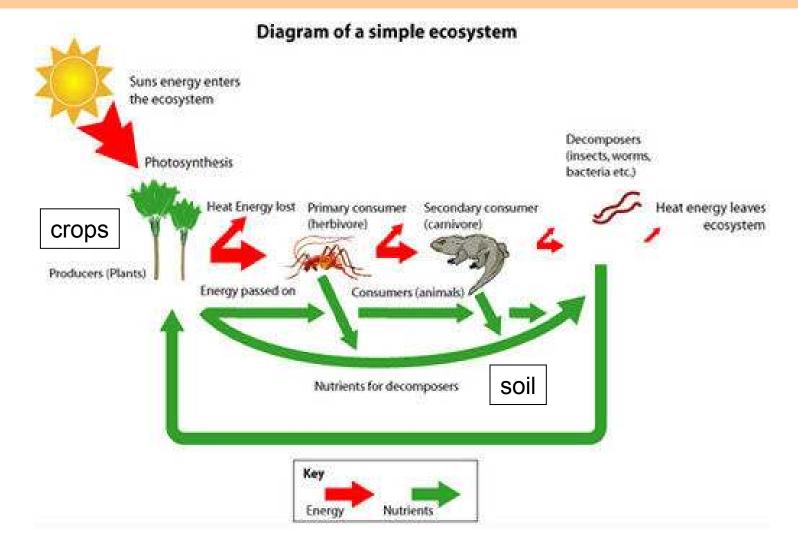
#### UF/IFAS Extension The Journey to Sustainability Begins with Education





UF/IFAS Sarasota County Extension 6700 Clark Road Twin Lakes Park Sarasota, Florida 34241 (941) 861-5000

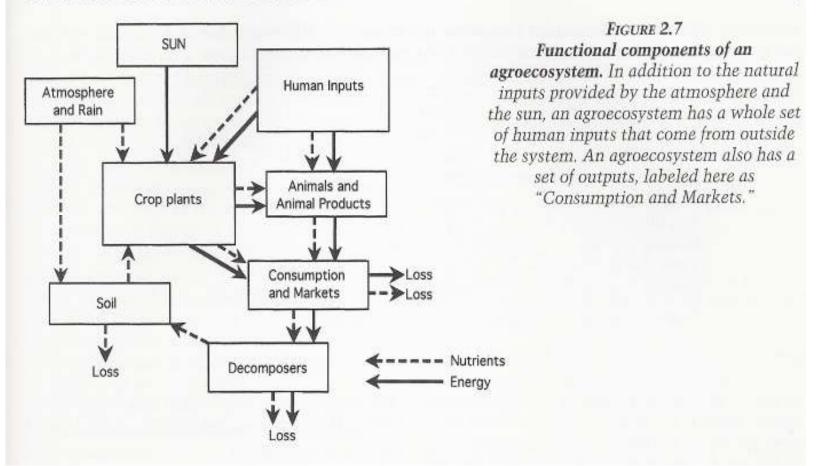



# Organic Vegetable Gardening Soil Management

Robert Kluson Ag/NR Extension Agent UF/IFAS Sarasota County Extension

## Introduction

- Objectives of this presentation
  - Provide the concepts, principles and science from agroecology of soil management practices in organic vegetable gardening
  - Provide resources in the management practices of soils and plant nutrition, in addition to our text "Vegetable Gardening in Florida" by James Stephens, UF/IFAS


### **Organic Vegetable Garden Ecology**



 Soil ecosystems have functional properties & subsystems (e.g., nutrient cycling,etc) from biodiversity

#### **Agroecosystem Concept**

#### THE AGROECOSYSTEM CONCEPT



Vegetables garden can be analyzed as agroecosystem.

25

## Agroecosystem "Health"

- This concept addresses the failures and side-effects of agroecosystem developments that have focused on the well-being of separate subsystems (e.g., soil fertility) rather than on their aggregated whole.
- The problem is rooted in philosophic paradigms of reductionism which implicitly assume that the well-being of a subsystem can be studied without considering its relations with the surroundings.

#### **Soil Quality**

Soil Fertility

**Physical Properties** 

**Biological Activity** 

"The ability of soil to function; to supply plants with adequate nutrients, have good drainage and aeration, promote root growth and biological activity."

## What Is Soil?

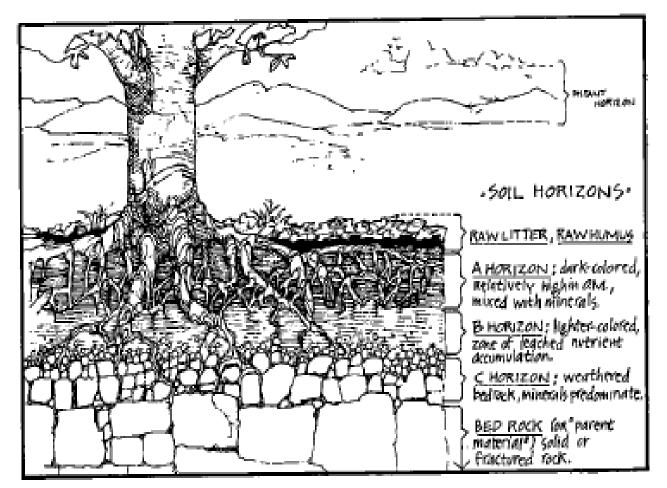
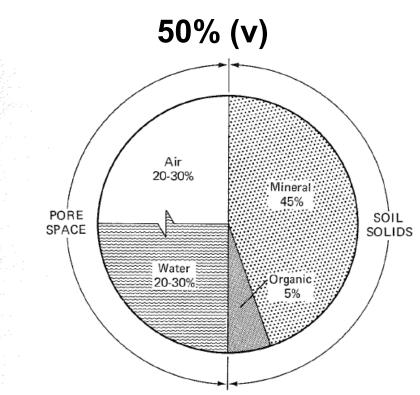



Figure 3.9 As edible landscapers, we are most concerned with the quality of soil in horizon "A."


Kourik, 1986, Designing & maintaining edible landscape naturally.

## What is Soil?

- 2 MAJOR PERSPECTIVES
- <u>Pedological</u> (holistic) a product of nature based on
  - climate
  - living organisms
  - nature of parent material
  - topography of area
  - time
- <u>Edaphological</u> (reductionistic) a habitat for plants (e.g., for food/fiber production & landscapes)

## What is Soil?

- A Mixture of Components
- Solids
  - minerals
  - organic matter
- Pore space
  - Water
  - Air

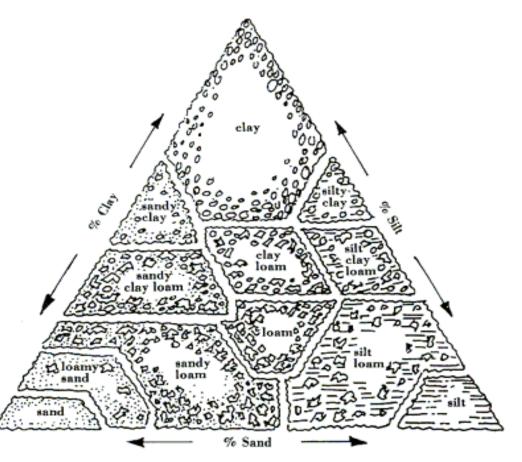


50% (v)

Brady, 1974, Nature and Properties of Soils

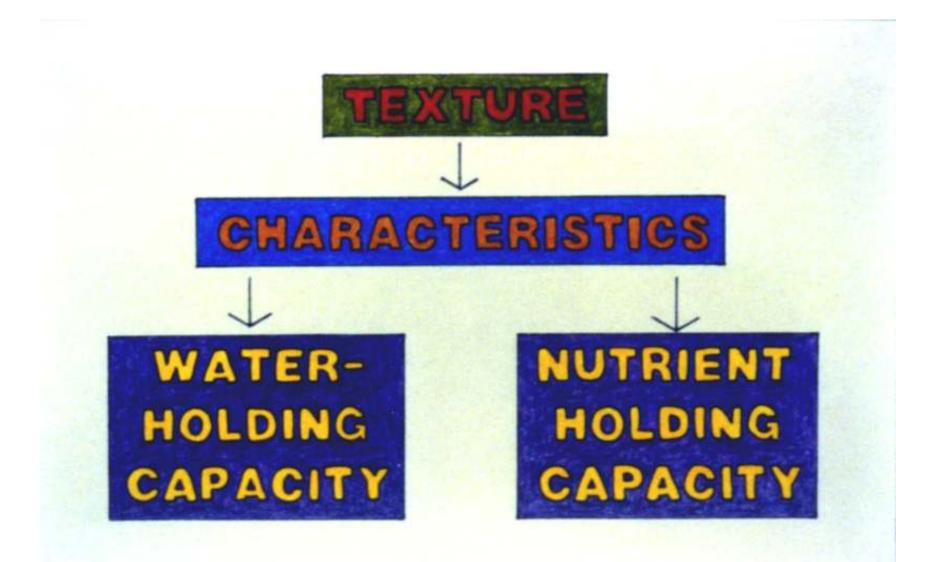
FIGURE 1:4. Volume composition of a silt loam surface soil when in good condition for plant growth. The air and water in a soil are extremely variable, and their proportion determines in large degree its suitability for plant growth.

## Soil Mineral Components

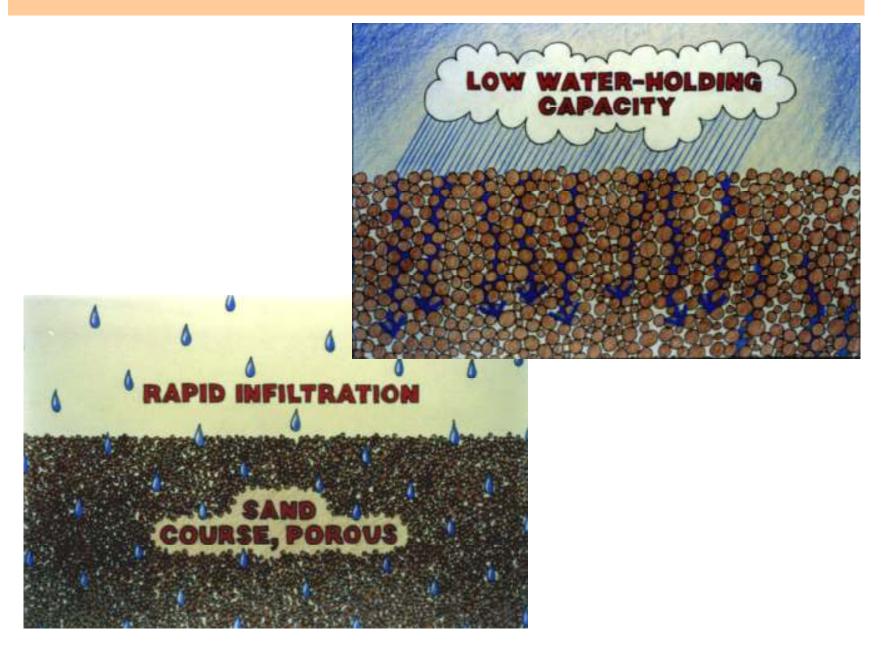

- <u>Sand:</u> large particles, 0.05-2.0 mm in diameter.
- <u>Silt:</u> medium particles, 0.002-0.05 mm. Settles within 48 hours.
- <u>Clay:</u> extremely small particles, less than 0.002 mm.



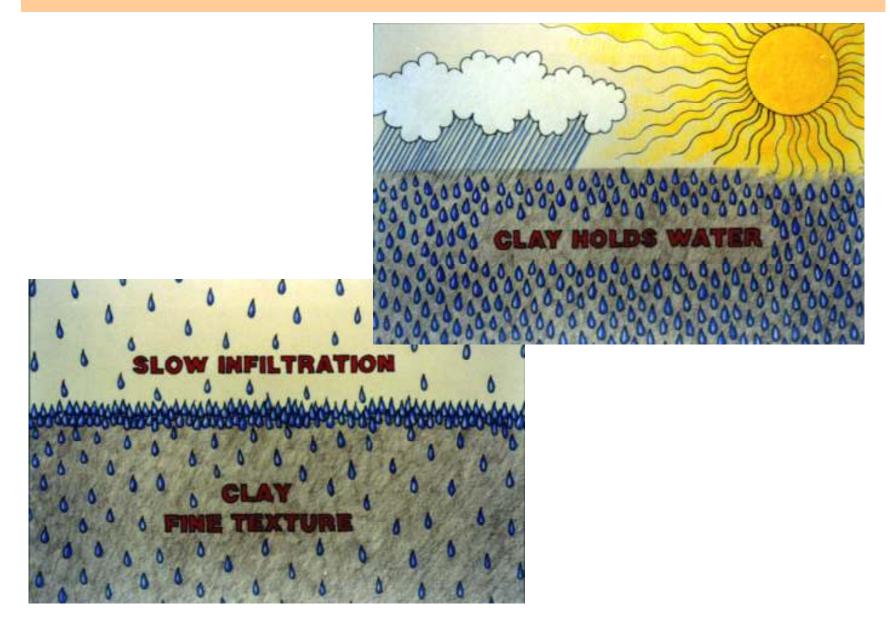
## Soil Triangle


Determines Soil Texture Class

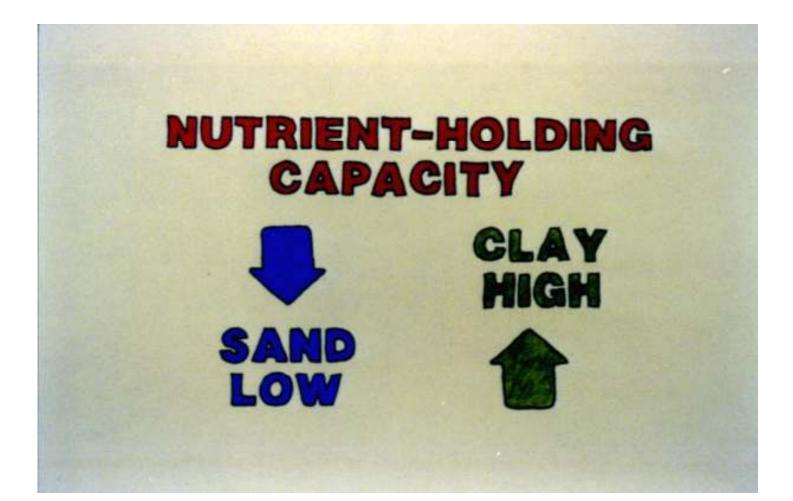
 Sandy soil: primarily sand




Sandy clay: clay with sand


#### **Textures Affect Capacities**

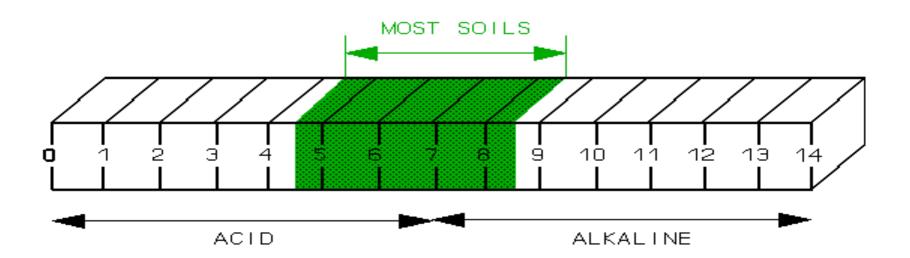



#### **Sand Characteristics**



# **Clay Characteristics**




## **Soil Nutrient Capacity**



# Soil pH

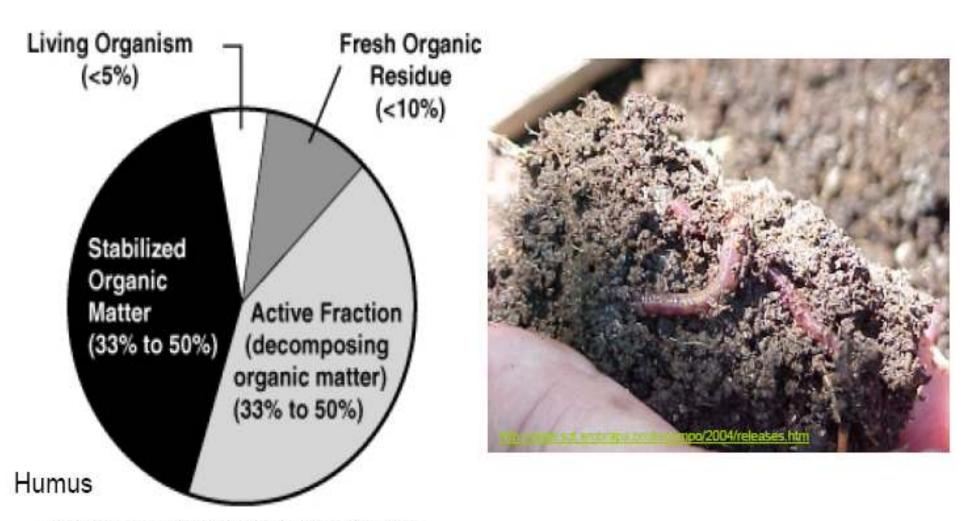
- The measure of acidity or alkalinity of the soil
- Determines the concentration of nutrients in solution in the soil water (availability of nutrients for the plant)

The pH Scale



## Soil pH and Nutrients Availability

| Strongly Acid | Medium<br>Acid | Slighty<br>Add | Very<br>Slightly<br>Acid | Very<br>Slightly<br>Alkalne | Slightly<br>Alkaline  | Medium<br>Alkaline | Strongly Alkaine |
|---------------|----------------|----------------|--------------------------|-----------------------------|-----------------------|--------------------|------------------|
|               |                |                | Nitro                    | ogen                        | 1020.124.1a           |                    |                  |
|               |                |                | Phos                     | phorue                      |                       |                    |                  |
|               |                |                | Potas                    | sium                        |                       |                    |                  |
|               |                |                | Sul                      | ohur                        |                       |                    |                  |
|               |                |                | Cak                      | sium                        | and the second second |                    |                  |
|               |                |                | mith and                 | Magnesium                   | Strah -               |                    |                  |
|               | Iron           |                |                          |                             | CHW E                 |                    |                  |
| N             | langanese      |                | Contraction of the       |                             |                       |                    |                  |
|               | Boron          |                |                          |                             |                       |                    |                  |
| Co            | per and Zinc   |                |                          |                             |                       |                    |                  |
|               |                |                | Molyb                    | denum                       |                       |                    |                  |
| 4.5 5.0       | 5.5 6          | 0 6.           |                          | 07                          | 5 8                   | .0 8.5             | 9.0 9.5          |


# Adjusting Soil pH

- To raise soil pH (make more alkaline): apply lime (calcium carbonate) or dolomite (magnesium carbonate) - carbonate compounds
- To lower soil pH (acidify) temporarily: apply elemental sulfur compounds.
- To add calcium or magnesium without changing soil pH: use sulfate compounds (ex.: gypsum = calcium sulfate)

## **Organic Matter**

- Major contributions to soil fertility & quality
- Range of values
  - Temperate soils have higher OM levels (5-10%)
  - Tropical soils generally have 0.5-1.0% (this is us)

## **Organic Matter**



Brady & Weil, 2004. Elements of the Nature and Properties of Soils

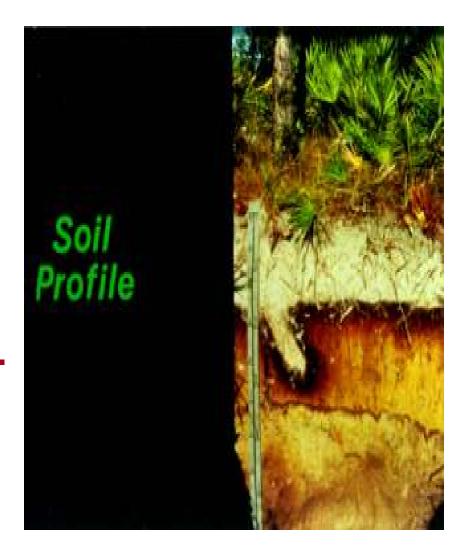
## Soil Structure

- Aggregation
  - how components are held together not just composition
  - results in good "tilth"
  - improved by root growth and OM
  - reduced by compaction and increased density



Figure 2. Comparison of good, crumb-like soil structure (left), with a poor, clod-like structure (right). (Drawing by Stewart Hoyt.)

Gershuny & Smillie, 1995, Soul of Soil.

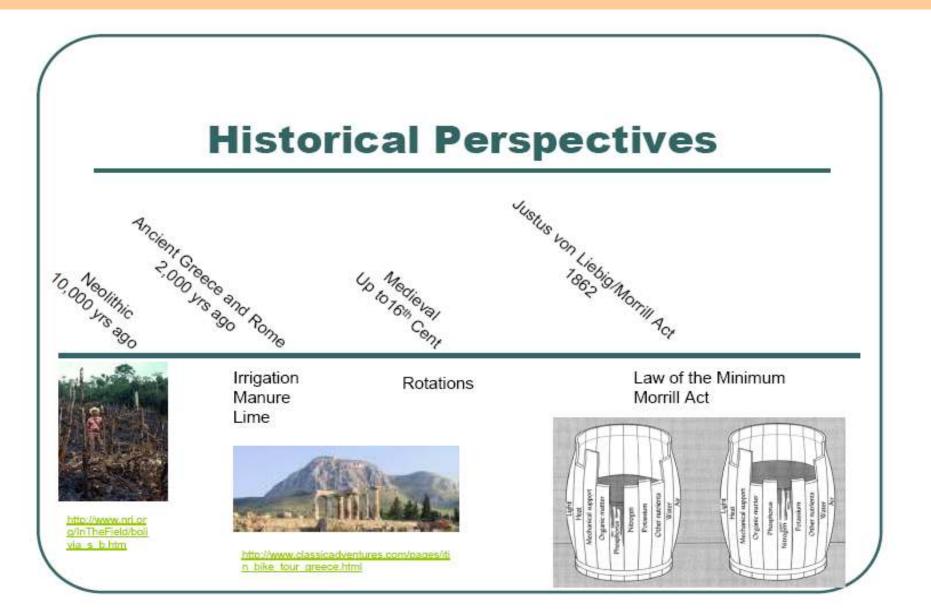

## Water Stable Aggregates

 Formed by the aggregation of clay (smallest particles), followed by gluing together of macro-aggregates with bacterial secretions, fungal hyphae, and root hair bonding.

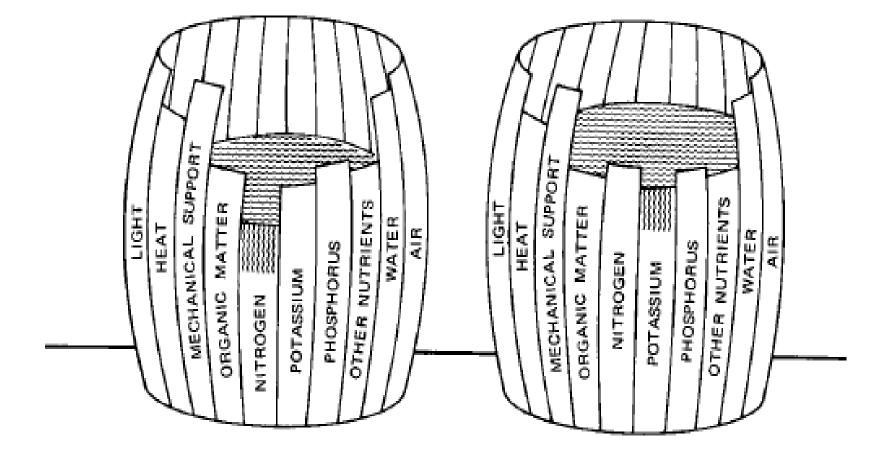


## Soil Profiles

- Arrangements of layers or "horizons" of soils with particular characteristics.
- Main characteristics determining "soil type or series" Ex.: "Myakka fine sand").
- Indicator of landscapes
   & ecosystems

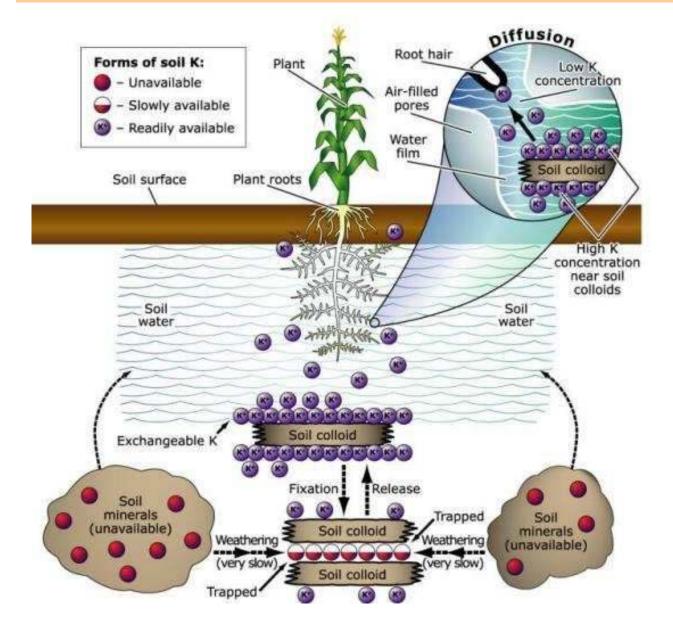



## Soil Survey


- Soils information for land use planning
- Highlights soil capabilities/limitations
   for many different users
- Available at county level & online
- Intended for a general level application

http://websoilsurvey.nrcs.usda.gov/app/

## **Plant Nutrition Concepts**




#### • Principle of Limiting Factors –Justus von Liebig (1803-1873)



• The research of the "father of the agricultural chemicals industry" also acknowledged the importance of soil organic matter

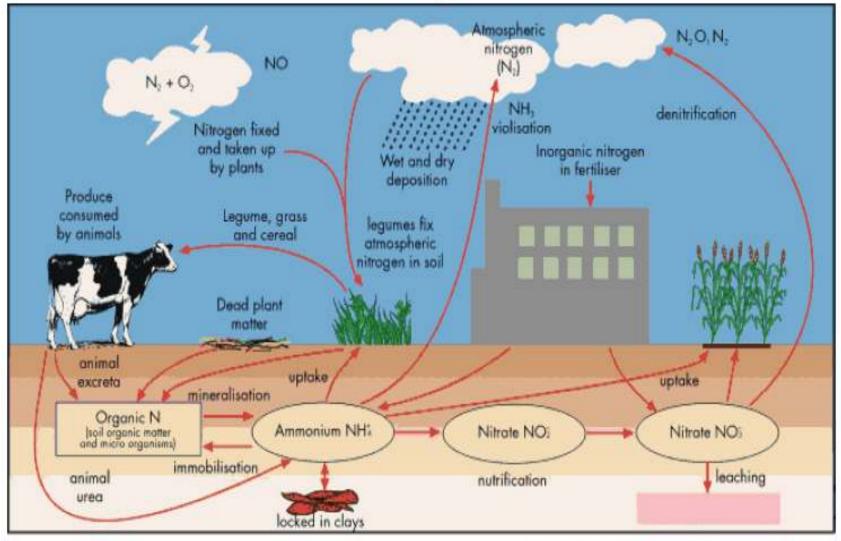
### Soil Chemistry Plant Nutrition Example



#### Potassium (K) Example

## Soil As An Ecosystem

#### ECOSYSTEM PROCESSES

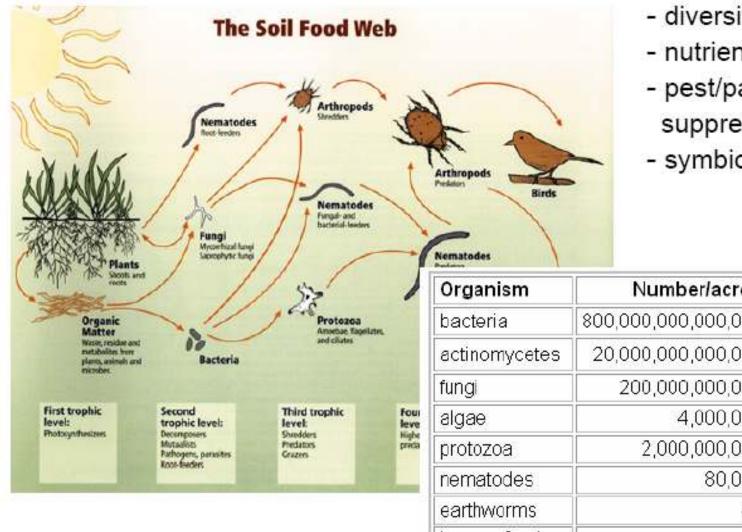

ILLUSTRATION: NICOLE BRAND

Three processes connect all the parts of the ecosystem:

 Energy Flow is the "power" of the system
 Water Cycling and
 Nutrient Cycling are the movements of the elements and compounds that plants and animals need to live and grow.

# Soil Nutrient Cycle Example

#### Nitrogen



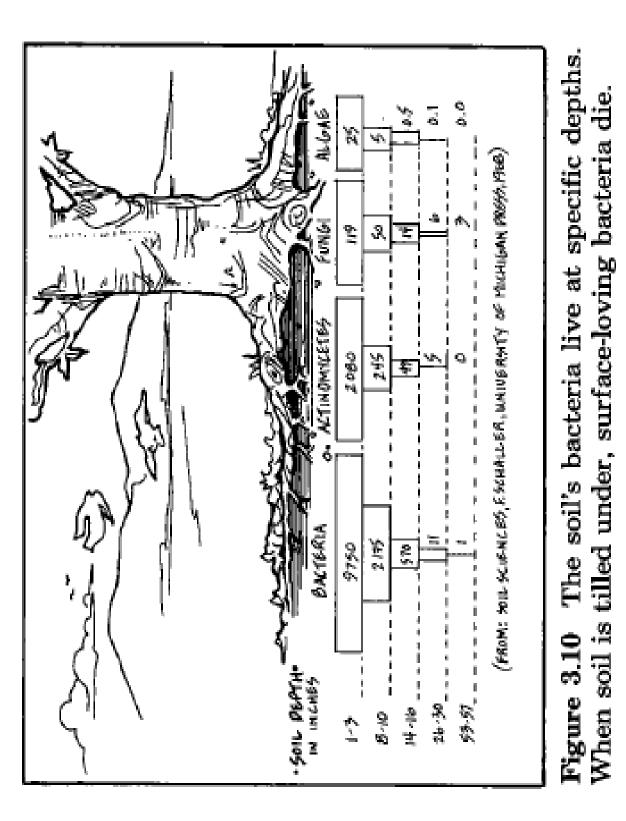

http://www.bettersoils.com.au/module2/images/27.gif

#### Soil is Habitat



## **Soil is Alive**

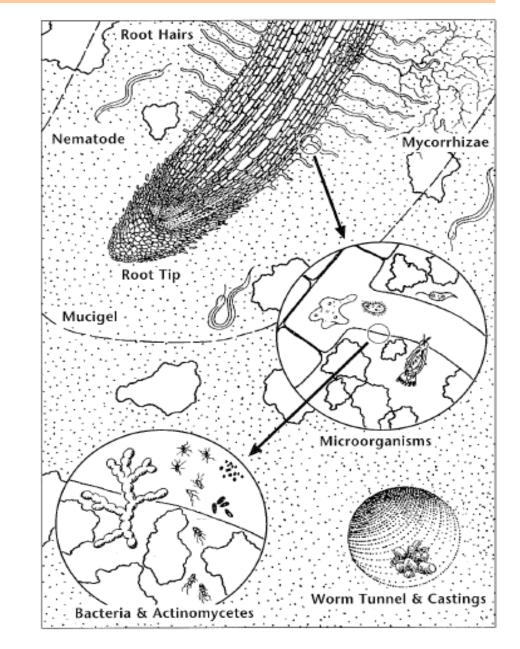



Importance of Soil Biology

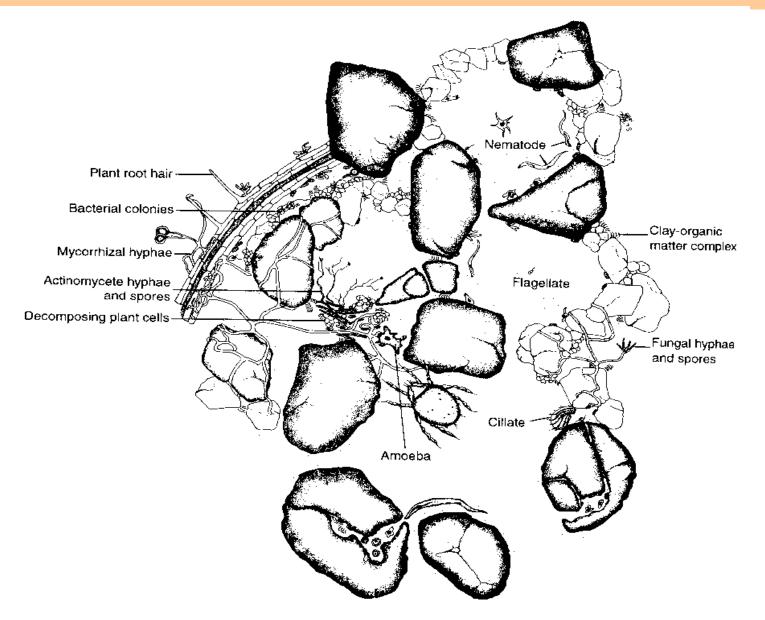
- diversity
- nutrient cycling
- pest/pathogen suppression
- symbioses

| Organism                      | Number/acre             | Lbs./acre |  |
|-------------------------------|-------------------------|-----------|--|
| bacteria                      | 800,000,000,000,000,000 | 2600      |  |
| actinomycetes                 | 20,000,000,000,000,000  | 1300      |  |
| fungi                         | 200,000,000,000,000     | 2600      |  |
| algae                         | 4,000,000,000           | 90        |  |
| protozoa                      | 2,000,000,000,000       | 90        |  |
| nematodes                     | 80,000,000              | 45        |  |
| earthworms                    | 40,000                  | 445       |  |
| insects & other<br>arthropods | 8,160,000               | 830       |  |

Source: Thompson and Troeh, 1978







# Soil Organisms

- Microbes
  - Bacteria
  - Fungi
  - Actinomycetes
  - Algae
  - Protozoans
  - Nematodes
- Macrobes
  - Earthworms
  - Moles/Gophers
  - Ants/Termites
  - Herpetofauna

Gershuny & Smillie, 1995, Soul of Soil



## Soil Life and Soil Properties





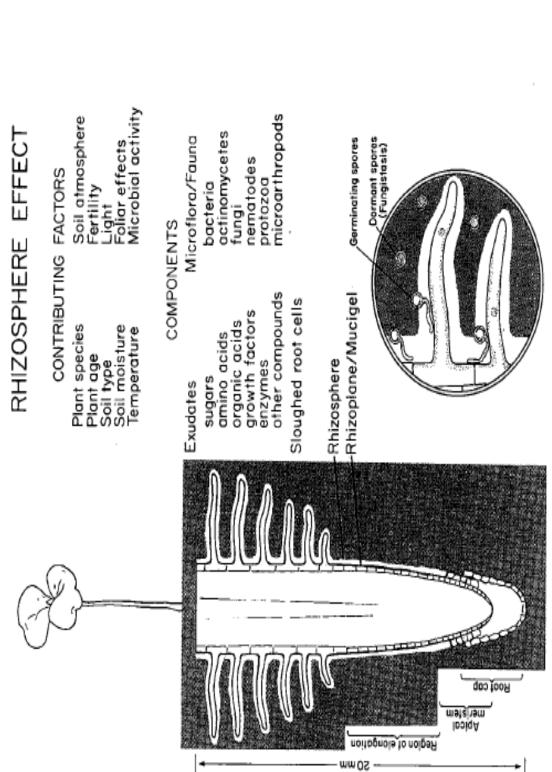
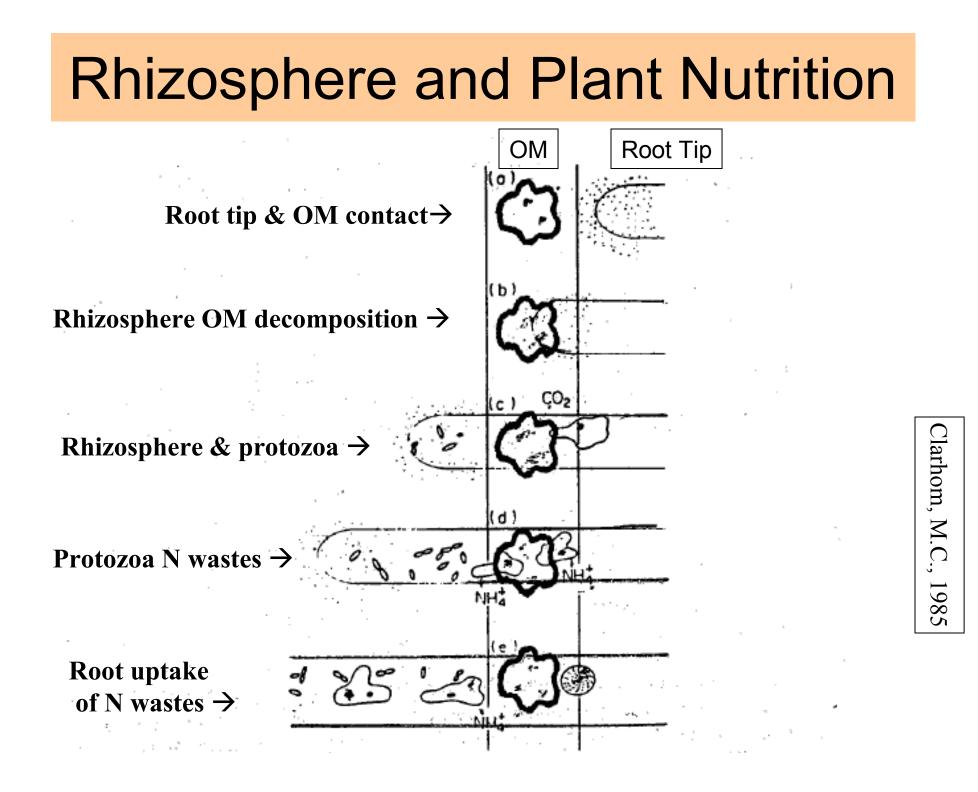




Fig. 1.2. Diagram of a young root featuring the rhizosphere and rhizoplane. Major organic materials released by the root, and groups of the microbiota affected are indicated along with factors governing the extent of root influence. Inset shows fungal spores germinating in the rhizosphere but not outside this nutrient zone







Pfleger and Linderman, 1994, Mycorrhizae and Plant Health.

#### Fungi and Soil Quality

 Decompose carbon compounds Improve OM accumulation Retain nutrients in the soil Bind soil particles - Food for the rest of the food web Mycorrhizal fungi Compete with plant pathogens

# Nitrogen-fixing Bacteria



•Nodules formed where *Rhizobium* bacteria infected soybean roots.

# EARTHWORMS

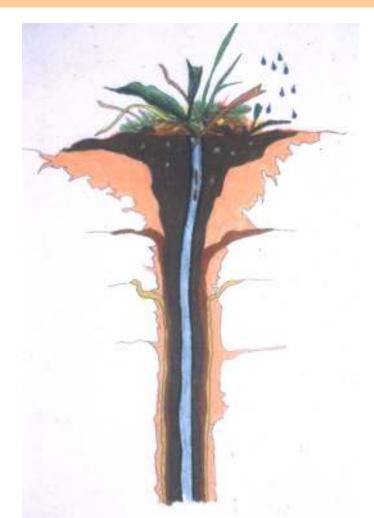


• Earthworms generate tons of casts per acre each year, dramatically altering soil structure.

### **Earthworms Bury Litter**



• A corn leaf pulled into a night crawler burrow


#### **Earthworm Burrow**



 A mixture of soil and organic matter within an earthworm burrow. Earthworms incorporate large amounts of organic matter into the soil.

#### **Vertical Burrows**





 Some worms live in permanent vertical burrows such as these. Others move horizontally near the surface, filling their burrow with casts as they move.

### **Earthworm Casts**



 Casts at the soil surface are evidence that earthworms are shredding, mixing, and burying surface residue.

# Earthworm Burrow Opening



 This earthworm burrow is an opening in an otherwise crusted soil surface.

# Earthworm Burrow Opening



• A mound of organic matter was moved aside to expose the entrance to a burrow. *L. terrestris* will quickly replug its burrow if its mound is removed.

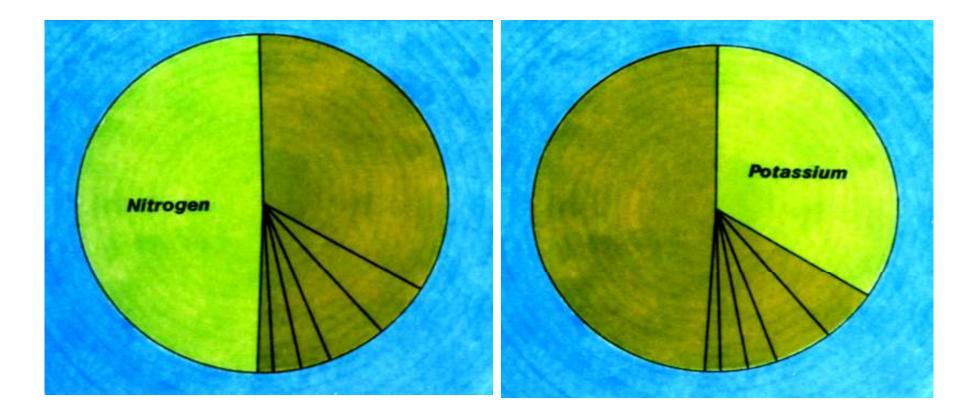
# **Earthworm Reproduction**



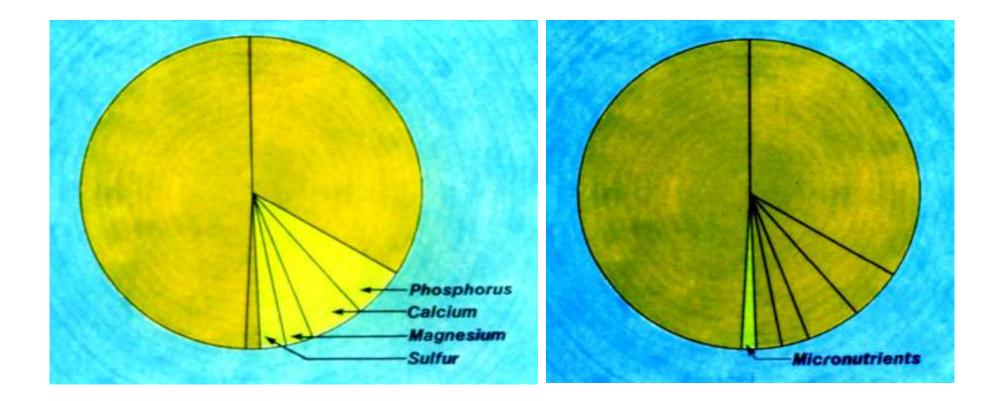
• *L. terrestris* mating, and earthworm cocoons. Earthworms mate periodically throughout the year, except when environmental conditions are unfavorable. *L. terrestris* cocoons are about a quarter inch long.

# Night crawlers and tillage

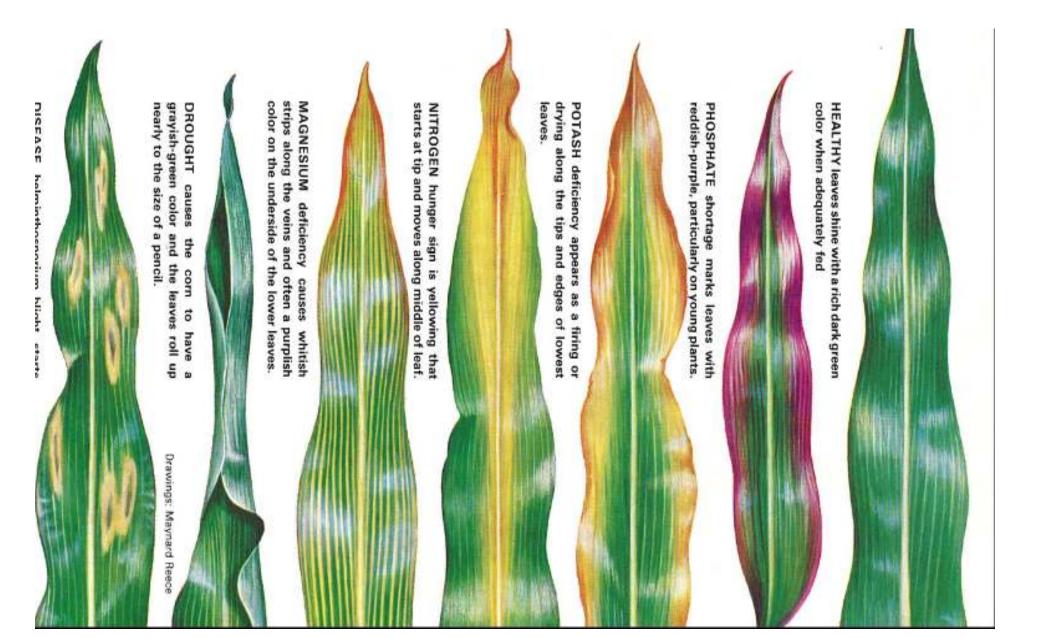



Without *Lumbricus terrestris* 

With *Lumbricus terrestris* 


### **Earthworm Benefits**

- Stimulate microbial activity
- Mix and aggregate soil
- Increase infiltration
- Improve water-holding capacity
- Provide channels for root growth
- Bury and shred plant residue


# Nitrogen & Potassium Needs



#### **Other Nutrient Needs**



# **Plant Nutrition Deficiencies**



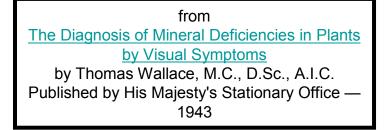
# UF/IFAS Plant Nutritional Deficiencies Website





Magnesium

- User-friendly "decision tree" database
- Ornamental plant examples primarily
- <u>http://hort.ifas.ufl.edu/nutdef/</u>


#### Nitrogen Deficiency Symptoms Vegetable Crops Examples (poor growth, yellow OLDER leaves)



Carrot: Growth dwarfed and thin; leaves pale green and older leaves yellow and red tints and die off early. Celery Plant: Growth dwarfed; foliage pale green and older leaves yellow and die early.







Tomato: Growth dwarfed, thin and upright habit; stem and petioles rigid; leaves pale green, occasional purplish tints, older leaves yellowing.

#### Phosphorus Deficiency Symptoms Vegetable Crops Examples (poor root growth, purple color)



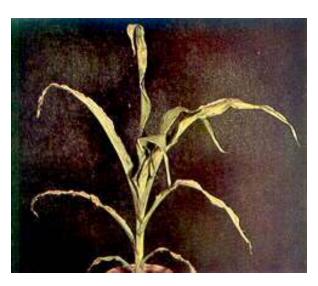
Growth stunted; leaves lustreless green and dull purple tints.



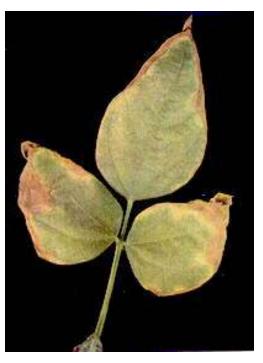
Leaves strong purple tints.

from <u>The Diagnosis of Mineral Deficiencies in Plants by Visual Symptoms</u> by Thomas Wallace, M.C., D.Sc., A.I.C. Published by His Majesty's Stationary Office — 1943




Growth dwarfed and thin; leaflets droop, curl backward and develop strong, dull purple tints.

#### Potassium Deficiency Symptoms Vegetable Crop Examples


#### (burning at leaf edges, don't confuse with insect damage)



Leaflets slight marginal and intervenal chlorosis followed by brown marginal scorching; scorched margins curled foward.



Internodes short, leaves relatively long; marginal and tip browning of leaves.



Intervenal chlorosis near margins followed by marginal scorch.

#### Calcium Deficiency Symptoms Vegetable Crop Examples (youngest leaves show deficiency, opposite of N effect)



Dying off of terminal leaflets and flowers; leaves purplish brown tinting.

Dying back of trusses and "Blossom End Wilt" of distal fruitlets

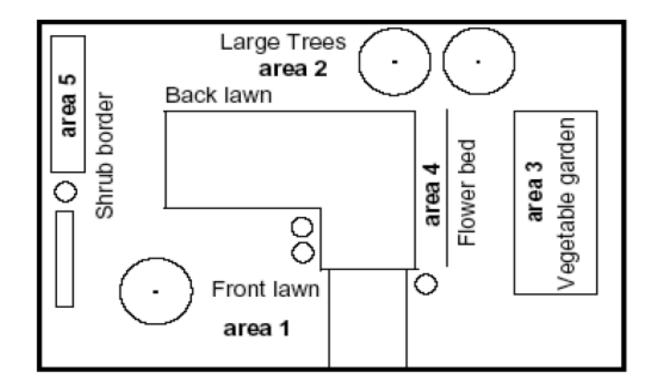


Dying off of terminal leaflets and flowers; leaves purplish brown tinting.



Plant Nutrition Deficiency Identification Caveats

- Changes can be normal part of a plant's cycle, e.g., iris foliage dieback or fall leaf colors
- Often related to other problems
  - Pesticides
  - Disease
  - Insects
  - Soil factors
  - Environment (rainfall, wind, cold, etc)
- In order to treat the problem, first necessary to diagnosis it correctly


# Soil Testing

- Program that includes:
  - nutrient analyses and interpretation
  - fertilizer & amendment recommendations
  - other considerations
    - salinity
    - elemental toxicity
- Soil Testing Labs
  - UF/IFAS Soil Lab
    - (http://soilslab.ifas.ufl.edu/)
  - Alternative Soils Labs

(http://attra.ncat.org/attra-pub/soil-lab.html

# Soil Sampling

- Representative sample = goal
- Sample separately distinct areas



# Soil Sampling

#### How to Sample Your Lawn or Garden

Obtain a small amount of soil from 10-15 different spots over the area you wish to test (a minimum of one-half pint). When you sample a lawn, take the soil from the upper 2-4 inches. When sampling a vegetable garden or landscape plants, take soil from the upper six inches. If soil is wet, spread soil on clean paper or other suitable material to air dry.

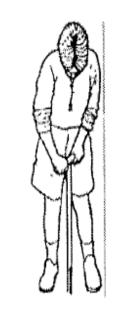


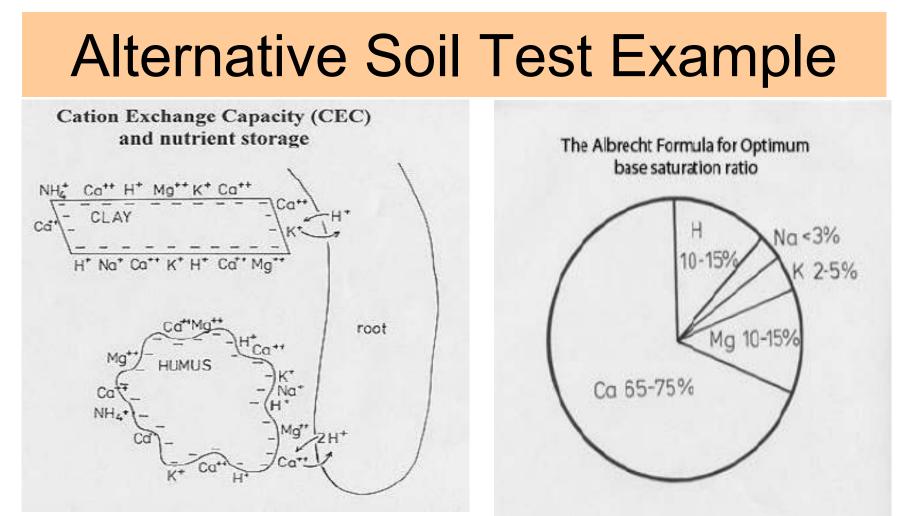

Figure 1a. Use a soil probe to speed soil sampling, or...

Figure 1b. Use a hand trowel, shovel or other garden tool. Trim out soil of uniform thickness to the recommended depth.



Figure 2. Place 10 to 15 soil cores into a plastic bucket; mix, dry, and transfer to a bag.

# Soluble Salt Levels


- Soil soluble salt levels are generally classified as damaging in the following ways:
  - <700 ppm = normal levels, no damage</p>
  - 700-1400 ppm = slightly damaging levels for sensitive plants.
  - 1400-2100 ppm = damaging levels, higher than acceptable for most plants.
  - ->2100 ppm = very damaging levels, tolerable only by the most salt-tolerant plants
- As reference:
  - Fresh water (<700 ppm)</p>
  - Gulf waters (28,000-35,000 ppm)
  - "softened" water (700-2100 ppm)



#### PO Box 110740 / Wallace Building 631, UF / Gainesville, FL 32611-0740 SOILSLAB@IFAS.UFL.EDU

#### Landscape & Vegetable Garden Test Information Sheet

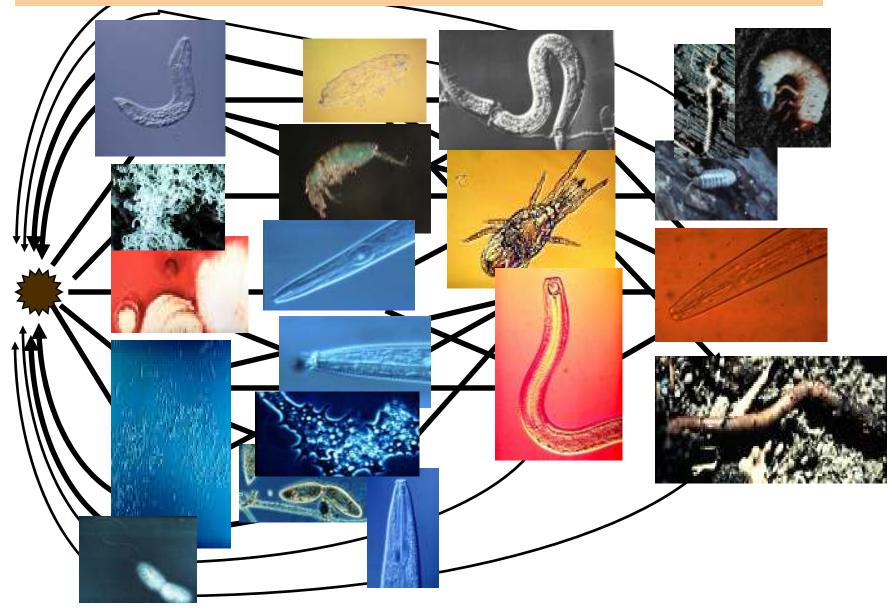
| /lailing Address (                                                                                                                                                    | please print)                                                                                                        | No                                | te: This L                                         | ab O                           | only Tests Sa                                                                            | mples from the Stat                                                                                                                                                                | e of Florida.                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| lame                                                                                                                                                                  | -                                                                                                                    | P                                 | hone                                               |                                |                                                                                          |                                                                                                                                                                                    |                                                                            |  |  |
| Address                                                                                                                                                               |                                                                                                                      |                                   | Direct any questions<br>regarding this test or the |                                |                                                                                          |                                                                                                                                                                                    |                                                                            |  |  |
| ityFL_Zip<br>Pate E-Mail                                                                                                                                              |                                                                                                                      |                                   |                                                    |                                | interpretation                                                                           | interpretation of the results                                                                                                                                                      |                                                                            |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                | to your county Extension<br>Agent.                                                       |                                                                                                                                                                                    |                                                                            |  |  |
| * These sa<br>* Commerce                                                                                                                                              | ial producers should                                                                                                 | sted for nemate<br>use the Produc | odes, disea<br>cers Soil Te                        | ase or<br>est Inf              | ganisms or che<br>formation Shee                                                         |                                                                                                                                                                                    | listed on this form.                                                       |  |  |
|                                                                                                                                                                       | oles from your landscap<br>ER Test A or B, but no                                                                    |                                   |                                                    | lions a                        | t the bottom of th                                                                       | s page.                                                                                                                                                                            |                                                                            |  |  |
| information.<br>• Soil pH<br>• Lime Requ<br>Test A is especially fo<br>1) use only complete<br>2) follow the generic for<br>vegetable garden<br>3) need only the soil | irement<br>or you if you:<br>fertilizers (such as 16-4-<br>fertilizer recommendation<br>publications, or<br>pH test. | 8),<br>ns in IFAS landsca         | ape and                                            | Test<br>on e<br>such<br>little | Soil pH     Lime Requir B will enable you kisting soil fertility as 10-10-10, the value. | ity Test will give you these<br>P • Ca<br>ement • K • Mg<br>to tailor your use of single-el<br>status. However, if you use a<br>extra tests for extractable P,<br>Remember: Choose | lement fertilizers based<br>a complete fertilizer,<br>K, Mg, and Ca are of |  |  |
| Fill in all requested                                                                                                                                                 | l information, using on<br>thar                                                                                      | e line per sample<br>5 samples.   |                                                    |                                | leets for more                                                                           | each sa                                                                                                                                                                            |                                                                            |  |  |
| Lab Use Only                                                                                                                                                          | Sample ID                                                                                                            | County                            | Crop Coo                                           | ge 2 S                         | Acreage or<br>Square Feet<br>(optional)                                                  | Cost of Test A                                                                                                                                                                     | Cost of Test B                                                             |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   | See Pag<br>(or back                                |                                |                                                                                          | (Circle appropri                                                                                                                                                                   | ate amount.)                                                               |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                |                                                                                          | \$3.00                                                                                                                                                                             | \$7.00                                                                     |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                |                                                                                          | \$3.00                                                                                                                                                                             | \$7.00                                                                     |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                |                                                                                          | \$3.00                                                                                                                                                                             | \$7.00                                                                     |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                |                                                                                          | \$3.00                                                                                                                                                                             | \$7.00                                                                     |  |  |
|                                                                                                                                                                       |                                                                                                                      |                                   |                                                    |                                |                                                                                          | \$3.00                                                                                                                                                                             | \$7.00                                                                     |  |  |



• Soils, crops and livestock require balanced nutrition for health, just as people need a balanced diet to stay healthy. Organic farmers strive to provide a 'balanced diet" for their farms by adding a variety of organic materials and natural mineral amendments to the soil.

M. Schonebeck, Soil Cation Nutrient Balancing in Sustainable Agriculture <a href="http://www.vabf.org/infosht.php">http://www.vabf.org/infosht.php</a>

REPORT NUMBER 07-284-0270 REPORT DATE Oct 16, 2007 RECEIVED DATE Oct 11, 2007


> IDENTIFICATION TOP GROWER HOME FARM ANYWHERE IL



PAGE 1/4

|                                                                                                                | AN/                                             | ALYTICA | LABO | RATORY F | INDINGS |               |                                            | APPLICATION GUIDELIN                                                      | ES   |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|------|----------|---------|---------------|--------------------------------------------|---------------------------------------------------------------------------|------|
| SAMPLE IDENTIFICATION 1                                                                                        |                                                 |         |      |          |         | INTENDED CROP | YIELD GOAL                                 | PREVIOUS CROP                                                             |      |
| LABORATORY NUN                                                                                                 | IBER                                            | 7828986 |      |          |         |               |                                            |                                                                           |      |
| ANALYTE                                                                                                        | NALYTE UNITS RESULTS LOW MEDIUM OPTIMUM V. HIGH |         |      |          | V. HIGH |               | GESTED FERTILITY GUIDELINES (I             |                                                                           |      |
| Organic Matter                                                                                                 | *                                               | 2.9     |      |          |         |               | FERTILITY ELEMENT<br>NITROGEN (N)          | Agr Energy SUGGEST                                                        | 5    |
| Nitrate-N                                                                                                      | The life                                        | 18      |      |          |         |               | NIL ROGEN (N)                              |                                                                           |      |
| P, Phosphorus                                                                                                  | bs/A<br>bs/A                                    | 18      |      |          |         |               | PHOSPHATE (P <sub>2</sub> O <sub>2</sub> ) |                                                                           |      |
| Water Sol P                                                                                                    | ballA                                           | 4       | _    |          |         |               |                                            |                                                                           |      |
| P.Phosphorus                                                                                                   | BalA                                            | 122     |      |          |         |               | POTASH (K <sub>2</sub> O)                  |                                                                           |      |
| Bicarb-P                                                                                                       | bs/A                                            |         |      |          |         |               | MAGNESIUM (Mg)                             |                                                                           |      |
| Potassium                                                                                                      | BolA.                                           | 351     |      |          |         |               | mastrestom (mg)                            |                                                                           |      |
| Water Sol K                                                                                                    | bolA.                                           | 61      |      |          |         |               | SULFUR (S)                                 |                                                                           |      |
| Calcium                                                                                                        | bolA.                                           | 4446    |      |          |         |               |                                            |                                                                           |      |
| Water Sol Ca                                                                                                   | IbolA                                           | 178     |      |          |         |               | ZINC (Zn)                                  |                                                                           |      |
| Magnesium                                                                                                      | BolA.                                           | 1132    |      |          |         |               | MANGANESE (Mn)                             |                                                                           |      |
| Water Sol Mg                                                                                                   | bolA.                                           | 83      |      |          |         |               | monocitese (min)                           |                                                                           |      |
| Sulfur                                                                                                         | BolA                                            | 18      |      |          |         |               | IRON (Fe)                                  |                                                                           |      |
| Water Sol S                                                                                                    | BalA.                                           | 14      |      |          |         |               |                                            |                                                                           |      |
| Zinc                                                                                                           | ppm                                             | 1.0     |      |          |         |               | COPPER (Cu)                                |                                                                           |      |
| Manganese                                                                                                      | ppm.                                            | 2       |      |          |         |               | BORON (B)                                  |                                                                           |      |
| Iron                                                                                                           | ppm                                             | 35      |      |          |         | T             |                                            | UGGESTED AMENDMENT GUIDE                                                  | N/FZ |
| Copper                                                                                                         | pp.m.                                           | 2.3     |      |          |         |               | AMENDMENT                                  | AgriEnergy SUGG                                                           |      |
| Boron                                                                                                          | ppm                                             | 0.6     |      |          |         |               | LIME POUNDS                                |                                                                           |      |
| Sodium                                                                                                         | bs/A                                            | 34      |      |          |         |               | LIME TON                                   |                                                                           |      |
| Water Sol Na                                                                                                   | lbs/A                                           | 27      |      |          |         |               | ELEMENTAL                                  |                                                                           |      |
| Soluble Salts                                                                                                  | mmhos/cm                                        | 0.3     | 51   | Sec. 1   |         |               | SULFUR                                     |                                                                           |      |
| Excess Lime Rt                                                                                                 |                                                 | L       |      |          |         |               | GYPSUM TONS                                |                                                                           |      |
| pH                                                                                                             |                                                 | 6.9     |      |          |         |               | GTPSOM TONS                                | COMMENTS                                                                  |      |
| Buffer Index<br>C.E.C.                                                                                         |                                                 | 18.2    |      |          |         |               |                                            | COMMENTS                                                                  |      |
| G.E.G.<br>Base Saturation                                                                                      | meq/100g                                        | 18.2    |      |          |         |               |                                            |                                                                           |      |
| Base Saturation<br>Percent K                                                                                   | Decired<br>2-5%                                 | 2.7     |      |          |         |               |                                            |                                                                           |      |
| Percent Ma                                                                                                     | Sector and                                      | 28.8    |      |          |         |               | Surface Nitrate Depth: 0-6                 |                                                                           |      |
| Percent Mg                                                                                                     | 12-18%                                          | 68.0    |      |          |         |               |                                            | ply only to the sample(s) submitted.                                      |      |
| Percent H                                                                                                      | 0-12%                                           | 0.0     |      |          |         |               | Samples are retained a maximu              | 지수님은 그는 것이 같은 것은 것을 알았다. 승규는 것이 같이 많이 |      |
| Percent Na                                                                                                     | < 1.5%                                          | 0.5     |      |          |         |               | Analytical work performed by i             | Widwest Laboratories, Inc                                                 |      |
| the second s |                                                 |         |      |          |         |               | - 2 V C                                    |                                                                           |      |

#### Soil Test Food Web Bioindicators



# **Bioindicator Soil Test Example**

"The **Solvita® soil-life test kit** provides an important new tool for gardeners, farmers and scientists to evaluate soil microbial respiration rate in an efficient and cost-effective manner. Soil respiration is an important aspect of soil quality and a good indicator of soil fertility."



"The Solvita test enables you to:

•estimate annual nitrogen release based on soil biological activity

- •evaluate organic matter sufficiency of soils
- •make overall judgements to fit into "soil quality" interpretation

•achieve accuracy comparable to and less expensive than Dräger tubes"

# Soil Respiration Rate –the reality

- More CO2 (carbon dioxide) coming off the soil means the soil is respiring (breathing) more. This indicates either a high rate of respiration of existing organisms, or high numbers, or both.
- Having more organisms is a good thing, but a high respiration rate also means your soil system is burning off carbon...which lowers your organic matter levels, which is a <u>bad</u> thing.
- High respiration rate is a result of optimal temperatures, moisture, and aeration, sometimes as a result of tillage.

# Soil Bioindicator Test Example



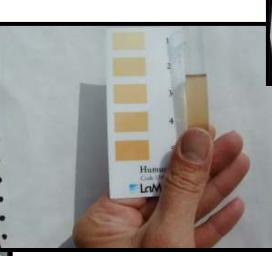
| Report prepare             | ed for:                               |                               |                                    |                                         |                                     |                            |                                                      |                       |                   |  |
|----------------------------|---------------------------------------|-------------------------------|------------------------------------|-----------------------------------------|-------------------------------------|----------------------------|------------------------------------------------------|-----------------------|-------------------|--|
| -                          |                                       | Repo                          | rt Sent: 12/02/20                  | 05                                      |                                     |                            | For interpretation                                   | of this report please | contact:          |  |
| David Drell                |                                       | Sa                            | Sample#: 01-101703                 |                                         |                                     |                            |                                                      | or regional lab       |                   |  |
| 6150 Hearst Ro             |                                       | Uni                           | Unique ID: 05 Brookside schoolyard |                                         |                                     |                            |                                                      | Soil Foodweb,         | Soil Foodweb, Inc |  |
| Willits, CA 954            | 90-9211 USA                           |                               | Plant: variety                     |                                         |                                     |                            |                                                      | info@soilfoodw        | veb.com           |  |
| (707) 459-4110             |                                       | Invoice Number: 0             |                                    |                                         |                                     |                            | (541) 752-5066                                       |                       |                   |  |
| wece@sbcglob               | al.net                                | Sample Re                     | ceived: 11/23/20                   | 05                                      |                                     |                            | Consu                                                | lting fees may apply  |                   |  |
| Organism<br>Biomass Data   | Dry Weight                            | Active<br>Bacterial<br>(µg/g) | Total<br>Bacterial<br>(µg/g)       | Active<br>Fungal<br>(μg/g)              | Total<br>Fungal<br>(µg/g)           | Hyphal<br>Diameter<br>(µm) | Nematodes per (<br>Identification to ge              |                       |                   |  |
| Results                    | 0.820                                 | 65.7                          | 674                                | 64.1                                    | 378                                 | 3                          | Bacterial Feeders                                    |                       | 200.2-24          |  |
| Comments                   | In Good Range                         | Excellent                     | Excellent                          | Excellent                               | Excellent                           |                            | Cephalobus<br>Fungal Feeders                         |                       | 0.34              |  |
| Expected Low               | 0.45                                  | 1                             | 175                                | 1                                       | 175                                 |                            | Chrysonemoides                                       |                       | 0.17              |  |
| Range High                 | 0.85                                  | 5                             | 300                                | 5                                       | 300                                 |                            | Epidorylaimus                                        |                       | 0.17              |  |
|                            | Protozoa<br>Numbers/g                 |                               |                                    | Total<br>Nematodes                      | Percent Mycorrhizal<br>Colonization |                            | Fungal/Root Feeders<br>Aphelenchoides<br>Aphelenchus | Foliar nematode       | 0.17<br>0.67      |  |
|                            | Flagellates                           | Amoebae                       | Ciliates                           | #/g                                     | ENDO                                | ECTO                       | Ditylenchus                                          | Stem & Bulb nematode  | 4.04              |  |
| Results                    | 5610                                  | 1688                          | 70                                 | 7.38                                    | 5%                                  | 0%                         | Filenchus<br>Root Feeders                            |                       | 0.17              |  |
| Comments                   | High                                  | Low                           | Good                               | Low                                     | Low                                 | Low                        | Pratylenchus                                         | Lesion nematode       | 0.34              |  |
| Expected Low               | 5000                                  | 5000                          | 50                                 | 10                                      | 40%                                 | 40%                        | 1                                                    |                       | 0.000             |  |
| Range High                 |                                       |                               | 100                                | 20                                      | 80%                                 | 80%                        |                                                      |                       |                   |  |
| Organism<br>Biomass Ratios | Total Fungal<br>to Total<br>Bacterial | Active to Total<br>Fungal     | Active to Total<br>Bacterial       | Active Fungal<br>to Active<br>Bacterial | Plant<br>Available N<br>Supply      |                            |                                                      |                       |                   |  |
| Results                    | 0.56                                  | 0.17                          | 0.10                               | 0.98                                    | 50-75                               |                            |                                                      |                       |                   |  |
| Comments                   | Low                                   | Good                          | Low                                | Good                                    |                                     | 2.                         |                                                      |                       |                   |  |
| Expected Low               | 0.8                                   | 0.15                          | 0.15                               | 0.75                                    |                                     |                            |                                                      |                       |                   |  |
| Range Inch                 |                                       |                               |                                    |                                         |                                     |                            |                                                      |                       |                   |  |

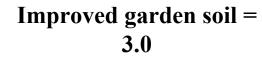
728 SW Wake Robin Avenue Corvallis, OR 97333-1612 USA

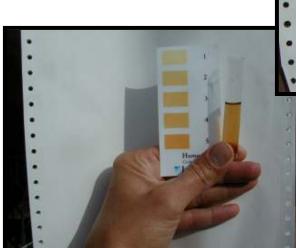
(541) 752-5066 | info@soilfoodweb.com

www.soilfoodweb.com

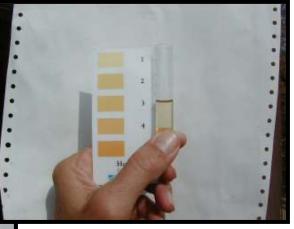
| CORNELL SOIL HEALTH TEST REPORT     |                                                              |                |        |                                                     |                     |    |                            |  |  |
|-------------------------------------|--------------------------------------------------------------|----------------|--------|-----------------------------------------------------|---------------------|----|----------------------------|--|--|
| FARM NAME/FARMER: GATES FARM SAMPLE |                                                              |                |        |                                                     |                     |    | DATE:                      |  |  |
| ADI                                 | DRESS:                                                       | E-MAIL:        |        | PHONE:                                              |                     |    |                            |  |  |
| FIEL                                | D/TREAMENT: PLOW TILL                                        | AGENT:         |        | SLOPE:                                              |                     |    |                            |  |  |
| TILI                                | AGE: //                                                      |                |        |                                                     | DRAINAGE:           |    | SOIL SERIES:               |  |  |
| CRC                                 | 0PS: //                                                      |                |        |                                                     | SOIL TEXTURE: SILTY |    |                            |  |  |
|                                     | INDICATOR5                                                   | RATING         | CONSTI | RAINT                                               | PERCENTILE RATING*  |    |                            |  |  |
|                                     | Aggregate Stability<br>(%)                                   | 17.0           | 1.0    | aeration, infiltration, rooting<br>water retention  |                     |    |                            |  |  |
| ICAL                                | Available Water Capacity<br>(m/m)                            | 0.18           | 2.0    |                                                     |                     |    |                            |  |  |
| PHYSIC                              | Surface Hardness<br>(psi)                                    | 147            | 7.0    |                                                     |                     |    |                            |  |  |
|                                     | Subsurface Hardness<br>(psi)                                 | 266            | 6.0    |                                                     |                     |    |                            |  |  |
|                                     | Organic Matter<br>(%)                                        | 2.4            | 1.0    | energy storage, C<br>sequestration, water retention |                     |    |                            |  |  |
| GICAI                               | Active Carbon<br>(ppm)                                       | 557            | 2.0    | soil biological activity                            |                     |    |                            |  |  |
| BIOLOGICAL                          | Potentially Mineralizable<br>Nitrogen<br>(µgN/ gdwsoil/week) | 4.0            | 1.0    | N supply capacity, N leaching potential             |                     |    |                            |  |  |
| -                                   | Root Health Rating<br>(1-9)                                  | 5.5625         | 5.0    |                                                     |                     |    |                            |  |  |
|                                     | pH<br>(see CNAL Report)                                      | 7.2            | 10.0   |                                                     |                     |    |                            |  |  |
|                                     | Extractable Phosphorus (see<br>CNAL Report)                  | 9.85           | 10.0   |                                                     |                     |    |                            |  |  |
| CHEN                                | Extractable Potassium (see<br>CNAL Report)                   | 52.375         | 7.5    |                                                     |                     |    |                            |  |  |
|                                     | Minor Elements<br>(see CNAL Report)                          |                | 10.0   |                                                     |                     |    | 50th Percentile<br>→BETTER |  |  |
|                                     | OVERALL QUALITY SCOR                                         | E (OUT OF 100) |        | LOW                                                 | 52                  | .1 |                            |  |  |


# Soil Bioindicator Test Example

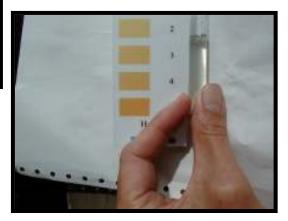

Ratings on this report are based on generalized crop production standards for New York. For crop specific nutrient


# Soil Bioindicator Test Example

#### Humus Testing


[using LaMotte humus index test.]








Fresh worm compost = 5



Newer garden soil with mulch = 1.0



Near-by ag field (with subsoil) = 0

# Summary of Tests for Soil Quality

- Physical
- Texture
- Macro-organic matter
- Water stable aggregates
- Infiltration rate (lab & field)
- Bulk density
- Water holding capacity

# Summary of Tests for Soil Quality:

- Chemical
- pH
- Nitrogen (NO<sub>3</sub> and NH<sub>4</sub>)
- Phosphorus
- Potassium
- Organic Matter (lab)
- Humus (quick test)
- Total N & P in OM (lab)

# Summary of Tests for Soil Quality

- Biological
- Earthworms
- Soil insects and other arthropods
- Coliform bacteria & E. coli
- Respiration rate
- Simple "will it rot" test with filter paper or other materials.

# Summary

- Organic vegetable gardening depends on a functional soil ecosystem
- Practices are designed to enhance soil quality and life
- Feed the soil so that the soil can feed the plant

# Acknowledgements

- Janke, R., Sustainable Cropping Systems, KSU
  - Soil quality

www.oznet.ksu.edu/rff/Soil%20Quality%20NEW.ppt

- Soil tests interpretations

www.oznet.ksu.edu/rff/Soil%20Test%20Interpretation.ppt

USDA NRCS Soil Quality Publications

http://soils.usda.gov/sqi/publications/publications.html