses ask how the birds sampled the experimental environments. To do this, 

we examined choice behavior during the first day of learning trials for each new stimulus 

pair. We predicted that birds in the high change treatment sample the non-rewarding 

stimulus more frequently than birds in the low change treatment. At the largest scale of 

analysis, we can look across each entire first learning day at how often birds sampled the 

unrewarded stimulus. Birds sampled more frequently in the high change treatment 

(unrewarded choices/day <= > ?@, high change= 103.60 > 32.60, low change = 46.36 > 

20.68 unrewarded choices/day; Paired t-test: t7 = -8.987, P < 0.0001).  

Birds could be sampling, but they could also be making overrun errors, which occur 

when stimulus values change and an individual continues to choose the now 

unrewarding stimulus. Our next analysis, therefore, takes a more restrictive view by 

considering sampling choices made after initial learning has occurred. We compared 

sampling during periods in which no stimulus changes occurred. To control for time of 

day effects, we chose the closest 20-trial interval with no stimulus value change 

occurring at around 1400 on the first day of learning each new stimulus pairing. Even 

with the more stringent criteria, we still found a statistically significant difference 

between the environmental variability treatments, with birds sampling more frequently 

in the high change treatment than in the low change treatment (errors in 20 trial 

sample, <= > ?@, high change= 2.833 > 1.08, low change= 0.532>0.383;   Paired t-test: t7 

= -7.30, P < 0.0002). 
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Tracking Change in the Environment With Learning 

To assess how well the birds tracked the environment, we compared how many trials 

birds required to reach the learning criterion during the final learning set for each 

stimulus pairing. A quick adjustment to this final change indicated “good tracking,” 

while a slower adjustment indicated less effective tracking. As predicted, birds reached 

the learning criterion more quickly during the high change treatment (mean trials to 

criterion <= > ?@, high change = 17.218 > 7.620, low change = 31.696 > 16.534;  Paired t-

test: t7 = 3.16, P < 0.016).  

Birds in the high change treatment tracked the environment more efficiently, requiring a 

smaller number of trials, but across the 10 previous hours of experience they also had 

many more changes to track. In a highly variable environment, like our high change 

treatment, foragers must track to maintain an adequate intake rate. Did our birds track 

the environment well enough to keep up with their rate of food intake under the low 

change environment? We measured the average rate of food gain for each bird during the 

first day of learning trials under each of the environmental change treatments. Birds 

obtained a higher rate of food gain under the low change treatment (g/min <= > ?@, high 

change = 0.0126 > 0.0026, low change = 0.0179 > 0.0013; Paired t-test: t7 = 5.899, P = 

0.0006). A higher level of tracking did not completely offset the losses incurred due to 

the changes in the variable environment (theoretical max is 0.0279 g/min, both low and 

high significantly differ from this maximum, P<0.05). 

Memory and Choice of the Last Experienced Stimulus 

Once birds have sampled and tracked the environment, and acquired the information 

about the environment, they must make decisions using that information at some point 
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in the future. We assessed their decisions in probe trials across the five retention 

intervals. We first analyzed how birds chose according to their most recent experience. A 

correct choice according to their most recent experience would be to choose the same 

stimulus that was rewarded during their final learning set. Figure 4-5 shows the mean 

choices for each treatment and retention interval. Birds in the low change treatment 

chose no differently after 1 hour than they did after 4 hours; however birds chose much 

less accurately at 24 hrs. In the high change treatment, birds made more accurate 

choices after 1 hr, less accurate choices after 4 hrs, and their best choices of all following 

24 hrs. In both treatments, we saw similar choices after 48 and 72 hrs, an increase in 

performance from 24 hrs for birds in the low change treatment, but a decrease in 

performance from 24 hrs for birds in the high change treatment.  

We analyzed these choices using a repeated measures ANOVA and found a significant 

interaction between the main effects of treatment and interval (F(4,28) = 2.77, P < 0.048). 

However, there were no significant effects of treatment (F(1,7) = 2.60, P = 0.15) or interval 

(F(4,28) = 0.65, P = 0.63) alone. We analyzed this further using contrasts. Within the high 

change treatment the dramatic change from 4 hrs to 24 hrs is statistically significant 

(F(1,7) = 14.00, P = 0.0072). The next change, from 24 hrs to 48 hrs, was statistically 

significant (F(1,7) = 7.06, P = 0.032). The most striking difference was between the 

performance of birds in the low and in the high change treatments after 24 hrs. This 

difference was significant, with birds choosing correctly in the high change treatment, 

but incorrectly in the low change treatment (F(1,7) = 11.67, P = 0.011). Following a full day, 

and importantly, and presumably overnight consolidation of the previous day’s 

memories, birds in the high change treatment chose the most recent stimulus now more 

frequently. But, birds in the low change treatment chose the opposite. They chose the 
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stimulus, which in their case had not been rewarded most recently, but which had been 

rewarded for the longer period of time that previous day: the first 2.5 hrs of that second 

day of learning those stimuli, before the final learning set began, as well as the afternoon 

of the first day of learning (see figure 4-4).  

 



 

 

 

 

Figure 4-5. The mean performance of birds when making choices relative to the last 

stimulus they experienced as correct, over five retention intervals.  Each set of birds 

was exposed to different rates of environmental change (low or high).  Significant 

interactions were observed between the low and high change treatments at 24 hours, 

and within the high change treatment between 4 and 24 hours.  

standard deviations. 
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Balancing Recent with Past Information 

The previous analysis scored the probe choice as correct when it was the same as the 

most recently correct stimulus from that environment. However, birds may be making 

choices based on a different criterion. Birds may place more weight on past information. 

What is past information in this experiment? Across the entire experience variability 

phase of trials, the birds received equal time during trials when each stimulus was 

correct. However one stimulus remained “correct” during the entire overnight period 

between the two learning days, and we used this stimulus as the past information. The 

assumption behind this choice is based on a mechanistic explanation that information 

that has been consolidated overnight might hold more weight in a choice than the most 

recently encountered information. And indeed, the most striking change in choice in our 

first analysis was at 24 hrs. 

What will birds choose when this past information conflicts with recent information? We 

analyzed this by looking at a deviation from expected choices if the birds were following 

the past information. To obtain these data, we gathered all instances of choice where the 

past information (the overnight correct stimulus) and recent information (most recently 

correct stimulus) conflicted. We counted the number of times each bird chose according 

to the past information correct, when the past and recent options conflicted, and then 

divided those totals by what we would expect by chance for the number of conflicted 

trials available in each case. The variable we analyzed was the difference between the 

observed choices and the expected choices, divided by the expected choices. 

Environmental change interacted significantly with the interval at which the choice was 
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made (Repeated measures ANOVA: F(4,28) = 3.68, P = 0.0157). Neither main effect was 

significant (change: F(1,7) = 0.207, P > 0.66; interval: F(4,28) = 1.42, P = 0.254).  

Figure 4-6 shows these data. After one hour, birds in the low change chose the 

past/overnight stimulus as we would expect by chance, while birds in the high change 

treatment chose the past/overnight stimulus more than we would expected by chance. 

The difference between the two treatments at this interval was significant (F(1,7) = 7.716, P 

= 0.0273). In a highly variable environment, when the most recent experience conflicted 

with the experience from the past (i.e. information that was consolidated over the 

previous night) birds appeared to rely on that past information. After 4 hrs, birds in both 

treatments appear to be choosing between the contradicting information in roughly the 

same way, with a slight bias towards the stimulus that was correct during the more 

distant past.  

At 24 hrs the results mirrored the basic results in figure 4-5: when in the high change 

environment, birds after 24 hrs chose the stimulus that was rewarded most recently, and 

they did so even when this conflicted with what was the best stimulus from the past (the 

overnight correct stimulus before the second day of learning). But, when in the low 

change treatment, birds chose the previously rewarded stimulus rather than the most 

recently rewarded correct stimulus, and they only did this after 24 hrs of waiting. The 

two environmental change treatments did not quite differ significantly at 24 hrs (F(1,7) = 

3.91, P = 0.088). The shift between 1 and 24 hrs was not statistically significant for either 

treatment (low change: F(1,7) = 4.2, P = 0.0796; high change F(1,7) = 4.16, P = 0.0807).  
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expected for birds choosing according to the stimulus 

that was correct after the first day of learning, when that stimulus conflicted with the 

tend towards 

choosing the overnight stimulus (past information) more than expected by chance, 

rewarded 
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Discussion 

Birds’ choices in a low change environment differed from their choices in an 

environment that changed much more frequently, and these differences came in a 

number of forms. First, birds sampled the unrewarded option more frequently when 

under a high rate of change compared to when under a low rates of change. Second, we 

found significant differences in birds tracking the environment: birds learned the new 

values of reversed set of stimuli more quickly in the high change treatment than in the 

low change treatment. However, while much theoretic work suggests an orderly decay of 

memory, with birds making more accurate choices under low change than under high 

change, this is not what we found. Instead we found significant interactions between the 

rates of change of the environment and the birds’ choices after the five different 

retention intervals. 

As predicted, birds sampled more under high rates of change. We expected birds exposed 

to high rates of change to choose the alternate stimulus more frequently, simply because 

the environment was changing and sampling the alternate versus making an error 

immediately following a change were indistinguishable. However we also found a 

significant difference between the high and low change treatments when we looked at 

choice in groups of trials between the reversals, after learning had been acquired. When 

the stimulus value changed frequently, birds had more to track: they had to learn those 

changes and switch their behavior. While a few studies have tested the Stephens (1987) 

tracking model, only one tested more than a single level of environmental change. 

Hummingbirds also sampled more in more varying environments than in less varying 

environments (Tamm, 1987).   
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The experimental system described in this paper differs from the traditional tracking 

models because we had only two states: good and bad, and the current value of the 

alternate stimulus could always be inferred from the value of the currently chosen 

stimulus. Birds however, still demonstrated sampling behavior, which is what one might 

expect when the current value of a stimulus does not perfectly predict its future value. 

From a purely psychological point of view, finding a difference in learning speed ability—

what we have called tracking—should be expected. From an interference point of view, 

birds under a low rate a change should have a more difficult time learning any given 

reversal because of a greater susceptibility to proactive interference: the associative 

strength built up by many trials with the original stimulus values can interfere with 

quickly learning reversed stimuli values. Animals faced with serial reversals in learning 

become quicker at learning those reversals (e.g. Mackintosh, 1974). Not finding a 

difference between our two rates of change would have been rather surprising from this 

point of view. However, giving animals reversal learning tasks continuously in a closed-

economy system, rather than in one-trial per day, or short sessions, is not a common 

approach. This type of interference, which would occur for a constantly foraging animal, 

is probably quite biologically relevant.  

Our memory results were not what we expected.  We generally expect animals to choose 

according to their most recent experience, because the most recent state of the 

environment is the best predictor of the current state of the environment. However, we 

found that choice across time interacted with the experienced rate of change. The most 

dramatic difference was at 24hrs, with both a significant difference between treatments 

and a significant positive increase between 4hrs and 24 hrs when birds were under the 

high rate of change. The results for 48 and 72 hours were more along our predictions: 
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birds performing marginally better under 48 hours with no difference under 72 hours 

(pilot testing indicated no retention after 72 hours under no change). Because of the 

striking difference at 24 hours, the birds were likely weighting past experience differently 

in these two treatments. At 24 hrs, birds in the low change treatment chose towards the 

opposite of their most recent experience, which was the stimulus that was correct for the 

rest of the second day and the second overnight. A temporal weighted average, such as 

that described by Devenport and Devenport (1994; 1997) qualitatively predicts such a 

switch, however, according to their model, it should have occurred within a few dozen of 

trials, rather than a full days of trials later. 

Clearly, the jays balance past and recent information in some way. When the most recent 

experience conflicts with what was correct overnight, one can easily predict that the 

variability within that recent experience affects what the birds eventually choose. And 

that is what we found. When birds were in a minimally variable environment, at 1 hr 

following their most recent experience, neither that stimulus nor the overnight stimulus 

was preferred. This preference changed after 24 hrs, when the birds switched from 

preferring the stimulus that was correct during their first overnight to choosing the most 

recently correct stimulus, which at that point had an overnight memory consolidation 

period. The switch at 24 hours probably reflected the same pattern from the first analysis 

of choice (according to the most recently correct). Birds here averaged across a longer 

period of time. Their most recent experience was relatively brief compared to the 

previous 5 hours of trials contradicting that experience. And across time, the choice 

became more evident after 24 hrs.  
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We saw a different pattern for birds in a highly variable environment. At 1hr following 

their most recent experience, these birds more heavily relied upon their overnight 

memories. However, after 24 hrs, and another night, birds in the high change treatment 

tended to choose according to their most recent experience. The rates of change in this 

treatment occurred on average every 60 min. Following any period of multiple hours, the 

best strategy is to choose randomly because it is impossible to predict the state of the 

environment. The birds, however, did not choose randomly and choice did interact with 

time. A possible explanation is that in a variable world, the stimulus memory with more 

strength is what will be chosen. In short retention intervals, the birds relied on their past 

experience of what was correct overnight. Unlike birds in the low change treatment, the 

birds in the high change treatment did not disregard the most recent information when it 

came to 24 hr intervals: this information presumably gained more strength as time 

progressed, and another overnight interval occurred. 

While time may degrade the value of remembered information in a linear fashion, as 

theory predicts, the birds in our experiment did not respond as if this were the case. 

Although we can only speculate as to the mechanisms, processing of the memories 

within the brain occurring overnight, i.e.. consolidation, likely had a strong effect on the 

differential weighting of memories and this interacted with the passage of time as we 

tested with our retention intervals. This type of interaction should be more closely 

investigated in how information from past events is weighted as animals make decisions.  
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Appendix 1 — Modeling the Evolution of Learning 

versus Non-Learning4 

To begin, we introduction some notation that simplifies our presentation. First, we use A 

and B to represent the two types of media (orange and pineapple in our experiment). 

Second, we use the notation QA to mean that quinine is paired with media type A in the 

experience phase, similarly QB means that we paired quinine with media type B in the 

consequence phase. Third, we use the notation A* to mean that the experimenter rears 

eggs from media type A in the consequence phase; similarly we use B* to mean that we 

rear eggs from media type B. To simplify the terminology, we say that the A* is the ‘A-

best’ condition, similarly B* is the B-best condition.  

Next, we use this notation to define parameters that represent the fixity of the stimulus-

consequence and action-consequence relationships. Let q measure the fixity of the 

stimulus-consequence relationship, specifically P(A*|QB)=P(B*|QA)=q. In words, q is 

the conditional probability that pairing with quinine in the experience phase predicts the 

media that flies should avoid in the consequence phase.   

We use p to represent the fixity of action-consequence relationship. Specifically, let p be 

the probability that the A-best condition applies for any given realization of the 

consequence phase. For example, if p=1.0 it is always best to lay eggs of media type A, 

whereas if p=0.5 the best place to lays varied unpredictably from one generation to the 

next. We remark we lose no generality by defining p in terms of the A-best condition, 

                                                        

4 This appendix provides the mathematical details for the model described in Chapter 1. 
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because types A and B are arbitrary. In practice, this means that we define type A to be 

the type that is ‘best’ most frequently, i.e. P(A*) ≥ P(B*), implying that P(A*) ≥ 0.5.    

Now we consider two types of flies: a non-learner who always tries to oviposit on A and a 

learner who oviposits on A if quinine was paired with B in the experience phase, but 

oviposits on B if quinine was paired with A in the experience phase. We assume that a 

female lays N eggs in the consequence phase. In addition, we assume that a female 

makes some oviposition errors so that she cannot lay 100% of her eggs in her preferred 

media. Instead she lays 1-ε of her eggs in the media she “prefers” and ε in the media she 

“intends” to avoid; so ε is the error rate. Finally we assume that a proportion r of the eggs 

a female lays in the “best” media survive to reproduce, while none survive to reproduce 

when they are laid on the “worst” media. Within a generation, there are four possible 

events, as shown in Table A1-1.  

Event Non-Learner Learner 

Experience 
Phase 

Consequence 
Phase 

Probability Behavior Fitness Behavior Fitness 

QA A* p(1-q) Prefer A r(1-ε)N Prefer B rεN 

QA B* (1-p)q Prefer A rεN Prefer B r(1-ε)N 

QB A* pq Prefer A r(1-ε)N Prefer A r(1-ε)N 

QB B* (1-p)(1-q) Prefer A rεN Prefer A rεN 

Table A1-1. Contingencies and fitnesses for learners and non-learners. 
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From this we can calculate the fitnesses of the two types. When fitness varies temporally 

(from one generation to the next), we calculate the geometric mean fitness of the two 

types (Karlin and Lieberman, 1974; Karlin and Lieberman, 1975). The fitness of the non-

learner is 

p(1-q) ln[r(1-ε)N] + (1-p)q ln(rεN) + pq ln[r(1-ε)N] + (1-p)(1-q) ln(rεN)      [A1.1] 

Which simplifies to 

Pln[r(1-ε)N] + (1-p) ln(rεN)        [A1.2] 

The reliability term, q, cancels out because the non-learner ignores the pairing with 

quinine. Similarly, the fitness of the learner is 

p(1-q) ln(rεN) + (1-p)qln[r(1-ε)N] + pqln[r(1-ε)N] + (1-p)(1-q)ln(rεN)    [A1.3] 

Which simplifies to 

Qln[r(1-ε)N] + (1-q)ln(rεN)     [A1.4] 

Here, the frequency of the A-best state cancels out because the learner’s fitness depends 

on whether the quinine cue reliably predicts the best media. The only difference between 

the two simplified expressions is the presence of p or of q, thus learning should be 

favored whenever q > p. The learning and non-learning traits will be neutral whenever q 

= p. This includes the so-called absolute fixity case—q = p = 1—and the completely 

random case—q = p = ½.  
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Appendix 2 — Modeling Prepared Learning to Color 

Versus Odor5 

This model is logically similar to the model described in Appendix 1. However, here, flies 

experience pairings of two modalities of stimuli: odor, which we will denote using roman 

letters, and color, denoted by greek letters. There are two odors and two colors.  To make 

this explicitly the same as the experiment, we can say that for the odors stimulus A is 

amyl acetate and stimulus B is benzaldehyde, and that for the colors, α is aqua, and β is 

blue. 

As with the previous model, we imagine a learning scenario where individuals use 

quinine (Q), as an aversive unconditioned stimulus and the odor and color as potential 

conditioned stimuli. As with the experiment described in chapter 1, flies experience two 

phases: and experience phase and a consequence phase.  

There are four possible pairings with quinine in the experience phase: 

Q+Aα  or  Q+Bβ  or  Q+Aβ  or  Q+Bα 

The probabilities of quinine being placed with A or B, or α or β, are independent. We can 

define these probabilities as P(Q+A) = a , and P(Q+B) = 1-a ; and P(Q+α) = b, and 

P(Q+β) = 1-b. 

Now we define the possible outcomes in the consequence phase (Table A2-1). 

                                                        

5 This appendix provides the mathematical details for the model described in Chapter 2. 
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Roman/Color Best  Greek/Odor Best 

P(A best|Q+Aα) 

Neither Predict 

P(α best|Q+Aα) 

P(B best|Q+Bβ) P(β best|Q+Bβ) 

P(B best|Q+Aα) 

Both Predict 

P(β best|Q+Aα) 

P(A best|Q+Bβ) P(α best|Q+Bβ) 

P(B best|Q+Aβ) Color (greek) predicts, 

but odor (roman) does 

not 

P(α best|Q+Aβ) 

P(A best|Q+Bα) P(β best|Q+Bα) 

P(A best|Q+Aβ) 
Odor predicts, but color 

does not 

P(β best|Q+Aβ) 

P(B best|Q+Bα) P(α best|Q+Bα) 

Table A2-1. Table of all possible outcomes in the consequence phase. 

These conveniently simplify into 2 independent probabilities. First, the probability that 

olfactory stimuli predict the best environment in the consequence phase, given any 

previous pairing in the experience phase, P(olfactory best | any pairing). And then the 

probability that color stimuli predict the best environment, P(color best | any pairing). 

We can assign a probability to the reliability of each stimulus with regards to the quinine 

pairing predicting the best environment, where O  is the probability odor predicts the 

best environment, and C  is the probability color predicts the best environment. As with 
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the model for the evolution of learning versus nonlearning (in appendix 1), we define the 

number of eggs oviposited by the female in the consequence phase as N, the error rate 

for the female as ε (with 1-ε  being the eggs she lays in the substrate she “prefers”), and r 

being the proportion of eggs which survive to adulthood (with zero surviving on the 

“bad” media). 

There are 16 different combinations possible of experience phase pairings and 

consequence phase outcome (Table A2-2). 
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Experience 

Phase 

Probability 

of Pairings 

Consequence 

Phase 

Probability 

of “Best” 

Selective 

Learning to 

Roman 

Selective 

Learning to 

Greek 

Q+Aα ab 

Roman only 

predicts 
O(1-C) r(1-ε)N rεN 

Q+Bβ (1-a)(1-b) 

Q+Aβ a(1-b) 

Q+Bα (1-a)b 

Q+Aα ab 

Greek only 

predicts 
C(1-O) rεN r(1-ε)N 

Q+Bβ (1-a)(1-b) 

Q+Aβ a(1-b) 

Q+Bα (1-a)b 

Q+Aα ab 

Both Predict CO r(1-ε)N r(1-ε)N 
Q+Bβ (1-a)(1-b) 

Q+Aβ a(1-b) 

Q+Bα (1-a)b 

Q+Aα ab 

Neither Predict (1-C)(1-O) rεN rεN 
Q+Bβ (1-a)(1-b) 

Q+Aβ a(1-b) 

Q+Bα (1-a)b 

Table A2-2. Possible pairings and outcomes in the  two stimulus modality system. 
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We can now calculate the fitnesses for each of the two types of learners. As in appendix 1, 

we do this using the geometric mean. The fitness for the roman only learner (learning 

about odor only) is

ab O(1-C)ln r(1-ε)N + (1-a)(1-b) O(1-C)ln r(1-ε)N + a(1-b) O(1-C)ln r(1-ε)N + (1-

a)b O(1-C)ln r(1-ε)N + ab C(1-O)ln rεN + (1-a)(1-b) C(1-O)ln rεN + a(1-b) C(1-

O)ln rεN + (1-a)b C(1-O)ln rεN + ab CO ln r(1-ε)N + (1-a)(1-b) CO ln r(1-ε)N + 

a(1-b) CO ln r(1-ε)N + (1-a)b CO ln r(1-ε)N + ab (1-C)(1-O)ln rεN + (1-a)(1-b) (1-

C)(1-O)ln rεN + a(1-b) (1-C)(1-O)ln rεN + (1-a)b(1-C)(1-O)ln rεN 

The fitness for the greek-only learner (learning about color only) is 

ab O(1-C)ln rεN + (1-a)(1-b) O(1-C)ln rεN + a(1-b) O(1-C)ln rεN + (1-a)b O(1-

C)ln rεN + ab C(1-O)ln r(1-ε)N + (1-a)(1-b) C(1-O)ln r(1-ε)N + a(1-b) C(1-O)ln 

r(1-ε)N + (1-a)b C(1-O)ln r(1-ε)N + ab CO ln r(1-ε)N + (1-a)(1-b) CO ln r(1-ε)N + 

a(1-b) CO ln r(1-ε)N + (1-a)b CO ln r(1-ε)N + ab (1-C)(1-O)ln rεN + (1-a)(1-b) (1-

C)(1-O)ln rεN + a(1-b) (1-C)(1-O)ln rεN + (1-a)b(1-C)(1-O)ln rεN 
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Appendix 3 — Derivation of the Dynamic 

Programming Recursion6 

In order to derive recursion [3.1], we list out the possible events that can occur at time 

step t to an organism in state x. Let U be the event that our organism is unfamiliar with 

the stimulus it experiences. Let C be the event that our organism is familiar with the 

stimulus and employs the correct behavior (i.e., the correct behavior to the stimulus has 

not changed since its most recent recording in the organism’s memory). Let I be the 

event that our organism is familiar and employs an incorrect behavior (i.e., the correct 

behavior to the stimulus has changed since its most recent recording in the organism’s 

memory). We let the dummy event variable, A, stand for one of the stimulus encounter 

events; that is A∈{U, C, I}. Let Xx be the event that the organism’s state is x, Tt be the 

event that an organisms age is t and Mm be the event that an organism’s memory window 

is m.  

Consider that our organism in state x at age t has memory size m, where this memory 

window may not be optimal. After this time step we assume the organism adjusts its 

memory window optimally (i.e., we assume m(x,τ)=m*(x,τ) for all τ≥t+1). We call this 

organism the “nearly optimal” learner. Let the expected future reproductive success of 

the nearly optimal learner be given by Fm(x,t,T). In order to calculate Fm, we let 

EF[A|Xx∩Tt] be the expected future reproductive success for the nearly optimal learner 

if event A occurs (given that the organism’s state is x and its age is t). We let Pr{A|Mm} 

                                                        

6 This appendix describes the derivation of the dynamic programming recursion in Chapter 3. 
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be the probability of event A, given our organism has a memory window of size m. By the 

law of total expectation, we must have: 

∑
∈

∩=
},,{

}|Pr{][),,(
ICUA

MATX|A mtxm EFTtxF ,                         [A3.1] 

Our nearly optimal learner becomes a “completely optimal” learner if it picks the 

memory window size m (where 0≤m≤t) that maximizes Fm(x,t,T) (that is, if it chooses 

m=m*(x,t)). Thus, we can express the maximal expected future reproductive success of 

our completely optimal learner in state x at age t as 

),,(max),,(
0

TtxFTtxF m

tm
m

≤≤

= .                 [A3.2] 

Now we simply need to derive the expectations and the probabilities in equation [A1]. 

Since we assume that the nearly optimal learner behaves optimally from time t+1 

onwards, the expectations are simply 

),1),(()1(][ TtxuFEF tx +−=∩ δTX|U ,         [A3.3] 

),1),(()1(][ TtxcFEF tx +−=∩ δTX|C ,         [A3.4] 

),1),(()1(][ TtxiFEF tx +−=∩ δTX|I .                     [A3.5] 

For example, if the stimulus is unfamiliar, the organism receives a payoff of πu and pays a 

metabolic cost of κ (with the constraint that the next state is between 0 and X). Thus, if 

the organism survives from age t to age t+1 (which occurs with probability 1−δ), the 
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organism changes from state x at age t to state u(x)=chop(x+πu−κ;0,X) at age t+1. Since 

the organism is assumed to remember optimally from t+1 onwards, the expected future 

reproductive success at t+1 is the maximal expected future reproductive success, which is 

given by F(u(x),t+1,T). Thus, given that a dead organism has zero future reproductive 

success (and given that death occurs with probability δ) the expected reproductive 

success is ),1),(()1()0(),1),(()1(][ TtxuFTtxuFEF tx +−=++−=∩ δδδTX|U . The other 

EF values are derived similarly. 

Now we turn to the probabilities in equation [A3.1]. We assume that every time step a 

stimulus is chosen randomly from the N stimuli, so the probability that the currently 

experienced stimulus does not occur in any one of the last m time steps must be 

(N−1)/N. Since we assume that each stimulus occurs independently of previous stimuli, 

the probability that the current stimulus does not occur in all the previous m time steps 

is 

m

m N

N







 −
=

1
}|Pr{ MU .                       [A3.6] 

Equation [A3.6] gives the probability that the organism does not remember the current 

stimulus (i.e., event U occurs) given that the organism has a memory window of size m. 

We know that without any memory, the stimulus cannot be familiar and therefore 

0}|Pr{}|Pr{ 00 == MIMC . To calculate }|Pr{ mMC  and }|Pr{ mMI  when m>0, it helps to 

condition on other events. Let F be the event that the stimulus is familiar. Since F is the 

complement of U, we must have 
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m

m N

N







 −
−=

1
1}|Pr{ MF .           [A3.7] 

Let Sr be the event that the stimulus was most recently recorded in memory r time steps 

before the current time step (thus, Sr is only defined for r≤m). Given that an organism is 

dealing with a familiar stimulus and has a memory size of m, the probability that the 

most recently recorded encounter with the current stimulus happened r time steps back 

is  

mm

rrm

mr NN

NN

)1(

)1(
}|Pr{

1

−−
−

=∩
−−

MFS .                  [A3.8] 

To derive equation [A3.8], let us consider the memory window of size m as being 

constructed of m “slots,” ordered from 1 (the most recent memory) to m (the most 

distant memory). There are a total of Nm−(N−1)m sequences of stimuli in memory where 

the current stimulus occurs in at least one of the m slots. How many of those sequences 

have the current stimulus occurring most recently in slot r? For this to occur, we must 

have any stimulus except for the current stimulus in each of the slots from slot 1 to slot 

r−1 (a total of (N−1)r−1 combinations for these slots), whereas we can have any stimulus 

in each of the slots from slot r+1 to slot m (a total of Nm−r combinations for these slots). 

Note we must have the current stimulus in slot r (a single “combination” for this slot). 

Thus, the total number of combinations for the current familiar stimulus to be located 

most recently in the rth slot is (N−1)r−1Nm−r and equation [A3.8] follows. Given that our 

organism with memory length m experienced a familiar stimulus most recently r time 

steps back, the probabilities that the behavior employed is correct is  
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r
mr )1(}|Pr{ ρ−=∩∩ MFSC ,                  [A3.9] 

since the probability of stimulus change every time step is ρ and change occurs 

independently each time step. The conditional probability giving an incorrect behavior is 

calculated easily by noting that mr MFSI ∩∩|  is the complement of mr MFSC ∩∩|  

and therefore 

r
mr )1(1}|Pr{ ρ−−=∩∩ MFSI .               [A3.10] 

Putting everything together, we have 

∑
=

∩∩∩=
m

r
mmrmrm

1

}|Pr{}|Pr{}|Pr{}|Pr{ MFMFSMFSCMC ,               [A3.11] 

∑
=

∩∩∩=
m

r
mmrmrm

1

}|Pr{}|Pr{}|Pr{}|Pr{ MFMFSMFSIMI .             [A3.12] 

Substituting equations [A3.7], [A3.8] and [A3.9] into equation [A3.11] and substituting 

equations [A3.7], [A3.8], and [A3.10] into equation [A3.12] and then simplifying gives  
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 Now, plugging equations [A3.3], [A3.4], [A3.5], [A3.6], [A3.13] and [A3.14] into 

equation [A3.1] and then plugging equation [A3.1] into equation [A3.2] yields equation 

[3.1], our backwards recursion.  
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Appendix 4 — The Proxy for Optimal Memory7 

If we differentiate equation [3.6] with respect to m, we have 

( ) { }
( ) { }








+−+−

+−+
=

∂
∂

),1),((),1),((ln

),1),((),1),((ln

TtxiFTtxcF

TtxiFTtxuF

m

G
m

m

ββω

αα
.   [A4.1] 

Solving 0=∂∂ mG  yields a single critical point given by [3.7], which we label m**. The 

second derivative of G is 

( ) { }
( ) { }











+−+−

+−+
=

∂
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),1),((),1),((ln
2

2

2
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m

G
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m

ββω
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,   [A4.2] 

The second derivative is negative when 
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TtxiFTtxuF

m ,     [A4.3] 

but from equation [3.7] we know 
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
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7 This appendix describes the calculations for the proxy for optimal memory in Chapter 3. 
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Since  
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we know 

0
**

2

2

<
∂
∂

=mm
m

G
,                      [A4.6] 

and therefore m** is a local maximum. Since m** is the only critical point and G is a 

continuous and continuously differentiable function, m** is also the global maximum. If 

0<m**<t, then the integer directly above (  **m ) or the integer directly below (  **m ) 

gives the optimal memory window m*.  

In general, when m<m**, we have 
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which means 

**0 mm
m

G
<⇔>

∂
∂

.         [A4.10] 

Similarly, we can show, 

**0 mm
m

G
>⇔<

∂
∂

.        [A4.11] 

That is, G always slopes upward below m** and always slopes downward above m**. Since 

0≤m*(x,t)≤t, this means that if m**≤0, then m*=0 and if m**≥t, then m*=t.  

 



 

116 

 

Appendix 5 — Extensions and Explanations of the 

Dynamic Programming Model for Optimal Memory8 

5A: The Effect of Stimulus Change on Optimal Memory 

Differentiating the proxy for optimal memory size [3.7] with respect to ρ gives  



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−
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N

N
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.            [A5.1] 

For m**>0, if  

( )βρ 1ln

1

)1(1
>

−+ N

N
,              [A5.2] 

then we must have 0** <∂∂ ρm . However, [A5.2] is equivalent to 

( ) ββ −> 11ln                   [A5.3] 

or with y=1/β,  

y
y

1
1ln −> ,                            [A5.4] 

                                                        

8 This appendix describes a series of extensions and explorations, as referred to in Chapter 3. As 
mentioned in the footnote to Chapter 3, this work (and especially this appendix) was completed in 
collaboration with Benjamin Kerr. 
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However, [A5.4] is true since y>1 and  

0
1

1
11ln =−= ,     [A5.5] 

and 

[ ]
dy

yd

yydy

yd 1111ln
2

−
=>= .     [A5.6] 

for all y>1. Therefore, 0** <∂∂ ρm . 

 5B: Exploration of the Cost of Living 

With regards to the cost of living (κ), there are really only two interesting orderings: 

cui ππκπ <<<  and cui πκππ <<< . In the first ordering, memory is not required to 

increase the value of the state variable x over a time step. In the second ordering, 

memory is essential to increase the value of x (we assume this second ordering in the 

paper). If the cost of living is low (memory is not required), many memory windows are 

equally optimal. We set the optimal memory to the lowest size if there are “ties”—zero 

memory in the case shown in Figure 3-3. In this case, optimal memory only increases 

from zero at the end of the lifetime. If the cost of living is low, note that throughout most 

of the early lifetime, the optimal memory is zero (without ties) for low states (see below). 

If the cost of living is high (memory is required), the optimal memory is non-zero and for 

low states is the maximum window allowed (see Figure 3-1).  

 



 

 

 

 

Figure A5-1. This figure 

corresponds to Figure 1 except κ=8 

here (and X=50, N=10, 

πi=5, πu=10, and πc=15). Each 

surface gives optimal memory 

m*(x,t) and corresponds to a 

different value of the rate of 

stimulus change (ρ) and either a 

convex final fitness function 

Ф(x)=100(x/X)4 or a concave final 

fitness function Ф(x)=100(x
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. This figure 

corresponds to Figure 1 except κ=8 

here (and X=50, N=10, T=40, δ=0.1, 

=15). Each 

surface gives optimal memory 

m*(x,t) and corresponds to a 

different value of the rate of 

stimulus change (ρ) and either a 

convex final fitness function 

Ф(x)=100(x/X)4 or a concave final 

fitness function Ф(x)=100(x/X)0.25. 
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To understand these patterns, we focus on the action that helps an organism in a low 

state survive. If the cost of living is low, then an organism in a low state may “play it safe” 

by not remembering a stimulus, thus avoiding the possibility of an incorrect response. 

That is, if uπκ < , then the organism can improve its state without memory. However, if 

the cost of living is high (i.e., uπκ > ), then an organism can no longer depend on the 

payoff of an unfamiliar stimulus to ensure survival. In such a case, remembering a 

stimulus and employing a correct behavior (even if probabilistically difficult) may be the 

only way for a low-state organism to survive. 

We can illustrate some further results using the graphical approach from the Results 

section. Assume that the current state of the organism is x′. If the state of the organism is 

very high and if the cost of living is low (i.e., uπκ < ), then both c(x′) and u(x′) will be X 

(see Figure A5-2a, where the green dotted and blue dashed arrows point to X). Since 

c(x′)=u(x′)=X, this means that B(x′,t)=0 and ν=0. When ν=0, we can show that m**<0. 

Thus, when cost of living is low, organisms in a very high state should possess no 

memory (see Figure 3-3 –first graph in this section). The idea here is that employing a 

correct response to a familiar stimulus is identical to responding to an unfamiliar 

stimulus, therefore memory can only serve to open the door for incorrect responses. If 

the costs of living are higher (i.e., uπκ > ), then u(x′)<X for an organism in a very high 

state and optimal memory is no longer necessarily zero memory (see Figure A5-2b). 



 

 

Figure A5-2. The arrows and terminology in this figure correspond to Figure 3. (a) If 

the state of the organism is very high and the cost of living is low (κ< π

u(x′)=c(x′)=X while i(x′)<X. Consequently C>0 and B=0; that is,

to memory, whereas there are costs

the cost of living is high (κ> π

 

 

. The arrows and terminology in this figure correspond to Figure 3. (a) If 

the state of the organism is very high and the cost of living is low (κ< πu

′)=c(x′)=X while i(x′)<X. Consequently C>0 and B=0; that is, there are no benefits 

to memory, whereas there are costs—thus, the organism should have no memory.  (b) If 

the cost of living is high (κ> πu), then C>0 and B>0 and some memory may be favored.
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. The arrows and terminology in this figure correspond to Figure 3. (a) If 

u), then 

there are no benefits 

thus, the organism should have no memory.  (b) If 

), then C>0 and B>0 and some memory may be favored. 
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When the cost of living is low, as we move back in time, it turns out that the function F 

converges to  





>

=
=

0 if1

0 if0
)(

x

x
xH .          [A5.7] 

Remember that we are considering the sequence of renormalized F functions converging 

to H(x). Under [A5.7], most energy reserve states would yield zero cost and zero benefit 

for memory (C(x,t)=B(x,t)=0) and consequently, every length of memory is equivalent 

(this accounts for the occurrence of “ties” above). However, for low states (i.e., x near 0), 

there is the possibility of positive cost of memory (since i(x)=0 and u(x)≠0), while there 

is still no benefit to memory (since u(x)=c(x)). Thus, for low states and at early ages, zero 

memory is optimal (see Figure A5-1).  

 

5C: Concavity and Jensen’s Inequality 

There are two important components to the payoff of any stimulus: (1) its expected value 

and (2) its variance. The expected value of an unfamiliar stimulus is πu, whereas the 

expected value of a familiar stimulus (call it πf) is some weighted average of πi and πc 

(i.e., πi ≤πf≤πc). The unfamiliar stimulus has zero variance in payoff (it always gives πu). 

When the environmental stimuli are of intermediate reliability, a familiar stimulus gives 

a non-zero variance in potential payoffs (because a response to a familiar stimulus can 

either be correct or incorrect). Payoffs are not the same as maximal future expected 
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reproductive success, that is, these payoffs need to be filtered through the function 

F(x,t+1,T) (see Figure 3-3). If F is convex and we treat it as a continuous function, 

Jensen’s inequality guarantees that  

[ ] ),1],[(),1,( TtxEFTtxFE ff +>+ ,         [A5.8] 

where xf is either c(x) or i(x). By spreading out payoffs, the maximal expected future 

reproductive value of a familiar stimulus is elevated over that predicted from its expected 

payoff. In this case, the variance in payoffs generated by memory is a good thing. And if 

increases in memory window do not lower πf too substantially, then higher values of 

memory can be favored. If F is concave, we have 

[ ] ),1],[(),1,( TtxEFTtxFE ff +<+ ,                [A5.9] 

In this case, the future reproductive value of a familiar stimulus is lower than that 

predicted from its expected payoff. In this case, the variance in payoffs generated by 

memory is a bad thing. And if decreases in memory window do not raise πf too 

substantially, then lower values of memory can be favored. 
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5D: Iteroparity 

The model given by equation [3.1] refers to a semelparous organism.  If an organism has 

multiple reproductive bouts during its lifetime, then some part of its reproductive value 

(F) can come from offspring produced before its final time step.  This can be modeled 

through a slight adjustment to equation [3.1]: 
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where all parameters and functions have the same meaning as before, and the immediate 

reproductive output at time step t, ),( txφ , is given by 





≥Φ

<
=
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ttx

tt
tx

 if)(

 if0
),(φ         [A5.11] 

The parameter tRM is the age of reproductive maturity.  At this age and thereafter, the 

organism realizes immediate reproductive output that depends on its state.  We assume 

that the previously defined “final fitness function” )( xΦ  now gives the state-dependent 

reproductive output at all ages of reproductive maturity. For simplicity, we do not weight 

offspring born earlier with higher value here. In Figure A5-3, we see that optimal 

memory can still decline with age even if organisms are iteroparous.  Note that the 

function )( xΦ  is concave in the figure. 



 

 

Figure A5-3. This surface gives optimal memory m*(x,t) as a function of age (t) and 

state (x) under the iteroparous extension of Appendix 5D.  The other parameters are 

X=50, N=10, T=40, δ=0.1, π

function is concave: Ф(x)=10

 

5E : Explicit Costs to Memory

In our model, costs to memory are implicit.  However, memory may carry explicit costs.  

For instance, flexibility in retrieval may be costly.  Indeed, it would be an interesting 

exercise to determine the strength 

options within our model framework (see McNamara 1996; Houston & McNamara 

1999).  Here, though, we focus on costs to memory length.  For instance, the cost of 

living could increase linearly with memory leng

m(κ

 

ace gives optimal memory m*(x,t) as a function of age (t) and 

state (x) under the iteroparous extension of Appendix 5D.  The other parameters are 

X=50, N=10, T=40, δ=0.1, πi=5, πu=10, πc=15, κ=12, ρ=0.1, and tRM=20. The fitness 

function is concave: Ф(x)=100(x/X)0.25. 

5E : Explicit Costs to Memory 

In our model, costs to memory are implicit.  However, memory may carry explicit costs.  

For instance, flexibility in retrieval may be costly.  Indeed, it would be an interesting 

exercise to determine the strength of selection for variable retrieval over constant 

options within our model framework (see McNamara 1996; Houston & McNamara 

1999).  Here, though, we focus on costs to memory length.  For instance, the cost of 

living could increase linearly with memory length: 

m10) κκ += .     
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ace gives optimal memory m*(x,t) as a function of age (t) and 

state (x) under the iteroparous extension of Appendix 5D.  The other parameters are 

=20. The fitness 

In our model, costs to memory are implicit.  However, memory may carry explicit costs.  

For instance, flexibility in retrieval may be costly.  Indeed, it would be an interesting 

of selection for variable retrieval over constant 

options within our model framework (see McNamara 1996; Houston & McNamara 

1999).  Here, though, we focus on costs to memory length.  For instance, the cost of 

     [A5.12] 



 

 

Without explicit costs to memory, it was important that the payoff for an incorrect 

response from memory was less than sampling (

the implicit costs of memory emerged.  If 

memory.   

With explicit costs to memory, we now consider the case where sampling always yields 

lower payoffs than remembering responses

optimal memory can still decline with age with reordered payoffs when there are explicit 

costs to memory.   

Figure A5-4. This surface gives optimal memory m*(x,t) as a function of age (t) and 

state (x) when memory is explicitly costly as laid out above.  The other parameters are 

X=50, N=10, T=40, δ=0.1, π

function is concave: Ф(x)=100(x/X)0.25.  

  

Without explicit costs to memory, it was important that the payoff for an incorrect 

response from memory was less than sampling (πi<πu).  It was from this inequality that 

the implicit costs of memory emerged.  If πu<πi<πc, optimal memory would be maximal 

With explicit costs to memory, we now consider the case where sampling always yields 

lower payoffs than remembering responses; namely, πu<πi<πc. In Figure 

optimal memory can still decline with age with reordered payoffs when there are explicit 

 

. This surface gives optimal memory m*(x,t) as a function of age (t) and 

state (x) when memory is explicitly costly as laid out above.  The other parameters are 

X=50, N=10, T=40, δ=0.1, πi=10, πu=5, πc=15, ρ=0.1, κ0=4 and κ1=0.15. The final fitness 

function is concave: Ф(x)=100(x/X)0.25.   
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Without explicit costs to memory, it was important that the payoff for an incorrect 

).  It was from this inequality that 

, optimal memory would be maximal 

With explicit costs to memory, we now consider the case where sampling always yields 

Figure , we see that 

optimal memory can still decline with age with reordered payoffs when there are explicit 

. This surface gives optimal memory m*(x,t) as a function of age (t) and 

state (x) when memory is explicitly costly as laid out above.  The other parameters are 

=0.15. The final fitness 


