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The GREET (Greenhouse gases, Regulated Emissions, and
Energy use in Transportation) Model

VEHICLE CYCLE

J GREET development has been supported by DOE (OREET 2 Seres
since 1995 | | -
) GREET and its documents are available at
Argonne’s website at

http.//www.transportation.anl.gov/software/GREET/

] The most recent GREET version (GREET 1.8d) was i 2
released in July 2010

J There are over 14,000 GREET registered users Ng
worldwide ‘
E;g - ) _ & 1 _§ | )
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GREET Includes More Than 100 Fuel Production
Pathways from Various Energy Feedstocks
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The yellow boxes contain the names of the feedstocks and the red boxes contain the names of the fuels that can be
produced from each of those feedstocks.



DOE’s FCT Program Has Been Supporting
Hydrogen Pathway Development in GREET
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Hydrogen Production Pathways
Examined in This Presentation

J  Hydrogen production pathways included
» Natural gas-based steam methane reforming (SMR)

Land-fill gas-based SMR
Coal gasification to hydrogen

YV YV V

Coal gasification with carbon capture and storage (CCS)
to hydrogen

» Biomass gasification to hydrogen
» Biomass gasification with CCS to hydrogen
J  Hydrogen is used in a midsize fuel-cell car

J Baseline gasoline is used in conventional vehicles (CVs) and
hybrid electric vehicles (HEVs)
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Energy Efficiencies for Feedstock Recovery and

Hydrogen Production for Key Hydrogen Pathways

100% — —
y m Feedstock
n 209 Efficiency
0
E M H2 Production
60% - Efficiency
40% -
20%
0% -

NGSMR LFGSMR COG Coal Biomass

I Biomass recovery efficiency includes farming energy, fertilizer/chemical production energy and
transportation.



Fuel Economy of Selected Vehicle Technologies
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0 Argonne has been examining fuel economy of advanced vehicle
technologies with its PSAT model for DOE
U Results here are for a midsize car

O Fuel economy results were adjusted to reflect on-road degradation




On-Road Adjustment Factor for Lab Fuel Economy:
EPA’s MPG-Based Formulae for ICE Technologies vs.
Electric Drive Technologies
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Potential Hydrogen Production from Coke
Oven Gas In the U.S.

Coke Oven Operations in the United States
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Estimated Annual COG-Based H2 Production by U.S. Regions, metric tons/Year Hydrogen from COG could
2004 2005 Share (Based on 2005 Data) ~ HTH
PADD I 122,259 120,812 33% fuel g m|II|on FCVS/yr
PADD lII 211,175 208,675 57%
PADD II1 37,048 36,610 10%
Total 370,482 366,097 100%




Coal-to-Coke Process Flow Diagram

/Typical Analysis of Coke Oven Gas

</ " % by volome—o—ow-__
H 55
—2 5 D
Coke Oven < < N, 10
— co 6
CO, 3
HC (ethane, propane, etc.) 1
‘L Lower Heating Value (LHV),
Btu/standard cubic feet (scf) 443
By-prod \_  Source:
‘ http://www.energymanagertraining.com/iron_steel/coke

oven_steel.htm

1 » Producing coke from coal is a
Natural Gas > Blast Furnace < - Process Fuel trad”:lonal proceSS |n the Steel
i industry.

= Coke oven gas is a byproduct of the
coking process and used as a fuel in
other ancillary operations.

= |n some cases, excess gas is flared.

= The flow diagram illustrates an
integrated steel production facility.

Electricity



\ |
WTW Total Energy Use of H2 FCVs

H2 Fuel Cell Vehicles
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WTW Fossil Energy Use of H2 FCVs
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WTW Petroleum Energy Use of H2 FCVs
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"W GHG Emissions of H2 FCVs

H2 Fuel Cell Vehicles
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For CCS, 90% carbon capture rate was assumed; electricity
use for capture and transmission of CO2 was considered.



1.

H2 FCVs in Comparison with other Fuels and Vehicle
Options: GHG and Petroleum Effects
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Argonne Has Examined Energy and Emission Effects of

Combined Hydrogen, Heat, and Power (CHHP) Generation

0 DOE identified early markets for fuel cells
» Fuel cell-based distributed energy systems (electricity, heat, and optional
hydrogen generation)
U ANL is examining energy and environmental implications for different
CHHP system configurations
» Expansion and use of the GREET model
» Full fuel-cycle analysis starts with energy feedstock in the ground

» Benefits depend on system efficiency and percentage of total demand

satisfied by the fuel cell system



System Boundary for CHHP Life-Cycle Analysis
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d Baseline case is exclusive of CHHP system
O If the useful heat from distributed generators exceeds the
heat demand, the excess heat is rejected (wasted)
» Thermal Efficiency ( 0 ,.,ma) = (1)/(2)
= [Heat delivered]/[Fuel to generator]
» Heat Utilization (HU) = (1)/[(1)+(3)]
= [Heat delivered]/[Useful heat from generator]
L Excess electricity is sold to the grid
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Factors Affecting the Fuel-Cycle Analysis

O Comparison by technology
» PAFC with the electric or heat load following strategy
» MCFC with the electric load following strategy

0 Comparison by facility type
» A large office and a warehouse in Chicago, IL

» Hospitals in Chicago, IL and Los Angeles, CA

Facility Type Large Office I' Warehouse Hospital :
Location ! Chicago Los Angeles :
Electricity Demand (kWh/day) | 16,000 (26%) : 580 (8%) 13,000 (35%) 13,000 (35%) :
Heat Demand (kWh/day) 3,300 (6%) I 1,200 (15%) 9,400 (24%) 2,800 (7%) !
Hydrogen Demand (kg/day) 1200 (68%) I\_ 170 (77%) | _470(41%) | 680 (58%) ,'

O Fuel cell is sized based on electric demand (for hospitals) or heat demand

(warehouse): Avg + Std
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GHG Emissions of CHP and CHHP for a Hospital in Chicago
(Electric/Heat = 1.46)

Fuel Cycle GHGs Emissions: Hospital in Chicago, IL (Electricity/Heat = 1.46)

160,000
% 140,000 - 765 kW
IS =
8 120,000 mOn-Site
£ 100,000 mNG SMR
|_
S 80,000 | - N . - = NG Boiler
2
@ 60,000 | N B B EEEEEE. -~ m Grid
1S -
c Electricity
~~
o 40,000 - Fuel Cell
£ may e < < S
@© < < o » <
5 2000041 T 1Y (o)) o ©
\ D, \ 2 / 2 2 o
0 < < I ac T
CHHP CHP CHHP CHP CHHP CHP IL Mix US Mix
HU:
0, 0, 0, 0, 0, 0,
MNelec | 28% | 38% 19% 37% 39% | 46% [
r]thermal 12% 15% 19% 30% 8% 16% [Heat delivered]
Nho 19% 35% 25% [Useful heat from generator]
(= = D == e
CNoeran | 59%_|_53% | _ _ _|_ 7% | 6% | _ _ | 72% | _62% |
PAFC with Electric . PAFC with Heat . MCFC with Electric . Grid Electricity +
Load Following Load Following Load Following NG SMR + NG

Fuel cells for CHHP provide GHG emissions benefits compared to CHP systems and IL generation mix.
Benefits depend on the overall efficiency and the utilization of co-produced heat.

IL electric mix (n=45%): Nuclear 48%, Coal 48%, Natural Gas 2%, Rest 2%

US electric mix (n=39%): Coal 50%, Nuclear 20%, Natural Gas 18%, Renewable 10%, Rest 2%.

© oDooo
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GHG Emissions of CHP and CHHP for a Hospital in Los
Angeles (Electric/Heat = 5.0)

Fuel Cycle GHGs Emissions: Hospital in Los Angeles, CA (Electricity/Heat = 5.0)
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U GHG emissions by CA generation mix are comparable to those by CHHP systems.
» Low heat demands result in low heat utilization.
» CA mix (n=48%): Natural Gas 37%, Renewable 28%, Nuclear 21%, Coal 13%, Rest 1%.



Concluding Remarks

L

L

H2 FCVs offer energy and GHG benefits

Renewable H2 pathways offer much larger GHG
benefits

Early FC market applications offer some emission
benefits



