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Abstract—While network coordinate (NC) systems provide
scalable Internet distance estimation service and are use-
ful for various Internet applications, decentralized, matrix
factorization-based NC (MFNC) systems have received partic-
ular attention recently. They can serve large-scale distributed
applications (as opposed to centralized NC systems) and do not
need to assume triangle inequality (as opposed to Euclidean-
based NC systems). However, because of their decentralized
nature, MFNC systems are vulnerable to various malicious
attacks.

In this paper, we provide the first study on attacks toward
MFNC systems, and propose a decentralized trust and rep-
utation approach, called NCShield, to counter such attacks.
Different from previous approaches, our approach is able to
distinguish between legitimate distance variations and mali-
cious distance alterations. Using four representative data sets
from the Internet, we show that NCShield can defend against
attacks with high accuracy. For example, when selecting node
pairs with a shorter distance than a predefined threshold in
an online game scenario, even if 30% nodes are malicious,
NCShield can reduce the false positive rate from 45.5% to
3.7%.

I. INTRODUCTION

Network Coordinate (NC) systems have been developed
to estimate distance between nodes on the Internet and assist
latency-conscious Internet applications, such as application
layer multicast [36], BitTorrent file sharing [30], network
modeling [35], compact routing [1], multi-player online
games [2], [23], network monitoring [28], social networking
[11], [37] and cloud service [14], [33]. In a network of N
nodes, instead of incurring O(N2) measurements to obtain
all pairwise round-trip times (RTTs), NC systems only need
to perform O(N) RTT measurements to estimate node
distance, significantly reducing measurement overheads.

NC systems follow two basic models. Most traditional
NC systems (such as GNP [25], PIC [12], NPS [26], and
Vivaldi [13]) are Euclidean-based NC (ENC) systems. All
nodes are embedded in an Euclidean space Rd, every node
is assigned a d-dimensional coordinate (d ≪ N ), and
node distance is estimated by typical Euclidean distance
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Science, University of Goettingen, Germany.

calculation. However, ENC systems assume that estimated
distances among every three hosts must satisfy the triangle
inequality, a condition that often does not hold true on
today’s Internet [18], [20], [22], [24], [38]. The other model,
which has recently received much attention, is the matrix
factorization based NC (MFNC) systems [24], including
IDES [24], Phoenix [9], and DMF [21]. It completely
removes the triangle inequality constraint, and has shown
to be more accurate than ENC systems.

An NC system can be either centralized or decentral-
ized. As centralized NC systems, such as GNP [25] and
IDES [24], rely on a small set of landmark nodes, which
could easily become the scalability bottleneck, decentralized
NC systems are therefore the only feasible option for serving
large-scale distributed applications. We therefore focus on
decentralized NC systems (such as Phoenix [9] and DMF
[21]) in this paper.

Decentralization, however, makes a decentralized NC
system vulnerable to certain security attacks. While every
node in the system can advertise to other nodes arbitrary
information at its own discretion, malicious nodes in the
system can falsify coordinates or delay the response to RTT
probing packets in order to disrupt an NC system.

While several approaches [17], [27], [29], [34] have been
proposed to secure ENC systems, unfortunately, little has
been done toward MFNC systems. We tackle this deficiency
in this paper. In particular, we make the following contribu-
tions:

1) We formalize potential malicious attacks toward de-
centralized MFNC systems. So far, protecting MFNC
systems from malicious attacks has not been consid-
ered, and no attack model for such systems exist. Also,
through extensive evaluation using four representative
data sets collected from the Internet, we show how
these attacks can disrupt existing MFNC systems such
as Phoenix [9] and DMF [21].

2) We propose a trust and reputation-based approach,
called NCShield, to defend decentralized MFNC sys-
tems. NCShield is fully decentralized and can be
easily integrated into existing MFNC systems. In-
stead of relying on additional infrastructures, such
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as distributed hash tables (DHTs) (as in [5]) or a
centralized reputation computation agent (RCA) (as
in [27]), NCShield uses secure gossip [4] to ensure
lightweight and unbiased node sampling when choos-
ing nodes to calculate coordinates. Based on their
scalable measurement, nodes can vote in a distributed
way to identifying malicious nodes.

3) Different from previous approaches, our solution is
able to distinguish between ordinary distance variation
and malicious distance alteration. As demonstrated by
our experiments using classic aggregate data sets and a
dynamic data set, as well as an online game scenario,
NCShield achieves a high estimation accuracy. For
example, in the online game scenario when selecting
node pairs with a shorter distance than a predefined
threshold, even if 30% nodes in the system are ma-
licious, NCShield can reduce the false positive rate
from 45.5% to 3.7%.

The rest of the paper is organized as follows. We first
describe the background of our work in Section II, including
how decentralized MFNC systems function and how attacks
and defenses of decentralized ENCS operate. In Section III,
we investigate potential attacks toward MFNC systems, and
present our defense approach, NCShield. Then, in Section
IV we conduct extensive performance evaluation of our
defense mechanism with aggregate data sets used in Phoenix
and DMF systems. In Section V, we evaluate NCShield
using a dynamic data set and emulate it in an online
game scenario with Phoenix, showing its effectiveness and
feasibility. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we first describe decentralized MFNC
systems, especially its features related to securing MFNC
systems. We then present how decentralized ENC systems
can be attacked by malicious nodes and how they can be
protected via several existing defense approaches, in order
to shed light on the security solution for MFNC systems.

A. Decentralized MFNC Systems

An NC system is expected to run in Internet scale with
up to millions of Internet nodes [30]. Once a node obtains a
list of neighbors, referred as NList, it periodically learns the
coordinates of its neighbors, measures its distance to these
neighbors, and updates its own coordinates. An NC system
is accurate when the distance between two nodes predicted
using their coordinates is very close to the measured dis-
tance.

In an MFNC system with N nodes, every node has two d-
dimensional (d ≪ N ) coordinates, the outgoing vector and
the incoming vector. The predicted distance from node i to
node j is determined by the dot product of node i’s outgoing
vector and node j’s incoming vector, as in Eq. 1 where

D(i, j)E is the predicted distance from i to j, X⃗i and Y⃗j

are i’s outgoing vector and j’s incoming vector, respectively:

D(i, j)E = X⃗i · Y⃗j =
d∑

k=1

xik · yjk (1)

This prediction mechanism is more flexible than the
Euclidean distance model as it does not need to satisfy the
triangle inequality principle.

The accuracy of an NC system can be evaluated using the
Relative Error (RE) calculated from the predicted distance
and the measured distance [8]–[10], [13], [20], [24]–[26].
The RE of a pair of nodes i and j is defined as:

RE =
|DE(i, j)−D(i, j)|

min(DE(i, j), D(i, j))
(2)

A system with smaller RE has higher prediction accuracy.
As in Eq. 2, RE is a non-negative indicator. If predicted
distance equals to measured distance, the RE will be zero.

An MFNC system may be further inspected using an
overall minimization objective function (∆), where D(i, j)
denotes the measured distance from node i to node j:

∆ = ∥D −DE∥2 =
∑
i

∑
j

(D(i, j)−DE(i, j))2 (3)

Every node in an MFNC system will also need to update
its coordinates. In DMF and Phoenix, every node, say
H , adopts the least squares functions to update its new
coordinates. Assuming node H has m reference nodes (i.e.
neighbors), the new coordinates will minimize both the
distance from H to reference nodes and the distance from
reference nodes to H , as shown in the two equations below:

⃗xnew = arg min
x∈Fd

m∑
i=1

wYi∥Dout
i − x⃗ · Y⃗i∥2 (4)

⃗ynew = arg min
y∈Fd

m∑
i=1

wXi∥Din
i − y⃗ · X⃗i∥2 (5)

X⃗i(1 ≤ i ≤ m) and Y⃗i(1 ≤ i ≤ m) are the outgoing
vectors and incoming vectors of H’s reference node i. Dout

i

is the measured distance from node H to its reference node
i, and Din

i is the measured distance from reference node i
to node H . In DMF, the weights of neighbors are always 1
and the field F is R. In Phoenix, the weights are calculated
by a weight-based algorithm and the field is R+, indicating
non-negative d-dimensional coordinates. The weight-based
algorithm can improve the overall prediction accuracy by
alleviating error propagation.

B. Classifications of Attacks on Decentralized ENC Systems

Several types of attacks have been shown to bring sig-
nificant disruptions to ENC systems [16]. Based on their
objectives, attacks on decentralized ENC systems can be
classified into three categories:



Disorder attack: Malicious nodes try to disorder the entire
NC system to result in low prediction accuracy or cause the
system hard to converge.
Repulsion attack: Victim nodes are convinced to be far
away from other participants of the system. Other nodes
may thus not be willing to connect to victims.
Isolation attack: Victim nodes are convinced to be in a
particular area of the network and they are isolated from
ordinary nodes. They thus may more easily connect with
malicious nodes.

C. Existing Defense Approaches for Decentralized ENC
Systems

Researchers have proposed several approaches to defend-
ing decentralized ENC systems. Though implemented on
different infrastructures, these approaches are based on a
common idea: in updating node coordinates they all use
extra information to determine whether or not a node is
trustworthy. These approaches can be broadly classified into
two categories: node behavior based approaches [17], [34]
and trust and reputation based approaches [27], [29].

Kaafar et al. [17] propose a node behavior based approach
for ENC system defense. Their basic idea is that the dynam-
ics of a node in a normal system can be modeled by a linear
state space and thus tracked by a Kalman filter. It chooses
a set of dedicated nodes as trusted surveyors to observe the
dynamics of nodes and maintain the parameters of Kalman
filter. Malicious behaviors of a node can be identified by its
neighboring surveyors using the Kalman filter. The weakness
of this approach is the dedicated surveyor nodes, which
produce a significant overhead when the scale of the system
becomes large (e.g., 800-1000 surveyors are suggested for
an NCS serving 10,000 nodes). To overcome this weak-
ness, Zage et al. [34] propose a fully distributed approach
without relying on a set of dedicated surveyors. It detects
malicious nodes by observing inconsistent behaviors with
their neighbors (temporal outlier) or the space of metrics
(spacial outlier). This approach avoids extra communication
overheads, but as the detection of temporal outliers depends
on nodes’ history information [29], it does not perform well
with frequent node churns. In addition, node behavior based
approaches can suffer from the complexity in measuring and
analyzing node behaviors,

RVivaldi [27] and Veracity [29] are both a trust and repu-
tation based defense approach for ENC systems. RVivaldi
employs two types of entities: a centralized Reputation
Computation Agent (RCA) and surveyors, where surveyors
monitor nodes and RCA performs mathematical computation
of a node’s trust and reputation score. Clearly, the centralized
RCA becomes a single point of failure since it is responsible
for computing the reputation score of every node in the
system. Veracity [29] does not need a centralized RCA.
Instead, it employs two sets of nodes, VSet (voting node
set) and RSet (reference node set), to help verify the process

of updating node coordinates. It applies Distributed Hash
Table (DHT) for VSet and RSet construction as well as
neighbor selection. However, as shown in Section III-D, this
approach requires a significant amount of communication
overhead in order to maintain its overlay routing structure.
In addition, it requires additional security methods such as
[5] for protecting this additional infrastructure, which further
adds extra overhead.

Due to the differences between MFNC systems and ENC
systems, a defense for MFNC systems needs to take account
of the specific feature of MFNC systems, All aforementioned
approached are designed specifically for ENC systems,
where attackers only target the d-dimensional coordinates
of a node. In a MFNC system, however, malicious nodes
have more target options than those in ENC systems; for
example, they may compromise either the outgoing vector
and the incoming vector of a node.

In addition, all of the four defense approaches above are
only evaluated using aggregate data sets, in which the RTT
between any two hosts in the data set is a single value,
based on either the median [13] or the minimum of measured
RTTs [35], [38] over a period of time (days or even weeks).
However, the distance between nodes can vary from time to
time [22]. These approaches do not address and demonstrate
how common distance variation—which frequently happens
on the Internet—may not be detected as a malicious distance
alteration.

III. ATTACKS AND A DEFENSE APPROACH IN
DECENTRALIZED MFNC SYSTEMS

As described above, attacks in MFNC systems are differ-
ent and more complicated. Furthermore, the use of moni-
toring nodes are essential to protect a decentralized system,
and thus their discovery and selection algorithm should be
carefully designed. With these considerations in mind, we
first describe the attacks in MFNC systems and then we
propose NCShield for defending these attacks.

A. Attack Models

ENC systems have been found to suffer from a low
estimation accuracy when part of its participants lie about
their coordinates, which may be caused by one of the
following attacks [16]: disorder, repulsion, and isolation.
Likewise, malicious nodes in MFNC systems may also
falsify coordinates and/or intensively delay RTT probing
packets, which we analyze and model as follows.
Repulsion attack: Malicious nodes in MFNC systems at-
tempt to influence the victims’ incoming vectors Y , deceiv-
ing other nodes to look like far away from the victims to re-
duce their attractiveness, ⃗Ytarget = α∗R⃗1∗Ymax+β∗Ymax.
R⃗1 is a random-generated d-dimensional vector, in which
every element is randomly choose between (0,1]. Ymax is
the multiplier controlling the coordinate space. α+β = 1 so
that the target incoming vector is within a ring of coordinate



space. Malicious nodes falsify their coordinates by randomly
setting within a smaller domain and try to delay RTT probes
corresponding to this deceit, ⃗Xmal = δ ∗ R⃗2 ∗ Xmax and
dtarget = ⃗Xmal · ⃗Ytarget.
Isolation attack: The outgoing vectors of the victims be-
come the attack targets ⃗Xtarget = C⃗, where C⃗ is a certain
d-dimensional coordinate), so that the victims believe they
are near some particular nodes and try to connect to them
when they need P2P neighbors. dtarget = ⃗Xtarget · ⃗Ymal.
Disorder attack: There is no specific difference between
the two types of vectors when attack is conducted. Normally
both of them are targets. Malicious nodes falsify their both
coordinates and randomly delay the RTT probing packets,
dtarget = doriginal + ddelay . Therefore, malicious informa-
tion can be injected into system, aiming at creating chaos in
the system.

B. Overview of Defense Model

We employ a score and vote based approach to defend
decentralized MFNC systems against the above-mentioned
attacks. Extra certain nodes are chosen to score and vote
when a node updates coordinates, while extra coordinate and
RTT information are required for detecting the attackers.
With the help of Byzantine resilient random node sam-
pling [4] (a secure gossip-based membership protocol), each
node can sample a small set of nodes in a resilient unbiased
manner, so-called VList, for verifying the correctness of its
neighbor nodes. Upon collecting independent opinions of all
VList nodes, a final suggestion of potential malicious nodes
will be reached by summing them up.

Algorithm 1 presents the pseudocode of NCShield. It
consists of two main parts. One is the construction and
maintenance of verification list (VList), and another is the
verification process embedded in NC algorithm with the
help of VList. Here, we carefully make a tradeoff between
performance (high accuracy) and overhead (introducing as
few new entities as possible) to avoid new vulnerabilities
while ensuring efficiency.

C. Construction and Maintenance of VList

To implement this approach in real systems, the construc-
tion and maintenance of VList are critical. Like the NList in
P2P systems, VList also consists of unbiased sampling nodes
from the systems. Therefore, VList can be constructed and
maintained together with NList of each node. A candidate
list should also be constructed and maintained in case of
invalidation of entries on NList and VList.

In this paper, we employ Brahms [4] for node list con-
struction and maintenance. Specifically, when a node Hnew

joins the system, in addition to the necessary components
required by NC system and gossip protocol, a sampler
component is also planted in node Hnew and a balance
algorithm controlling the contribution of pushes and pulls

Algorithm 1 Pseudo Code of NCShield
1: define ST SCORE THRESHOLD
2: define VT VOTE THRESHOLD
3: define NT VALID NEIGHBORS THRESHOLD
4: Get Initial Host Candidates(RP )
5: Generate NList and V List()
6: Connect to NList Members()
7: Connect to V List Members()
8: while forever do
9: Get(d(·),X,Y )

10: Check and Renew Candidates with Brahms()
11: Deliver to V List(X,Y , neighbor addrs)
12: for all Members ∈ V List do
13: dvton(·) = Measure to Neighbor(neighbor addrs)
14: score(·) = Cal Score(dvton(·),X,Y ,Xv,Yv)
15: vote(·) = Cal V ote(score(·), ST )
16: end for
17: Deliver to Host(vote(·))
18: valid neighbors = Parse V ote(vote(·), V T )
19: if valid neighbors ≥ NT then
20: MFNC Update Coordinate()
21: end if
22: Wait(NC UPDATE INTERVAL)
23: end while

in gossip session is implemented. Therefore, unbiased sam-
plings of both NList and VList members can be achieved.
More specifically, upon node Hnew joining the system, it
will operate in the following steps:
Contacting the Rendezvous Point (RP) Node Hnew reg-
isters to the RP, and obtains the initial host candidates.
Contacting candidates Node Hnew sends messages to
nodes on the candidate list. When node Hnew receives a
response from a node, it will be added to node Hnew’s NList
or VList. Repeat this operation until both lists reach the pre-
set scales. Thus initial sampling lists are also constructed.
Secure gossip process When node Hnew needs to discover
more nodes, it starts a Brahms process, in which, the number
of nodes discovered by pushes and pulls are balanced.
Along with the sample list, an unbiased new sample can be
generated. Finally new unbiased sample of candidates and
sample list are obtained. With the help of Brahms, malicious
nodes are not able to intensively introduce other malicious
nodes to victims during gossip for increasing the percentage
of malicious nodes in neighbor list (NList).

D. Coordinates Verification Process

In this process, considering the distance variations over
time, the trust and reputation system should be tolerant
for such dynamics without treating them as malicious. We
adopt the score computation as in Eq. 6 and Eq. 7, and
set reasonable threshold to distinguish malicious distance
alteration from distance variation.



Table I
COMPARISON OF COMMUNICATION OVERHEAD BETWEEN VERACITY AND NCSHIELD

Step No. Veracity using DHT Overhead NCShield using Gossip protocol Overhead
1 Publishers contact VSets to deliver messages N ∗ u ∗ log2N H contacts NList for NList’s coordinates N ∗m ∗ 2
2 VSets ping publishers for RTTs N ∗ u ∗ 2 H sends NList’s coordinates to VList N ∗ u
3 Investigator contacts publishers for coordinates N ∗m ∗ 2 VList contact NList for coordinates N ∗m ∗ u ∗ 2
4 Investigator contacts VSets for evidences N ∗m ∗ u ∗ log2N VList ping NList for RTTs N ∗m ∗ u ∗ 2
5 VSets return results to investigator N ∗m ∗ u VList return results to H N ∗ u

Once a node H has obtained its NList and VList, it
starts to update its incoming vector and outgoing vector
periodically. Let m and u present the number of neighbors
assigned to node H and the number of verification nodes,
respectively.
(a) Node H asks its neighbor node Hn for its coordinates.
(b) Node Hn may respond with its falsified coordinates.
(c) Node H then asks its VList members, Hv nodes for help.
(d) These VList members retrieve coordinates of node Hn

and conduct independent measurements to it. They calcu-
late two scores, scoreinHvHn

and scoreoutHvHn
, based on the

suspicious outgoing and incoming vectors of node Hn and
the RTTs between node Hv and node Hn (D(Hv,Hn) and
D(Hn, Hv)), as in Eq. 6 and Eq. 7.

scoreinHvHn
=

|DE(Hv,Hn)−D(Hv, Hn)|
min(DE(Hv,Hn), D(Hv,Hn))

(6)

scoreoutHvHn
=

|DE(Hn,Hv)−D(Hn, Hv)|
min(DE(Hn,Hv), D(Hn,Hv))

(7)

(e)Node Hv evaluates the scores (Eq. 8 and Eq. 9) according
to a pre-defined score threshold (ST ) and return voteinHn

and voteoutHn
for node Hn as well as Hn’s coordinates they

obtained to node H .

voteinHn
=

v∑
Hv∈V List

(scoreinHvHn
≥ ST ) (8)

voteoutHn
=

v∑
Hv∈V List

(scoreoutHvHn
≥ ST ) (9)

(f) Node H integrates the returned information and calcu-
lates voteHn (Eq. 10) to decide whether adopting or discard-
ing node Hn’s coordinates according to a pre-defined vote
threshold (V T ). Finally, after collecting vote information
of all neighbors, node H calculates valid neighbors (Eq.
11) and decides whether to start the NC update process,
according to a pre-defined valid neighbors threshold (NT ).
Thus, an update round along with verification is completed.

voteHn = (voteinHn
≥ V T )&&(voteoutHn

≥ V T ) (10)

valid neighbors =
m∑

Hn∈NList

voteHn (11)

Besides the process described above, several details are
noteworthy:

1) Before calculating voteHn , a comparison should be
made in case that node Hn sends different coordi-
nates to node H and its VList members. If a false

comparison result appears, the corresponding voteinHn

and voteinHn
will be set to 0 directly.

2) The verification contacts should have no difference
from the contacts of retrieving update information,
to prevent node Hn from noticing the verification
contacts, after which it may send the unfalsified coor-
dinates to Hv , and stop delaying the RTT measurement
requests.

3) There are various strategies of making a vote, since
there are two coordinates for each node and at least
one coordinate need to be verified. In this paper, we
apply a relatively stringent strategy that a positive vote
is made only if both of the vote results satisfy the
threshold (V T ).

4) Malicious nodes may also appear in VList. Brahms
guarantees the unbiased percentage of malicious nodes
(the same ratio of malicious nodes as that in the
whole network) in VList, as well as in NList. In our
simulation, they will vote randomly for NList to node
Hn.

E. Communication Overhead Analysis
Table I summarizes the coordinate verification steps of

Veracity using DHT and NCShield using gossip protocol.
The communication overhead of each step is also listed,
counted in number of messages. In the table, m and u are
defined in section III-C, while N is the number of nodes
in the NC system. According to the table, the gossip-based
mechanism can significantly save communication costs com-
pared with DHT-based mechanism, not to mention if the
neighbor selection approach applied in an NC system is
incompatible with DHT.

For typical configuration of NC systems, m = 32 [9] and
u = 7 [29], with a node scale of 1024, the communication
overheads in one round of coordinate verification process of
all nodes are 2674688 messages and 997376 messages in
Veracity and NCShield, respectively. Compared with DHT
based solution, our gossip-based approach can save 62.7%
traffics for coordinate verification operations.

IV. EVALUATION FOR AGGREGATE DATA SETS

In this section, we present the results of simulation study
in Phoenix and DMF on aggregate data sets and dynamic
data set. Simulations for each scenario are repeated 5 times
and the results are the average values. We set the malicious
group size from 10% to 50%, with the interval of 10%.



(a) Phoenix on AMP Data Set (b) Phoenix on PlanetLab Data Set (c) Phoenix on King Data Set

(d) DMF on AMP Data Set (e) DMF on PlanetLab Data Set (f) DMF on King Data Set

Figure 1. Disorder Attack and Defense in Phoenix and DMF on Aggregate Data Sets

Table II
NPRE OF REPULSION ATTACK AND DEFENSE

NC Data Defense Percentage of Malicious Nodes
0% 10% 30% 50%

Phoenix

AMP OFF 0.284 0.505 1.059 2.706
ON 0.285 0.289 0.307 0.394

PL OFF 0.444 0.701 1.410 2.259
ON 0.492 0.558 0.674 0.752

King OFF 0.450 1.170 1.558 4.029
ON 0.456 0.548 0.590 0.619

DMF

AMP OFF 0.234 3.644 6.331 8.482
ON 0.220 0.212 0.224 0.237

PL OFF 0.668 4.603 14.354 22.191
ON 0.657 0.780 0.644 0.641

King OFF 0.611 13.585 35.903 50.113
ON 0.614 0.613 0.614 0.610

The main metric used in our performance evaluation is
ninetieth percentile relative error (NPRE), which has been
widely used in [8]–[10], [24]–[26] since it guarantees 90% of
the links have lower RE values than it. Smaller NPRE value
indicates higher overall prediction accuracy [17], [27], [29],
[34].

A. Simulation Setup for Aggregate Data Sets

In both Phoenix and DMF, each node is assigned 32
[9], [21] neighbors and 7 [29] VList members, which are
selected at random. The coordinate dimension is set to
10 [9], [21]. For Phoenix, the constant C is set to 10
[9], ST (SCORE THRESHOLD defined in Algorithm 1 in
Section III-A) is 1.0, VT (VOTE THRESHOLD) is 6, and

Table III
NPRE OF ISOLATION ATTACK AND DEFENSE

NC Data Defense Percentage of Malicious Nodes
0% 10% 30% 50%

Phoenix

AMP OFF 0.285 0.558 1.157 3.412
ON 0.285 0.301 0.305 0.373

PL OFF 0.445 0.689 1.328 2.567
ON 0.469 0.529 0.653 0.676

King OFF 0.444 0.988 1.582 5.001
ON 0.463 0.531 0.557 0.586

DMF

AMP OFF 0.284 2.097 5.461 7.890
ON 0.269 0.278 0.262 0.261

PL OFF 0.676 1.371 2.716 3.296
ON 0.656 0.781 0.664 0.654

King OFF 0.657 3.970 8.430 15.431
ON 0.513 0.516 0.523 0.524

NT (VALID NEIGHBORS THRESHOLD) is 10. While in
DMF, the regulation coefficient λ is set to 50 [21], ST is 0.4,
VT is 4, and NT is 16. Later we will see that the parameters
of NCShield are data-independent.

The attackers are considered to be injected to systems
successfully. This is because “malicious” is a relative con-
ception that these attackers may act as an ordinary node in
the beginning, then enable their malicious behaviors later.
Using default values in [9], [21], we set update rounds of
Phoenix and DMF as 30 and 50, respectively. We use three
representative aggregate Internet data sets for our evaluation.
The first data set is the AMP data set [24], which includes
the RTTs among 110 Internet hosts. The hosts are mainly at



NSF supported HPC sites, with about 10% outside the US.
AMP data set has been used in [24], [36]. The second data
set is the PlanetLab data set [39], which includes the RTTs
among 335 PlanetLab hosts all over the world, collected
during March-April, 2010. PlanetLab data set has been used
in [13], [24], [36], [39]. The third data set is King data
set which includes the RTTs among 1740 Internet DNS
servers [13]. King data set has been used in [13], [31],
[32], [36]. These data sets can present three different Internet
delay spaces [35].

B. Effect of Our Defense on Aggregate Data Sets

As described above, in disorder attack, malicious nodes
would send false coordinates, both outgoing vectors and
incoming vectors, which are randomized within the maxi-
mum value of each type of vectors. In addition, the mali-
cious nodes intensively delay the probes with the range of
[100..1000] ms. Fig. 1 shows the results of disorder attack
and defense simulation. The NPRE results are calculated
with all the participant nodes EXCEPT malicious nodes.
The figure indicates that NCShield can achieve significant
defense performance towards disorder attack. With our de-
fense approach, the NPRE of each experiment with different
percentage of malicious nodes do not increase remarkably.
For example, in the simulation of Phoenix on AMP data
set (Fig. 1(a)), the NPRE of normal system is 0.223. When
30% malicious nodes exist, the NPRE turns to be 0.998.
The RE increases significantly, indicating the accuracy of
Phoenix is suffering from great degradation. While NC-
Shield is activated, the NPRE drops to 0.315, indicating
prediction accuracy degradation is suppressed remarkably.
Fig. 1(b)-1(f), describing the results of Phoenix on PL335
and King data sets, DMF on AMP, PL335 and King data sets,
respectively, also show the similar defense performance of
NCShield. As the percentage of malicious nodes increases,
the performance of the system gets significantly worse.

In repulsion attack, both the coordinates of malicious
nodes are randomized within a half of the maximum of out-
going vector and incoming vector, respectively. The incom-
ing vectors of victims are attacked to be set within 0.7 to 1.0
maximum coordinates, randomly. Thus, the RTT probes are
intensively delayed to correspond with target coordinates.
Table II shows the simulation results of repulsion attack and
defense on both systems and on all three aggregate data sets,
presented in NPRE. The NPRE results are calculated with
the outgoing vectors of all nodes EXCEPT malicious nodes
and the incoming vectors of victim nodes. From the table we
can see that our defense approach can significantly protect
victims under repulsion attacks. That means the influence
aiming at the incoming vectors of victims can be identified
and terminated. Therefore, other nodes would not believe
the victims are far away from them.

In isolation attack, the coordinates of malicious are ran-
domized the same way as in repulsion attack. However, the

Table IV
AVERAGE NPRE OF SIMULATION ON “K200-ALLPAIRS-1H” DATA SET

NC Type Defense Percentage of Malicious Nodes
0% 10% 30% 50%

Phoenix

Dis. OFF 0.500 0.878 2.790 5.416
ON 0.501 0.612 0.703 1.013

Rep. OFF 0.500 0.903 1.828 3.372
ON 0.500 0.530 1.078 1.157

Iso. OFF 0.500 2.362 1.606 4.510
ON 0.500 0.525 1.066 1.180

DMF

Dis. OFF 0.924 1.684 3.218 4.012
ON 0.858 0.938 1.344 1.613

Rep. OFF 0.924 11.031 18.116 22.660
ON 0.858 1.990 0.798 0.899

Iso. OFF 0.924 11.471 20.191 25.920
ON 0.858 1.643 0.855 0.984

attack targets are outgoing vectors of victims, which are
aimed to be set to maximum coordinates. The RTT probes
are also intensively delayed correspondingly. Table III shows
the simulation results of isolation attack and defense on both
systems and on all three aggregate data sets, presented in
NPRE. The NPRE results are calculated with the outgoing
vectors of victim nodes and the incoming vectors of all nodes
EXCEPT malicious nodes. From the table we can see that
our defense approach can significantly protect victims under
isolation attacks, reducing the attack influence to acceptable
level. Thus, the victims are no longer convinced to be in a
remote field of the coordinate space.

For simulation results of every data set, Phoenix shows
better performance than DMF under different attacks. The
weight mechanism seems to play a critical role, so that
Phoenix is resilient to small amount (< 10%) of malicious
nodes.

V. EVALUATION FOR DYNAMIC DATA SET AND ONLINE
GAME SCENARIO

A. Simulation Setup for Dynamic Data Set

The real Internet distances are time varying, which is
especially critical in network monitoring scenario. However,
existing security schemes for ENC systems do not consider
this variation at all. A practical security scheme should be
able to distinguish between ordinary distance variation and
maliciously generated distance providing by the attackers.
We evaluate NCShield on the “K200-allpairs-1h” dynamic
data set [22]. This data set contains 200 nodes and the
data collection lasts 44 hours using King method. We have
obtained 99 continuous snapshots of all pairwise RTTs.

In this simulation, we use the same parameter settings
of Phoenix, DMF and NCShield defined in Section IV-A.
We run on the first one of 99 snapshot matrices to achieve
an acceptable convergence of coordinates. Then from the
second snapshot matrix, the malicious nodes start their
attacks.



(a) Phoenix w/o Defense (b) Phoenix with Defense

Figure 2. Disorder Attack in Phoenix on “K200-allpairs-1h” Data Set
Figure 3. Online Game Scenario Evaluation

B. Effect of Our Defense on Dynamic Data Set

In this simulation, malicious nodes perform the same
behaviors of disorder, repulsion and isolation attacks as those
in Section IV-B.

Fig. 2 shows the NPRE variations in Phoenix under
disorder attack on “K200-allpairs-1h” data set. In Fig. 2(a),
without defense, the RE increases significantly when ma-
licious nodes increase. As Internet distances varying from
time to time, the performance degrades when the system is
under disorder attack. While in Fig. 2(b), with NCShield,
the increasing of RE is obviously mitigated, which indicates
NCShield works well in this scenario.

Table IV lists the average NPREs of all three scenarios
both in Phoenix and DMF systems. From the table we can
see that NCShield can remedy the three attacks significantly
for both systems. For example, in Phoenix with 30% mali-
cious nodes, NCShield can help decrease the average NPRE
from 1.073 to 0.717 under disorder attack. In DMF under
10% malicious node conducting repulsion attack, NCShield
decreases the average NPRE from 8.796 to 0.772.

C. Online Game Scenario Evaluation

Besides using typical RE metric for evaluating the pre-
diction accuracy, we also evaluate NCSheild in a practical
scenario, i.e., a popular online game scenario. As introduced
in [6], [23], identifying all end-to-end links with shorter
latencies than a predefined threshold is critical for various
real-time interaction games. According to the requirement
of first-person perspective games, we set this threshold as
100ms [6]. A link is defined as a good (resp. bad) link
when its measured RTT is below (resp. above) the predefined
threshold. We use Phoenix for link classification according
to predicted distances. A true positive (TP) indicates that
a good link is correctly predicted as “good”, while a false
positive (FP) shows that a bad link is wrongly predicted
as “good”. Likewise, a true negative (TN) tells that a bad
link is correctly predicted as “bad”, while A false negative
(FN) points that a good link is wrongly predicted as “bad”.
False positive rate (FPR) and false negative rate (FNR)

are defined by FPR = FP/(FP + TN) and FNR =
FN/(TP + FN), respectively.

We conduct this simulation on AMP, PL335 and King data
set. All parameters of Phoenix and NCShield are the same
as those in section IV. Half of the nodes, i.e. 55 nodes, 167
nodes and 870 nodes, which are always victims as malicious
percentage increases, are chosen to be participants of online
game. The threshold is set to 100 ms.

Due to page limitation, we only present the result of
PL335 data set in Fig. 3, while results of the other two
data sets are similar. When 30% malicious node conducting
disorder attack, NCShield can reduce the FPR and FNR
from 45.5% and 25.2% to 3.7% and 5.8%, respectively.
Most of the negative impacts on link selection introduced
by attackers are eliminated. This shows that in an online
game scenario using Phoenix for link selection, NCShield
is practical to prevent performance degradation caused by
disorder attacks.

VI. CONCLUSIONS

As decentralized MFNC systems can scale to millions
of users and is more realistic than Euclidean-based NC
systems by not assuming the triangle inequality, they have
become more suitable to large-scale distributed applications
on the Internet. However, coming with the benefits are also
vulnerabilities that must be addressed. As we have shown in
this paper with the disorder, repulsion and isolation attacks
toward Phoenix and DMF systems, the security threats of
decentralized MFNC systems can be very severe, and even
a small number of malicious nodes can deteriorate the
accuracy of an MFNC system significantly.

We proposed a score and vote based approach with an
effective and scalable node sampling mechanism. Through
simulations using both aggregate data sets and a dynamic
data set, our approach is able to effectively defend MFNC
systems from attacks. In particular, our approach differs from
previous approaches and is able to distinguish between legit-
imate distance variations and malicious distance alterations.



We also experimented how an application may use a
MFNC system protected with our approach. We designed
an online game link selection experiment based on Phoenix,
and showed that our approach can significantly reduce the
negative effects and ensure the quality of service. Our future
work in this regard includes the investigation of the new
emerging frog-boiling attacks [7], the development of a more
practical application, and the evaluation with both Phoenix
and DMF systems on a real network.
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