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Some non-perturbative constraints on supersymmetry breaking are derived. It is demonstrated 
that dynamical supersymmetry breaking does not occur in certain interesting classes of theories. 

One of the most remarkable ideas in particle physics - and an idea that has not 
yet found its place in our understanding of nature - is supersymmetry [1]. Recently, 
there has been renewed interest in attempting to make a realistic model of particle 
physics based on supersymmetry [2-6]. 

If supersymmetry plays a role in nature it certainly is spontaneously broken, 
because we do not observe degenerate Bose-Fermi multiplets. It is therefore crucial 
to understand under what conditions supersymmetry is spontaneously broken. 

A realistic model of particle physics based on supersymmetry might be a model in 
which supersymmetry is spontaneously broken at the tree level. The conditions 
under which supersymmetry is spontaneously broken at the tree level are well 
understood. On the other hand, a realistic description of particle physics might 
require a model in which supersymmetry is unbroken at the tree level but broken 
dynamically by the quantum corrections. The purpose of this paper is to derive some 
constraints on the conditions under which dynamical breaking of supersymmetry 
can occur. 

Spontaneous breaking of supersymmetry has a number of special features, some 
of which were reviewed in ref. [2]. Supersymmetry is unbroken if and only if the 
energy of the vacuum is exactly zero. From this it follows that even in weakly 
coupled theories with small, well-defined coupling constants, it is in general difficult 
to decide wheti~er supersymmetry is spontaneously broken. Even if the vacuum 
energy appears to be zero in some approximation, tiny corrections that have been 
neglected may cause the energy to be small but non-zero. Some explicit examples in 
which this occurs were given in ref. [2]. 

It is rather extraordinary that one cannot straightforwardly decide, even in the 
case of a weakly coupled theory, whether supersymmetry is spontaneously broken. 
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Of course, it is even more difficult to decide this in the case of strongly coupled 
theories. In this paper, a new approach will be introduced which resolves this 
question in many interesting cases. 

Certain quantities will be defined which can be calculated reliably in perturbation 
theory and which must vanish in order for supersymmetry breaking to be possible. 
In many interesting cases these quantities do not vanish; this establishes that in 
those theories supersymmetry is not spontaneously broken. 

The quantities in question are, roughly speaking, topological invariants of the field 
theory. We have become accustomed to defining topological quantum numbers of 
individual classical field configurations. In supersymmetric theories, it is, as we will 
see, useful to define certain topological quantum numbers which are properties of 
the entire theory, not of any particular field configuration. 

In sects. 2 -4  some general constraints on supersymmetry breaking will be 
formulated. Simple applications to theories of spin 0 and spin ½ fields only are dis- 
cussed in sect. 5. Abelian gauge theories are the subject of sect. 6. In sects. 7-9,  we 
study non-abehan gauge theories, and in sect. 10 we apply our techniques to the 
supersymmetric non-linear sigma model. Conclusions are drawn in sect. 11. 

The approach in this paper was suggested in part by 't Hooft 's use of periodic 
boundary conditions and there are some analogies with his discussion of chiral 
symmetry breaking in confining theories [8]. 

2. T r ( -  1) r 

It is very useful to consider supersymmetric theories formulated in a finite spatial 
volume. In a finite volume the spectrum of the hamiltonian is discrete; states in 
Hilbert space can be counted in a clear-cut, well-defined way; there are only a finite 
number of states with less than a given energy. 

Since translations are part of the supersymmetry algebra, we must adopt boundary 
conditions that preserve translation invariance in order not to break supersymmetry 
explicitly. This means that we must use periodic boundary conditions - which is 
equivalent to taking space to be a three-dimensional torus. To preserve supersymme- 
try we must use the same boundary conditions for bosons as for fermions (periodic 
rather than antiperiodic in the spatial directions). 

One could not ordinarily learn whether an internal symmetry is spontaneously 
broken by studying a theory formulated in a finite volume, because, ordinarily, an 
internal symmetry is unbroken in a finite volume whether or not it becomes broken 
in the infinite volume limit. Mixing between the various states usually ensures that, 
in a finite volume, the ground state is invariant under all internal symmetries, even 
though, in the infinite volume limit, the theory may break up into several sectors 
with the symmetry broken in each sector. 

By contrast, supersymmetry can perfectly well be spontaneously broken in a finite 
volume. Supersymmetry breaking just means that the ground-state energy is positive, 
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which is possible for supersymmetric theories in a finite volume or even for 
supersymmetric theories with only a finite number of degrees of freedom [2]. 

If supersymmetry is unbroken in an arbitrary finite volume V, this means that the 
ground-state energy E(V) is zero for every V. Since the large-V limit of zero is zero, 
this means that the ground-state energy is zero in the infinite volume limit, and that 
supersymmetry is unbroken in this limit. 

The converse is not true. Supersymmetry may be broken in any finite volume yet 
restored in the infinite volume limit. If supersymmetry is broken in a finite volume, 
so that E(V) is positive, it may still be that E(V) [or more pertinently, E(V)/V] 
vanishes as V becomes large. An example in which this occurs is described in 
appendix A. 

In this paper, certain methods will be developed for proving that in certain classes 
of theories, supersymmetry is unbroken in any finite volume. As just explained, this 
suffices for proving that supersymmetry is unbroken in the infinite volume limit. The 
methods in this paper are less useful for proving that supersymmetry is broken in a 
finite volume, and even when this is possible it does not lead to a definite conclusion 
about the infinite volume theory, since, as just noted, supersymmetry may be 
restored in the infinite volume limit. 

Given a theory defined in a volume V with a Hilbert space %, our main concern is 
with the possible existence in ~ of zero-energy states. In supersymrnetric theories, 
the energy E is equal to or greater than the magnitude of the momentum iPI for any 
state. Zero-energy states must therefore have P = 0, and we lose nothing by restrict- 
ing our attention to the P = 0 subspace of ~ .  

In the subspace of states of zero momentum, the supersymmetry algebra is 
particularly simple. In a basis of properly normalized hermitian supersymmetry 
charges Q1, Q2 . . . . .  QK ( K =  4 for simple supersymmetry in four dimensions) the 
algebra is 

. . . . .  = / - / ,  

QiQj+QjQi=O, for i vej.  (1) 

In this section it will be sufficient for us to work with any one of the Qi, which we 
will simply denote as Q. 

Supersymmetry maps bosons into fermions and maps fermions into bosons. 
Actually, in a finite volume the concept of an individual "particle" is ill-defined, but 
it makes sense to think of bosonic states and fermionic states in Hilbert space. A 
bosonic state [b) satisfies exp(2~r/Jz)[b)=lb);  a fermionic state If) satisfies 
exp (2~ r / J z ) l f ) = - I f ) .  Of course, a bosonic state may be any state which in the 
infinite volume limit goes over to a configuration of, say, 92 neutrons and 148 pions. 

We will often make use of the operator 

( -  1) F-- exp(ZTr/Jz) (2) 
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that distinguishes bosons from fermions. Of course, in a finite volume the infinites- 
imal rotation generator Jz is not well defined, but ninety degree rotations such as 
exp(lirrJ:) make sense; (2) should be understood as the fourth power of the ninety 
degree rotation operator. 

The crucial observation is that the states of non-zero energy are paired by the 
action of Q. Let ]b) be any bosonic state of non-zero energy E. Define a fermionic 
state ] f ) =  (1 /¢~-)Q Ib) (which is normalized if lb ) is, since Q z =  H) .  The action of 

Q on I b) and If) is then 

Q l b ) =  ~ - I f ) ,  Q l f ) =  ~/E ]b) ,  (3) 

where the second equation is chosen to satisfy Q 2  = H. All states of non-zero energy 
are paired in two-dimensional supermultiplets with this structure. (Had we consid- 
ered all the Q~ and not just one, the supermultiplets may be larger; the enlarged 
structure is not relevant for our purposes here.) 

On the other hand, the zero-energy states are not paired in this way. With Q2 = H 
and Q hermitian, each state annihilated by H is also annihilated by Q. Any bosonic 
or fermionic state of zero energy satisfies Q l b ) =  0 or Q l f ) =  0. They form trivial, 
one-dimensional supersymmetry multiplets. In general, there may be an arbitrary 
number nB e=° of zero-energy bosonic states, and an arbitrary number n~ =° of 
zero-energy fermionic states. 

The most general allowed form for the spectrum is indicated in fig. 1. There are 
paired states of positive energy, and there may be states, not necessarily paired, of 
zero energy. 

What happens now as we vary the parameters of this theory? Here, the "parame- 
ters" should be understood as the volume, the mass m s, and the coupling constants 

g r  
As we vary the parameters, the states of non-zero energy move around in energy. 

They move, of course, in Bose-Fermi pairs. Conceivably, as the parameters are 
varied, one of these E ~ 0 pairs may move down to E -- 0. In this case (fig. 2), n~ =° 
and n~ =° both increase by one. 

Conceivably, as the parameters are varied, some states of zero energy may gain 
non-zero energy. It is not possible for a single zero-energy state to acquire a non-zero 
energy. As soon as it has a non-zero energy it must have a supersymmetric partner. 

E 
l ^ v  

Fig. 1. The general form of the spectrum in a supersymmetric theory. A circle indicates a bosonic state. 
A cross indicates a fermionic state. 
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Fig. 2. A pair of states move down to zero energy as a parameter is varied. 
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W h a t  can occur  is that  a pair of states, one Bose, one Fermi ,  can move f rom E = 0 to 

E v ~ 0. In  this case (fig. 3) n~ =° and  nFe=° bo th  decrease  by  one. 

In  ei ther  case, the difference n ~ = ° - - n F  e=°  does not  change as one varies the 

parameters .  This  will be the basis  for mos t  a rguments  in this paper .  

The  quan t i ty  n B e=0 _ nv E=0 is useful  because  of  two bas ic  proper t ies :  

(i) I t  can be ca lcula ted  rel iably.  

(ii) If  it  is not  zero, supe r symmet ry  is not  spon taneous ly  broken.  

The  difference na  e=° -- n~ =° can  be  ca lcu la ted  re l iably  because,  since it is indepen-  

den t  of all parameters ,  it  can be  ca lcula ted  in a convenient  l imit ,  such as small  

volume,  large bare  mass, and  weak coupling.  As  we will see in detai l ,  a lmost  any  

theory  simplif ies  enough in this or  some ana logous  l imit  to permi t  nB e=° - nFe=° to be 

ca lcu la ted  rel iably.  

Of course,  a p p r o x i m a t e  calcula t ions  canno t  in general  de te rmine  how m a n y  states 

have  exactly zero energy. But a val id a p p r o x i m a t e  ca lcula t ion  does de te rmine  the 

difference n ~=o _ n e= 0 rel iably.  A l though  correc t ions  to the app rox ima te  ca lcula t ion  

m a y  give a non-zero  energy to, say, a bosonic  state that  had  zero energy in the 

a p p r o x i m a t i o n  in quest ion,  if so (fig. 4), there  is always a fermionic  state of  

previous ly  zero energy that  acquires the same non-zero  energy f rom the same 

correct ions.  So any val id  app rox ima t ion  de te rmines  n if=0 _ n 2 =° correct ly.  

As  for the second po in t  above,  if n~ =° - nFe=° =~ 0, then obviously  ei ther  n~ =° =~ 0 

or  nFe=°~ a 0 or  both .  In  any  case there are some states of  zero energy, so supersym-  

me t ry  is unbroken .  
W h a t  i f n g  =° . e = 0 _ , , 9  

- n r - u. In  this case we canno t  d is t inguish be tween the follow- 

ing two possibi l i t ies :  

(A) nB e=° = nFe=° = 0; supe r symmet ry  broken.  

(B) n~ =° and n~ =° are equal  but  non-zero;  supe r symmet ry  is unbroken .  

Despi te  the inabi l i ty  to dis t inguish be tween  these two possibi l i t ies ,  an in teres t ing  

a l though no t  qui te  r igorous  conclus ion can be d rawn about  theories with n~ = ° -  
hE=0 = 0. 

W e  ord inar i ly  expect  the g round  state of a system - the " v a c u u m  state"  - to be  

boson ic  in a f inite volume as well as in the inf ini te  vo lume limit.  This  is a r easonab le  

Fig. 3. A pair of states gains a non-zero energy as a parameter is varied. 
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Fig. 4. Corrections to an approximate calculation (a) give an exact spectrum (b) with the same value of 
Y r ( -  1) F. 

expectation in a theory in which (in the infinite volume limit) all fermions are 
massive. In such theories, any fermionic state would (in large enough volume) be 
expected to lie above the ground state by an amount at least equal to the mass of the 
lightest fermion. 

What if the infinite volume theory has massless fermions? 
In a finite volume one can form a normalizable state by adding a massless fermion 

to the vacuum in a momentum eigenstate with P = 0. If the volume is large, such a 
state is nearly degenerate with the vacuum and may be exactly degenerate. 

It seems reasonable to suppose that zero-energy fermionic states that persist in 
arbitrarily large volume can generally be interpreted in this way - as evidence that 
the infinite volume theory has a massless fermion. 

Returning to the options (A) and (B) above, in (A) supersymmetry is sponta- 
neously broken and there is a massless Goldstone fermion in the infinite volume 
theory. In (B) supersymmetry is not broken; there is no Goldstone fermion, but 
there are zero-energy fermionic states which we interpret as evidence that the infinite 
volume theory has a massless fermion (a massless fermion is not a Goldstone 
fermion unless it is created from the vacuum by the supersymmetry current). In 
either case we conclude that if n~ = ° -  n~ = ° =  0, the infinite volume theory has a 
massless fermion. However, this argument is not completely rigorous. 

Formally, the quantity n~ =° - nv E~° may be regarded as the trace of the operator 
( - 1 )  r introduced previously. States of non-zero energy do not contribute to the 
trace of ( -  l )  v because for every bosonic state of non-zero energy that contributes 
+ 1 to the trace, there is a fermionic state of non-zero energy that contributes - 1 
and cancels the boson contribution. Therefore T r ( -  l) r can be evaluated among the 
zero-energy states only, and equals n~ = ° -  n~ =°. 

We thus write 

T r ( -  1) r =  n~ = ° -  n~ =°. (4) 

This formula should be considered as merely a useful definition, because the infinite 
summation over all states in Hilbert space required to define T r ( -  1) F is ill-defined, 
not being absolutely convergent. [One could regularize T r ( -  1) F by writing instead 
Tr(--1)Fexp(--flH) for arbitrary positive 13; this is actually independent of 13 
because the states of E 4 = 0 do not contribute. This regularization gives back eq. (4) 
in the fimit 13 ~ 0.] 
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Actually, the quantity T r ( -  1) F is an example of a standard mathematical concept, 
which plays an important role in contemporary mathematics and has had some 
recent applications in physics. This is the concept of the index of an operator [9]. 

We may split the Hilbert space H of our theory into bosonic and fermionic 
subspaces H B and H E. Since the supersymmetry charge Q maps bosons into 
fermions and vice versa, it takes the following form: 

Q = \ M J  0 ' 

if the states are arranged in the form 

Note that, because Q is hermitian the quantity designated as M* in (5) is indeed the 
adjoint of M. 

Now, since H = Q2,  the zero-energy states are precisely the states annihilated by 
Q. Bosonic states annihilated by Q are states ~b in H B that satisfy M~b -- 0. Fermionic 
states annihilated by Q are states + in H F that satisfy M* +- -0 .  The quantity 
n~ = ° -  n~ =° is therefore equal to the number of solutions of M + - 0  minus the 
number of solutions of M*~ = 0. The latter quantity is, by definition, the index of 
the operator M. 

The fact that T r ( -  1) F is independent of the parameters of the theory is a special 
case of the fact that, in general, the index of an operator is invariant under small 
deformations. The argument above is a standard way of demonstrating this general 
fact. 

Finally, let us discuss a few subtleties. 
Could ultraviolet divergences invalidate the arguments above? This would not be 

expected because the need to cut off ultraviolet divergences only affects the highly 
excited states while T r ( -  1) F only involves the low-lying states. As long as the theory 
exists in the infinite cut-off limit as a supersymmetric theory, the arguments above 
should be valid. 

A far more serious problem concerns the behavior of the potential energy for large 
field strengths. In a mathematical sense, the problem is the following. We have 
assumed that when the parameters are varied, the energy eigenvalues do not 
suddenly appear or disappear but move around continuously in energy. This is true 
as long as the changes in parameters are "gentle" enough that they can be regarded 
as perturbations acting within the Hilbert space already defined by the unperturbed 
operators. 

Although ultraviolet divergences cause subtleties in defining the Hilbert space of a 
quantum field theory, those subtleties are not relevant here, for reasons stated above. 
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The serious problem involves the asymptotic behavior of the potential energy for 
large field strengths. A perturbation that changes this asymptotic behavior can 
permit new low-energy states to "move  in from infinity" in field space, causing a 
discontinuous change of T r ( -  l) F. For instance, consider the potential 

v ( 0 ) :  (mO - g+2)2 (7) 

At g = 0, low-energy states correspond to ~ near zero, but for g v ~ 0 low-energy states 
may correspond to q~ near zero or near m / g .  An arbitrarily small, non-zero g cause 

the existence of extra low-energy states at q~ ~ m / g  that have no counterpart in the 
g = 0 theory. In such a case T r ( -  1) F will have a different value at g = 0 from its 
value at g :/: 0. 

This is related to the change in asymptotic behavior of V when g is introduced. At 
g = 0, V ~ q,2 for large q~, but for any non-zero g, V ~ q¢. The change in asymptotic 

behavior when g is switched on is the reason that T r ( -  l) r can change discontinu- 
ously at that point. 

The general rule is that T r ( -  1) F is invariant under any change in parameters in 

which, in the large field regime, the hamiltonian changes by terms no bigger than the 
terms already present. Under such changes the energy levels of the hamiltonian 
change continuously; this was the crucial ingredient in showing the constancy of 
T r ( -  1) r. 

T r ( -  1) F is independent of the numerical values of the parameters in the hamilto- 

nian as long as these are non-zero. If one wishes to set a parameter  to zero or to 
introduce a new coupling not already present, one must make sure that this does not 
change the asymptotic behavior of the energy in field space and permit new states to 
"come in from infinity." 

The concept of T r ( - 1 )  v has some generalizations, which will be discussed below 
when applications arise. 

3. Conjugation 

In the last section we have seen that in a finite volume the difference n~ : °  - n~ : °  
is invariant under arbitrary (reasonable) changes in the parameters of a supersym- 
metric theory. We will now see that actually the two numbers n~ =° and nFE=° are 
separately invariant under a smaller but still interesting class of changes in parame- 
ters*. 

In sect. 2 we worked with a single supersymmetry charge Q. Actually, in four 
dimensions every supersymmetric theory contains at least four such charges, and in 
this section we must make use of two supersymmetry charges, say Q1 and Q2- If we 

* This section is more technical than sect. 2, and the remainder of the paper uses primarily the results 
of sect. 2. 
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define Q ± = f~(Q1 +- iQ2), then the supersymmetry algebra, in the zero-momentum 

sector of Hilbert space, takes the simple form 

Q2+ = Q 2  = 0 ,  Q + Q _ + Q _ Q + - - H .  (8) 

The fact that Q2+ = 0  means that the equation Q + + = 0  has many solutions. 
Roughly speaking, Q+ annihilates at least half of the states in Hilbert space. Given 
any state ~b, either ~ itself is annihilated by Q+,  Q+~b = 0, or its supersymmetric 

partner  x = Q+~b is annihilated by Q+" Q+x = Q2+~ = O. 
More formally, any operator Q+ with Q 2 _  0 can be put in Jordan canonical 

form by a linear transformation (not necessarily unitary). The Jordan canonical form 

of Q+ would be 

0 1 
0 0 

0 1 
0 0 

(9) 

0 
0 

O. 

( 0  1) Theseare  There are an arbitrary number of 2 X 2 blocks with the structure 0 0 ' 

two-dimensional supermultiplets, consisting of two states on which Q+ acts as a 
raising operator (~p = Q+x ,  Q+q~ = 0). In addition, there are an arbitrary number  of 
unpaired zeros, shown in the lower right-hand corner of (9); they are the supersym- 

metric zero-energy states. 
Given any state X, if x = Q + ~ b  for some ~, then obviously Q+X vanishes 

( Q + x  = Q 2 ~  = 0). Let us ask the converse question. Given a state X with Q+X = O, 
can x be written in the form Q+~  for some ~? 

If  we assume that X is an eigenstate of the hamiltonian, H X = E X for some E, the 
answer to the above question turns out to be the following. One can write X in the 
form X = Q+ ~ for some + if and only if E v ~ 0. 

The proof of this is trivial. Suppose first E ~ 0 .  Define ~p=(1 /E)Q X. Then 

Q+qJ = (1 /E)Q+ Q - x  = (1 /E) (Q+ Q_ + Q Q+)x = ( 1 / E ) H x  = X, so we have ex- 
plicitly found a state ~ with X = Q+~. 

Suppose conversely that E = 0. It is then impossible to find a state ~b with 
Q+~b = X  for the following reason. Since Q+ commutes with the hamiltonian, the 
equation Q + ~  = x  implies that ~b has the same energy as X- If  X has E = 0, + would 
also have to have zero energy. But since the Q; annihilate all states of zero energy, if 

has zero energy it satisfies Q + ~  = 0, not Q + ~  = x. 
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We arrive at the interesting conclusion that the zero-energy states are precisely the 
states X such that Q+X = 0  but X ~  Q+~ for any ~. 

Let us introduce a bit of notation. Let kerQ+ be the kernel of Q+,  the space of 
solutions of Q+x = O. Let im Q÷ be the image of Q+,  the space of all states that can 
be written as Q+~k for some ~b. Let (ker Q + / i m  Q+ ) be the quotient space (consisting 
of all X in ker Q+ with X and X + Q÷ + considered equivalent for any ~). Finally, let 
N be the total number of zero-energy states, Bose or Fermi: N = n~ =° + n~ =°. What 
we have learned is that 

N = dim(ker Q + / i m  Q+ ),  (10) 

or, in other words, that N is equal to the dimension of the quotient space. 
We wish to find conditions under which N, the total number of zero-energy states, 

is invariant under changes in the parameters of a supersymmetric theory. Unlike the 
invariance of T r ( -  1) r discussed in sect. 2, the invariance of N does not follow from 
supersymmetry alone. The following two-dimensional representation of the super- 
symmetry algebra [8], 

(0 Q(0 0) 0) 
Q + =  0 0 ' ~ 0 ' 0 X 2 ' 

in an explicit counterexample. Here X is an arbitrary parameter. For X v ~ 0 no state 
has zero energy: the image and kernel of Q+ are each one dimensional, and the 
quotient has zero dimension. But for X = 0 there are two zero-energy states; the 
image of Q+ has dimension zero, the kernel has dimension two, and the quotient 
consists of the two zero-energy states. At X = 0 the number of zero-energy states 
jumps from zero to two. 

Although in general the number of zero-energy states can change when the 
parameters are changed, there is a restricted but important class of changes in the 
parameters of a supersymmetric theory under which the total number of zero-energy 
states does not change. Consider the substitution from Q+,  Q , and H to new 
operators 

Q_+ = M -  IQ+ M, 

Q_- = M ' Q _  M *  - ~, 

(12) 

where M is an arbitrary invertible linear operator, not necessarily unitary, and M* is 
the adjoint of M. 

If M is unitary, M* = M- I ,  the operators Q+,  Q_ ,  and H differ from Q+,  Q , 
and H merely by a change of basis in Hilbert space. They do not describe a new 
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theory. However, if M is invertible but not unitary, the theory described by the {} 
a n d / 4  is inequivalent to the one described by the Q and H. 

The spectrum of non-zero-energy states of H will differ, in general, from the 
spectrum of H. However, the main point here is that the number of zero-energy 
states for /~ always equals the number of zero-energy states of H. This, indeed, 
follows directly from our previous observation that the total number of zero-energy 
states is equal to the number of linearly independent solutions of Q+ x = 0 such that 
X is not Q+~ for any ~. If x is such a state, then ;~-- M-1X satisfies {~+~=0 but 

~ - 

cannot be written as ;~ = Q+¢ [which would imply X = Q+(M~), contrary to the 
hypothesis that X is not Q+~b for any ~]. Conversely if {}+X = 0 and 2 is not {)+q~ 
for any ~, then X = M~ satisfies Q+x = 0 but cannot be written as Q+~k. 

In short, the mapping x ~ M  ~X is a one to one mapping from solutions 
of Q+X = 0 that cannot be written as X = Q+~P to solutions of {}+2= 0 that can- 
not be written as ~ = {}+ 4. Hence the number of zero-energy states of the system 
(Q+, Q_,  H)  is the same as for the system ({)+, Q_ , /~ ) .  

The transformation in eq. (12) from Q+ to {)+ is achieved by conjugation by the 
linear operator M. Changes in the parameters of a supersymmetric theory that can 
be brought about by such a transformation we will refer to as changes that can be 
brought about by conjugation. One might think that the operation of conjugation is 
too special to be of broad interest, but this is not so. Many interesting changes in the 
parameters of a supersymmetric theory can be brought about by conjugation. 

A complete listing of the coupling constants in renormalizable supersymmetric 
theories is the following: 

(i) the usual mass terms, scalar self-couplings, and Yukawa interactions, which are 
derived from the superspace potential; 

(ii) abelian and non-abelian gauge interactions; 
(iii) 0 angles; 
(iv) the Fayet-Iliopoulos D term. 
We will see that the superspace potential, and so the couplings in group (i), can be 

changed in an arbitrary way by conjugation. Abelian gauge couplings can be 
changed by conjugation. Non-abelian gauge couplings can be changed by conjuga- 
tion in theories in which there is no 0 dependence. 0 angles themselves cannot be 
changed by conjugation, except in the uninteresting case of theories in which the 
physics is 0 independent. The D term cannot be changed by conjugation. 

Let us now derive the above results in detail. The simplest supersymmetric model 
is the Wess-Zumino model. It has a single complex scalar field ,~ and a single spinor 
field ~b. The parameters are the mass m and the coupling g. We will see that m and g 
can be changed in an arbitrary way by conjugation. 

Rather than a Majorana basis of hermitian supersymmetry charges, it is conve- 
nient to work with .~0 eigenstates. Since ~,0 is imaginary in the Majorana basis, the 
y 0 =  + 1 supersymmetry charges are a complex doublet Q,, the y 0 =  _ 1 charges 
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being the complex conjugates Q~. The change of parameters under conjugation is 
brought about in the following simple way. Q~ for parameters (m~, g~) is related to 
Q~ for parameters (m 2, g2) by the simple rule 

Q,(m2, gz)= M-t(ml, g,; m2, gz)Q~(m,, gl)M(ml, g~; mzg2), (13) 

where 

M(ml,g,;m2,g2)=exp(2Refd3x((m2-ml)½eO2+(g2-g,)½e03)). (14) 

M is not unitary, and the hermitian conjugate of Q~ changes oppositely under a 
change in parameters, Q~ --, MQ~M 1. 

In the construction above, leading to the characterization (10) of the total number 
of zero-energy states, we may take Q to be any one of the Q~. The fact that under a 
change in parameters Q~ changes by conjugation means that if supersymmetry is 
unbroken in this theory for one value of m and g, it is unbroken for all values of m 
and g. 

To verify eqs. (13) and (14) is a straightforward matter of examining the standard 
definitions of Q~ and using the canonical commutation relations. The only terms in 
Q~ that do not commute with M are the terms involving the time derivatives + or +* 
of the Bose fields. These terms are 

Q2C= fd3x + (15) 

where ~k~ are the spinor components with ~,o = + 1; +~ and e~a~ *a both transform as 
spinors under rotations. With this form for the part of Q~ that does not commute 
with M, it is easy to see that under conjugation by M the change in Q~ is 

Q~--,Q~ + fd3x[[(m2-m,)q~ * + ( g 2 -  gl)q,*2] ~ 

+ [(m 2 -- ml)dp + (g2-- gl)dp2]eaB~*B] • (16) 

But a comparison with the standard formula for Q~ shows that the last term on the 
right-hand side is precisely the change in Q~ when (mr, gl) is replaced by (m 2, g2)- 

This construction extends straightforwardly to arbitrary renormalizable theories of 
spin 0 and spin ½ fields only. In such theories, the mass terms and the scalar and 
Yukawa interactions are all derived from a single function, the superspace potential 
W. [The scalar potential is V=~ilOW//O~i[2; the Yukawa interaction is Lvuk = 
(02W/OqY Oq~J)qJ[~p{ + h.c.).] W can be changed arbitrarily by conjugation. A change 
from one superspace potential W~ to another potential W 2 can be achieved by 
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conjugation, Q~ ~ M-1Q~M, where 
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M=exp(2ReSd'x(W2(dpi(x))- Wl(dpi(x)) ) • (17) 

The verification is as before. This seemingly indicates that if supersymmetry is 
unbroken for one value of W it is unbroken for any value of W. That conclusion, 
however, is subject to a crucial restriction explained below. 

As in sect. 2, one may first of all worry whether ultraviolet divergences could 
invalidate the above discussion. In contrast to T r ( - 1 )  F, which really could not be 
affected by the high-energy behavior, the argument in this section must be checked 
carefully for its compatibility with renormalization theory. The renormalization of 
the operators M of eqs. (14) and (17) is quite complicated. 

In theories of spin 0 and spin 1 fields only, there is a simple way to avoid this 
difficulty. It is possible to regularize these theories in a supersymmetrically invariant 
way while preserving the fact that the coupling constants can be changed by 
conjugation. This can be done by a simple point-splitting method. In the interaction 
terms one replaces all superfields ~ ( x )  by "smeared fields" ~i(x, t ) =  
f d3y G(x, y)tb~(y, t), where G(x, y) is a suitable kernel. The superspace interaction, 
usually written as f dax W(dPi(x) )  , is now written as f d4x W(dPi(x  , t)). This eliminates 
all ultraviolet divergences, and W can still be changed, in essentially the same way, 
by conjugation. At the end of the analysis one removes the regulator, G(x, y) -~ 83(x 
-y) .  Note that the smearing of • is carried out in the spatial directions only, to 
preserve the canonical, hamiltonian framework that is crucial for our analysis. 

When gauge fields are introduced, such a simple point-splitting method is not 
acceptable because it conflicts with gauge invariance. While I hope that the state- 
ments below about conjugation in theories with gauge fields survive the process of 
renormalization, I have no proof of this. 

As in the last section, a more serious problem concerns the behavior for large 
fields. We must check that the operator M is a well-defined operator in the Hilbert 
space of our theory. Acting on an energy eigenstate it must give a normalizable, 
finite energy state. 

This imposes a crucial restriction on the change AW in the superspace potential 
that can be achieved by an allowed process of conjugation. Recall that M =  
exp(2 f d3x AW(~(x))). If AW increases too rapidly for large q~, then M, acting on an 
energy eigenstate, will produce a nonsensical, unnormalizable state that diverges 
exponentially for large ~. 

It is not difficult to see that the necessary requirement is that the change in 
W under a conjugation operation must grow no more rapidly than W itself for large 
fields. 

To understand this, let us go back to the case of the Wess-Zumino m o d e l -  a 
single complex field q~ and fermion +. If W is purely quadratic, we are dealing with 
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free field theory. The potential energy is m2fd3x](p] 2. It is useful to adopt a 
Schr6dinger viewpoint in which the states are regarded as functionals of the fields. 
As in the case of the simple harmonic oscillator, in free field theory the wave 
functions of the energy eigenstates behave for large fields as a gaussian, ~b 
exp(--m f d3x ]q~12). We cannot now introduce a cubic term in W by conjugation 
because the required M would behave for large q, as the exponential of f d3x q~3. 
Acting on one of the free field theory eigenstates this overwhelms the gaussian 
large-~ behavior and produces an unnormalizable state. 

If, however, a cubic term is already present in W, the potential energy contains a 
quartic term g2f d3x ]~]4. We must now determine the asymptotic behavior of the 
wave functions in the interacting theory. The asymptotic behavior of the wave 
functions is now better because the potential is larger for large q~. The problem of 
determining this asymptotic behavior is not as formidable as it sounds, for the 
following reason. As the field becomes large the energy grows and the wave function 
decays sharply. To minimize the rate of decay of the wave function, the field should 
become large in such a way that the energy grows no more rapidly than is inevitable. 
While the potential energy necessarily increases when the field becomes strong, the 
kinetic energy can remain small if the field is strong but constant in space. The 
slowest decrease of the wave function thus corresponds to the field being large but 
constant. The rate of decrease for large fields can be determined by studying a 
quantum mechanics problem with a single degree of freedom (representing the 
constant mode of the field) and a ]~ ]4 potential. The wave function decays for large 
fields as 't' - e x p ( -  2g f d3x [~ [3 ). 

NOW suppose that we try to change g into g + Ag by conjugation. Since M =  
exp(2 Ag Re f dax q~3), M acting on 'It gives a wave function that is still normalizable 
as long as Ag is smaller than g. By repeated conjugation operations g can be made 
arbitrarily big (or arbitrarily small, but not zero) if it is not zero to begin with. 

As stated before, the generalization of this result to problems with several fields ~' 
is that W may be changed by conjugation by any amount that increases, for large 
fields, no faster than W itself. 

Now let us turn our attention to theories with gauge fields. We wish to determine 
under what conditions gauge couplings can be changed by conjugation. It is 
convenient to scale the fields so that the gauge coupling appears only as an overall 
constant multiplying the kinetic energy of the gauge field A~ and its fermion partner 

 fd"x(-¼(ryo)2+Xa;Ox°) (18) 

Although additional charged fields may be present, their presence is not crucial 
a a because, with the normalization of A~ and )% indicated in (18), the terms in the 

lagrangian containing the additional fields do not depend on the gauge coupling. To 
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study the question of whether gauge couplings can be changed by conjugation, it is 
enough to study the minimal supersymmetric gauge theory (18). 

The standard supersymmetry current in this theory is 

o o  a S~, = %13F '~1~ "~tz~ka ~-- O o i ( E  i -I-1B i T 5 ) y . X  , ( 1 9 )  

a a a _ _  1 a where E i = Fdi and B i - ~eijkFyk are the electric and magnetic fields. 
In contrast to the use above of ~,o eigenstates, we will find it convenient here to 

work with supersymmetry charges of definite chirality. By Q~, a = 1,2, we will here 
mean the positive chirality supersymmetry charges; the hermitian conjugates of the 
Q~ have negative chirality. Q,  is, of course, the integral of the positive chirality part 
of So~, or, explicitly, 

Q~= ~ fd~x(~,'(E~°(x)+gB:(x))X%)~, (20) 

where h L is the negative chirality part of the spinor field, "y5)kL : - -~k  L. 

Going back to the lagrangian (18), we see that, in a canonical gauge such as 
A 0 = 0, the canonical momentum conjugate to the gauge field A7 is ~ri" = ( 1 / e 2 ) E i  ~. 

From a canonical point of view it is more appropriate to write Q~ in the form 

i a 
(21) 

In this form it is rather obvious that, if we can find 
properties 

[ , , : ( x ) ,  K] = - , B T ( x ) ,  

= o, 

an operator K with the 

(22) 

then we can bring about a change in the gauge coupling by conjugation, 

Q~(e 2) = (exp( - t K  ))Q~( e I )exp t K ,  

with t =  ( l / e 2  2 - 1/e~). 
The remarkable fact is that such an operator K exists; in fact 

(23) 

K =  ½ f d3x %~( ATojAak -- Z ~'bc ~° ~ n c  ~ 3J  zxizaj 'Xk ] " (24) 

This operator has played a role in physics before; it is the operator, famous in 
instanton studies, that measures the "winding number" of the gauge field. Why the 
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winding number should enter in this particular problem is not clear, but it is easy to 
check that K satisfies (22) and (23). 

At first sight this seems to prove that gauge couplings can be changed by 
conjugation, but a number of points must be checked. Apart from the question of 
regularizing K, we must come to grips with the fact that the integrand on the 
right-hand side of (24) is not gauge invariant, and we must make sure that exp tK  

maps energy eigenstates into well-defined normalizable states. 
In an abelian gauge theory, although the integrand in (24) is not gauge invariant, 

K itself is completely well-defined and gauge invariant. Under a gauge transforma- 
tion, A i - - , A i + ~ i a ,  the change in K is fd3xei jk~iOt~jAk,  which vanishes after 
integration by parts (there is no surface term because of the use of periodic 
boundary conditions). Moreover, precisely because K is gauge invariant, K cannot in 
an abelian theory be extremely large without the energy being large. The wave 
function of an energy eigenstate therefore vanishes very rapidly in the large-K 
region, and exp tK  is a well-defined operator acting on the energy eigenstates. 

Assuming that the problem of finding a suitable regularization (or otherwise 
dealing with the ultraviolet divergences) can be settled, it follows that abelian gauge 
couplings can be changed by conjugation. 

For non-abelian gauge couplings, the problem is more difficult. K is still invariant 
under "small" gauge transformations but it is not invariant under "large" gauge 
transformations that change the winding number and shift K by a constant. 

The fact that K is not gauge invariant is a clear warning that conjugation by 
exp tK  is likely to lead to trouble. Perhaps it is useful to compare exp tK  to the 
unitary operator exp i a K  that has appeared in instanton studies. One would naively 
expect that conjugation of the hamiltonian by this unitary operator would have no 
physical effect, but actually the operation H--, ( e x p - ( i a K ) ) H ( e x p i a K )  brings 
about a shift 0 ~ 0 ÷ a in the vacuum angle 0, and this shift, in general, has physical 
effects. The operation exp tK  is an attempt to shift 0 by an imaginary amount, 
0 --, 0 - it, and this sounds particularly dangerous. 

The specific reason that acting with exp tK  gives trouble in non-abelian theories is 
that in those theories K can be arbitrarily large while the energy remains small (since 
even if Ff~ = 0, the winding number can be arbitrarily big). Because of tunneling 
effects, every eigenstate of the hamiltonian has an admixture of configurations with 
large K. In fact, the wave functions are undamped for large K because the energy 
does not increase as K becomes large. Acting on a state that is undamped for large 
K, the operator exp tK  gives an exponentially divergent wave function. 

Because of this, non-abelian gauge couplings'cannot, in general, be changed by 
conjugation. However, the above argument indicates the existence of an important 
class of theories in which the conjugation by exp tK  does make sense and can be 
used to change the non-abelian gauge coupling. These are theories in which an axial 
vector anomaly of some kind suppresses tunneling and prevents the wave functions 
from extending to large K. 
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For instance, the minimal supersymmetric gauge theory of eq. (18) has a chiral 
current J,5 =X'/~'5~ which naively is conserved, but actually suffers from an 
anomaly; ~,J~ does not really vanish, but is a multiple of F ~ P  ~. More elaborate 
theories with additional fields may or may not possess such an anomalous axial 
current, perhaps of a more complicated form. When such an anomalous current 
exists, the physics is independent of 0. 

More relevant for our purposes, when there is an axial current whose conservation 
is spoiled only by an anomaly, the tunneling is suppressed, and properly defined 
eigenstates of the hamiltonian vanish very rapidly for large K. In this situation, the 
operator exp tK can meaningfully act on eigenstates of the hamiltonian and can 
change the non-abelian coupling by conjugation. 

There is another way to see that the conjugation operation makes sense in theories 
with an anomalous axial current. Our problem, at one level, was that K was not 
gauge invariant. Because of the anomaly, Q5 = f d3x J05 does not commute with the 
hamiltonian. Rather, the hamiltonian commutes with K -  cQs, where c is a constant 
depending on the theory. Because [H, K-cQs]=O, instead of conjugation by 
exp tK, we may achieve the same result by conjugation by exp tcQs. This operator is 
gauge invariant. 

We arrive at the peculiar conclusion that non-abelian gauge couplings can be 
changed by conjugation in theories in which the physics is independent of 0, and 
only in those theories. 

To complete the list of all possible interaction terms in renormalizable, supersym- 
metric theories, we still must consider the 0 angles themselves and the Fayet- 
Iliopoulos D term. 

It has already been mentioned that, naively, 0 can be changed by conjugation by 
the unitary operator exp iaK. One would naively conclude from this that not just 
supersymmetry breaking, but all other physical observables, are independent of the 
value of 0. These naive conclusions are wrong, for reasons described in the literature 
on instantons. The only case in which 0 can be changed by conjugation is the 
uninteresting case in which the physics is actually independent of 0. If the hamilto- 
nian commutes with some operator K- -  ~Qs, then 0 can be changed by conjugation 
with the gauge invariant, genuinely unitary operator exp ia~Qs. In the more interest- 
ing case in which the physics depends on 0, it is perfectly possible that supersymme- 
try is unbroken for one value of 0 and broken for the other values. 

We are left with the Fayet-Iliopoulos D term. It cannot be changed by conjuga- 
tion. The easiest way to realize this is to note that in the literature, there are many 
examples of theories in which, in perturbation theory, supersymmetry is unbroken 
for one value of the coefficient of the D term (usually zero) but broken for other 
values. 

We have not explicitly discussed the question of whether a change in the volume 
of our finite volume theory can be brought about by conjugation. Actually, by the 
renormalization group, a change in the volume is equivalent to a change in the 
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masses and coupling constants. As long as the theory is such that all masses and 
couplings can be changed by conjugation, a change in the volume is equivalent to a 
conjugation operation plus a renormalization group transformation. In this case, if 
supersymmetry is unbroken for some values of the parameters and of the volume, it 
is unbroken for all values of the parameters and of the volume, and hence also in the 
infinite volume limit. 

Since the arguments in this section have been somewhat abstract, it may be 
helpful to give a tangible example. 

In ref. [2], the supersymmetric problem of a particle moving in a line in one 
dimension was considered. The supersymmetry charges were 

Q, =  (o,p + o2W(x)), 

Q2 = ½(o2P - alW(X)),  (25) 

where W is an arbitrary function and p = - i d /dx .  The hamiltonian was 

( dW) H = ½ p 2 + W 2 q-- %-d--fx . (26) 

We have then 

- i  d 
Q+ = f~-(Q, + iQ2)  = - ~ ( o ,  + i o z ) ( ~  x + W ( x ) ) .  (27) 

We see immediately that W can be changed by conjugation, the relation between 
Q+(W) and Q+(IV) being 

Q+ (Iv)  = (exp(-F(x)) )Q+ (W)(exp F(x)) ,  (28) 

where F(x) is a function that satisfies d F / d x  = Iv(x) - W(x). 
Now, an interesting special case is W(x) = x 2 + a 2. For a 2 > 0 supersymmetry is 

spontaneously broken at the tree level since the classical potential energy V(x)= 
WZ(x) is a strictly positive function. For a2< 0 supersymmetry is unbroken at the 
tree level and in perturbation theory, but it was shown in ref. [2] that dynamical 
supersymmetry breaking occurs. 

The occurrence of dynamical supersymmetry breaking is related to the fact that 
the sign of a 2 can be changed by conjugation. In fact, one can easily see that 

Q+ ( - a  2) =- exp(2a2x)Q+ ( a 2 ) e x p ( - 2 a Z x ) .  (29) 

The total number of zero-energy states must therefore be independent of the sign of 
a 2" 

Since for positive a 2 it is obvious that there are no zero-energy states, the number 
of zero-energy states must also be zero for negative a 2, e v e n  though in perturbation 
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theory there appear to be two zero-energy states if a 2 is negative. Eq. (29) shows, 
without need for the explicit calculations of ref. [2], that dynamical supersymmetry 
breaking occurs if a 2 is negative. 

Actually, the validity of this argument depends upon the fact that the operator 
exp(± 2a2x), acting on any eigenstate of the hamiltonian (26), gives a normalizable 
state. In fact, it is easily seen that if W =  x 2 + a 2, the eigenstates of H behave for 
large Ix] as e x p ( -  } Ix]3). On such states the operator exp(±2a2x)  is quite safe. The 
same reasoning shows, however, that we could not safely go by conjugation from 
W =  x 2 + a 2 to, say, W =  x 2 + a 2 + e x  3. The required conjugation operator would 

be expJex 4, and acting on eigenstates of H that behave for large x as e x p ( -  } Ixl3), 
this would give exponentially divergent wave functions. The general rule is that one 
may change W by conjugation as one wishes as long as one does not change its 

asymptotic behavior at large Ix I . 
In the previous section we learned that the difference n B'E=O _ _  nv"E:0 is invariant 

under arbitrary changes in the parameters of a supersymmetric theory. In this 
section we have learned that under changes in parameters that can be brought about 

E = 0  - -  E = 0  by conjugation, the sum n B ~-n F is also invariant. This means, in particular, 
that the two numbers n~ =° and n~ : °  are separately constants. 

In practice, the new result is not as much of an improvement as it might appear. 
The reason for this is that, as we will see in detail, the difference n~ =° - n~ =° can be 
calculated reliably for weak coupling in almost all theories. But it is often difficult to 

E = 0  - -  E = 0  determine the sum n B -1- n v even for very weak coupling. If one cannot evaluate 
the sum, the fact that it is known to be independent of the coupling constant is of 
little use. 

There are, however, various situations, some of which will be considered later in 
this paper, in which knowing that the total number of zero-energy states is 
independent of the coupling can lead to important constraints on supersymmetry 
breaking. 

4. Analyticity 

In this section one additional general constraint on supersymmetry breaking will 
be considered. It is far more elementary than the constraints discussed in sects. 2, 3. 

Rather than field theory, let us first consider supersymmetric quantum mechanics 
problems with a finite number of degrees of freedom. As long as the number of 
degrees of freedom is finite, the energy eigenvalues of any quantum mechanical 
system are analytic functions of the parameters appearing in the hamiltonian. 
Actually, a caveat analogous to those stated in sects. 2, 3 is necessary here. 
Analyticity breaks down at points in parameter space at which the asymptotic nature 
of the potential changes. For instance, for the one-dimensional anharmonic oscilla- 
tor with V ( x )  = m 2 x  2 q- ~ x  4, the energy eigenvalues are analytic functions of m 2 and 

as long as ~ > 0; ~ = 0 is a singular point. 
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Under conditions in which such analyticity holds, it is true in particular that the 
ground-state energy is an analytic function of the parameters. Let us now consider 
supersymmetric theories. Suppose that in some theory, it is known that in some 
finite range of the parameters supersymmetry is unbroken and the ground-state 
energy is exactly zero. Since an analytic function that vanishes in a finite range of 
the parameters vanishes everywhere, it follows that the ground-state energy vanishes 
identically and that supersymmetry is unbroken for all values of the parameters. 

Suppose, conversely, that in some theory it is known that in a finite range of the 
parameters supersymmetry is spontaneously broken and the ground-state energy is 
non-zero. It then follows from analyticity that there does not exist a finite range of 
parameters in which the vacuum energy vanishes identically. In particular, in a 

theory with just one coupling constant, if supersymmetry is spontaneously broken 
for some value of the coupling, it is restored at most for isolated values of the 
coupling, since an analytic function that does not vanish everywhere has at most 
isolated zeros. In a theory with N coupling constants, if supersymmetry is sponta- 
neously broken at one point in coupling constant space, it is restored at most on a 
surface of dimension N -  1 in the space of couplings. 

A simple example of this is the quantum mechanics hamiltonian of eq. (26). Again 
take W =  x 2 + a 2. The ground-state energy is an analytic function of a 2. Since it is 
non-vanishing for large, positive a 2, it must not vanish for negative a 2 (except 
possibly for isolated values of a2). This simple argument based on analyticity thus 
anticipates the dynamical supersymmetry breaking found for negative a 2 in ref. [2]. 
Of course, the fact that the ground-state energy does not vanish even for isolated 
values of a 2 can be seen from the argument of sect. 3, based on conjugation, or by 
the explicit calculation of ref. [2]. 

How much of this carries over to supersymmetric field theory? To begin with, we 
may consider a supersymmetric field theory in a finite volume V and in the presence 
of an ultraviolet cut-off A. (We will assume that a suitable ultraviolet cut-off exists 
or that the ultra-violet behavior is not really crucial.) As long as the volume and the 
cut-off are finite, the total number of degrees of freedom is finite, so analyticity 
holds, along with its above-mentioned consequences. However, we are interested in 
the limit V--, oe, A --. oe. In this limit the number of degrees of freedom becomes 
infinite and the ground-state energy may cease to be an analytic function of the 
coupling constant. 

Two cases must be distinguished. Suppose that it is known that for any finite V 
and A there is a non-zero range of coupling parameters in which the ground-state 
energy vanishes exactly. Then, since the ground-state energy is an analytic function 
of coupling for fixed V and A, it must vanish for arbitrary coupling as long as V and 
A are finite. Since the large-V, large-A limit of zero is zero, it follows from this that 
also in the limit the ground-state energy is zero and supersymmetry is unbroken. 

In the opposite case, we do not reach such an interesting conclusion. If it is known 
that, for finite V and A, the ground-state energy is non-zero at least for some values 



E. Witten / Constraints on supersymmetry breaking 273 

of the coupling, it indeed follows that the ground-state energy is non-zero for almost 
all coupling, as long as V and A are finite. But since a non-zero energy may become 
zero in the large-V, large-A limit, and since analyticity may be lost in this limit, 
supersymmetry may be restored in the limit for any or all values of the coupling. 

An example in which analyticity is lost in the large-V limit is described in 
appendix A. 

How might one be able to put these considerations to use? The usual way to try to 
show that a symmetry is unbroken in some range of the couplings is to study the 
weak coupling behavior. But in the case of supersymmetry, even for weak coupling, 
it is hard in general to decide whether the symmetry is broken or unbroken. 

A fairly simple and instructive, although exotic, situation in which the considera- 
tions of this section could play a role would be the following. Suppose that in a weak 
coupling calculation, in a finite volume, one finds in some theory eight states of 
apparently zero energy. Suppose that these are four Bose states of spin zero, and 
four Fermi states of spin -~. (Of course, "spin" refers to the discrete rotation 
subgroup of the finite volume theory.) What conclusions can be drawn? 

The first step is to ask whether the eight states in question really have exactly zero 
energy for sufficiently weak coupling. With the spectrum assumed, Tr(--1)  F z  0, SO 
the results of sect. 2 are of no help. However, we may use a line of reasoning 
analogous to that in sect. 2. For weak enough coupling, the eight states that in 
perturbation theory appear to have zero energy certainly are much lower in energy 
than any states whose energy does not vanish in perturbation theory. Therefore, if 
the supersymmetry charges do not annihilate these eight states, they must at least 
map them among themselves, for weak enough coupling: supersymmetry could not 
connect these eight states to others of higher energy. 

But the supersymmetry operators transform as operators of spin one half under 
rotations. They cannot connect states of spin zero to states of spin 3. So under the 
stated assumptions the supersymmetry charges must annihilate the eight states in 
question, at least for weak coupling. The ground-state energy must be zero, at least 
for weak coupling. 

It now follows from analyticity that the ground-state energy is zero, and super- 
symmetry unbroken, even for strong coupling, and also in the large-volume limit. 

Note that this argument would hold even if the range of validity of perturbation 
theory depends on the volume (as in infrared-unstable theories like QCD) as long as 
perturbation theory has a non-zero range of validity for any finite volume. 

The argument just described is an analogue of the "lacunary principle" of Morse 
theory. We will have more to say on Morse theory in sect. 10. 

5. Simple applications 

Let us now turn to applications of the ideas developed in sects. 2-4. Most of the 
applications depend only on the results of sect. 2. In this section we consider the 
simplest applications. 
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The simplest supersymmetric theory is the Wess-Zumino model. There is a single 
complex scalar field ~; its supersymmetry partner is a left-handed Weyl spinor +. 
The superspace potential is W(q0 = ½gdp 3 - (m2/4g)q,, and the ordinary potential 
energy that describes the self-interaction of q, is 

V(~, dp*)--I OW 2 2 2 m_~_2 12 
- g ~ - 4g 2 " 

(30) 

In addition, there is a Yukawa coupling 

Iyu k = gepqJ~ +~ e,¢ + h.c.,  (31) 

although it will not play a crucial role in our analysis. We will assume, temporarily, 
that m v a 0. 

Let us evaluate T r ( - 1 )  r in this theory. We will do so by studying the weak 
coupling behavior, in a finite volume. As we will see, no detailed calculations are 

necessary. 
For weak coupling, perturbation theory is a good approximation. In perturbation 

theory there are two vacuum states, ( ¢ ) =  + m / 2 g  (they are related by the discrete 
symmetry $ ~ - ¢ ,  6 ~ i~b). Expanding around either minimum of the potential, one 
finds that ¢ and ~b are massive for weak coupling. In fact 

m , = m + = m ( 1  + O (g 2 ) ) .  (32) 

The spectrum of this theory in zeroth order of perturbation theory is very simple. In 
each minimum of the potential (fig. 5) there is one zero-energy state, the "vacuum".  
The "vacuum" has spin zero and therefore is bosonic. All other states are obtained 
by adding ~ and ~b quanta to the vacuum. Any state containing such quanta has an 
energy that is strictly positive; in fact, they have E >~ m, since the ~ and ~b mass is 
approximately m. Hence states containing q~ and + quanta do not contribute to 
T r ( -  1)F. 

Each of the two vacuum states contributes one to T r ( - 1 )  F. Since there are no 
other contributions, we find that in the Wess-Zumifio model 

T r ( -  1) F =  2. (33) 

I L  

Fig. 5. The typical spectrum in a supersymmetric theory with massive particles only. The only zero- 
energy state is the spin zero "vacuum". 
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Because this is not zero, supersymmetry is not spontaneously broken in this model. 
Since T r ( -  l )  r is independent of g and m, the conclusion is valid for large g as well 
as small g. And it is valid for m = 0 even though the derivation assumed m v ~ 0. 

Let us now compare this to what could be learned by other methods. 
For m 4: 0, we do not need T r ( -  1) F to show that supersymmetry is not sponta- 

neously broken for small g. When supersymmetry is spontaneously broken, there is 
always a massless fermion, the Goldstone fermion. In this theory, for m 4: 0, the 
elementary fermion certainly has a non-zero mass if g is small enough. Moreover, for 
very weak coupling, a massless fermion will certainly not appear as a bound state of 
the massive elementary quanta. Therefore, for m v e 0 and small enough g, there is no 

massless fermion that could possibly be a Goldstone fermion, so supersymmetry 
could not be spontaneously broken in this range of the parameters. 

However, one might think that as g increases (for fixed m), the + mass might 

eventually decrease and go to zero. Beyond a critical value of g (fig. 6), the ~b particle 
might be a massless Goldstone fermion, associated with spontaneous breaking of 
supersymmetry. Such a phase transition occurs quite readily in the case of internal 
symmetries (a scalar mass goes to zero as the coupling is increased and the scalar 
becomes a Goldstone boson). But because T r ( - 1 )  F =  2, this cannot occur here; 
supersymmetry is unbroken even if g is large. (It may be that for large enough g, + is 
massless. But if so ~b is not a Goldstone fermion; the crucial matrix element 
(0] S~[~p) vanishes, and supersymmetry is not spontaneously broken.) 

One may also be interested in the rn = 0 theory. In this case, even for small g, 
there is a massless fermion, the ~b particle. It is possible to show [10] that even for 
m - - 0 ,  the vacuum energy vanishes to all finite orders of perturbation theory. 
However, how do we know that, non-perturbatively, there is not a tiny, non-zero 
vacuum energy (and a tiny, non-zero matrix element (0[S~[~), making ~p a 
Goldstone fermion)? The fact that T r ( - 1 ) F v  ~ 0 shows that this does not occur. 

(We could have attempted to derive this result by analyticity. One is tempted to 
say that since the vacuum energy obviously vanishes for m v ~ 0 and sufficiently small 
g, it must, by analyticity, vanish for all rn and g. However, a careful at tempt to think 
this argument through leads back to the concept of T r ( -  1) F. Since analyticity only 

holds in a finite volume, we must know that the ground-state energy is exactly zero 
in a finite volume for m :~ 0 and small enough g in order to justify inferences about 
supersymmetry breaking that are based on analyticity. But in a finite volume the 

mq~ 

ge 

Fig. 6. What cannot happen: the fermion of the Wess-Zumino model becomes a Goldstone fermion 
above a critical coupling. 



276 E. Witten / Constraints on supersymmetry breaking 

concept of a Goldstone fermion is ill-defined. The fact that the infinite volume 
theory, for m v ~ 0 and small g, does not have a massless fermion does not prove that 
the ground-state energy vanishes exactly in a finite volume; in fact, a counter-exam- 
ple is given in appendix A. To prove that, in a suitable range of parameters, the 
ground-state energy of the finite volume theory is exactly zero, one needs the 
concept of T r ( - 1 )  F, or perhaps some other non-perturbative argument that might 
be discovered.) 

The above argument is clearly not limited to the Wess-Zumino model. Consider 
any supersymmetric theory in which at the tree level supersymmetry is unbroken, 
and in which all particles have non-zero masses at the tree level. Because the masses 
are non-zero, all states other than the "vacuum" states have energy greater than zero 
(any state but the vacuum has energy at least equal to the mass of the tightest 
particle). Therefore, T r ( - 1 )  r receives contributions only from the zero-energy 
"vacuum" states, all of which have spin zero. There are some such states, because we 
assumed that supersymmetry was not spontaneously broken at the tree level. So in 
these theories, T r ( - 1 )  r is greater than zero, and supersymmetry is not sponta- 
neously broken, even if the coupling is strong. 

The same argument applies even if there are massless particles at the tree level, as 
long as those massless particles could be given masses by changing the parameters in 
the lagrangian. (As discussed in sects. 2-4, the change in parameters must be one 
that does not affect the asymptotic behavior of the potential for large fields.) As long 
as all massless particles could have had mass, Tr(--1)  F is positive, since it is 
independent of the parameters and is positive if all particles are massive. 

The only theories in which it may be tricky to calculate T r ( -  1) F are theories with 
massless particles that are massless (in perturbation theory) for all values of the 
parameters. The most important theories of this class are, of course, gauge theories; 
gauge theories always have massless particles in perturbation theory, unless complete 
breakdown of the gauge symmetry (by the Higgs mechanism) occurs at the tree level. 
Much of the remainder of this paper is devoted to calculating T r ( - 1 )  F in various 
gauge theories. 

The reason that massless particles cause trouble in calculating T r ( - 1 )  F is the 
following. In a finite volume, a normalizable state can be obtained by adding to the 
"vacuum" a massless particle in a momentum eigenstate with P = 0. In fact, several 
massless particles can be added in this way. Such a state will have very low energy, 
and may have exactly zero energy in finite volume. Such states may be bosonic or 
fermionic, depending on what massless quanta are added to the vacuum. It is 
difficult to count these states, because an arbitrary number of P = 0 bosons may be 
added to the vacuum. And it is difficult to determine how many of them have 
exactly zero energy. This is why, in theories that "unavoidably" have massless 
particles, it is frequently difficult to evaluate Tr(--  1) F. 

There is one other situation, however, in which it is easy to calculate T r ( -  1) F. If 
supersymmetry is spontaneously broken at the tree level, then, in perturbation 
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theory, there are no states of zero energy (neither bosonic nor fermionic states), so 
T r ( -  1) F =  0. AS explained in sect. 2, the knowledge that T r ( -  l) F =  0 does not lead 
to a definite prediction about whether supersymmetry is restored for some range of 
the parameters. We will have nothing further to say in this paper about theories in 
which supersymmetry is spontaneously broken at the tree level. 

6. Abelian gauge theories 

In this section we will begin to come to grips with the problem of calculating 
T r ( - 1 )  r in theories which have massless particles because of unbroken gauge 
symmetries. Such massless particles make the evaluation of T r ( - 1 )  r far more 
difficult, for reasons explained in the last section. 

We will focus here on supersymmetric QED, that is, supersymmetric theories with 
an unbroken U(1) gauge symmetry. However, we will limit ourselves to theories in 
which the charged fields of given chirality form a real representation of U(1); in 
other words, we will study theories in which, as in ordinary QED, the photon has 
vector (not axial vector) couplings to the charged fermions. This means that gauge 
invariant bare mass terms are possible for all charged fields. In calculating T r ( -  1) r, 
we will assume such bare masses to be present; however, as T r ( -  1) F is independent 
of the bare masses, the restrictions on supersymmetry breaking derived below are 
valid also for the case of zero bare mass. 

Charged fields in a complex representation of U(1) would make the determination 
of T r ( -  1) r more difficult. Such fields would necessarily be massless, as long as U(1) 
is unbroken, and massless charged fields that cannot be given bare masses would 
make our problem more complicated. 

We will find the following generalization of the concept of T r ( -  1) r to be useful. 
Let X be any operator that commutes with the supersymmetry charges, [X, Q~] = 0. 
(Of course, X then also commutes with H = ~Q~. )  Instead of calculating the trace 
of ( -  1) r in the entire Hilbert space, we may calculate the trace in the subspace of 
states on which X has a prescribed eigenvalue ?~. In other words, letting P~ be the 
projection onto the subspace with X =  X, we may calculate Tr ( -1 ) rP~ .  The argu- 
ments of sect. 2 showing that T r ( - 1 )  r is independent of the parameters in a 
supersymmetric theory immediately carry over to show that, for any ?~, T r ( -  1)rpx is 
independent of the parameters (but now one is restricted to considering theories in 
which X is conserved, along with the Q~). Moreover, if T r ( -  1)rpx is non-zero for 
any X, supersymmetry is definitely unbroken - for all values of the parameters. 

Equivalently, introducing an arbitrary function f ( X )  of the operator X, we may 
consider 

T r ( -  1 ) r f ( x )  = ~ f (X)Tr ( - -  1)Fpx. (34) 
X 
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If Tr(--l)rf(x) is non-zero for some choice of f(X), then supersymmetry is 
unbroken*. 

We will find it useful to take X to be the charge conjugation operator C. In the 
vector-like theories we will consider the gauge interactions are invariant under an 
operator C that exchanges positively charged fields of given chirality with negatively 
charged fields of the same chirality. Under C, the gauge field A~ and its fermionic 
partner ~, change sign. While the gauge couplings conserve C in vector-like QED, 
non-minimal interactions that might be added may or may not conserve C. As long 
as C is conserved we can use C invariance to obtain interesting information. 

Because C 2 : 1, there are only two independent invariants to consider. They are 
T r ( - l )  r and T r ( - 1 ) F c .  We will find that in vector-like supersymmetric QED, 
T r ( - 1 )  F :  0. This result, by itself, sheds no light on the possibility of dynamical 
supersymmetry breaking. However, we will find that in C-conserving vector-like 
theories, T r ( -  1)Fc = 4. The non-zero value means that in these theories, dynamical 
supersymmetry breaking does not occur, even for strong coupling. 

Let us now attempt to derive these results. Actually, to evaluate T r ( -  1) r there is a 
very simple method, which depends on the existence of the Fayet-Iliopoulos D term. 
Leaving aside possible non-minimal interactions, the classical potential energy for a 
U(1) theory with charged scalar fields C~ of bare masses rn~ and charges e~ is 

v ( c i )  = Zrn~[cil2 +(Ze~lC~]2) 2. (35) 

The minimum of the potential is at Ci = 0. Obviously, the potential vanishes at this 
point, so supersymmetry is unbroken at the tree level. Whether supersymmetry is 
unbroken in the full quantum mechanical theory is precisely what we wish to 
investigate. 

The theory just described can be generalized by including the D term. The 
modified potential is 

V(Ci) = ~] m~l C~[ 2 + ( ~  ei] C , 2 l - d 2 )  2 , (36) 

where d 2 is a constant. As is easily seen, if d 2 =~ 0, (36) does not vanish for any value 
of the C i. Thus, supersymmetry is spontaneously broken at the tree level when the D 
term is included (as long as all charged fields were massive). This means that 
T r ( -  1) F =  0 with the D term, and therefore also without it. 

The same reasoning cannot be used to calculate T r ( -  I)Fc. The reason for this is 
that the D term is not invariant under charge conjugation. To understand this, we 
must clarify how charge conjugation is defined in supersymmetric theories. The 

* It does not matter, in this construction, whether X is spontaneously broken in the infinite volume 
limit. As long as the operator X is well-defined, and commutes with the Q,~, in the finite volume 
theory, Tr( 1)rf(X) can be defined and gives constraints on supersymmetry breaking. 
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complex fields C i in (35) and (36) are the supersymmetric partners of the left-handed 
Fermi fields ~biL; their complex conjugates C *j are the partners of the right-handed 
Fermi fields ~P~t = (~bji.)*- The operation Ci ,--, C *~ is a symmetry of (35) and (36); it 
actually is a CP transformation since, because of the Yukawa couplings [which are 
required by supersymmetry but not indicated explicitly in (35) and (36)], the left- 
and right-handed fermions must be exchanged at the same time. 

Charge conjugation, as opposed to CP, is defined as follows. By our hypothesis, 
the partners C i of the left-handed fermions form a real representation of U(1). 
Otherwise, the mass terms in (35) and (36) would be incompatible with gauge 
invariance and supersymmetry. To say that the Ci form a real representation means 
simply that for every C, of charge e~ there is a Cj of charge -e~. More specifically, 
because of gauge invariance and supersymmetry, for every C~ of charge e~ and mass 
m~, there is a Cj of charge -e~ and the same mass mg. Charge conjugation is the 
exchange C~ ,--, ~ .  In (35) and (36) this has the effect e~ ~ - e i ,  which evidently leaves 
(35) invariant but not (36). Thus, the D term is not invariant under charge 
conjugation, and the introduction of the D term cannot be used as a tool in 
calculating Y r ( -  1)Fc. 

We must therefore consider other methods. The key to a general approach to 
calculating T r ( -  l) r and T r ( -  1)Fc is to realize that if all charged fields are massive, 
the charged fields can be ignored entirely. Every state involving excitations of the 
charged fields has energy at least equal to the mass of the lightest charged field. Very 
low energy states are excitations of the A~ and its fermionic partner ~p only*. The 
fact that the charged fields can be ignored means that T r ( -  1) r and T r ( -  1)FC have 
the same values that they have in free field theory. Of course, in free field theory 
everything can be evaluated explicitly. 

For reasons explained in sect. 5, the only thing that makes it slightly delicate to 
calculate T r ( - l )  F and T r ( - 1 ) F c  is the masslessness of A~ and ~. The zero 
momentum modes of the massless particles are normalizable in a finite volume, and 
they carry zero energy. So they must be taken into account in evaluating Tr( - 1) r or 
Y r ( -  1)FC. 

Actually, in the infinite volume theory, the zero-momentum mode of the gauge 
field can simply be gauged away. It is not quite as simple in the finite volume case, 
for reasons that we will discuss. However, we will see that in abelian gauge theories, 
the zero-momentum mode of the gauge field makes no contribution. 

Ignoring the zero-momentum mode of the gauge field for a moment, let us 
evaluate the contribution of the zero-momentum mode of the fermions. Because of 

* We assume that neutral fields other than A t and ~, if present in the theory, are massive and have 
vacuum expectation values that are uniquely determined, at the tree level, by the classical potential. 
The statements below require modification otherwise. Massless fields that cannot be given masses 
without changing the asymptotic behavior of the potential would as always cause complications. If the 
potential has several minimima, the contribution of each min imum to T r ( -  1) F and T r ( -  1)FC must  
be included. 
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Fermi statistics, only a finite number  of zero-momentum fermions can fit in the box. 
This gives a finite number  of states, which can be straightforwardly counted. As 
sketched in fig. 7, our finite volume box may contain no zero-momentum fermions, a 

single zero-momentum fermion, which may have spin up or spin down, or two 
zero-momentum fermions, one of spin up and one of spin down. These four states 

have zero energy at least in perturbation theory (the zero-momentum fermions carry 
zero energy, and the zero-point energy of the other modes cancels, in the usual way, 
between bosons and fermions). Of the four states, two are bosonic (the states with 
zero or two fermions present) and two are fermionic (the states with one fermion 
present). So T r ( -  1) F =  2 - 2 = 0, in agreement with our previous results. 

Turning now to T r ( - 1 ) F c ,  we must determine how the four states in fig. 7 
transform under C. Since there is no other physical principle that fixes the overall 
sign of the operator C, we may define the zero fermion state to have C = + 1. Then, 
since the elementary Fermi field ~k is odd under C (like its supersymmetric partner, 
the gauge field), the states containing one fermion have C = - 1, and the state with 
two fermions has C = + 1. Thus, of the four states in fig. 7, the bosonic states have 
C = + 1 and the fermionic states have C = - 1. This means that T r ( -  1)Fc = 4. 

To justify these statements, we must show that the zero-momentum mode of the 
gauge field can in fact be ignored. In the infinite volume theory, the zero-momentum 
mode can simply be gauged away. Under  a gauge transformation, we have A~ ~ A,  
+ Ot, e. If  we choose 

(37) 

where c~ is a constant, then A,  ~ A~ + c~ and this can be used to eliminate the 

zero-momentum component  of the field. 
In a finite volume, there is no difficulty in using (37) to eliminate the zero- 

momentum component  of A 0. In fact, A 0 can be eliminated altogether by a gauge 
transformation, and we will do so henceforth. However, we must be careful in trying 
to eliminate the zero-momentum components of A by means of (37), because 

= c.  x is not periodic. 

In the absence of charged fields, this does not matter. Even though e is not 
periodic, the operation A i --. A i + 0ie preserves the periodicity of A,, and this is the 
only requirement a gauge transformation must satisfy. Thus, in free field theory, one 
can eliminate the zero-momentum mode of A / b y  means of a gauge transformation 
and forget about it. T r ( -  1) v and T r ( -  1)Fc can then be evaluated in terms of the 

fermions only, as we have already done. 

C=+l C=-I C=-I C=+l 

Fig. 7. The spectrum of zero-energy states in vector-like supersymmetric QED. 
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Technically, "eliminating" the zero-momentum mode of the gauge field means the 
following. As the operator that implements a gauge transformation by e = c . x  

commutes with the hamiltonian, we can require the states to be annihilated by this 
operator. In this restricted Hilbert space the zero-momentum mode of A, is absent, 
and our previous determination of T r ( -  l) r and T r ( -  1)FC is valid. 

When charged fields are present, we must be more careful. Under the gauge 
transformation discussed above, a field N of charge e transforms as 

N ~ e x p ( i e c ,  x ) N .  (38) 

We will assume that all electric charges are integral multiples of some basic charge* 
e. In that case, all fields remain periodic under the action of our gauge transforma- 
tion if and only if 

2 ~  
c, = e--/Tni, (39) 

where L is the length of the box and the n~ are arbitrary integers. 
Because of the restriction (39), we cannot simply eliminate the zero-momentum 

mode, but we can shift it by a constant. Defining the zero-momentum mode as 

| 3 hi= -#fd x i, (40) 

we can shift hj ~ h i + ( 2 ~ r / e L ) n  i by a gauge transformation. The h, are periodic 
variables, the period being 2 ~r/eL.  

We must now quantize the h i, The term in the action involving h~ is easily 
evaluated; in fact 

L = x F ~  = 1L3 dh i  • - - ~  + ' - . ,  (41) 

where the terms omitted are independent of the hs. Quantizing this lagrangian, the 
relevant part of the hamiltonian is 

1 ~%2, (42) 

where ¢r i = - i  3 /3h~.  The spectrum of this operator is well known. There is a unique, 

* This is true if the ratios of the charges of the various fields are rational. Nothing is essentially 
different if the ratios are irrational since an irrational number  can be approximated arbitrarily well by 
a rational number.  
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zero-energy ground state, with wave function 'I' = 1. It is normalizable (as are all 
eigenstates of H )  since the h i are periodic variables. Since the period is 2~r/eL, the 
lowest excited state has energy eZ/2L. 

Placing the gauge field in its unique ground state and re-introducing the fermions, 
we obtain the previously stated results. Allowing for states that contain zero, one, or 
two zero-momentum fermions, we get T r ( -  1) F~-- 0, T r ( -  l ) r C  = 4. 

A technicality in the above derivation should be clarified. In defining T r ( -  l )  r in 
sect. 2, we assumed that, in a finite volume, the spectrum of the hamiltonian is 
discrete. Otherwise, the counting of states used in sect. 2 is invalid. T r ( - 1 )  F is 
ill-defined, or could be made well-defined only through sophisticated arguments, if 
the hamiltonian even in a finite volume has a continuous spectrum. 

While commonly the spectrum in a finite volume is discrete, this may be untrue in 
theories with massless particles because the zero momentum modes of the massless 
particles may have a continuous spectrum. It is absolutely crucial that in our 
problem the h i can be regarded as periodic variables. Otherwise, the hamiltonian 
(42) would have a continuous spectrum, and T r ( - 1 )  F and T r ( - 1 ) F c  would be 
ill-defined. It is only in a restricted Hilbert space in which the states are required to 
be invariant under Ai--.Ai+(2~r/eL)h ~ that T r ( - 1 )  F and T r ( - 1 ) F c  are well- 
defined. 

Our result T r ( - 1 ) r C  = 4 shows that in charge-conjugation invariant, vector-like 
QED, dynamical breaking of supersymmetry does not occur. The same is true if C is 
violated only by terms in the lagrangian that could be eliminated by an allowed 
conjugation operation. 

It should be noted that we have not assumed, or proved, that dynamical breaking 
of C invariance does not occur. Because T r ( - 1 ) F c  = 4, there are at least four 
zero-energy states for any value of the coupling constant and of the volume. This 
means that the ground-state energy vanishes also in the infinite volume theory, and 
supersymmetry is unbroken. It does not prove that, in the infinite volume limit, the 
proper vacuum s t a t e s -  the ones in which cluster decomposition h o l d s -  are C 
eigenstates. 

A final comment, analogous to remarks in sect. 5 about the Wess-Zumino model, 
should be made. For weak coupling, a far more trivial argument shows that 
dynamical supersymmetry breaking does not occur in vector-like QED with massive 
charged particles and C invariance. For weak coupling, the only possible massless 
Goldstone fermion would be the fermionic partner + of the photon. It is odd under 
C; the supersymmetry current S, is even under C. Hence, the crucial matrix element 
(01S~I~) vanishes as long as C is conserved. But in theories such as the one with 
potential energy (35), spontaneous breaking of C invariance certainly does not occur 
if the coupling is weak enough. 

The virtue of the argument based on T r ( -  1)Fc is that it shows that, in the class of 
theories considered here, supersymmetry remains unbroken even if. the coupling is 
strong, and even if one removes the bare mass terms of some of the charged fields. 
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7. Non-abel ian gauge theories  

Let us now turn to the interesting question of dynamical supersymmetry breaking 
in non-abelian gauge theories. In this and the next section, we will consider the 
minimal supersymmetric non-abelian gauge theory. The only fields are the gauge 
field A~ and its supersymmetric partner ~ .  The lagrangian takes the minimally 
coupled form, 

1 
~ -  4g~ F~a ~a + l ~ai~pa, (43) 

and is supersymmetric because, as may easily be demonstrated, the supersymmetry 
current 

Sua=(ovaF~ 'aay~a)a  (44) 

is conserved. 

Because of asymptotic freedom and the corresponding infrared instability, it is 
reasonable to guess that, as in conventional QCD, there are many non-perturbative 
phenomena that occur in this theory. We may expect confinement, dynamical mass 
generation, and perhaps other phenomena as well. It is natural to suspect that, 
although supersymmetry is unbroken in perturbation theory in this model, dynami- 
cal breaking of supersymmetry may occur, presumably with the binding of a color 
singlet Goldstone fermion. We will be able to answer this question by calculating 
T r ( - 1 )  r. As we will see, for a simple Lie group of rank r, T r ( - 1 )  r =  r ÷ 1. The 
non-zero value means that dynamical supersymmetry breaking does not occur. 

As in our previous discussions, it is only the zero-momentum modes of the 
massless particles that make the evaluation of T r ( -  1) r difficult. Massless fermions 
of zero momentum can be straightforwardly counted, as we did in the last section. 
But massless bosons are more troublesome. Any number of zero-momentum mass- 
less bosons can be placed in our finite volume box. Because of the non-linear 
interactions, it is difficult to count these states and to determine how many have zero 
energy. 

To calculate T r ( - 1 )  r, it is sufficient to evaluate the spectrum of the theory in 
perturbation theory. However, the existence of the zero-momentum mode of the 
gauge field, which carries zero energy and cannot be gauged away, means that, in a 
finite volume, it is not straightforward to formulate perturbation theory for the 
Yang-Mills field. 

It turns out that, for the gauge group SU(N),  it is possible to avoid this problem, 
by formulating the theory in such a way that the zero-momentum mode is absent. 
We will follow that approach here. In sect. 8, a more general approach, valid for 
arbitrary gauge groups, is described. 
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In a finite volume, we cannot gauge away the zero-momentum mode. As we have 
discussed in the abelian case, the required gauge transformation would not be 
periodic. We will return to this point in sect. 8. However, if the gauge group in 
SU(N),  we can eliminate the zero-momentum mode in another way. We can choose 
boundary conditions that it does not satisfy. This can be done by introducing 
't Hooft 's "twisted boundary conditions". 

In a box of length L, the usual periodic boundary conditions are that A t and ~ are 
periodic functions in the usual sense, for example 

At(x, y, z) =A~(x + L, y, z) =At(x, y+ L, z) 

=A,(x, y, z + L). (45) 

't Hooft  has shown [7] that for some purposes, it is useful to consider a generaliza- 
tion of (45). In a special case that is general enough for our purposes, the modified 
boundary conditions take the form 

At(x, y, z) =PA~(x + L, y, z)P- '  

=QA,(x, y+ t , z ) Q - '  

=At(x, y, z + L). (46) 

Here P and Q are constant matrices which, for the gauge group SU(N),  are chosen 
to satisfy 

PQ = QP exp(2 ~r i /N) .  (47) 

For instance, these matrices may be taken to be 

0 1 
0 1 

0 1 
0 

P=a 

Q=~ 

1 

1 
e2~'i/N 

e4~ri/N , (48) 

e2~ri(N--1)/N 

where a and fl are phases chosen so det P = det Q = 1. Of course, if A t is required to 
satisfy (46), then supersymmetry holds only if ~k is required to satisfy (46) also. 
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We are entitled to consider (46) instead of (45) because the large-volume limit of 
the theory is expected to be independent of the boundary conditions. If for any 

choice of boundary conditions we can evaluate T r ( -  1) r and show it to be non-zero, 
this shows that supersymmetry is unbroken in the infinite volume limit, with this 
choice of boundary conditions and therefore with any other choice. 

According to 't Hooft, the boundary conditions (46) specify a theory with one unit 
of magnetic flux in the z direction. The reason for this terminology is irrelevant for 
our purposes. What is relevant is that the zero-momentum mode does not obey (46). 
Indeed, the zero-momentum mode C of any field satisfying (46) would have to obey 
C = P C P  l _= Q C Q - 1 .  For C in the Lie algebra of SU(N),  this requires C = 0. (To 
commute with Q, C would have to be diagonal; a traceless, diagonal matrix that 
commutes with P must vanish.) 

With the zero-momentum mode eliminated by the boundary conditions, it is 
straightforward to set up perturbation theory and calculate T r ( - 1 )  r. Expanding 
around A~ = 0, all modes of A, and ~b (except for modes of A~ that can be gauged 
away) have a non-zero momentum and therefore a positive energy. Just as if the 
massless particles did not exist at all, one finds in perturbation theory a spectrum 
like that in fig. 8. There is a single zero-energy ground state, of spin zero; and there 
are Bose-Fermi pairs for positive energy. The expansion around A, = 0 would thus 
give the value one for T r ( -  l) F. 

However, perturbation theory is not merely an expansion around A, = 0. We must 
expand around any configuration which, classically, has zero energy (and thus is 
degenerate with A~ = 0). We will show below that, with twisted boundary conditions, 
any configuration that classically has zero energy may be written as Au = - i (~ ,U)U 

for some U. If U can be continuously deformed to the identity, it can be simply 
gauged away. But if U cannot be so deformed, the expansion around A~ = 
- i ( ~ U ) U  -~ gives rise, in perturbation theory, to a new sector of Hilbert space. 
Since the new sector differs from the old one only by the gauge transformation U, it 
likewise contributes one to T r ( -  1) r. The numerical value of T r ( -  1) v is obtained, as 
in the Wess-Zumino model, by summing over the various sectors. As we will see, in a 
Hilbert space specified by a definite value of the vacuum angle 0, there are N sectors 
that must be included. Hence, altogether, T r ( - 1 )  r - -  N. 

The numerical value of T r ( -  1) F which depends on some technicalities, is not so 
important. What is important is that, with the zero-momentum modes eliminated, 
only the "vacuum" states, which always have spin zero, contribute to T r ( - 1 )  F. 

I E 
~ v  

Fig. 8. The spectrum of supersymmetric QCD with twisted boundary conditions expanding near A t -- 0. 
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Hence, Tr(--  1) v is positive, just as if there were no massless particles at all. From 
this it follows that supersymmetry is not spontaneously broken. 

The remainder of this section is more technical, and perhaps of more specialized 
interest. In the above analysis, we made the assertion that, with twisted boundary 
conditions, any configuration that classically has zero energy may be written as a 
pure gauge, A, = -i(O~U)U-1 for some U. This assertion is untrue with ordinary 

periodic boundary conditions, because of the zero-momentum mode. Since twisted 
boundary conditions eliminate the zero-momentum mode, it is plausible that the 
assertion is true, if twisted boundary conditions are used. But we must demonstrate 
it. We also must justify the above claim concerning the numerical value of T r ( -  1) F. 

If A satisfies the twisted boundary conditions (46), what boundary conditions* 
should be imposed on a gauge transformation U? The most obvious choice would be 

to require 

U(x,  y,  z )  = P U ( x  + L,  y, z ) P - '  

= QU(x ,  y + L,  z ) Q  -1 

= U(x,  y,  z + L ) .  (49) 

If U satisfies (49), then the transformation A~, ~ UA~,U- 1 _ i(O~,U)U 1 is consistent 
with (46). However, following 't Hooft, we may equally well permit U to satisfy 

U(x,  y,  z )  = exp (2~r i kx /N)PV(x  + L ,  y, z ) e  - I  

= exp(2~r iky /N)QU(x ,  y + L,  z ) Q - '  

= exp(2~r ikz /N)U(x ,  y, z + L ) ,  (50) 

where kx, ky ,  and k z are any integers (modulo N). The action of U on the gauge 

field still preserves the condition (46). 
If we choose standard gauge transformations T~, Ty, and T~, which satisfy (50) 

with k = (1,0, 0), (0, l, 0), and (0, 0, 1), respectively, then any gauge transformation U 

which satisfies (50) may be written as 

.k~- T -k ~j u=(rx)kx(r ) ( z , (51) 

where U satisfies (49). Remarkably enough, we may choose T x to be a constant, 
Tx(x, y, z) = Q. Likewise, we may choose Ty(X, y, z ) =  p - l .  No particularly simple 

choice is possible for T~, and we will not make a particular choice. 

* In this discussion we will go into more detail than actually needed, in order to clarify some points 

about twisted boundary conditions. 
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Obviously, with the above choices, (Tx) N=  (Ty) u - -  1. What about (T~)N? One 
might guess that T z can be chosen so that (Tz) N=  1, but this is not so. 

(Tz)U is a gauge transformation that satisfies the simpler boundary condition (49). 
What is the topological classification of gauge transformations that satisfy (49)? By 
using the fact that  SU(N)  is simply connected and that rr2(SU(N)) is trivial, it is 
easy to see that any gauge transformation U which satisfies (49) can be continuously 
deformed so that U = 1 if x, y, or z equals zero or L. Once this is done, the behavior 
of U for O<.x<~L determines an element of ~r3(SU(N)), corresponding to the 
winding number of instanton theory. 

It turns out that, no matter how T~ is defined, (Tz) u has a non-zero winding 
number. In particular, it is impossible to choose Tz so that (T~) u = 1. However, if we 
choose a gauge transformation T that satisfies (49) and has winding number one, 
then T~ can be chosen so that (T~)N= T. 

(This fact, which will not really be needed in what follows, is closely related to 
't Hooft 's observations on 0 dependence in the presence of twisted boundary 
conditions, and to his discovery of instanton solutions of Pontryagin number 1IN. 
The relationship (T~) N= T is also analogous to some facts pointed out in the last few 
paragraphs of ref. [11] and in ref. [12].) 

Let us now count the sectors of pure gauge configurations, and explain why, 
numerically, T r ( - 1 )  F - -  N .  Since Tx and Ty are constant gauge transformations (by 
Q and P-1,  respectively) they give nothing new when acting on A, = 0. They map 
A~--0,  and the entire Hilbert space obtained by expanding around A~ = 0, into 
itself. 

Acting on A~ = 0 with T, which shifts the winding number, we do get something 
new. However, this merely corresponds to the fact that the theory contains an 
arbitrary vacuum angle 0. Because of the massless fermions and the axial anomaly, 
all physical quantities, including T r ( -  1) F, are independent of 0. We may therefore 
also calculate T r ( -  1) F in a Hilbert space of states with a definite value of 0. Making 
this choice gives all states a prescribed behavior under the action of T (they are 
multiplied by e g°), and we may forget about T. 

Having chosen 0, the only way to obtain from A~ = 0 a new sector of Hilbert 
space is to act with T~. T~ may be applied 0, 1,2 . . . . .  N -  1 times. Applying ~ N 
times we would just multiply the states by e g°. This action of T z gives N sectors of 
Hilbert space, in perturbation theory. Each sector, as described above, contributes 
one to T r ( -  1) r so this, finally, explains why T r ( -  1) r is equal to N*. 

We are now almost ready to prove that with twisted boundary conditions, a 
configuration of zero energy can always be written as A~ = --i(OuU)U-~. However, a 
simple algebraic lemma is necessary first. In eq. (48), we wrote two explicit matrices 

* According to 't Hooft, the eigenvalue of T~ is the electric flux in the z direction. Since ~ commutes  
with supersymmetry,  we may  calculate the value of Tr( - 1)r in a subspace labeled by the value of the 
electric flux (as we did for charge conjugation in sect. 6). Since T~ permutes the N sectors of Hilbert 
space, we find T r ( -  1) r =  1 in any one of these N subspaces. 
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P and Q that satisfy PQ=QPexp(2~r i /N) .  The same relationship, P'Q '=  
Q'P' exp(2rri/N), is obviously satisfied by the matrices 

P' = X P X  - t  , Q' = XQX -1 , (52) 

if X is any unitary matrix. We will find it useful to know that the converse is also 
true. Any two SU(N)  matrices P '  and Q' which satisfy P'Q' = Q'P' exp(2~ri/N) can 
be written in the form (52), for some X. In fact, the relationship P'Q '=  
Q'P' exp(2~ri/N) means that the action of P '  multiplies the eigenvalues of Q' by a 
factor exp(2~ri/N). This, and the fact that det Q ' =  l, means that Q' has the same 
eigenvalues as Q. So Q'-~ XQX 1, for some x.  Once Q' is diagonalized, the 
relationship P'Q'-~Q'P'exp(21r i /N)  determines P '  uniquely, except for some 
phases, which can be eliminated by a unitary transformation that commutes with Q'. 

Incidentally, twisted boundary conditions can be introduced for groups other than 
SU(N),  as long as the center of the group is non-trivial. However, the analogue of 
the uniqueness theorem just stated does not hold. It is for this reason only that, for 
groups other than SU(N),  twisted boundary conditions are not useful in calculating 
T r ( -  1) F. 

Considering now a configuration that classically has zero energy, we wish to show 
that A, = - i ( ~ ,U )U  -1 for some U. Actually A 0 can always be gauged away; let us 
assume this has been done. For the energy to vanish classically, it must be that 
F 0 = OiAj - OjA t - i[A t, A j] vanishes. We must show that, under this condition, we 

can write A t = - i(~iU)U -1. 
Of course, with F/j = 0, we always can write A t = -i(O~U)U-1 locally. In fact, this 

expression is not unique. If A~ = - i(OiU)U- l, then also A, = - i ( ~ 0 ) 0 -  t, if 0 = 
UK, K being any constant matrix. This ambiguity will play a role in what follows. 

As a first try in attempting to satisfy Ai = - i (OiU)U l, let us write 

U( x, y, z ) = Texp(  i f (x" Y'Z)A, dxi  ) . 
~(0,0,0) 

(53) 

The path of integration does not matter, since Ftj = 0. The only problem with (53) is 
that it may not satisfy the boundary condition (50). In fact, from the boundary 
condition (46) satisfied by A~, and the definition (54), it is easy to see that U satisfies 

U(x, y,  z)  = PU(x  + L, y, z ) K x e  -1 

-~ QU(x,  y + L, Z)KyQ -I 

= U(x,  y, z + L)Kz ,  (54) 
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where 

K x = T exp ( i f  (0, 0, 0)A,ax),. " ' 

(L,O,O) 

u(O, L,O) 

Kz=Texp(if(~°;i'°iAidxi } • 

By applying (55) twice we can learn that 

U(x, y, z )= PU(x + L, y, z)KxP- '  

= P Q U ( x + L , y + L , z ) K y Q  1K~P-I, 

and also that 

(55) 

(56) 

U(x, y, z) = QU(x, y + L, Z)KyQ ' 

= Q P U ( x + L , y + L , z ) K x P - ' K y  Q '. (57) 

Combining these relations, and recalling that PQ = QPexp(27ri/N), we learn 

( PKx' )( QKy 1 ) = ( QKy ' )( PKx' )exp(2~ri/N ) . (58) 

In view of the uniqueness theorem that we discussed surrounding eq. (52), it follows 
from this that 

PK x ' = XPX- ' ,  QK-~' = XQX- ' ,  (59) 

for some X in SU(N). 
By manipulations similar to those that gave (56)-(58), but working now in the 

(xz) or (yz) planes, two more consistency conditions can be derived. They are 

K~(K~P-' )=(K~P- ' )K~,  Kz(Ky Q ' )=(KvQ- ' )K~.  (60 t 

From these relations it follows that K z is an element of the center of SU(N): 

K z -- exp(2 ~rik/N ), (61) 

for some k. (It is obvious from (48) that a matrix that commutes with P-~ and Q 
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must be a multiple of the identity. This is likewise true for a matrix which commutes 
with Kx P-1 and KyQ -1, which differ from p - l  and Q-1 only by conjugation.) 

Eqs. (59) and (61) are the key to our problem. It follows readily from these 
equations that if we define 

( /(x,  y,  z) = U(x, y, z ) X ,  (62) 

then U satisfies the boundary condition (50), with (kx, ky, kz) = (0,0, k). Moreover, 
A ~ = - i ( b , U ) U  - l =  - i ( ~ f / ) ( J  -~. Thus, we have finally proved that with twisted 
boundary conditions, any classical configuration of zero energy is a pure gauge. This 
completes our analysis of T r ( -  1) r with twisted boundary conditions. 

8. More on non-abelian gauge theories 

In the last section, we calculated T r ( -  1) r in the minimal supersymmetric SU(N)  
gauge theory, using twisted boundary conditions. We found T r ( -  1) F =  N. 

In this section, we will calculate T r ( - 1 )  F with ordinary (untwisted) boundary 
conditions, for the minimal supersymmetric theory based on an arbitrary Lie group. 
We will find that, for any simple, non-abelian Lie group of rank r, T r ( -  1) r =  r + 1. 

We will work in the gauge A o = 0. As we have discussed, the whole difficulty 
arises from the zero-momentum mode of the gauge field A~. Suppose that the 
Ai are independent of x, y, and z and are equal to constant matrices C~. As long 
as the C~ commute with each other, the energy vanishes because ~ j  = OiA~ - OjA i - 
[A,, Aj] = 0. 

If for simplicity we consider first the gauge group SU(2), then the C~, to commute 
with each other, must be proportional to some one generator of the group. After 
making a global gauge transformation, if necessary, it can be assumed that this 
generator is (say) T 3. So in this gauge 

A'/ = ci 6a3 , (63) 

where the c i are constants. 
The easiest way to establish that the c, cannot be gauged away is to consider (fig. 

9) a Wilson loop running from one end to the other of our box. The trace of this 
Wilson loop is invariant under all periodic gauge transformations. If, for example, 
the Wilson loop runs in the x direction, one may readily calculate 

• = cOSCx  ,64, 

where L is the length of the box. The non-trivial dependence on c x of this 
gauge-invariant expression shows that the c i cannot be gauged away. 
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Fig. 9. A Wilson loop running through the box. 

291 

While the c i cannot be gauged away, every configuration which has ~ j  = 0 can be 
put in the form (63) by a gauge transformation. This hopefully plausible statement 
will be proved at the end of this section. 

In a background gauge field of the type (63), the Dirac equation has zero-energy 
solutions. The zero modes take the form 

¢/~ = e,6 a3 , (65) 

where e~ is an arbitrary constant spinor. Note that to make a zero-energy solution, 
must be parallel to A in the SU(2) algebra, because of the [At, +] term in the Dirac 
equation. 

Our strategy will be to quantize the degrees of freedom (63) and (65) while 
ignoring the rest. The rationale for this is that while (63) and (65) carry zero energy 
classically, all other degrees of freedom (except for modes of the gauge field that can 
be gauged away) carry a momentum and energy of at least 2~r /L .  As in the 
conventional Born-Oppenheimer approximation in molecular physics, the very low 
lying energy leve l s -  which are all that we need to calculate T r ( - 1 )  F -  c a n  be 
calculated by quantizing the degrees of freedom that have zero energy classically. As 
in the abelian case [see the remarks following eq. (42)], the quantization of (63) and 
(65) gives a spectrum with an energy scale g 2 2 ~ r / L ,  g being the gauge coupling. If 
g2 << 1, these are the low-lying states. 

(One might wonder whether there are other sectors of Hilbert space in addition to 
that constructed in expanding around (63). Actually, with standard, untwisted 
periodic boundary conditions, the only sectors are those associated with the instan- 
ton winding number. These can be ignored if we agree to work in a Hilbert space 
labeled by a definite value of the vacuum angle 0.) 

Let us now discuss some further properties of the c i. A look at (64) suggests that, 
while the c i cannot be eliminated by a gauge transformation, it may be possible by a 
gauge transformation to shift the ci by a multiple of 2 r r / L .  This is indeed true. The 
gauge functions 

2 ~r ix 
U x = exp T 03, 

2rriy 
Uy = exp ~ 03 , 

2 ~riz 
U z = e x p - ~ - -  03 (66) 
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Fig. 10. A gauge transformation is deformed to a constant (A ~ B ~ C). 

are well defined and periodic. They generate gauge transformations which shift, 

respectively, Cx, Cy, and c z by 2 ~ / L .  Requiring physical states to be invariant under 
the action of U x, Uy, and Uz means that the c i are periodic variables with period 
2~r/L. 

This may seem reminiscent of the discussion of the abelian case in sect. 6. There, 
too, we defined a gauge transformation [see eqs. (37)-(39)] that shifted the zero- 

momentum mode of the gauge field by a constant*. But there are some fundamental 
differences. In the abelian case, we had the option of requiring states to be invariant 
under the gauge transformation that shifts the gauge field by a constant. For reasons 
explained in sect. 6, it was advantageous to make use of this option. In the 
non-abelian case, however, we must require the states to be invariant under action of 
(66). This follows from the constraint of Gauss '  law. The gauge transformations (66), 
which wrap around the "equator"  in group space, can be continuously deformed to 

the identity, much as a lasso can be slipI: 5 off of a sphere (see fig. 10). Gauss'  law 
therefore requires that physical states be invariant under (66). In the non-abelian 
case, the ci must be regarded as periodic variables. 

A related difference between the abelian and non-abelian situations is the follow- 
ing. In the abelian case, a well-defined gauge transformation that shifts the zero- 
momentum mode by a constant exists only if one assumes that electric charge is 
quantized, in some units. In the non-abelian case, the charges are automatically 
quantized, because of the non-linear commutat ion relations in the Lie algebra. 
Correspondingly, the operator (66) always exists in the non-abelian theory. 

As we have mentioned, and will demonstrate at the end of this section, any gauge 
field with Fij = 0 can be put in the form (63) by a gauge transformation. Actually, 
this can be done in two ways. The constant gauge transformation 

G = i %  (67) 

preserves the form of (63), but it reverses the sign of the zero-momentum modes of 
A i and ff~. It brings about the transformation 

C i ~+ - - C i ,  e a ~ --e~. (68) 

* A slightly different normalization was used in sect. 6, however. 
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Obviously, the gauge invariant Wilson loop [eq. (64)] is invariant under this 
transformation. 

Again, G has an analogue in the abelian theory. It  is analogous to the charge-con- 
jugation operator C which we utilized in sect. 6. Like G, C commuted with 
supersymmetry and reversed the sign of the zero-momentum modes. However, there 
are again some fundamental  differences. In the abelian case, C was a global 

symmetry, not part  of the gauge group. We had the liberty to consider theories that 
were or were not C invariant. In the non-abelian case, G is a gauge transformation, 

and so is a symmetry as long as the theory is gauge invariant. 
In the abelian case, assuming C to be a symmetry, we could label the states as 

even or odd under C. Corresponding to this, we had the two invariants T r ( -  l )  r and 
T r ( -  1)Fc. In the non-abelian case, the Gauss '  law constraint requires that physical 
states should be invariant under G. This is so because G, like any other constant 
gauge transformation, can be continuously deformed to the identity. Therefore, in 
the non-abelian case, there is only one invariant, T r ( - 1 )  F, to be calculated, but it 
should be calculated in the space of states that are even under G. 

With the machinery in place, the actual evaluation of T r ( -  l )  r for an SU(2) gauge 

theory is an almost trivial repetition of the abelian case, except for a few difficult 
points that we will not come to grips with fully. As has been explained, the strategy 
will be to quantize the zero momentum modes, ignoring the modes of non-zero 
momentum.  We thus express the lagrangian 

L--Sd3x(-+{~;)'-b½~".+" ) , 

in terms of c i and G. The terms that depend on c~ and e, are 

l ~i ( C i ) 2 q - E i ~ O - ~ )  (69) 

where V = L 3 is the volume of the box. After quantization, the hamiltonian is simply 

/-/e,f = gW Z (70) 

where % is the momentum canonically conjugate to c~*. Note that the spinor e has 
disappeared, because of the linear dependence of (69) on 3e/Ot. 

As in the abelian case, the hamiltonian (70) (if one ignores the fermions) has a 
unique zero-energy ground state, the wave function being a constant. Since the c~ are 
periodic with period 27r/L, the excited states have energies of order g2/L.  For small 

* One really should study the Faddeev-Popov determinant to obtain the proper measure for the c i. We 
will not attempt that here. T r ( - 1 )  r is expected to be independent of the measure, just as it is 
independent of other parameters. 
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g2, this is much less than  the energy scale, 1 / L ,  of the modes of non-zero 
momentum.  It is this that justifies ignoring the modes of non-zero momentum in 
determining the spectrum of low-lying states. 

When the fermions are included, we have, as in the abehan case, four zero-energy 
states in this approximation. The zero-momentum mode of the fermions may be 
empty, once occupied, or twice occupied (fig. 7). However, of these states, the 

physical states are those of G = + 1. 
As the overall sign of the operator G is difficult to determine, let us assume for the 

moment  (fig. 11) that the state with no zero-momentum fermions has G = + 1. The 
once occupied states then have G = - 1. since the fermion zero mode e is odd under 
G. The twice occupied state has G = + 1. We see that in the physical subspace of 
G = + 1, we have T r ( -  1) F =  2. 

If  instead we assumed the empty state to have G - -  - 1 ,  fhen all G assignments 
would be reversed. We would conclude that among states of G = 1, T r ( - 1 )  F =  - 2 .  

In the abelian case, the overall sign of the charge-conjugation operator C is a 
matter  of arbitrary choice. In the non-abehan case, the sign of G is in principle fixed, 
since G is part  of the gauge group. Unfortunately, I do not know of a simple, direct 
argument determining the overall sign of G is the space of states considered here. 
The existence of fermions makes it rather difficult to work out the overall sign. 

An indirect argument indicating that the choice in fig. 11 is correct will be 
mentioned below. 

While this point should be cleared up, the main conclusion is the same in either 
case. Whether the G assignments are as in fig. 11 or reversed, T r ( -  1) F is non-zero, 
and the ground-state energy of the system is exactly zero, for any volume. 

Now let us apply these considerations to an arbitrary simple, non-abelian Lie 
group. 

Given any Lie group G, the rank r is defined as the maximum number  of 
commuting generators. Choosing r commuting generators T ~ . . . .  , T r, we obtain an 
abelian subalgebra of the Lie algebra of G known as the Cartan subalgebra. 

As stated above, my classical configuration of zero energy can, by a gauge 
transformation, be put in the form A i = C i, the C, being constant matrices which 
commute with one another. The fact that the C~ commute with one another means 
that, by a global gauge rotation, they can be taken to lie in the Cartan subalgebra. In 

this gauge 

hi  = E 67 r ° ,  (71) 
O 

G:+ I  G:-I  G=-I G:+I 

Fig. 11. The spectrum of zero-energy states in supersymmetric QCD. A certain assumption has been 
made concerning the G assignments. 
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where o- -  1 . . . .  , r  runs over the Cartan subalgebra (not over the whole Lie algebra), 
and the c 7 are now simply numbers. 

What will play the role played by G invariance in the SU(2) example? There is 
more than one way to put Ai in the form (71). In every Lie group G, there is a 
discrete subgroup, known as the Weyl group W, consisting of elements of G do not 
commute with the generators of the Cartan subalgebra, but which map this subalge- 
bra into itself. 

For example, in the case of SU(N),  the rank is r = N - 1. The Cartan subalgebra 
consists of the diagonal matrices. The Weyl group is PN, the permutation group of N 
objects, and it acts by permuting the N eigenvalues of a diagonal matrix. In the case 
of SU(2) the Weyl group consists only of two elements, G and the identity. 

The action of the Weyl group preserves the form of (71) but rearranges the c 7. 
Physical states must be invariant under the Weyl group, because the Weyl transfor- 
mations are global gauge transformations which can be reached continuously from 
the identity. 

In a background gauge field of the form (71), the Dirac equation has zero-energy 
solutions. If we arrange the Dirac field as a matrix ~p~ = Z~kaT a (with a running over 
the entire Lie algebra), the zero modes take the simple form 

~P~ = E e~ T°, (72) 

where the e,] are constants and o runs over the Cartan subalgebra. (The fermion zero 
modes must lie in the Cartan subalgebra because of the [Ai, tp] term in the Dirac 
equation.) 

As before, the spectrum of low-lying states can be computed by quantizing the c 7 
and e~ °, ignoring the other modes. The hamiltonian is again trivial, depending only 

O .  on the momenta rr, ° conjugate to the c i . 

_ g 2  o 2 
n -  ~ • (~r,) . (73) 

This hamiltonian by itself would give a single zero-energy state, with constant wave 
function. 

We may put the boson degrees of freedom c 7 in their ground state and forget 
about them. However, we must take account of the fermions. 

The fermions have two spin states a = 1,2 for each value of the internal symmetry 
index o. We may describe the fermions by means of creation and annihilation 
operators a~ *° and a~ ° (a  = 1,2; o = 1,.. ., r). In the fermion Hilbert space there is a 
state ]f2) that is annihilated by the annihilation operators. The other states can be 
obtained by acting with creation operators, a*°]~) ,  a*°a~']~), etc. 

Obviously, [f~) transforms as a one-dimensional representation of the Weyl group. 
However, here we meet an ambiguity similar to the sign ambiguity in the case of 
SU(2). The Weyl group always has two one-dimensional representations. In addition 
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to the trivial representation in which each element is represented by the identity, 
there is a non-trivial one-dimensional representation in which each element is 
represented by plus or minus one*. States transforming in the trivial and non-trivial 
one-dimensional representations of the Weyl group may be described as true 
invariants and pseudo-invariants, respectively. Gauss' law requires that physical 
states be true invariants. 

It is not obvious whether 1~2) is a true invariant or a pseudo-invariant. As we will 
not come to grips with this question, we will have to consider both possibilities. 

What invariant and pseudo-invariant states can be made by acting on [f~) with 
creation operators? It is equivalent to ask what invariant operators can be formed 

*" transforms in the fundamental r-dimen- from the creation operators a *°. Since a~ 
sional representation of the Weyl group, we must ask what invariants can be formed 
in this representation. 

The Weyl group is a discrete subgroup of the orthogonal group O(r).  O(r)  admits 
one invariant, the Kronecker delta 8o~, and one pseudo-invariant, the completely 
antisymmetric tensor %,°2-..°; These are certainly invariant under the Weyl sub- 
group. So we can form a Weyl invariant operator r r - - , , *o .* ,o~  , ~ - - , ~ , ¢  ~ . U has spin zero; 
the spin index must be contracted antisymmetrically, by Fermi statistics. We can 
also form the pseudo-invariant V,, . . . ,• = %,*o, a ,  2.o2 • • • a~,*~.%,o2. • -or" Because of Fermi 
statistics, V is symmetric in its indices; it has spin ±r2 , and r + 1 components. 

Of course, the Weyl group has other invariants that are not invariants of the full 
orthogonal group O(r).  However, because of Fermi statistics and the fact that Pauli 
spinors have only two components, the Weyl invariants that are not O(r )  invariants 
cannot be combined non-trivially with the a~*". For instance, in the case of SU(N),  
the Weyl group admits a completely symmetric third-rank invariant** d,,~. How- 
ever, the operator *° *" *~ " " " do..a~, a¢ ay is identically zero, by Fermi statistics (it would have 
to be antisymmetric in a, r ,  and 7, which only take two values). 

Moreover, by Fermi statistics we have the following relations: U r+~= 0; U V =  

V U =  0 (for any component of V); and V 2 can be expressed in terms of U r. 

It is now trivial, except for a twofold ambiguity, to identify the invariant states 
and calculate T r ( - 1 )  F. If we assume that ]f~) is a true invariant, then the true 
invariants are the r + 1 states ] ~2 ), U] a ), U 2 ] a ) . . . . .  e r ] ~2). They are all bosonic, so 
T r ( -  1) F = r + 1. 

If, instead, we assume that 1~) is a pseudo-invariant, then the only way to form 
true invariants is to act on [f~) with the pseudo-invariant V. The states V,,~2 . . . . .  I ~2) 
have spin ½r, so under this assumption T r ( -  1) r =  ( -  1) ~+ l(r + 1). 

* The non-trivial representation can be described as follows. The commuting generators T ° transform 
in the fundamental r-dimensional representation of the Weyl group. In this representation, the 
determinant of each element of the Weyl group is + I. Representing each element by its determinant, 
we get a non-trivial one-dimensional representation of the Weyl group. 

** This corresponds to the fact that the permutation group of N objects xl, x 2 -. - x N leaves invariant 
the cubic polynomial x~ + x~ + .. • +X3N . 
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Even without attempting to resolve the sign ambiguity, we see that T r ( - 1 )  r is 
non-zero (equal to r + 1 in absolute value). Therefore, dynamical supersymmetry 
breaking does not occur in these theories. It is also possible to make a few 
interesting, but not rigorous, comments about some physical questions other than 

supersymmetry breaking. 
For SU(N),  we have proved that in a finite volume, there are at least N - - r  + 1 

degenerate ground states. How can we interpret this degeneracy? 
This theory possesses, classically, a U(1) chiral symmetry + -) ei"V5~b. Because of 

instantons and the Adler-Bell-Jackiw anomaly, only a discrete subgroup of this U(1) 
symmetry really commutes with the hamiltonian. In the case of SU(N),  this is a 
2N-fold discrete symmetry, consisting of the transformations 

~ e ~ i k v s / N ~ ,  k = 0 , 1 , 2  . . . . .  2 N - -  1. (74) 

Note that for k = N, this is ~b ~ - +, which, come what may, will presumably not be 
spontaneously broken (it is equivalent to a 27r rotation). 

By analogy with conventional QCD, one may guess that in the supersymmetric 
SU(N)  gauge theory, the operator Tr ~k  gets a non-zero vacuum expectation value. 
If so, this spontaneously breaks the 2N-fold discrete chiral symmetry down to a 
twofold symmetry, the unbroken symmetries being simply ~ ~ = ~b. There would be 
N vacuum states. 

It is quite plausible that the N zero-energy states whose existence we have proved 
go over, in the infinite volume limit, to the N vacuum states of spontaneously broken 
chiral symmetry. This interpretation is lent some credence by the following consider- 
ations. If we choose the creation and annihilation operators a* and a employed 
previously to have chirality one and minus one, respectively, then the operator 
U _  ~ , o ~ , o  aB 

- -  ~,~ ,~ e has chirality two. Normalizing the chiral charge so that our state [~) 
has chirality zero*, the states [~),  U[~) ,  U2[~)  . . . . .  U u-~ [~) have chirality 
0, 2, 4, 6 . . . . .  2 N -  2. These quantum numbers are suitable so that appropriate linear 
combinations of those states (the combinations (1 / v~-)Y~-Jexp(2 ~ i p / N ) U  p [ ~ ) )  
could be the N vacua of spontaneously broken chiral symmetry. 

There also are some soluble examples in which the type of reasoning just given 
yields the correct answer. These are the supersymmetric S u and CP x non-linear 
sigma models in 1 + 1 dimensions, which we will discuss in sect. 10. In those models, 
the pattern of zero-energy states predicted by T r ( - 1 )  r coincides with the vacuum 
structure found in the 1 / N  expansion. 

What do we find if we apply this reasoning to four-dimensional Sp(2N) and 
O(N)  gauge theories? 

* I t  is be ing  assumed  here  that  ]~2) is a true invariant .  
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In the Sp(2N) case, the results are suggestive of chiral symmetry breaking. In this 
case the discrete chiral symmetry is Z2N+2. If  it is spontaneously broken to ~ ~ _+ ~b, 
there should be N + 1 vacuum states. Indeed, T r ( - 1 )  r =  N +  1, and the N ÷  1 

zero-energy states found by our analysis may go over, in the large-volume limit, to 
the N + 1 vacuum states of spontaneously broken chiral symmetry. 

For O(N) ,  with N > 6, this type of counting does not work. The chiral symmetry 

is Z2N_4, SO if (Tr  ~ b ) v  ~ 0 there are N - 2  vacuum states. But T r ( - l )  F equals 
½(N + 1) or ½(N + 2) depending on whether N is odd or even. Perhaps in this case 

the chiral symmetry is unbroken. The ½(N + 1) or ½(N + 2) zero-energy states may 
be related, not to chiral symmetry breaking, but to the zero-momentum modes of 

physical color singlet bound states. 
It  should be evident that these arguments are, at best, only suggestive. 
Another question on which some interesting but inconclusive remarks can be 

made is the question of confinement, in 't Hooft ' s  sense, of electric and magnetic 
flux. 

We have here so far only considered gauge transformations that are strictly 
periodic. However, as in sect. 7, we may consider gauge transformations that are 
periodic up to an element of the center of the gauge group. According to 't Hooft,  
these operators measure the electric flux trapped in the box. Since the flux commutes 
with the supersymmetry operators, we may calculate T r ( - 1 )  F in a sector of Hilbert 
space labeled by the value of the electric flux in the x, y, and z directions. 

All of the zero-energy states found in our above discussion are in the sector of 
zero electric flux. In fact, the operators that measure electric flux can be chosen so 
that they shift the c 7 by constants; our zero-energy wave functions were independent 
of the c7 and so are invariant under such shifts. So in the sector of zero electric flux, 

Tr ( - -1)  F - -  r + 1, and the ground-state energy is zero, but in other sectors, T r ( - 1 )  F 

----0. This is consistent with the possibility that, in the large volume limit, a large 

energy is associated with electric flux. 
On the other hand, for the group SU(N),  we showed in sect. 7 that the 

ground-state energy is zero in the presence of non-zero magnetic flux. There is no 
confinement of magnetic flux in these theories. 

One can also ask whether the ground-state energy vanishes in the presence of 
electric as well as magnetic flux. This can be answered on the basis of the results in 
sect. 7, where we studied the theory with magnetic flux in the z direction. The 
operators T x, Ty, and T z defined in sect. 7 are precisely the operators that measure 
electric flux. The zero-energy states found in sect. 7 were invariant under Tx and Ty, 
so T r ( - 1 )  F =  0 in any sector with electric flux not parallel to the magnetic flux. 
What  if the electric flux is in the z direction? The zero-energy states found in sect. 7 
were of the form [~) ,  TzI ¢b) . . . .  , T N - 1  [q~). From linear combinations of these, 
eigenstates of T~ can be formed with every possible eigenvalue. So T r ( - 1 )  F =  1 for 
any value of the electric flux parallel to the magnetic flux, as long as there is no 
electric flux in the transverse directions. In these sectors, the ground-state energy 
vanishes. 
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We have found, in the case of SU(N),  that T r ( - 1 )  r - -  N both with normal 
periodic boundary conditions and with twisted ones. Was there any a priori reason 
to expect this equality? 

In general, T r ( -  l )  r depends on the boundary conditions. It is only in the infinite 
volume limit that physics becomes independent of the boundary conditions. In a 
finite volume, the same theory may have zero ground-state energy with one set of 
boundary conditions, and non-zero ground-state energy with another set of boundary 
conditions. In fact, examples are easily given. Consider any theory with a global 
symmetry that commutes with supersymmetry and is spontaneously broken. If  one 

imposes as a boundary condition that the fields should be periodic up to a global 
symmetry operation, then with such boundary conditions, T r ( - 1 )  F-- 0, because in 

the case of a spontaneously broken global symmetry, a non-zero energy is associated 
with a twist in the fields. This is so even if the theory would have T r ( - 1 ) v : ~ 0  if 

formulated with normal periodic boundary conditions. 
However, in the particular case of an SU(N)  gauge theory, the theories with and 

without magnetic flux can be related to each other by duality arguments that were 
introduced by 't Hooft. In this way, one can in principle derive consistency 
conditions relating our results with and without magnetic flux. We will not delve 
into this matter  here, except to note that it is not too hard to prove that consistency 
is possible only if the state I f~) is a true Weyl invariant. 

Finally, to conclude this section, we must prove an assertion that was made at the 
beginning of this section and used heavily. With untwisted boundary conditions, 

consider any gauge field A i with Fij = 0. We must show that, by a gauge transforma- 
tion, we can set the Ai equal to constant matrices* C i. 

The first step is to define 

U ( x ,  y ,  z )  = T e x p (  "lj,ttx'Y'Z)-Aiax~ i ) .  
(0,0,0) 

(75) 

The integral is independent of the path since F~; = 0. If  U were periodic, a gauge 
transformation by U could be used to set A i to zero. However, U is in general not 
periodic. Instead, let us define 

Ux = U ( L , O , O ) ,  

-- u(0,  L, 0), 

gz = U(0, 0, L) .  (76) 

* In a non-abelian gauge theory, one may regard the gauge fields Ag as matrices in any representation of 
the gauge group that is of interest. In the statements that follow, the A i should be regarded as matrices 
in a representation of the gauge group in which the center acts faithfully. In the case of SU(N), 
ordinary N × N matrices form a suitable representation. 
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From the fact that F~j = 0, it follows that the U/commute with each other U,~ = UjU i. 
Because the U i commute with one another, they can be put by a global gauge 

transformation in the Cartan subgroup - the maximal abelian subgroup of the gauge 
group. With this done, we can write U, = exp( - iC i ) ,  where now the C~ are matrices 
in the Cartan subalgebra. 

We next define 

V(x, y , z ) :  U(x, Y,z)exP L (]~xiCi ). (77) 

Now, V is perfectly periodic, and a gauge transformation by V sets A i = C i, as was 
desired. 

9. Inclusion of matter 

What happens in supersymmetric non-abelian gauge theories when one includes 
matter  multiplets - charged fields other than the gauge field and its supersymmetric 

partner? 
If the matter  multiplets are massive, they do not affect the determination of 

T r ( -  1) r. The trace is still non-zero, so supersymmetry is unbroken. 

Now suppose that some of the matter  fields are massless, but that they lie in a real 
representation of the gauge group and therefore could have had bare masses. Turning 
on the bare masses, our previous calculation of T r ( -  1) r is valid. So the ground-state 

energy is zero for any non-zero value of the bare mass, and hence also in the limit 
m--, 0. The only assumption needed here is that the m ~ 0 limit of the massive 
theory does exist, and defines the massless theory. 

There remains the difficult case in which there are charged fields in a complex 
representation of the gauge group. Such fields cannot be given gauge-invariant 
masses. We will not at tempt to calculate T r ( -  1) v in such theories. 

Finally, let us discuss the implications of a very important phenomenon that 
frequently arises in supersymmetric theories when there are scalar fields of zero bare 

mass. It often happens [13] that the potential energy is identically zero in some 
directions in field space. 

Before discussing the implications of this, let us consider a few examples. If for 
simplicity we assume the superspace potential to be zero, then the potential energy 
of the scalar fields receives a contribution only from the gauge interactions. In this 
case the scalar potential is simply 

~] (ea(~* ,Tad#)) 2, (78) 
a 

where • are the scalar fields (scalar partners of left-handed fermions), T~ are the 
generators of the gauge group, and e a are the gauge couplings. 
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(o) I v 

(d) V 

Fig. 12. The possible behavior of a theory in which a field q~ is undetermined in perturbation theory. This 
field may remain undetermined, be uniquely determined, or be sent to infinity by the non-perturbative 

corrections. 

There may be certain directions in field space in which (78) vanishes. For instance, 
if one considers an SU(N)  gauge theory with an N and N, A t and Bj, then (78) 
vanishes as long as B i = (Ai) *. B and A can be arbitrarily large as long as they are 
related in this way. If one adds a complex field A~ in the adjoint representation of 
SU(N),  then (78) vanishes as long as [A, A*] = 0. 

An example in which such a degeneracy does not occur is an SU(5) theory with 
one 10 and one 3. With two 10's and two 5's, however, there is such a degeneracy. 
Denoting the 10's as C ~j and D ~j (antisymmetric in i and j )  and the 5's as G~ and H~, 
it is easy to see that (78) vanishes if C ~2 = G~ = H 2 and all other components vanish. 

Degeneracies like this can also occur when supersymmetry is spontaneously 
broken at the tree level [6]. However, we will here consider theories with unbroken 
supersymmetry at the tree level in which minimizing the potential does not de- 
termine the fields uniquely. It is known that with supersymmetry unbroken, whatever 
degeneracy exists classically persists to all orders of perturbation theory. 

Let us denote as qJ a field that is undetermined classically. Thus, the effective 
potential V(~) (with all other fields set equal to zero), vanishes identically in 
perturbation theory. In this situation, if perturbation theory can be believed, one 
may postulate an arbitrary vacuum expectation value for ~. As the masses and 
couplings of the elementary particles will (in general) depend on ~, every choice of 
leads to a physically different theory. 

When non-perturbative effects are included, at least five qualitatively different 
possibilities can be imagined. The true quantum effective potential may be exactly 
zero for all q), as appears to be the case in perturbation theory (fig. 12a). In this case, 
the theory really does have a continuous infinity of vacuum states. 
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Or the non-perturbative effects may give a non-trivial V(q~). This function may 
have a minimum at some value of if, say q~ = if0- In this case the vacuum is uniquely 
determined. Supersymmetry may remain unbroken, if V(~0)= 0 (fig. 12b), or be 
dynamically broken, if V(q,0) > 0 (fig. 12c). 

Finally, it may be that the function V(~), with non-perturbative effects included, 
has no absolute minimum for any finite q~. It may vanish for large ~ (fig. 12d) or 
approach a positive limit as q, --, oe (fig. 12e). Such a theory would have no vacuum 
state at all, but might make sense in cosmology. A theory which exhibits such 
strange behavior in the classical approximation was pointed out in ref. [6]. 

Can we use the techniques of this paper to learn something about what option a 
given theory chooses? Unfortunately, there are severe difficulties in doing so. One 
serious problem is that T r ( -  l )  v is likely to be mathematically ill-defined whenever 
there is a field ff which classically can be arbitrarily large at no cost in energy. 

As always, the problem comes from the zero-momentum mode of the q, field. If 
can be arbitrarily large at no cost in energy, then, in a finite volume, the quantiza- 
tion of the zero-momentum mode gives rise to a continuous spectrum starting at zero 
energy. (Since the q~ field can be arbitrarily large, the quantum mechanics of the zero 
mode resembles the motion of a free particle that can escape to infinity.) But we 
know that T r ( - 1 )  F is mathematically ill-defined when the hamiltonian has a 
continuous spectrum. 

If the non-perturbative effects prevent q~ from escaping to infinity, T r ( -  1) r may 
actually be mathematically well-defined. But this is of little help. We wanted to use 
T r ( -  1) F to learn about non-perturbative effects, not the other way around! 

In some cases, some information can be gained by adding a perturbation that lifts 
the classical degeneracy. For instance, in the SU(N)  theory with an N and/V, A' and 
Bi, we may add a bare mass for A and B. This uniquely determines A = B = 0 at the 
tree level. In the massive theory, T r ( -  1)v=/= 0, and therefore the ground-state energy 
is zero. Taking the limit as the bare mass goes to zero, we learn, as discussed earlier, 
that the massless theory has a zero-energy ground state. 

This reasoning has the following limitation. The massless theory has, according to 
perturbation theory, a one-parameter family of inequivalent vacuum states, with 
Bi = (At) *, for any value of IA[. Taking the m--, 0 limit of the massive theory, we 
obtain the state at A = B = 0, and we learn that this state really has zero energy. We 
do not learn about the states at non-zero A and B, which cannot be reached as the 
limit of the massive theory. So we do not learn whether the theory is of type (a) or 
type (b) in fig. 12. 

More seriously, of course, regarding the massless theory as the limit of a massive 
theory is not possible when there are matter fields in a complex representation. 

One final comment is in order. In an asymptotically free, infrared unstable theory, 
the question of dynamical symmetry breaking is usually regarded as a strong 
coupling problem. However, in the many interesting cases in which there is a field q~ 
that classically can be arbitrarily big, this is not entirely true. If one could learn the 
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large q, behavior of V(q0, one could learn a great deal. Is V(q 0 identically zero for 
very large q~? If not, does it increase or decrease with q~? The answers to these 
questions would rule out many of the possibilities in fig. 12. But, given asymptotic 
freedom, the large q~ behavior of V(q 0 is a problem in the weak coupling domain! 
Unfortunately, even for weak coupling it is hard to determine whether dynamical 
supersymmetry breaking occurs, or equivalently, whether V(~) is identically zero. 

10. The non-linear sigma model 

In this section we will evaluate T r ( -  1) F in the supersymmetric non-linear sigma 
model [ 14]. 

Although the non-linear sigma model (with or without supersymmetry) is unrenor- 
malizable in four dimensions, it can arise as a low-energy approximation to a 
renormalizable theory. For instance, low-energy pion dynamics in QCD can be 
well-described by a non-linear sigma model. It is conceivable that, in the future, the 
results in this section could have applications to renormalizable supersymmetric 
theories, with the non-linear sigma model arising as an approximation, valid for 
computing low-energy quantities such as T r ( -  1) F. 

Apart from the speculative possibility of eventual applications, the non-linear o 
model will be considered here for its mathematical interest. 

The discussion will be formulated in a 1 + 1 dimensional language, because in 
1 ÷ 1 dimensions the non-linear sigma model is renormalizable. The results, how- 
ever, apply equally well in 3 + 1 dimensions. 

The non-linear sigma model is, in general, a theory in which the scalar field takes 
its values in some riemannian manifold M. Simple choices for M such as S x and 
C P  u have been widely studied. However, we may just as well imagine other choices 
of M - for example, the two-dimensional surface with two handles pictured in fig. 
13. (On this space, with its negative curvature, the non-linear sigma model would not 
be asymptotically free. But asymptotic freedom will play no role in our discussion.) 

Let q¢ be coordinates for the manifold M, and let ~,ij(q~ k) be the metric tensor of 

M. The non-linear sigma model is defined by introducing superfields ~i--- ~ , 

Fig. 13. A surface with two handles. 
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and a superspace lagrangian 

= ½ fd2x d20 "gij(O k)DepiD~¢je'~". (79) 

In terms of ordinary component fields, this is 

E=fdZx(½v, jOjdO.~aJ+½f-AvkD.f,+½R,s~,(q.)f~fkf~q/), (8O) 

where R~jkt is the curvature tensor of the manifold M, and D k is a covariant 
derivative, the details of which need not concern us. 

The difficulty in calculating T r ( - l )  r is that the classical vacuum state is not 
unique, and possesses a continuous degeneracy. Any configuration ~i(x, t) = ~g, the 
q,~ being any constants, has zero energy at the classical level. As in all of our 
discussions of the zero-momentum modes of massless particles, this introduces some 
subtlety in the determination of T r ( -  1) r. 

We will discuss two methods to deal with the difficulty. The first and simpler 
approach is to switch on a perturbation that lifts the degeneracy. The second 
approach, by means of which we will be able to calculate also some generalizations 
of T r ( - 1 )  F, is to carry out a Born-Oppenheimer quantization of the zero-momen- 
tum modes, ignoring the modes of non-zero momentum. 

To lift the degeneracy we will apply a "magnetic field" in a supersymmetrically 
invariant way. We introduce an arbitrary function h(ff i) defined on the manifold M. 
We add to the superspace potential a new term 

d e =  ½ fd2xd2O (81) 

This addition cannot change T r ( -  1) F, according to our usual arguments. In terms of 
components the addition to the lagrangian is 

AE=fd2x( ½yi jOh Oh 1 02h qTi~j) (82) 
O0" O~ s 2 O~iOCs 

Thus, the scalar potential and the fermion mass matrix are, respectively, 

~2 h 
V(g,') =½1 vhl 2, mZJ= Od~'OoJ" (83) 

The potential energy V(~ i) removes the troublesome degeneracy. The energy now 
vanishes, at the classical level, only if q,' is such that Oh/OqJ = O. 

We now assume that h is a generic function, chosen so that Oh/Oe# = 0 only at 
isolated points on the manifold M. For instance, in fig. 14 we consider again the 
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surface with two handles; h is chosen as the "height"  function, and there are exactly 

6 points at which 0h/0q~' = 0. 
Let us denote as pa, a = 1 . . . . .  k, the points at which Oh/OqJ = 0. We will assume 

that h is chosen generically so that at each of the pa, the matrix 02h/0q~ i O~J has no 
zero eigenvalues. 

With the degeneracy lifted in this way, it is trivial to construct perturbation 

theory. We may expand around any of the pa. Regardless of which of the pa we 
expand around - which vacuum state we c h o o s e -  supersymmetry is unbroken in 
perturbation theory, because the potential V =  ½]vh]  2 vanishes at each of the pa. 

There are no massless particles in perturbation theory, since we have assumed the 
mass matrix 02h/Oep i OepJ to have no zero eigenvalues. This means that in perturba- 
tion theory, expanding around any of the pa, there is precisely one zero-energy state, 
the "vacuum",  and all other states have energy at least equal to the mass of the 
lightest particle. For example, in the problem illustrated in fig. 14, there are 
altogether precisely six zero-energy states in perturbation theory. 

The only difficulty is that we must determine which of the zero-energy states are 
bosonic and which are fermionic. This is not as trivial as one might at first expect. 

In three dimensions, ( - 1 )  v c a n  be defined as exp(2~rtJz). Bosons can be dis- 

tinguished from fermions by their angular momentum. In particular, when one finds 
precisely one zero-energy state in expanding around a given minimum of the 
potential, it is necessarily bosonic, because fermionic representations of the angular 
momentum algebra have dimension two or higher. 

In one dimension, there is no angular momentum, so a definition such as 
( - - l )  F - -  exp(2~r/Jz) is not available. One must define the operator ( - 1 )  r m o r e  

abstractly, as being the operator which commutes with all elementary Bose fields 
and anticommutes with all elementary Fermi fields. In other words, ( -  l )  r is defined 
by requiring it to obey 

( _  1)r,~__ ~ ( _  1)r,  ( _ _ l ) r b =  _~,(_ ])F, (84) 

where q, and ~ are any elementary Bose and Fermi fields. 

T 
i 

i h 

I 

I 

0 

Fig. 14. A surface with two handles; a "magnetic field", indicated by the "height function" h, has been 
introduced to lift the degeneracy that exists in the supersymmetric non-linear sigma model. This function 
h has six stationary points. The planes tangent to the surface are drawn at those six points. Each 
stationary point is labeled by the number of negative eigenvalues of ~)2h/~)¢~i O~ j at that point (0, 1, or 2). 
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This definition does not fix the overall sign of the operator ( - l )  r .  If ( - 1 )  F 

satisfies (84), then obviously - ( -  1) F satisfies (84) equally well. Conventionally, one 
removes this ambiguity by defining the vacuum ]f~) to be bosonic, ( - I)FI ~ )  • q- I ~ ) .  

If there is only one vacuum state, that is the end of the story. However, in our 
problem, we have k "vacuum "  states 1~2 a), obtained by expanding about the various 
points p~ at which Oh/OqJ = 0. Moreover, as we are working in a finite volume, 
tunneling processes communicate between these states; they are all part  of the same 
Hilbert space. We may define any one of our k states to be, say, bosonic, but we 
must then determine which of the others are bosonic and which are fermionic*. 

The answer to this question is perhaps rather surprising. It can be explained in the 
following simple and somewhat heuristic way**.  Consider first the theory of a free 
Majorana fermion with mass term m~+:  

(85) 

Of course, either sign of m may be considered; the physical mass of the fermion is 
I m[ ,  and by chiral symmetry the content of the theory does not depend on the sign 
of m. 

Let us define the zero momentum modes of the Fermi field ~: 

1 fdx +¿(x), 01-~- -- ~ 

The names o t and (12 are motivated by the fact that, after quantization, these 
operators satisfy the sigma matrix algebra 02 = o 2 = 1, olo 2 + 0201 = 0. The hamilto- 
nian for the zero-momentum mode is very simple. As the zero momentum mode has 
no kinetic energy, it receives a contribution only from the mass terms. This 

contribution is simply H = - i m o l o  2 or equivalently, 

H = m o  3 , (86) 

where o 3 = - i o ~ a  2 is the "number  operator" of the zero-momentum mode. 

* From this description, it may seem that in (3 + 1) dimensions, the relation ( -  1) F = exp(2~r/Jz) could 
be used to prove that the I f~ a) are all bosonic. This is not  true, for the following reason. For technical 
reasons, switching on the magnetic field h in 3 + I dimensions can preserve supersymmetry (or rather, 
a sufficiently large portion of the supersymmetry algebra for our purposes) only if it is done in a way 
that ruins rotation invariance. One can still use the perturbation h to lift the degeneracy and facilitate 
calculating T r ( -  I)F; and setting h to zero at the end of the calculation restores rotation invariance 
without changing T r ( -  1) F. But rotation invariance cannot be used, in the presence of a non-zero h, 
to determine whether ] a" )  are bosonic or fermionic. In fact, the argument  given in the text yields the 
correct answer in 3 + 1 as well as in 1 + 1 dimensions. 

**  What  follows is somewhat analogous with recent work by Goldstone and Wilczek [15]. 
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Now, (86) shows that, in the ground state, the zero-momentum mode is empty or 

filled according to whether m is positive or negative. When m is changed in sign, the 

ground state gains a fermion it did not have, or loses one it had. The ground state 

goes from being bosonic to being fermionic when m is changed in sign*. 

Let us now consider a theory with N Majorana fermions of masses m~, m 2 . . . . .  m N. 

If we normalize ( - 1 )  F SO that the vacuum is considered a boson if all m i are 

positive, then in general the vacuum is bosonic or fermionic depending on whether 

the number of negative m i is even or odd. The number of negative m i is the number 
of additional fermions that the vacuum contains, relative to the number it would 

have if the m i were all positive. 

Now let us apply this to our problem. We have seen that the fermion mass matrix 
is 02h/aep'Oep j. Let n ~ be the number of negative eigenvalues of this matrix, 

evaluated at the a th  minimum of the potentialp ~. Then the ath vacuum state ]f~u} is 

bosonic or fermionic depending on whether n ~ is even or odd, and it contributes 
( - 1 )  n= to T r ( - 1 )  F. Adding the various contributions, we conclude 

T r ( -  1)F= • ( _  1)n°. (87) 
a 

This is our desired result. For example, for the surface with two handles of fig. 14, of 

the six stationary points of h, one is the absolute minimum with n a = 0, one is the 

absolute maximum with n a = 2, and four are saddle points with n a = 1. Altogether 
T r ( - 1 )  FT- 1 + 1 - -4  = - 2  for this space. 

Something about eq. (87) may seem puzzhng. The left-hand side, T r ( - 1 )  F, is a 

property of the non-linear sigma model only. But the right-hand of (87) appears to 
depend on the particular choice of the function h. However, it is a theorem in 

topology that the right-hand side of (87) is actually independent of h. It is one of the 
basic theorems of Morse theory** that E a ( -  1) n° is equal to the Euler characteristic 

x(M) of the manifold M. This is so for any choice of h. 

Before discussing special choices of M, let us first state the simplest generalization 
of (87). Suppose that our manifold M possesses an isometry k : M  ~ M. In the 

quantum field theory, there is then a conserved operator K that commutes with the 

supersymmetry charges and with the hamiltonian: [K, Q~] = [K, H] = 0. As in our 
discussion of charge conjugation invariance in sect. 6, we may then calculate the 
additional invariant quantity T r ( -  1)FK. 

It is not difficult to use the methods just described to evaluate Tr ( -1)FK.  One 
must choose the function h to be invariant under k. One finds T r ( -  1)FK = Lef(k), 
the Lefschetz number of the mapping k. 

* Modes of non-zero momentum can be ignored here because their energy (equal to V / ~ )  never 
goes to zero as a function of m. 

** A readable introduction to Morse theory has been given by Bott [16]. 
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Let us now consider some particular examples. A widely studied special case is the 
choice M = S u, the N-dimensional sphere. An interesting choice for k is in this case 
the "isotopic parity" operator which reflects one of the coordinates (say x N ~ - x  N 

if the sphere is defined by x 2 + x 2 + • • • +X2N = 1). In this case, by standard results 
in topology (or by a convenient choice of h, such as h = Xo) we have 

T r ( - 1 )  F=  1 + ( - 1 )  N, T r ( -  I)FK = 1 - ( - 1 )  N. (88) 

For any value of N, one or the other of these expressions is non-zero, so supersym- 
metry is unbroken for any N. 

Another widely studied case is the supersymmetric CP N model. The Euler char- 
acteristic of CP u is N + 1, so for CP N 

T r ( - 1 )  F = N +  1. (89) 

This is positive for all N, so supersymmetry is not spontaneously broken. 
These results are in agreement with what has been found in explicit calculation in 

the 1 / N  expansion [17]. It has been found that, at least for large N, dynamical 
supersymmetry breaking does not occur. 

Moreover, the S N and CP N models both possess a discrete chiral symmetry. In the 
S u model there is a twofold chiral symmetry. In the CP N case there is an apparent 
continuous chiral symmetry, broken by an anomaly to an N +  1-fold discrete 
symmetry. According to the 1 / N  expansion, all of these discrete symmetries are 
spontaneously broken, so that the S N (or CP N) models possess two (or N +  1) 
vacuum states, respectively. 

This is in striking agreement with a plausible inference that might be drawn from 
(88) and (89). According to (88), the S N model has at least two degenerate ground 
states, for any finite volume. According to (89), there are at least N + 1 such states in 
the CP N model. Apparently, the degeneracy predicted by (88) and (89) goes over, in 
the large-volume limit, to the degeneracy among the vacuum states of spontaneously 
broken chiral symmetry. 

Now let us discuss another approach to the calculation of T r ( - 1 )  F in these 
models. As the modes of non-zero momentum carry a non-zero energy even at the 
classical level, we may ignore them, and determine the spectrum of low-lying states 
by quantizing the zero-momentum modes, which carry zero energy classically. 

This amounts to saying that, prior to quantization, we should drop the spatial 
dependence of the fields. Assuming q~' and ~b' to be functions of time only, we 
integrate (80) over space and get the lagrangian 

~t ~t ~- ~ i Y  ~ i  + ~  , j k t V V  ~" ~" • (90) 
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This theory coincides with the original one for all states of energy much less than 
1 / L ,  so it can be used to calculate T r ( -  l) F, and analogous quantities. 

Since the spatial dependence has been eliminated, (90) describes, after quantiza- 
tion, a supersymmetric quantum mechanics problem with only a finite number of 
degrees of freedom. It is plausible to suppose that such a problem could be analyzed. 
But it comes as a surprise to realize that (90) is equivalent to one of the most famous 
of all problems in mathematics! 

In a convenient basis, ~,0= [ l ' -  0~" and a Majorana spinor is of the form 
~0 - 1  ! 

( ~P ] ( the  lower component is the hermitian conjugate of the upper one). In this ! 
basis, the supersymmetry algebra is Q2 = Q , 2  ~_ 0, QQ* + Q*Q = H. 

The spinors +~ and their hermitian conjugate +j* satisfy, after quantization, the 
algebra 

(+~, ~pj} = (~p*, ~j*} = 0, (~p~, ~ }  = ~{ij(q~k). (91) 

Thus, we may regard the ~j* and the q~, as creation and annihilation operators, 
respectively. 

After canonical quantization, the supersymmetry charges are 

Q = i ~ ~P*pi, Q* = - i ~ ~i pi, (92) 

where Pi = - i  D/Dq, '  is the appropriate covariant derivative - the momentum con- 
jugate to q~'. 

How may one describe the quantum mechanical states of this system? It is first of 
all possible to consider the states in which the fermion Hilbert space is completely 
empty, states that are annihilated by the ~i. The amplitude for such a state is an 
arbitrary function A(~ k) of the scalar coordinates ~k. 

We may act on such states with a fermion creation operator ~p*, to get a state 
containing a single fermion, of type i. The wave function of such a state is, for any i, 
an arbitrary function of the ~k. So we describe these states by a wave function 
A~(~k), which has a single index i tangent to the manifold. 

States with two fermions, i and j ,  would be described by a wave function Aij(q,k), 
which, by Fermi statistics, must be antisymmetric in the two indices i and j labeling 
the fermions. 

Continuing in this way, we see that a state of this system is described by 
specifying a function A(q~k), a vector field A~(q,k), an antisymmetric second-rank 
tensor field A~j(q,k), an antisymmetric third-rank tensor field Aijm(q,k), and so on 
until we reach (if M has dimension N) an Nth rank antisymmetric tensor A~ls2...~N(~ k) 
which describes the completely filled Fermi sea. The Nth rank antisymmetric tensor 
must be proportional to e~,~2...~N, so it is equivalent again to a scalar function. 

This is precisely the description of the de Rham complex of a man i fo ld -  the 
space of all p-forms, with p = 0, 1,2 . . . . .  N. 
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Now looking back at eq. (92), how does Q = E+*Pt act on a state Ai,,2.. %(q,k) 
with, say, q fermions? Q adds a new fermion, producing a new wave function that 
should have q + 1 indices. At the same time Q differentiates the old wave function. 
The derivative has an index i which is the index that is added to produce the wave 
function. The new wave function is 

D A ,4i.i,,i2...,q=(Dqj ,,,~...i + - . " ) .  (93) 

A cyclic permutation of indices, needed to ensure that A is antisymmetric in the 
indices (i, i~ . . . . .  iq), as required by Fermi statistics, has not been written explicitly 

on the right-hand side of (93). We see, in short, that acting with Q takes the curl of 
the wave function - differentiate, and antisymmetrize with respect to all indices. Q 
is the exterior derivative d of the de Rham theory. 

What  about Q*? Q* removes a fermion, producing a wave function with one 
index less. Of course, one can only remove a fermion that is present. Q* removes a 
fermion of type i while differentiating in the i direction. Acting on a wave function 
Ai,i2...iq(~k), Q* produces the new wave function 

D 
Ai ...io ~( #,k ) = Deo, Ai,i~" • • . iq_ l lq  • (94) 

Q* is the divergence operator - the adjoint operator d* of the Rham theory. 
The hamiltonian H =  QQ*+ Q'Q= dd* + d*d is usually referred to as the 

laplacian acting on forms. The number of zero-energy states with q indices (zero-en- 
ergy q forms) is known as the q th Betti number  of the manifold, Bq. We have 
interpreted q as the number of fermions present, so q forms are to be regarded as 

bosonic or fermionic depending on whether q is even or odd. Therefore 

T r ( -  l)  F--- ~ ( -  1)qBq. (95) 
q 

The right-hand side of (95) is equal, by the de Rham theory, to the Euler characteris- 
tic of M, so we regain our previous result. 

Once one has interpreted the low-energy theory (90) as the de Rham theory on M, 
it follows more or less by definition that T r ( -  1)FK is equal to the Lefschetz number 

of k, as stated earlier. 
We can use this framework to derive some new results. The non-linear sigma 

model in 1 + 1 dimensions has a discrete chiral symmetry ~--, "fs+- Let Q5 be the 
operator that implements this symmetry. In terms of supersymmetry operators Q + 

of definite chirality, Q5 satisfies the relation QsQ~-= ++-Q+-Qs. We will have no 
further use for Q+ ,  but the relation 

QsQ = - Q  Q5 (96) 

is of interest. 
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This relation is analogous to the fact that ( - 1 ) F Q ,  = -Q~(-1) v. We may use 
(96) to repeat the analysis of sect. 2, but with Q5 playing the role that previously was 
played by ( - l )  r .  Working in the sector of Hilbert space with p = 0, only states of 
zero energy are annihilated by Q_ .  Among states of non-zero energy, for every state 
]~p) of Q5 = + 1, Q_ [~b) is a state of the same energy with Q5 = - 1 .  However, 
among the zero-energy states, the number of states of Q5 = + 1 is not necessarily 
equal to the number of states of Q5 = - 1. 

We can thus define a quantity TrQs,  analogous to T r ( - 1 )  r which is saturated 
entirely by the zero-energy states, and cannot change when the parameters of the 
theory are changed. If Tr Q5 4= 0, supersymmetry is unbroken, for any value of the 
parameters. Given an isometry k : M ~ M, we can define a further invariant quantity 
Tr QsK, analogous to T r ( -  1)FK. 

How can we evaluate TrQ5 and T r Q s K ?  We cannot now make use of the 
"magnetic field" h that made possible a simple evaluation of T r ( -  1) F. The problem 
is that in the presence of such a perturbation, Q5 is not conserved. 

However, we can evaluate TrQ5 and TrQsK by using the fact that the 0 +  1 
dimensional theory of eq. (90) is valid as a low-energy approximation to the 1 + 1 
dimensional theory of interest. Tr Q5 and Tr QsK have the same values in 0 ÷ 1 as in 
1 + 1 dimensions. 

How can we interpret ~'5 invariance in the de Rham theory? Recall that the 
fermion creation and annihilation operators ~p* and ~b~ were defined as ~'0 eigenstates. 

Since "/5~'0 = -'{0"{5, Q5 exchanges operators of Yo = + 1 with operators of 3% = - 1. 
Thus Q5 exchanges the creation operators ~b* with the annihilation operators ~Pi. 

Q5, therefore, is the operator that fills empty fermion states and empties filled 
ones. Q5 is the symmetry between the empty Fermi sea and the filled sea. It 
exchanges q forms with N - q  forms. Q5 is what is known in mathematics as the 
operation of Poincar6 duality. 

Once this is realized, it follows, more or less by definition, that Tr Q5 equals the 
Hirzebruch signature of the manifold M, while TrQsK equals the signature of the 
isometry k. 

We may now make a list of correspondences between invariant quantities in the 
non-linear sigma model and topological invariants of the underlying manifold: 

T r ( -  1)F= x ( M ) ,  

Tr( - 1) FK = Lef (k ) ,  

Tr Q5 = sign(M), 

Tr QsK = sign(k) .  (97) 

Here X is the Euler characteristic, Lef is the Lefschetz number, and sign refers to the 
signature of M or k respectively. 
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If any quantity in (97) is non-zero, supersymmetry is not spontaneously broken. 
However, it is an open question whether, for M such that all quantities in (97) vanish 
(for each possible choice of k), there are cases where dynamical breaking of 
supersymmetry does occur. 

11. Conclusion 

We have shown that dynamical breaking of supersymmetry does not occur in 
certain interesting classes of theories. 

One must be cautious about drawing conclusions. For certain classes of theories - 
notably, the gauge theories with complex matter representations - our methods do 

not apply, at least not without significant extension. It is not clear whether this is a 
serious or purely technical loophole. 

One should also bear in mind that the incorporation of gravity will require 
significant change in the framework of this paper, and may ultimately give a very 
different flavor to the subject of dynamical breaking of supersymmetry. 

I wish to thank R. Bott for long and patient discussions, and to acknowledge 
suggestions by C. Bachas, S. Coleman, D.J. Gross, M. Peskin, J. Polchinski, I. Singer 
and L. Yaffe. 

Appendix A 

In this appendix, a simple example will be given of a theory in which supersymme- 
try is spontaneously broken in any finite volume, but restored in the infinite volume 
limit. 

The theory will be a 1 + 1 dimensional theory with a real scalar field (h and a 
Majorana fermion q~. The lagrangian 

1 2 + (98) 

describes a supersymmetric version of (/)4 theory. The quantum mechanics model 
discussed in ref. [2] and in sect. 3 can be obtained from this model by dimensional 
reduction to 0 + 1 dimensions. 

For a 2 large and positive, supersymmetry is spontaneously broken in this theory, 
the ground-state energy being approximately ½~2a4. As long as we work in a finite 
volume, the sign of a 2 can be changed by conjugation, rather as in the discussion in 
sect. 3. Hence, in a finite volume, supersymmetry is spontaneously broken for 
arbitrary negative a 2 as well as positive a 2. 

In the infinite volume limit, this is not so. For negative a 2, qa has a vacuum 
expectation value, and therefore + has a non-zero mass. There being no massless 
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fermion that could become a Goldstone fermion, supersymmetry is unbroken if a 2 is 
large and negative. 

We thus conclude that, for negative a 2, supersymmetry is spontaneously broken in 
a finite volume but restored in the infinite volume limit. How does this come about? 
For negative a z, there are two vacuum states, with q, = -+ _ ~ Z ~ .  As long as we 
work in a finite volume, tunneling between the two states is possible. The relevant 
instanton solutions are independent of space, and functions of time only. The action 
for such an instanton solution is proportional to the volume. As long as we work in a 
finite volume, instantons that tunnel between the two vacua trigger spontaneous 
supersymmetry breaking, exactly as in the quantum mechanics problem in one 
dimension less. In the infinite volume limit, the tunneling between the two vacua is 
suppressed, and supersymmetry is restored. 

This also means that in the infinite volume limit, the ground-state energy per unit 
volume is not an analytic function of a 2. It vanishes identically for negative a 2 but 

not for positive a z. 

In this theory, T r ( -  l )  r - -  0 whether a 2 is positive or negative. For positive a 2 this 
is obvious, there being no zero-energy states in perturbation theory. For negative a 2 
there are two zero-energy states in perturbation theory. One is bosonic and one is 
fermionic; this can be seen by analogy with the discussion of the non-linear sigma 
model in sect. 10. Since T r ( -  1) F =  0, it is possible for tunneling processes to trigger 
supersymmetry breaking. 

Appendix B 

In sect. 3 we introduced the concept of changing a coupling constant "b y  
conjugation". We showed that if supersymmetry is unbroken for one value of a 
coupling constant that can be changed by conjugation, it is unbroken for any value. 

That is a non-perturbative statement, but it has interesting implications for 
perturbation theory. Consider a supersymmetric theory which depends on a cou- 
pling, ~,, which can be changed by conjugation, and on some other couplings a~. As 
in sect. 3, we work in the P = 0 sector of Hilbert space, and we consider any two 
hermitian supersymmetry charges Q1 and Q2- Equivalently, we may work with 

Q± = ~/~-(Q1 -+ iQ2) .  
The statement that ~ can be changed by conjugation means that 

Q + ( x  l; ai) = M - ' ( ~ , ,  ~2)Q+(h2;  a i )M(Xt ,  ~2)- (99) 

( M  may depend on the a i, but this is irrelevant for our purposes.) In this appendix, 
we will not work in all generality but will specialize to the situations that actually 
arise in practice. In all practical cases M has the form 

M(~ , ,  A2) -- exp(~,, - ~2)K,  (100) 
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where K is a hermitian matrix which obeys 

[[Q~, K] ,  K] = 0 .  (101) 

Suppose that we know that at ?~ = 0, supersymmetry is unbroken. We would like 
to know what happens at ?~ v ~ 0. As discussed in sect. 3, the relation 

Q+ (?~, a~) = exp( - XK )Q+ (0, a~)exp ~K (102) 

implies that supersymmetry is also unbroken at ?~ v e 0 provided that the operator 
exp ?~K has a sensible behavior when acting on the energy eigenstates of the ?~ = 0 
hamiltonian. However, in many interesting situations that is not the case. 

If exp ?~K is not a "good" operator, we can still learn something interesting by 
expanding (102) in perturbation theory. Returning to the hermitian basis of super- 
symmetry charges Q1 and Q2, relations (101) and (102) are equivalent (after some 
simple manipulations) to 

Q,(?~, a,) = Q,(0, a,) + i?~[Q2(0, ai),  K],  

Q2(~,, a,) = Q2(0, a,) -- i?~[Q,(0, a,) ,  K].  (lO3) 

We will now show that eq. (103) implies that, if the vacuum energy vanishes at ~ = 0, 
it also vanishes to all finite orders in perturbation theory in ~,. (This result would 
hold non-perturbatively if exp ?~K were a "good" operator, but we will not assume 
this.) 

Let I f~o), o = 1 . . . . .  k, be the states that have zero energy at ~ = 0. These states are 
annihilated, therefore, by Q~(O, ai) and Q2(0, ai). Let us now diagonalize the 
operator Q~(?~, ai) perturbatively in 2~. We will see that in perturbation theory 
QI(~, ai) has k zero eigenvalues. 

The first step in degenerate perturbation theory is to diagonalize the matrix 

M~ ~) = (aolSQ, [a,)  

= ix(aol[Q~(O, ,~,), K] la , ) .  (104) 

This vanishes because Q2(0, ai) annihilates the I f~o). 
In second-order degenerate perturbation theory we must diagonalize the matrix 

1 (105) 

Here P is the projection operator that annihilates the ]f~o). Although Q~ is not 
invertible, the operator P(1/Q1)P is well defined. 
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Since 8Q1 = iX[Q2(0, ai), K], and since Q2(0, ai) annihilates the [f~,), (105) can 
be rewritten 

1 
M~, = -X2(aolKQ2(O, a~)e Q,(o, ai) PQ2(°' a~)g] a , ) .  (106) 

Because Q2 annihilates precisely those states that Q~ annihilates, Q2P = PQ2. We 
may therefore rewrite (106) in the form 

M~2.) 2 1 = --X (aoIKPQ2-~Q2PKIa,) . (107) 

But 

1 _ p Q ~ p  
PQ2-~I QzP= 

= -PQ~-~lP 

= -PQ,P ,  (108) 

where the relations Q~ = 2 _ H Q2 - , and {Q1, Q2} = 0 have been used. Also PQIP = Ql, 
since the states annihilated by P are annihilated by QI anyway. So (107) becomes 

M (2)~, = X2(ao [KQ,KI a,) 

= ½X2(a,[ Q,K 2 + K2Q, l a,> 

+ ½X2<f~o[[K, [Q,, K ]] [ f~.>. (109) 

But (109) vanishes, because of eq. (101) and because Q l annihilates the If],). 
We have shown that up to second order of perturbation theory, Ql has the same 

number of zero eigenvalues as at ~ = 0. It is not difficult to show, by means of the 
same tricks, that this result holds to all finite orders of perturbation theory. 

The result of this section may be regarded as a generalization of (one aspect of) 
the "non-renormalization" theorems of supersymmetric theories. It has been proved 
previously that if supersymmetry is unbroken at the tree level, then it is unbroken to 
all finite orders of perturbation theory. This usual result refers to conventional 
perturbation theory with free field theory as the starting point. The result of this 
section is more general. The theory at ~ = 0, around which we perturb, may be any 
theory in which supersymmetry is not spontaneously broken; the other couplings a i 
may have arbitrary values. 
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