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ABSTRACT
Recently, privacy preserving data publishing has received a
lot of attention in both research and applications. Most of
the previous studies, however, focus on static data sets. In
this paper, we study an emerging problem of continuous pri-
vacy preserving publishing of data streams which cannot be
solved by any straightforward extensions of the existing pri-
vacy preserving publishing methods on static data. To tackle
the problem, we develop a novel approach which considers
both the distribution of the data entries to be published and
the statistical distribution of the data stream. An extensive
performance study using both real data sets and synthetic
data sets verifies the effectiveness and the efficiency of our
methods.

1. INTRODUCTION
Recently, privacy preserving data publishing has received

a lot of attention in both research and applications. A micro
data set [33] (i.e., a data set in its raw, non-aggregate form)
may contain privacy information about individuals. In order
to protect privacy, when a micro data set is published for
analysis or data sharing, the data set should be anonymized
properly so that the sensitive information of individuals can-
not be recovered with high quality.

An important type of privacy attacks is re-identification
of individuals using quasi-identifiers [27, 30, 26].
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postcode occupation age income

10230 high school teacher 32 55 k
21032 physician 42 95 k
21030 dentist 40 110 k
10210 primary school teacher 38 58 k
21030 surgeon 36 150 k
10285 sessional instructor 28 42 k

(a) A table T of micro data.

postcode occupation age income

102** teacher [28-38] 55 k
2103* medical doctor [36-42] 95 k
2103* medical doctor [36-42] 110 k
102** teacher [28-38] 58 k
2103* medical doctor [36-42] 150 k
102** teacher [28-38] 42 k

(b) A 3-anonymization T ′ on QID {postcode, occupation, age}.

Table 1: A table T and a 3-anonymous table T ′.

Example 1 (Re-identification attacks). Suppose
table T = (postcode, occupation, age, income) in Ta-
ble 1(a) is to be published where each tuple in T is about
an individual. The background knowledge of an attacker
can be modeled by an external table E about the individuals.
Suppose E = (name, postcode, occupation, age). The
attacker may join T and E on the common attributes post-
code, occupation, and age to identify the individuals in T
and obtain the sensitive information income. The common
attributes between T and E form the quasi-identifier (QID
for short) for the re-identification attack.

To protect privacy against re-identification attacks, sev-
eral models have been proposed. Most essentially, the k-
anonymity model [30, 26] publishes a table T ′ which changes
the values on the quasi-identifier attributes so that every
tuple in T is published in a group-by of at least k tuples
on the quasi-identifier, where k > 0 is a user-specified pa-
rameter. Each group-by on the quasi-identifier is called an
equivalence class. The larger the value of k, the better the
privacy is preserved. Publishing T ′ instead of T can protect
privacy effectively against re-identification attacks, since the
attacker cannot re-identify any individual with a confidence
more than 1

k
.

Example 2 (K-anonymity). To protect privacy in
Table 1(a) against the re-identification attack using quasi-



identifier {postcode, occupation, age}, we can publish T ′ in
Table 1(b) instead of T . In T ′, some specific values on the
QID attributes are replaced by some more general values.
For example, a specific age value is replaced by an age range.

Table T ′ is 3-anonymous. That is, every tuple in T ′ be-
longs to a group-by of at least 3 tuples on the QID attributes.
An attacker using {postcode, occupation, age} cannot re-
identify any individual with confidence more than 1

3
.

To achieve k-anonymity, we have to generalize or suppress
some values on the QID attributes in the anonymization
procedure. The anonymization introduces some information
loss. Generally, the information loss in an anonymized table
T ′ can be measured by the amount of uncertainty introduced
by the anonymization procedure. Apparently, the less the
information loss, the better the quality and utility of the
anonymized data. The problem of k-anonymization for pri-
vacy preserving data publishing is that, for a given table T ,
compute a k-anonymous table T ′ such that the information
loss in T ′ with respect to T is as small as possible.

In addition to the k-anonymity model, more recently,
some other models are developed to battle some other types
of privacy attacks. For example, Machanavajjhala et al. [21]
showed that a k-anonymized dataset has some subtle but
severe privacy problems due to the lack of diversity in the
sensitive attributes. In particular, they showed that, the de-
gree of privacy protection does not really depend on the size
of the quasi-identifier attributes. Instead, it is determined by
the number of distinct sensitive values associated with each
quasi-identifier attribute set. The observation leads to the
l-diversity model [21] which requires that the distribution of
sensitive attributes (e.g., income) should be diverse enough
in each equivalence class. Several efficient algorithms have
been developed (e.g., [4, 16, 7, 19, 17, 18]) by extending the
k-anonymity methods.

Since k-anonymity is the fundamental case, in this paper,
we focus on k-anonymity only. However, our method can be
extended to other models easily. We leave it in the extension
of this paper.

Most of the existing methods for privacy preserving data
publishing address static data. That is, given a relational
table, such a method computes an anonymization of the ta-
ble to meet some privacy preservation requirement such as
k-anonymity or l-diversity. In some applications, however,
data may arrive continuously and need to be published con-
tinuously as well, which motivates our study.

Example 3 (Motivation). In a credit card company,
suppose the credit card transactions follow schema (t-time,
name, postcode, occupation, age, vendor, amount), where
attribute t-time is the transaction time, attributes name,
postcode, occupation and age describe a customer, and at-
tributes vendor and amount describe where the customer
uses the credit card and the amount. As customers keep
using credit cards, the generated transactions form a data
stream. Since the credit card transactions are micro data in
nature, we call the transaction stream a micro data stream.

Suppose the credit card company wants to outsource the
online credit card fault detection task to a third-party service
provider. Attribute name directly identifies customers. Even
if we remove attribute name in publishing, an attacker still
may use some external demographic data to re-identify cus-
tomers using quasi-identifier {postcode, occupation, age},
and obtain private information on attributes t-time, vendor

and amount. In order to battle the re-identification attack,
the credit card company has to anonymize the micro data
stream properly.

Transactions arrive continuously. To ensure the online
fault detection quality, the credit card company has to con-
tinuously anonymize transactions and send the anonymized
transactions to the fault detection service provider. The
shorter the expected delay between the arrival of a transac-
tion and publishing the transaction in an anonymous way,
the better the online fault detection may be achieved.

Continuous privacy preserving data publishing also
happens in some other applications, such as a tele-
phone/network service company publishing call records for
online network traffic analysis, a search engine publishing a
query log for online web mining, and a stock exchange house
online publishing stock transactions as required by securities
regulatory commissions.

Continuous privacy preserving data publishing is an
emerging and challenging problem which has not been sys-
tematically studied before. Simultaneous to our study, Li et
al. [20] and Cao et al. [9] applied a strict time delay con-
straint on each tuple in the stream, and modeled the in-
formation loss using the traditional way on relation data.
In their methods, each tuple must be published before a
hard delay deadline. However, those treatments do not con-
sider the influence of distributions of data streams when data
are published, thus some outliers may cause heavy informa-
tion loss in anonymized streams. Moreover, their methods
may not preserve privacy satisfactorily against an attacker
equipped with knowledge about a sequence of tuples in the
data stream. More details will be provided in Section 3.

Continuous privacy preserving data publishing is also re-
lated to the recent studies on incremental privacy preserving
publishing of relational data [32, 36, 24, 11]. However, there
are some fundamental differences as follows.

A few recent studies [36, 24, 11] consider the incremen-
tal publishing problem: Given a table T and the privacy
preserving published version T ′, when a set of new tuples
∆T are added into T , the task of incremental publishing is
to generate a new privacy preserving version T ′′ of T ∪∆T
for publishing so that no privacy leaks even if an attacker
analyzes T ′ and T ′′ jointly. Moreover, Wang and Fung [32]
tackle the sequential releases problem: Given a table T and
the privacy preserving published version T ′, if some new at-
tributes are added to table T while the tuples in T are fixed,
how can we generate a new privacy preserving version T ′′

of the widened table T so that no privacy leaks even if an
attacker analyzes T ′ and T ′′ jointly?

The incremental methods given in [36, 24, 11] are not ap-
plicable for continuous privacy preserving data publishing
due to four reasons. First, in continuous privacy preserv-
ing data publishing, data are not re-published in multiple
versions. Instead, we only publish a version which itself is
a potentially unlimited data stream. As a result, the at-
tackers cannot obtain different instances of the anonymized
data, thus the privacy leak in incremental publishing does
not arise in the stream scenario. Second, in continuous pri-
vacy preserving data publishing, time is critical. Once a
record arrives, it should be anonymized and published soon.
Third, in all existing studies, it is assumed that an individual
has only one record for publishing. However, in a stream-
ing scenario, an individual may have multiple records to be
published, such as a customer may make multiple credit card



transactions. The multiple occurrences call for special care
for privacy preservation. Last, all existing methods scan the
table to be published multiple times, and thus are inappli-
cable for fast data streams.

In this paper, we model the problem of continuous pri-
vacy preserving data publishing systematically, and develop
an effective and scalable approach. We make the following
contributions.

• First, we identify and model the problem of continuous
privacy preserving data publishing systematically. We
propose a general framework which encompasses the
information loss in anonymization and the loss due to
delay in publishing.

• Second, we develop a practical solution for the prob-
lem of continuous privacy preserving data publish-
ing. The decision of whether a set of tuples should
be anonymized and published depends on the com-
parison between the information loss of the set and
the expected information loss that those tuples are
anonymized together with some future tuples. The ex-
pectation of information loss is estimated using stream
processing techniques.

• Last, we conduct an extensive empirical evaluation on
both real data and synthetic data, which shows that our
approach is effective and scalable.

The rest of the paper is organized as follows. We define the
problem formally in Section 2 and review the related work
in Section 3. The anonymization methods are developed in
Section 4 and empirically evaluated in Section 5. The paper
is concluded in Section 6.

2. PROBLEM DEFINITION
In this section, we extend k-anonymity to data streams.

Then, we identify the inefficacy in a straightforward
minimum-delay method to motivate the utility measure of
anonymization quality on data streams.

2.1 K-anonymity on Data Streams
A data stream T is a potentially infinite series of tuples

T = t1, t2, . . ., where all tuples follow a relational schema
R = (ID, TS, A1, . . . , Am), where ID is an identity attribute
and TS is a timestamp attribute.

We assume that the utility of data in stream T is time
sensitive, otherwise, a static method can be simply used
periodically to anonymize newly arrived data in batch. In
our model, attribute TS records the arrival time of tuples.
Since one object (for example, a customer in Example 3)
may generate multiple tuples in stream T , we assume that
attribute ID identifies unique objects. Moreover, we as-
sume that there are at least k different values on attribute
ID. Otherwise, every equivalence class must contain at least
two tuples generated by one object, and k-anonymity is not
achievable.

In the stream scenario, much information other than QID
can be used to breach privacy of individuals, such as the at-
tributes TS and ID. For simplicity, in this paper, we assume
that the attributes TS and ID are not for publishing.

Let S ⊂ R be a quasi-identifier (QID). We want to pub-
lish a k-anonymization of stream T . The attributes in
R−S−{ID, TS} are not involved in the k-anonymity model,

and thus can be ignored in the anonymization procedure.
Without loss of generality, we consider only a stream of
schema R = (ID, TS, S) to keep our discussion simple.

Example 4 (Concepts). Consider the credit card
transaction stream described in Example 3. Suppose the QID
is {postcode, occupation, age}. Attribute name is the ID at-
tribute, and attribute t-time is the timestamp attribute. In
anonymization, we only need to consider attributes (t-time,
name, postcode, occupation, age). Values on attributes ven-
dor and amount are not involved in anonymization.

We extend the k-anonymity model to data streams.

Definition 1 (K-anonymity on a stream). For a
data stream T in schema R = (ID, TS, A1, . . . , Am) where
ID, TS and S ⊆ R − {ID, TS} are an identity attribute,
a timestamp attribute and a QID, respectively, given a
positive integer k, a data stream T ′ in schema (A1, . . . , Am)
is k-anonymous with respect to S if there is a one-to-one
mapping f : T → T ′ between the tuples in T and those in
T ′, and there is a grouping function EC : T → 2T such
that

1. for every tuple t ∈ T , ‖EC(t)‖ ≥ k, that is, each equiv-
alence class has at least k tuples, and

2. for t1, t2 ∈ T such that EC(t1) = EC(t2), f(t1).S =
f(t2).S and t1.ID 6= t2.ID, that is, all tuples in the
same equivalence class are generated by different ob-
jects, but are anonymized to the same on S in T ′.

For a tuple t ∈ T , t.TS is the arrival time of t. We
denote by t.PUB the publishing time of t. All tuples in an
equivalence class have the same publishing time in order to
guarantee k-anonymity.

Since attributes ID and TS are not published, our exten-
sion is privacy preserving against re-identification attacks.

Theorem 1 (Privacy preservation). Given a k-
anonymous stream T ′ with respect to QID S, an attacker
cannot re-identify any individuals with confidence more
than 1

k
using only QID S.

2.2 A Minimum Delay Method
The core in anonymizing a data stream is to generalize

tuples and group them into equivalence classes. The delay
in anonymization of a tuple t can be measured by delay(t) =
t.PUB− t.TS. To improve the utility of published data, the
smaller the delay, the better.

To minimize the delay, we can obtain a k-anonymous data
stream as follows. To anonymize a stream T = t1, t2, . . ., we
maintain a list of equivalence classes EL. At the beginning,
we set EL = ∅. For tuple t1, we create an equivalence class
EC1 and insert t1 into it. For tuple t2, if t2.ID 6= t1.ID,
then t2 is inserted into EC1 as well; otherwise, a new equiva-
lence class EC2 is created for t2. Generally, for tuple ti ∈ T ,
we check the equivalence classes in EL and find the first
equivalence class ECj such that ti.ID is not the same as
any tuple in ECj . If such an equivalence class ECj is found,
ti is inserted into ECj , otherwise, a new equivalence class is
created for ti and appended to the end of the list of equiv-
alence classes. After a tuple is inserted into an equivalence
class, we check whether the class already has k tuples. If so,



ID TS postcode occupation age
Allen 1 10230 high school teacher 32
Betty 2 21020 physician 42
Allen 3 10230 high school teacher 32
Cathy 4 10210 primary school teacher 38
David 5 21040 surgeon 36

Edward 6 10250 sessional instructor 28
. . . . . . . . . . . . . . .

Table 2: A micro stream.

ID postcode occupation age EC-id
Allen * professional [32-42] 1
Betty * professional [32-42] 1
Cathy * professional [32-42] 1
Allen * professional [28-36] 2
David * professional [28-36] 2

Edward * professional [28-36] 2
. . . . . . . . . . . . . . .

Table 3: A 3-anonymous stream generated by the
minimum delay method.

the k tuples are generalized and published together so that
they have the same values on all attributes in QID S. The
published equivalence class is removed from the list EL.

Example 5 (The minimum delay method).
Consider the micro stream in Table 2 where the QID
is S = {postcode, occupation, age}, the identity attribute
is ID, and the time-stamp attribute is TS.

Table 3 shows a 3-anonymous stream with respect to S.
For references, we also list the ID of the tuples and the equiv-
alence class ids which are not published. Allen has 2 tuples
among the first 6 tuples in the stream. Allen’s two tuples are
assigned to two different equivalence classes.

Although the minimum delay method can generate a k-
anonymous stream, the data utility may not be good since
the method does not take the information loss of anonymiza-
tion into account. This motivates our investigation of the
anonymization quality measure.

2.3 Anonymization Quality Measure
Generalization is commonly used to anonymize data.

Generally, for an equivalence class EC which contains a set
of tuples, in each QID attribute, we can generalize the values
of the tuples to a range. The information loss can be mea-
sured by the uncertainty introduced by the generalization.
Technically, we adopt the uncertainty penalty measure of
information loss which is also used in previous studies such
as [37, 12], since it can handle both numeric and categorical
attributes in a uniform way.

For static data, we have the following definition.

Definition 2 (Uncertainty penalty – static data).
Suppose table T is anonymized to T ′. In the do-
main of each QID attribute A in T , suppose there
exists a global order on all possible values. If a tuple
t ∈ T ′ has range [x, y] on attribute A, then the uncer-

tainty penalty of t on A is lossA(t) = ‖y−x‖
‖A‖ , where

‖A‖ = maxt′∈T {t′[A]} − mint′∈T {t′[A]} is the range
of attribute A. For tuple t, the uncertainty penalty
is loss(t) =

∑
A∈S lossA(t), where S is the QID. The

uncertainty penalty in T ′ is
∑

t∈T ′ loss(t).

Uncertainty penalty adopts a global order on each at-
tribute. As practised by the previous studies [37, 12], for
numerical attributes, the order can be simply the value as-
cending/descending order. For a categorical attribute whose
values form a concept hierarchy, the order can come from
a depth-first search of the hierarchy. Moreover, in Defini-
tion 2, for an attribute A, the cardinality of A, ‖A‖, is used
to normalize the uncertainty penalty in each attribute. In

practice, the range of an attribute can often be estimated
using background knowledge.

For data streams, the uncertainty penalty needs to be ex-
tended for two reasons. First, since new tuples keep arriving
in a stream, that is, a stream is potentially infinite, it is im-
possible to calculate the uncertainty penalty for the whole
stream. Second, time is an important issue in publishing
streaming data, that is, the sooner a tuple is anonymized
and published, the better utility the data has. We should
treat the delay as a part of the information loss.

Definition 3 (Quality measure). Suppose stream T
is anonymized to T ′. For each equivalence class EC, the
uncertainty penalty is loss(EC) =

∑
t∈EC loss(t). The

information loss is

cost(EC) =
∑

t∈EC

loss(t)(1 + α)delay(t),

where α ≥ 0 is a user specified decaying factor. The larger
the value of α, the more important the timeliness.

The uncertainty penalty in the whole stream is the ex-
pectation of the uncertainty penalty incurred to a tuple, that
is

loss(T ) =

∑
EC∈T loss(EC)∑

EC∈T ‖EC‖ .

The information loss in the whole stream is the expectation
of the information loss incurred to a tuple, that is

cost(T ) =

∑
EC∈T cost(EC)∑

EC∈T ‖EC‖ .

Definition 4 (Problem definition). Given a data
stream T , a QID S, and parameters k > 0 and α ≥ 0,
the problem of continuous privacy preserving stream
publishing is to generate a stream T ′ such that T ′ is k-
anonymous with respect to S and the information loss in T ′

with respect to T is minimized.

3. RELATED WORK
Privacy becomes a more and more serious concern in many

applications. One of the privacy concerned problems is pub-
lishing microdata for public use [25], which has been exten-
sively studied recently. A large category of privacy attacks is
to re-identify individuals by joining the published table with
some external tables modeling the background knowledge of
users. To battle this type of attacks, the mechanism of k-
anonymity was proposed in [26, 30]. Specifically, a data set
is said to be k-anonymous (k ≥ 1) if, on the quasi-identifier



attributes (i.e., the minimal set of attributes in the table
that can be joined with external information to re-identify
individual records), each record is indistinguishable from at
least k−1 other records within the same data set. The larger
the value of k, the better the privacy is protected.

In Section 1, we discussed the existing work on privacy
preserving publishing models including k-anonymity and l-
diversity. In this paper, we focus on k-anonymity. In
this section, we review some representative methods for k-
anonymity. However, limited by space, a thorough review
of privacy preserving data publishing models and methods
is beyond the capacity of this paper.

In [25, 27], the full-domain generalization is developed,
which maps the whole domain of each quasi-identifier at-
tribute to a more general domain in the domain gener-
alization hierachy. To achieve full-domain generalization,
two types of partitioning can be applied. First, single-
dimensional partitioning [7, 16] divides an attribute into
a set of non-overlapping intervals, and each interval will
be replaced by a summary value (e.g., the mean, the me-
dian, or the range). On the other hand, (strict) multidi-
mensional partitioning [18] divides the domain into a set of
non-overlapping multidimensional regions, and each region
will be generalized into a summary tuple.

The ideal anonymization should minimize the informa-
tion loss or maximize the utility. However, theoretical anal-
ysis [3, 22, 18, 4, 1] indicates that the problem of optimal
anonymization under many non-trivial quality models is NP-
hard. A few approximation methods are developed [4], such
as datafly [29], annealing [34], and Mondrian [18]. Interest-
ingly, some optimal methods [7, 17] with exponential cost in
the worst case are proposed and shown empirically that they
are feasible and can achieve good performance in practice.

Most of the previous studies consider only one-time
anonymization. The cases of incremental updates are only
addressed in some recent studies [36, 24, 11]. As analyzed
in Section 1, the problem studied in this paper is different,
and cannot be solved using those methods.

Simultaneous to our study, Li et al. [20] and Cao et al. [9]
tackle the problem of continuous privacy preserving pub-
lishing of data streams from a different angle. The central
point in their models is that each tuple should be published
within a user-specified maximum delay δ. [9] further adopts
a stream clustering method CASTLE to form clusters on the
fly where a diameter parameter is used to control the cluster
size. A cluster having at least k tuples can be generalized
and output as an equivalence class. Moreover, if a tuple in
a cluster with less than k tuples approaches the maximum
delay threshold δ, the cluster is merged to some neighbor
clusters and generalized into an equivalence class in order to
meet the hard maximum delay constraint.

In [20, 9], the utility of the published data in time is not
considered. This is the critical difference between those two
studies and ours here. Using only a maximum delay thresh-
old simplifies the problem and thus the traditional cluster-
ing approaches can be easily adopted. On the other hand, in
many applications it is more desirable to model the timeli-
ness of publishing as a factor of preference instead of a hard
deadline. The publishing delay should be considered as a
part of the information loss.

Intuitively, to anonymize a multidimensional data set, an
equivalence class of low information loss is a compact clus-
ter of k to (2k − 1) tuples [2, 37]. This observation leads

to the applications of spatial indices in constructing good
anonymization. For example, in [23], a new spatial index
structure pyramid tree is proposed to anonymize moving ob-
jects. LeFevre et al. [18] use a kd-tree [8] method to divide
the data space recursively until partitions of size between
k and (2k − 1) tuples are obtained. Recently, Iwuchukwu
and Naughton [15] show that R-trees [14] are suitable for
k-anonymization, and an R-tree index-based approach to k-
anonymization can achieve faster bulk anonymization than
the previous techniques. Motivated by the previous success,
in this paper, we also employ R-trees to organize the tuples
to be anonymized.

To anonymize a data stream effectively, we need to main-
tain the statistic distribution of a data stream. Maintaining
statistics over data streams is a well studied area in previous
work ([5, 10, 13] and the references there). In this paper, we
give a lightweight method to maintain the statistics of a data
stream using chain sampling [6], and derive the decisions of
publishing using the statistics.

4. ANONYMIZATION ALGORITHMS
It is shown that the optimal k-anonymity of static data

is NP-hard even for the simple case where only suppression
is used to generalize data [22, 3]. Clearly, k-anonymity of
static data is a special case of the continuous privacy preserv-
ing stream publishing problem. To meet the requirement of
stream processing, in this section, we develop efficient ap-
proximation algorithms.

We develop our method in three steps. In the first step, we
give a randomized algorithm which makes decisions about
publishing based on the information loss of equivalence
classes, but does not consider the distribution of the data
stream to be published. In the second step, we incorporate
the distribution of the data stream into the decision making
procedure. In the last step, to further reduce the informa-
tion loss, we examine the potential of publishing with future
tuples for every tuple arrived.

To keep our discussion simple, we assume that at each
instant only one tuple arrives. Section 4.4 removes this con-
straint and extends our method for some other cases.

4.1 A Randomized Algorithm Framework
On each QID attribute, in a way adopted in the previous

studies (e.g., [35, 15, 12]), we can make up a total order on
the attribute if the attribute is not ordered. Thus, a tuple
to be anonymized can be viewed as a point in the metric
space of S. In the rest of the paper, we use the terms tuple
and point interchangeably.

As described in Section 2, we publish tuples in a data
stream by equivalence classes. Once an equivalence class is
published, we do not need to maintain the tuples in the class
anymore. Thus, we only need to maintain the tuples that
have arrived, but have not been published yet.

For a data stream T = t1, t2, . . . to be published and a time
instant i, the active set Active(T, i) is the set of tuples in T
that, at instant i, have arrived but have not been published
yet. Let us assume that all tuples in Active(i) are from
different objects. We will remove this assumption later in
this subsection.

We organize Active(i) in an R-tree [14] RT . We constrain
that, except for the case where RT contains only the root
node, every leaf node in RT should contain at least k tuples
and at most (2k−1) tuples. Under the constraint, every leaf



Algorithm 1 The stream anonymization algorithm

Input: a stream T , a parameter k;
Output: equivalence classes EC1, EC2, . . .;

Initialization:
1: set the active R-tree RT to an empty R-tree;
2: set publishing queue Q to empty;

When a tuple ti ∈ T arrives at instant i:
3: insert ti into RT ;
4: if a leaf node C in RT is partitioned during the insertion

then
5: remove C from the publishing queue Q;
6: let C1 and C2 be the new leaf nodes generated by the

insertion of ti, compute the due time for C1 and C2,
insert them into Q;

7: end if
8: publish all equivalence classes in Q that are due at in-

stant i, and remove those leaf nodes in RT ;

node in RT is a potential equivalence class. We call RT the
active R-tree. RT is stored in main memory.

For a leaf node C in RT , should we publish it or not?
Without any information about the distribution of the
stream, the decision about publishing depends on the in-
formation loss incurred to C. Intuitively, if the uncertainty
penalty is high, then some tuples arrived in the future may
help to divide the equivalence class into multiple smaller
classes and thus lower down the information loss. On the
other hand, if a tuple keeps waiting for a long time, it can
expect small uncertainty penalty, but will incur high infor-
mation loss due to a long delay.

To accommodate the two conflicting interests: the un-
certainty penalty and the delay, we propose a randomized
method as shown in Algorithm 1. The central idea is that
a leaf node C takes a probability Pr(C) = β

loss(C)
to be

published at time instant i. On the one hand, the larger
the uncertainty penalty loss(C), the less likely that C is to
be published. On the other hand, the longer C stays in the
active R-tree, the more likely C is published at some instant.

When a leaf node C is formed, the uncertainty penalty
loss(C) is determined. We flip coins to determine the pub-
lishing time (called due time in Algorithm 1) of C. C is
published at the due time instant if it is not partitioned into
smaller equivalence classes by some future tuples. Corol-
lary 1 indicates that the probability that a group of tuples
are delayed for a long time decays exponentially.

Corollary 1 (Delay). The probability that an active
R-tree contains a leaf node C such that C contains k tuples
of delay at least d is (1− β

loss(C)
)d.

One remaining issue is that how we can determine param-
eter β. We have the following result.

Theorem 2 (Parameter β). In expectation there are
n tuples in the active sets if

β = (
∑

leaf node C

‖C‖
loss(C)

)−1.

Proof. In expectation, the number of tuples published at

the current instant is
∑

leaf node C
β‖C‖

loss(C)
. To maintain n

tuples in expectation in the active sets, we set the expectation

C1

C2

Figure 1: Two leaf nodes at areas of different den-
sities (the dark-colored area represents an area of
high density, and the light-colored area represents
an area of low density).

to 1 (i.e., assuming one new tuple arrives at an instant), and
thus have the theorem.

Theorem 2 provides a guarantee on the memory usage of
our randomized method. We can set the parameter β prop-
erly so that in expectation we only need to maintain an R-
tree of n tuples in main memory. Moreover, the parameter
β can be used to control the speed of data publishing. Gen-
erally, Theorem 2 can guarantee the speed of data arriving
is approximately equal to that of data publishing.

Now, we remove the assumption that all tuples in an ac-
tive set are from different objects. When a new tuple arrives
and is inserted into the active R-tree, we enforce that it is
not inserted into a leaf node which contains another tuple
from the same object. This may lead to some leaf nodes of
less than k tuples in some extreme cases such as the first k
tuples in the data stream are from the same object. Those
leaf nodes that have less than k tuples are marked “unma-
ture” and should not be scheduled for publishing until more
tuples in the future are inserted to make them reach the
requirement on equivalence class size.

4.2 Incorporating Density Distribution
Algorithm 1 makes publishing decisions purely based on

the uncertainty penalty of a potential equivalence class, and
does not consider the distribution of tuples in the stream.
Those decisions may not be effective.

Example 6 (Distribution). Figure 1 shows two leaf
nodes C1 and C2 of an active R-tree. Since the uncertainty
penalty of C1 is smaller than that of C2, in Algorithm 1, C1

has a higher probability to be published than C2.
However, if we know that C1 is in an area where the prob-

ability density of tuples is much higher than that of C2, then
likely in the near future much more tuples may fall in the
region of C1 than C2. In other words, the tuples in C1 may
have a good chance to team up with some tuples in the near
future to reduce the uncertainty penalty without incurring
long delay. On the other hand, since C2 is in a very sparse
area, in order to lower down the uncertainty penalty, the tu-
ples in C2 may have to wait for a long time and thus lead to
high delay.

Motivated by Example 6, we should incorporate the den-
sity distribution of the data stream into account. Then, how
can we maintain and use the density distribution informa-
tion of a data stream effectively and efficiently?

The distribution of a data stream often evolves over time.
We should consider a sliding window of size W of the stream.
That is, at time instant i (i > W ), we use the distribution
of tuples ti−W+1, . . . , ti to predict the probability that some



future tuples may fall into an area. However, one challenge
is that when W is large, it is costly in both space and time
to maintain all tuples in the sliding window.

To tackle the problem, we adopt the chain sampling
method [6] to maintain a sample of ω points in the cur-
rent sliding window. When a sample point expires from the
current sliding window, we need to find another point in the
current window to replace. To avoid retrieve any previous
points in the stream, when a point x is chosen as a sample
point, chain sampling also calculates the index of the next
point x′ that will replace x in the sample when x expires.
x′ is called a future replacement of x. Once x′ arrives, it is
stored. All future replacements of x form a chain.

How can we store a set X of ω sample tuples in the cur-
rent sliding window and use the sample in making decisions
of publishing? We store the samples in the active R-tree
RT . However, different from the tuples in the active set,
the following two rules are applied on the samples. First,
when a sample x is inserted into the active R-tree, every
leaf node in the R-tree which covers the location of x should
receive a copy. Second, if a leaf node is divided into two
leaf nodes, the samples in the previous leaf node should be
copied to the new leaf nodes so that the new leaf nodes have
all samples in their areas.

The above sampling method carries two important prop-
erties. First, it maintains a uniform sample of the sliding
window in sampling rate ω

W
. Second, in each leaf node C,

the node also stores all samples falling into the area.
When a sample expires, we remove all copies of the sam-

ple in the active R-tree. This can be done efficiently by
maintaining an inverted list for each sample. That is, for
each sample, we maintain a list of all the leaf nodes in the
active R-tree that contain a copy of the sample. Since those
samples are used to estimate densities and do not partici-
pate the anonymization and publishing, adding or removing
samples from the active R-tree does not change the active
R-tree structure.

How can we use the sample set X to estimate the density?
Theoretically, we can use density estimation [28] to estimate
the probability density for any location in the data space.
However, the thorough density estimation is often too costly
for data streams. On the other hand, to determine whether
a leaf node in an active R-tree should be published, we only
need to obtain the density estimation at the granularity of
the whole leaf node area. Therefore, we propose the follow-
ing simple yet effective estimation.

Definition 5 (Leaf node stream probability).
For a leaf node C in an active R-tree, the leaf node stream

probability of C is given by SPr(C) = ‖samp(C)‖
ω

, where
samp(C) is the set of sample points in leaf node C.

Since each leaf node is a minimum bounding box contain-
ing all tuples falling into the leaf node, the edges of the leaf
nodes are parallel to the axes. Using the results in [31], we
have the following rule to set the appropriate sample size ω.

Theorem 3 (Probability estimation). Let W be
the current sliding window on a stream T , and X be a uni-
form sample on W . For any 0 < ε, δ < 1 and any axis-
parallel hyper-rectangle C,

Pr(
∥∥(‖C ∩W‖ − ‖C ∩X‖‖W‖

‖X‖ )
∥∥ ≤ ε‖W‖) ≥ (1− δ)

a (TS=5)

b (TS=8)

c (TS=10)
d (TS=30)

Figure 2: A leaf node in Example 7 (the dark-colored
area represents an area of high density, and the light-
colored area represents an area of low density).

if the sample size

ω = ‖X‖ = Θ(
‖S‖
ε2

log
1

ε
+ log

1

δ
),

where ‖S‖ is the dimensionality of the QID.

Now, the only issue left is how we can use the distribution
information to make proper decisions about publishing. For
a leaf node C in the active R-tree with stream probability
SPr(C), 1

SPr(C)
is the expected delay that a new tuple falls

into C. Thus, in expectation, C needs a delay of 2k−‖C‖
SPr(C)

to

get enough new tuples to split. The longer the delay, the
earlier we should publish C to avoid the information loss
due to the delay.

Integrating the distribution information into Algorithm 1,
a leaf node C in an active R-tree should take a probability

Pr(C) =
γ

loss(C)
(1 + α)

2k−‖C‖
SP r(C)

to be published. Similar to the reasoning of Theorem 2, we
have the following result.

Theorem 4 (Parameter γ). In expectation there are
n tuples in the active sets if

γ = (
∑

leaf node C

‖C‖
loss(C)

2k−‖C‖
SP r(C)

)−1,

where ‖C‖ is the number of tuples in C.

4.3 Holding Recent Tuples in Dense Areas
In Algorithm 1, once a leaf node C in an active R-tree is

chosen to be published, all tuples in C will be generalized to
the same and published in an equivalence class. However,
this may not achieve good anonymization quality.

Example 7 (Holding tuples). Consider a leaf node
C as shown in Figure 2 which contains 4 tuples. Suppose
3-anonymity is required and C is chosen to be published.
Should we include all 4 tuples in C in an equivalence class?

Tuple d has a much more recent timestamp than a, b and
c. Moreover, d is in an area much denser than a, b and c. In
other words, if we only publish a, b and c in an equivalence
class at this time and hold d, d may have a good chance to be
combined with some tuples in the near future to form a much
smaller equivalence class which may lead to low information
loss.

As illustrated in Example 7, when a leaf node C is pub-
lished, while we need to make sure that at least k tuples in
C are published as an equivalence class, we may also want



to hold some tuples in C arriving recently in dense areas to
reduce the information loss incurred to those tuples. Now,
the problem becomes how to estimate the potential for each
tuple in C that it can be combined with some future tuples
to form an equivalence class of smaller uncertainty penalty.

For a tuple ti ∈ C, let SC(ti) be a hyper-rectangle
minimum in uncertainty penalty containing ti and at least

d (k−1)ω
W

e samples. Because in probability each sample repre-

sents W
ω

real tuples in the current sliding window, it is easy
to show that loss(SC(ti)) is the expectation of the minimum
uncertainty penalty of publishing ti by forming an equiva-
lence class containing ti in the current sliding window.

Suppose the current timestamp is i0. The information loss
of publishing ti now is costi0(ti) = loss(C)(1+α)i0−i. Sup-
pose ti is published at a future instant i′ > i0, the informa-

tion loss must be at least costi′(ti) = loss(SC(ti))(1+α)i′−i.
In order to make sure costi′(ti) < costi0(ti), we have

i′ < i0 + log1+α

loss(C)

loss(SC(ti))
.

i′ is called the publishing deadline of ti.
We can decide whether we should hold tuple ti for later

publishing as follows. First, if loss(SC(ti))(1 + α)i′−i ≥
costi0(ti), publishing ti later does not lead to any benefit in

expectation. Second, if loss(SC(ti))(1 + α)i′−i < costi0(ti),
then holding ti may reduce information loss, and ti is called
a possible hold-on tuple.

Let H(C) be the set of possible hold-on tuples. We sort all
tuples in H(C) in publishing deadline descending order, and
hold the top-l tuples in H, where l = min{‖C‖ − k, ‖H‖}.
Those l tuples are not published at this time. The other
tuples in C are published as an equivalence class. After the
equivalence class is published, C is removed, and the tuples
held are re-inserted into the active R-tree.

The only question left is how to estimate SC(ti). For the
interest of efficiency, we adopt a greedy approach. Starting
from ti, we find among the samples in C a sample x1 such
that the minimum bounding box B1 covering both x1 and ti

has the minimum uncertainty penalty. Then, we find a next
sample x2 such that the minimum bounding box B2 covering
both x2 and B1 has the minimum uncertainty penalty. The
search continues until the minimum bounding box Bd (k−1)ω

W
e

is found, which is an approximation of SC(ti).
Algorithm 2 summarizes the above discussion.

4.4 Extensions
To keep our discussion simple, we assume that at each

instant only one tuple arrives. However, our method can be
extended straightforwardly to remove this assumption – we
only need to adopt an expected number of tuples that arrive
at a time instant to set parameters β and γ, and compute
the publishing deadlines of tuples. Limited by space, we
omit the details here.

In some applications, the timestamp attribute TS may be
part of the QID. In such a case, we only need to increase the
uncertainty penalty of every leaf node in the active R-tree
after each instant. Importantly, the increase of uncertainty
penalty on attribute TS is linear on time.

We focus on k-anonymity in this paper. However, many
ideas can be extended to tackle the problem of continuous
publishing of streaming data under other privacy preserving
models such as l-diversity. For example, a straightforward

Algorithm 2 The full method

Input: a stream T , a parameter k;
Output: equivalence classes EC1, EC2, . . .;

Initialization:
1: set the active R-tree RT to an empty R-tree;
2: set publishing queue Q to empty;
3: initialization for chain sampling [6];

When a tuple ti ∈ T arrives at instant i:
4: maintain sample chains [6];
5: insert ti into RT ;
6: if a leaf node C is partitioned during the insertion then
7: remove C from the publishing queue Q;
8: let C1, C2 be the new leaf nodes generated by the in-

sertion of ti, compute the due time of C1 and C2 ac-
cording to Section 4.2, insert them into Q;

9: end if
10: for each equivalence class C in Q that is due at instant

i do
11: compute the set of tuples to be held according to Sec-

tion 4.3;
12: publish C except for the tuples to be held, and remove

leaf node C from RT ;
13: re-insert all tuples held into RT ;
14: end for

extension is to enforce that every leaf node in the active
R-tree is l-diverse. Limited by space, we leave this task to
future work.

5. EXPERIMENTAL RESULTS
In this section, we report a systematic empirical study on

our methods using both real data and synthetic data. All
the experiments were conducted on a PC computer running
the Microsoft Windows XP SP2 Professional Edition oper-
ating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB main
memory, and a 160 GB hard disk. The programs were im-
plemented in C/C++ and were compiled using Microsoft
Visual Studio .NET 2005.

For the sake of simplicity, we call Algorithm 1 the basic
method, the method in Section 4.2 the density-aware method,
and algorithm 2 the full method. They are denoted by Ba-
sic, Den-aware, and Full in the figures in this section. We
also compare with the minimum delay method (Section 2.2,
denoted by Min-delay).

Since our methods are randomized algorithms. In our
empirical study, each experiment is run 10 times, and the
average values are reported.

Since [20, 9] are poster papers each of 3 pages, many crit-
ical details of the methods are not provided. Moreover, [20,
9] do not consider the time factor in the information loss
measure. Thus, we do not include them in this empirical
evaluation to avoid unfair or unreliable comparison.

5.1 Results on Real Data Sets
We use a real data set SAL (http://ipums.org/). Each

tuple in SAL describes the personal information of an Amer-
ican adult. The data set has a schema with 8 attributes:
{Age, Gender, Marital-status, Birth-place, Education, Oc-
cupation, Race, Salary}, all of which have integer domains,
as described in [36], and the number of distinct values on
those attributes are 79, 2, 6, 57, 17, 25, 8, and 50, respec-
tively. The total number of tuples in the data set is more
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Figure 5: Scalability results.

than 600 thousand. We use the attribute Salary as the sensi-
tive attribute. Using the other attributes as the QID, more
than 40% of tuples share the same values on the QID at-
tributes with some other tuples. For simplicity, we treat
the duplicate tuples corresponding to the same individual.
Those duplicate tuples should not be anonymized into an
equivalence class.

We generate various microdata tables from SAL with vari-
ous cardinalities n and numbers d of QID attributes. Specif-
ically, a data set SAL(n, d) takes the first d attributes in
SAL as the QID attributes, and contains n tuples randomly
sampled from SAL. For example, SAL(50K, 2) has QID at-
tributes Age, Gender, and 50 thousand tuples randomly cho-
sen from the data set. To simulate a data stream scenario,
each tuple in the data set SAL(n, d) is associated with a
timestamp. For simplicity, we assume that at each time in-
stant exactly one tuple arrives. As a result, the timestamp
of tuples in SAL(n, d) ranges from 1 to n.

5.1.1 Effect of α

We first examine the effect of parameter α in the qual-
ity measure (Definition 3). In Figure 3, we vary the value
of α from 0 to 0.002, and examine the average uncertainty
penalty per tuple and the average publishing delay per tu-
ple in the whole stream SAL(10K, 7). The privacy require-
ment parameter k is set to 10. The number of samples in
chain sampling is set to 3, 000. We report the results of the
density-aware method (Section 4.2). The basic method does
not consider parameter α. In the full method, the holding
of tuples also has strong effect on the uncertainty penalty
and publishing delay, as will be reported later.

Parameter α is a decaying factor. The larger the value
of α, the more important the timeliness and the smaller the
publishing delay. The results in Figure 3 confirms the effect.
α can be used to control the tradeoff between uncertainty
penalty and publishing delay. The results in Figure 3 indi-
cate that both the uncertainty penalty and the publishing

delay can achieve reasonable performance when α is set to
0.001. Thus in the rest of this section, by default, we set α
to 0.001.

5.1.2 Scalability
Next, we test the scalability of our methods. We vary the

number of tuples n, and examine the information loss, the
uncertainty penalty, the publishing delay and the runtime.
The results on data sets SAL(20K-100K, 7) are shown in
Figure 5, where the number of samples in chain sampling
is set to 3, 000, the privacy requirement parameter k is set
to 10, and the number of QID attributes d is set to 7. We
compare four methods: the minimum-delay method (Sec-
tion 2.2), the basic method (Algorithm 1), the density-aware
method (Section 4.2) and the full method (Algorithm 2).

All the four algorithms are scalable with respect to the
database size. In all methods, the average information loss,
the average uncertainty penalty, and the average publishing
delay are stable, and the runtime is linear with respect to
the number of tuples arrived. This experiment confirms that
our methods are suitable for processing fast data streams.

In terms of information loss and uncertainty penalty, the
full method works the best, and the minimum-delay method
works the worst. The density-aware method improves the
basic method. In terms of publishing delay, the minimum-
delay method achieves the smallest delay. The full method
and the density-aware method have slightly longer delays
than the basic method since they exploit density distribution
and holding to further reduce the uncertainty penalty.

In terms of runtime as shown in Figure 4, the minimum-
delay method and the basic method are quite close to each
other. The runtime of the density-aware method is also
quite short, which indicates our density estimation using
chain sampling is effective. The full method is about 7 times
slower than the density-aware method. The major cost is on
searching for the approximation of the minimum publishing
cost for tuples. Since the methods have linear scalability,
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they are applicable to data streams.

5.1.3 Effect of K in K-anonymity
We test the effect of k in k-anonymity. Limited by space,

we only show the results about information loss in Figure 6
using data set SAL(100K, 7). Again, the number of samples
in chain sampling is set to 3, 000.

When k increases, more tuples are needed to form an
equivalence class, thus the uncertainty penalty and the pub-
lishing delay increase. As a result, the information loss in-
creases. Interestingly, the increase is linear with respect to
k, which is highly desirable.

5.1.4 Effect of QID dimensionality
Figure 7 shows the effect of QID dimensionality on infor-

mation loss using data sets SAL(100K, 3-7). We set k to 10.
By default, the number of samples in chain sampling is set
to 3, 000.

When the QID dimensionality increases, the tuples be-
come sparse in the QID space. Thus the uncertainty penalty
and the publishing delay increases. As a result, the informa-
tion loss increases. Interestingly, the increase is not much
when the last two attributes are included into QID. Those
two attributes, occupation and race, have few distinct values
(25 and 8, respectively). Thus, the growth of the QID space
is not even as d increases.

5.1.5 Effect of Sample Size
In the density-aware method (Section 4.2) and the full

method (Algorithm 2), a sample is maintained to approxi-
mate the density distribution of the data stream. We test
the effect of the sample size on uncertainty penalty in Fig-
ure 8 using data set SAL(100K, 7).

The larger the sample size, the more accurate the estima-
tion. Figure 8 shows that the uncertainty penalty reduces
as larger sample sets are used. However, the decrease in
uncertainty penalty is quite smaller. This indicates that,
in practice, a small sample set may suffice to obtain good
anonymization quality. By default, the number of samples

in our experiments is set to 3000.

5.1.6 Comparison with Mondrian
We also compare the uncertainty penalty in the stream

scenario and that in the static scenario. We use the Mon-
drian multidimensional k-anonymity method [18]. Since the
tuples in SAL data set contains duplicate tuples, for simplic-
ity, we treat these duplicate tuples correspond to the same
individual. For a fair comparison, we only keep one of the
duplicate tuples and remove the others in this comparison.
As a result, each tuple in the generated data set corresponds
to one individual. We fix the value of k to 10, and the num-
ber of QID attributes to 7. The number of samples is set to
3, 000. We vary the number of tuples from 20 thousand to
100 thousand, i.e., we use the data set SAL(20K-100K, 7).
Figure 9 shows the result. In the static scenario, Mondrian
is run to anonymize all tuples in a batch. Thus, the un-
certainty penalty is small. However, publishing delay is not
considered at all. In other words, the average publishing
delay is n

2
where n is the number of tuples. Our meth-

ods achieve small publishing delay (Figure 5). In the full
method, the uncertainty penalty is about 10 times of that
in the static case.

5.2 Results on Synthetic Data Sets
To further test the performance of our methods on data

sets with various distributions, we use various synthetic data
sets. Limited by space, here we only report the results on
synthetic data sets of two types of distributions. The results
on other synthetic data sets are consistent.

The first group of synthetic data sets we used are in uni-
form distribution. The second group of data sets are in
Gaussian distribution. In all those data sets, the QID has
3 attributes. The domain of each attribute is real numbers
in range [0, 10]. In the data sets of normal distribution, the
values in those attributes independently follow the distribu-
tions N(5, 4), N(3.3, 9), and N(6.6, 9), respectively. We fix
the value of k to 10, and the number of samples in chain
sampling to 3, 000. The results are shown in Figures 10



and 11, respectively. Clearly, the full method outperforms
the other two methods substantially. Moreover, the average
information loss is stable.

6. CONCLUSIONS
In this paper, we tackled the problem of continuous pri-

vacy preserving publishing of data streams. We identified
the potential applications, proposed a concrete model and
an anonymization quality measure, and developed a group
of randomized methods. Our empirical evaluation verifies
the effectiveness and the efficiency of our methods.

The paper leads to a few interesting directions for future
work. As an example, in some applications, it is required to
monitor certain statistics or maintain a classification model
on a published data stream. Then, how can we publish the
stream so that the privacy preserving requirement is honored
and the statistics and classification model can be mined as
accurately as possible? As another example, can we extend
workload-aware anonymization [19] to data streams?
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