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ABSTRACT 

 
Boundary delineations are constantly used in our everyday lives. Boundaries 

determine management practices and help formulate expectations; however, 

boundaries are mostly human constructs, and crisp delineations rarely occur in nature. 

Synthetic boundaries, or those boundaries established through a synthesis of implicit 

and explicit data, are purely human constructs. Yet synthetic boundaries are relied 

upon to delineate ecosystems and transition zones. The question becomes not only 

whether the placement of the boundaries is accurate, but also whether or not the 

accuracy of the boundaries can be assessed given their synthetic nature. 

Dramatic ecosystem transitions in semi/arid environments have been of 

interest to researchers for several decades. At issue are the degradation of rangeland 

for human use and the associated extent of anthropogenic versus natural change. 

Semi/arid environments, by nature, have sparse, patchy vegetation; the predominant 

land cover type is exposed soil. Remotely sensed images of these landscapes allow 

for examination of geomorphology without the visual impediment of dense 

vegetation. Considerable research has been done on the correlation between 

geomorphology and vegetation types, opening the possibility of geomorphology 

acting as a proxy for expected vegetation given current climate conditions. In 2003, 

DeMers et al. (2010) created a rapid bioassessment model (REAL) predicting 

vegetation based on geomorphology, but extensive field verification of the model was 

not performed. My research examines the accuracy of REAL’s synthetic boundaries 

from two scales: human (fine) and model (broad). To test the boundaries at the human 
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scale, two tests were performed: 90 meters continuous line-intercept transect 

sampling (LIS) within selected sampling areas, and an automotive random walk. For 

the model scale, a coefficient of areal correspondence (CAC) was calculated on two 

different computer-assisted classification types: unsupervised and supervised 

classification.  

Testing REAL’s synthetic boundaries posed issues at both scales. At the 

human scale, LIS proved mostly unsuccessful given that the extent of most vegetative 

ecotones was greater than 90 meters. The automotive random walk better allowed for 

boundaries to be seen, but exact accuracy could not be assessed. All the approaches 

used to test REAL’s boundary accuracy at the model scale are themselves models, 

leading to mixed results and the possibility of circular reasoning. Unsupervised 

classifications did not work, as correspondence between the unsupervised classes and 

REAL’s could not be determined. Supervised classifications showed greater success, 

but only where strong spectral signatures were present (lava flows, mountain slopes, 

and playas).  

Overall, this research determined that though some synthetic boundaries can 

be partially assessed, the exact position of any boundary cannot be specifically 

determined. At the human scale, an automotive random walk allows boundaries to be 

most readily assessed, but not located precisely. Automotive random walk works best 

for determining confidence in synthetic boundary placement, as the method is the 

juxtaposition of the human and model scales. Expecting a quantifiable accuracy 

assessment on precise boundary placement of a synthetic model, such as REAL, is 
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largely unreasonable. At best, an agreement on the general location of polygons can 

be reached, especially when using a method such as an automotive random walk.  
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1. INTRODUCTION 

Boundary delineations are constantly used in our everyday lives. Boundaries 

determine management practices and help formulate expectations; however, 

boundaries are mostly human constructs, and crisp delineations rarely, if ever, happen 

in nature. Synthetic boundaries, or those boundaries established through a synthesis 

of implicit and explicit data, are purely human constructs. Yet synthetic boundaries 

are relied upon to delineate ecosystems and transition zones. The question becomes, 

not only whether the placement of the boundaries is accurate, but whether or not the 

accuracy of the boundaries can be assessed given their synthetic nature. 

Identification of ecosystem transitions in arid and semiarid environments has 

been the topic of great interest to researchers for the past several decades (Scheffer et 

al. 2001; Rietkerk et al. 2004; Bestelmeyer et al. 2006; Bestelmeyer, Ward, and 

Havstad 2006). As more land exhibits signs of the desertification process, the 

boundaries between vegetation shifts and the patchiness of the land increases.  

However, unless accurate boundaries are established in the first place, the ability to 

detect, predict, and possibly reverse the vegetative shifts due to degradation are 

difficult, if not impossible (Bestelmeyer, Ward, and Havstad 2006; Rietkerk et al. 

2004). Boundaries are important in creating management zones where a uniformity of 

process is expected. If validation of boundary locations is not done, land managers 

and researchers do not have an accurate sense of expectations. 

At issue is the ability to identify the degradation of rangeland for human use 

and determining the extent of anthropogenic impact versus natural change. Most 
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research uses historical data such as land survey notes (Buffington and Herbel 1965), 

repeat imagery, both aerial and satellite (Gile, Ahrens, and S. P. Anderson 2003; G. S. 

Okin et al. 2001; Bestelmeyer, Ward, and Havstad 2006), and vegetation maps 

(Gibbens et al. 2005). While these researchers have demonstrated significant changes 

to vegetation types in anthropogenically impacted areas, teasing out the variables for 

natural vegetative progression based on current climate regimes has proven difficult. 

A method that would allow for expected vegetation mapping based on current climate 

could be used as an additional input for impacts comparison between current 

vegetative communities and expected ones. 

Ecosystem degradation research has not focused explicitly on either the 

accuracy of boundaries drawn, nor taken climate-induced vegetation progression into 

account. Arid and semiarid environments, by nature, have sparse, patchy vegetation 

and a predominant land cover of bare soil. As a result, vegetation in such an 

environment is difficult to discern from remotely-sensed imagery; however, the 

landscape’s geomorphology can easily be examined (Dwivedi et al. 1993; D. B. 

Clark, Palmer, and D. A. Clark 1999; G. S. Okin et al. 2001). Considerable research 

has been done on the correlation between geomorphology and vegetation types (Hunt 

1966; Olsvig-Whittaker, Shachak, and Yair 1983; Burke, Reiners, and Olson 1989; 

Wondzell, Cunningham, and Bachelet 1996; G. S. Okin et al. 2001; Monger and 

Bestelmeyer 2006; Bestelmeyer et al. 2006; Saco, Willgoose, and Hancock 2007). 

Past research has not focused on establishing the accurateness of vegetation 

boundaries with respect to geomorphology, but instead focused on determining 



 3

vegetation based on various spectral analysis of remotely sensed imagery (G. S. Okin 

et al. 2001), or examining different sides of an obvious ecotone (Bestelmeyer et al. 

2006). Additionally, the research typically focused on either developing models 

(Wondzell, Cunningham, and Bachelet 1996; Saco, Willgoose, and Hancock 2007), 

or using pure remote sensing techniques (G. S. Okin et al. 2001; Bestelmeyer, Ward, 

and Havstad 2006), which typically required high-end computer systems and/or 

software to run the analyses. For instance, the Gap Analysis Program (GAP), 

launched in 1989 under the United States Geological Survey, aims to delineate animal 

and plant boundaries. The program, however, has a high cost in terms of time, 

manpower, and computing power. GAP also does not focus on the accuracy of the 

vegetation boundary, assuming the error to be small given the scale at which the 

program is being implemented (Crist and Deitner 2007). In 2003, DeMers et al. 

(2010; Dugas et al. 2011) developed a low-tech rapid bioassessment model with 

geomorphologic boundaries as a proxy for vegetation boundaries, using only Landsat 

7 ETM imagery and visual analysis. This model was later named the Rapid 

Evaluation of Arid Lands (REAL) (Dugas et al. 2011). The goal of REAL was to 

provide a triage-level, inexpensive, rapid analysis tool for range managers and 

researchers. Field verification of REAL was done in 2003 with random-walk 

convenience sampling (Dugas et al. 2011).  

My research determines whether the locational accuracy (accuracy) of 

synthetic boundaries, such as REAL, can be assessed. Accuracy is assessed at two 

different scales: the human scale and the model scale. Overall, this research provides 
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an improvement in verification methods for categorical boundaries, as well as 

providing a sampling scheme for semi/arid-environment remotely sensed imagery. 

Broader impacts include providing range managers the ability to assess and manage 

their land based on accurate management boundaries, as well as provide a scheme for 

establishing management boundaries in other semi/arid regions. 
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2. LITERATURE REVIEW 

2.1. Geomorphology, Soils, and Vegetation 

Geomorphology is the study of landforms, which are discrete units of the 

earth’s surface (Peterson 1981). Examples of landforms include: mountains, hills, 

valleys, plains, stream terraces, lava flows, and alluvial fans. Landforms may be 

composed of different types of parent material, including organic matter, 

unconsolidated sediments, or hard rock (Certini and Scalenghe 2007). Examples of 

parent material include: granitic mountains, sandstone hills; fluvium in valleys; and 

basalt in lava flows. Peterson (1981) provides a thorough discussion of how 

landforms are created in the Basin and Range Province. Regardless of the specifics in 

their formation, a landform’s parent material and topographic disposition becomes the 

foundation of that unit’s soil. In other words, soil patterns tend to correspond with 

landforms (Peterson 1981). Though landforms can have soils that differ from the 

original parent material due to addition (i.e.: loess), subtraction (i.e.: wind erosion), 

translocation (i.e.: bioturbation), and transformation (i.e.: leaching) (Monger pers com 

2010), landforms are the initial basis for soil maps (Peterson 1981). 

Soil, a three-dimensional body capable of supporting rooted vegetation, is 

created through a process known as pedogenesis. Dokuchaev (1883), the father of 

pedology, recognized that the following factors contributed to the formation of soil: 

climate, organisms (biota, including humans), relief (topology), and parent material. 

In 1941, Hans Jenny revised the soil forming factors to also include time. The five 

soil forming factors can be depicted in a soil-geomorphic template (Figure 1) 
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(Monger and Bestelmeyer 2006). Ultimately, parent material is a factor towards soil 

type, which is a factor towards vegetation type (Jenny 1941; Monger and Bestelmeyer 

2006). 

 

 

FIGURE 1 
SOIL-GEOMORPHIC TEMPLATE  

(Monger and Bestelmeyer 2006) 
 
 
 
Soil has a major effect on vegetation type through three mechanisms: 

plant-available water, nutrients, and root anchorage (Figure 2) (Burke et al. 1998; 

Monger and Bestelmeyer 2006). For instance, less water is plant-available in sand, 

where porosity allows water to drain quickly from the root area.  Soil lacking in 
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nutrients, such as phosphorous, nitrogen, or potassium, limits the kinds of vegetation 

that can grow based on biological needs. Finally, if soil is too loose, too shallow, or 

too indurated, certain types of vegetation can have difficulty rooting (Bestelmeyer, 

Ward, and Havstad 2006; Monger and Bestelmeyer 2006). 

 
 

 
 

FIGURE 2 
SOIL-VEGETATION INTERACTION IN DESERT GRASSLANDS 

(Burke et al. 1998) 
 
 
 
Vegetation, in turn, can affect soil and geomorphology. As is demonstrated in 

the soil-geomorphic template (Figure 1), vegetation can: slow soil erosion; introduce 

nutrients and carbon; slow runoff, thus increasing infiltration; and improve soil 

texture by introducing organic matter. By slowing soil erosion through root 

anchorage, vegetation also slows the erosion of landforms. Additionally, by 

introducing nutrients and improving soil texture, one vegetation type can create an 

ideal environment for another vegetation type (i.e.: plant succession). In semi/arid 
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environments, soil-vegetation interaction is dominated by “resource islands”, which 

helps explain the patchy above-ground pattern of desert grasslands (Burke et al. 

1998). Geomorphology and soils are contributing factors in the spatial arrangement of 

vegetation on the landscape. However, natural movement of land, soils, and 

vegetation results more in gradations across the landscape than in crisp boundaries.  

 
2.2. Synthetic Boundaries 

In the context of this research, synthetic boundaries are boundaries established 

through a synthesis of implicit and explicit data. Implicit data is data that cannot be 

readily seen or assessed, such as soil types or land-use history, while explicit data is 

data that can be readily interpreted, such as a lake boundary or current land use. 

Synthetic boundaries are important in delineating management zones at the local, 

ecosystem, and ecoregions level. 

Ecoregions are large, regional-scale ecosystems, wherein interrelated biotic 

and abiotic systems are linked together (Tansley 1935; Bailey 2002;  2004). Though 

ecosystems have been mapped since the time of the ancient Greeks (Bailey 1996), the 

first world-wide ecoregion map was created in 1905 by Professor Andrew J. 

Herbertson (Unstead 1916). In his map, Herbertson took topography, elevation, 

climate, vegetation, and human population density into account (Herbertson 1905). In 

the following century, ecoregion maps have been recreated and evaluated. While 

many ecoregion maps (Küchler 1964; Omernik 1987; Bailey 1996;  2002;  2004; 

The Nature Conservancy 2010) continue to use some of Herbertson’s ecoregion 

factors, there exists little consensus in the placement of synthetic boundaries. This is 
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due to varying factors used in the creation of the boundaries (scale, soil, landforms, 

land use, potential natural vegetation vs. existing vegetation, climate, topography, 

hydrology, wildlife, slope, aspect, etc), as well as creating boundaries within ecotones 

(transitional zones between ecosystems) instead of treating the ecotone as its own 

system. The same issues occur when mapping at different scales, such as the 

landscape scale. Yet, in order for any map to gain credibility, an accuracy assessment 

of some sort needs to be performed. Typical accuracy assessments of this type check 

the thematic accuracy within the region, and assume the boundary to be accurate 

enough (Crist and Deitner 2007). Thematic accuracy of remotely sensed imagery does 

not take scale into account. Typically, high resolution aerial photos are compared to 

low resolution satellite images. However, whether scale needs to be taken into 

consideration when assessing positional accuracy of synthetic boundaries has yet to 

be determined. 

 
2.3. Issues of Scale 

Scale, in the context of this research, is defined as the spatial dimension 

(Figure 3) of a process or object (Turner, Gardner, and O’Neill 2001), such as a tree, 

stand, ecosystem, or landscape. Map scale is defined as the ratio of distance on a map 

to distance on the ground (DeMers 2008), while grain size (Figure 4) is defined as the 

level of spatial resolution (Turner, Gardner, and O’Neill 2001). Human scale in this 

research is defined as the scale at which a person can interact with their environment, 

while model scale is defined as the map scale at which the model was created. An 
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FIGURE 3 

SPATIAL SCALE IN SQUARE METERS  
(H. R. Delcourt, P. A. Delcourt, and Webb 1983; Turner, Gardner, and O’Neill 2001)
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example of human scale would be domestic dwellings, with doors, stairs, windows, 

etc. designed to accommodate the average person’s dimensions. One additional scale 

to consider in the context of human scale is automotive scale. Walking at 3.2 

kilometers per hour (kph; 2 miles per hour (mph)), a person can walk 100 meters in 1 

minute and 48 seconds. However, driving the same distance at 72 kph (45 mph) takes 

five seconds. Details perceived at automotive scale are less than the details perceived 

at the slowly walked human scale due to compressed space over time. As a result, 

perceived patterns change (Figure 5) because the map scale at which a person 

interacts with the environment is modified through an external force. In the same 

context, delineations on a map, such as boundaries, become more generalized the 

smaller (coarser) the map scale becomes. 

 
 

n=1 n=4 
FIGURE 4 

SMALL AND LARGE GRAIN SIZE COVERING THE SAME AREA  
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REAL was created at the landscape scale (model scale), using remotely sensed 

imagery from Landsat 7 ETM+ sensor. Landscapes are the extent which can be 

observed by a person (Peterson 1981). A landscape’s extent is arbitrary (Turner, 

Gardner, and O’Neill 2001) and can be influenced by line of sight and elevation; 

however, when observed with a satellite sensor, landscape scale can be observed 

without line-of-sight impedance. Because patterns and processes are scale dependent 

(Figures 3, 4, and 5) (Turner, Gardner, and O’Neill 2001), only larger grain 

ecosystem patterns within the landscape can be explored due to Landsat 7’s 30 square 

meters spatial resolution.  

 
 

FIGURE 5 
CHANGE IN PATTERN WITH CHANGE IN MAP SCALE 

Demonstrated using a Mandelbrot set zoom sequence  
(Demidov 2008; Wikipedia 2010) 

 
 
 
2.4. Remote Sensing and Image Classification 

For the purposes of this research, remote sensing is defined as spectral data of 

the earth’s surface acquired from satellites (Richards and Jia 2006). Different satellite 
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sensors have varying spatial, spectral, temporal, and radiometric resolutions. Spatial 

resolution refers to the amount of space represented in a single pixel. Spectral 

resolution refers to the depth and fineness of spectra, or wavelength bands. Temporal 

resolution refers to the time interval between image acquisition, and radiometric 

resolution refers to how finely intensity can be determined (levels of grayness). 

Optical satellite data is recorded as two-dimensional images containing multiple 

spectral bands, and is dependent on the four resolutions mentioned above. Data costs 

range from free to several thousand dollars. 

Since July 23, 1972, the United States’ Landsat satellite program has 

continuously recorded data about the earth’s surface (NASA 2010). To date, there 

have been seven Landsat satellites launched. Landsat 6 was the only satellite to not 

achieve orbit. Landsat 5 and 7 have a temporal resolution of 16 days and a 

radiometric resolution of eight bits (256 shades of gray). Landsat 4-7 sensors provide 

30 square meters spatial resolution for six spectral bands of visible, near-infrared, and 

mid-infrared. In addition, Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) 

sensor has a panchromatic band of 15 square meters spatial resolution, and a thermal 

band of 60 square meters (Table 1) (USGS 2010). Unfortunately, on May 31, 2003, 

the ETM+ sensor on Landsat 7 suffered a Scan Line Corrector (SLC) failure, causing 

data gaps in the imagery. Imagery used in this research was acquired from Landsat 7 

ETM+ in October 2001 (DeMers et al. 2010), prior to the SLC failure (Table 2). In 

2009, the Landsat archive became free to all users, making Landsat the most cost-

effective source of satellite imagery at a moderate resolution (USGS 2010). 
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TABLE 1 
ETM+ BAND DESIGNATIONS (USGS 2010) 

Spectral Band Use 

1 Blue-green Distinguishes soil from vegetation 

2 Green Assess plant vigor 

3 Red Emphasis on vegetation slopes 

4 Reflected near-infrared Emphasis on biomass 

5 Reflected near-infrared Moisture content of soils and vegetation 

6 Thermal infrared Thermal mapping and soil moisture 

7 Reflected mid-infrared Mineral deposits 

8 Panchromatic Panchromatic band for sharpening multi-spectral 
images 

 
 
 

TABLE 2 
SATELLITE SCENE AND METADATA 

Type Bands Path Row Date Scene ID 

L7 ETM+ 7 33 37 03 Oct 2001 LE70330372001276EDC00 
 
 

 
To use remotely sensed imagery for categorical data analysis, it must be 

classified into land cover classes. Through the process of classification, each pixel 

will be assigned to a pre-determined number of categories. Classifications can be 

performed through two different means: supervised and unsupervised (Richards and 

Jia 2006). In a supervised classification approach, representative pixels known as 

“training sites” are selected for each category (Schowegerdt 2007). Training sites 

should be homogenous areas free of anomalies while representing variation within the 
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land cover class. Remaining pixels are then statistically placed into each category 

based on a spectral signature analysis. Statistical methods include, but are not limited 

to, maximum likelihood and minimum distance. In maximum likelihood, pixels are 

classified according to the highest probability of a class, whereas minimum distance 

is based on a pixel’s spectral proximity to the mean vector of each class, not physical 

distance. In unsupervised classification, pixels are assigned to a pre-determined 

number of spectral classes without the use of training sites (Schowegerdt 2007). The 

premise is that each pixel will be more related spectrally to pixels within its class than 

to pixels in another class (Richards and Jia 2006; Tangjaitrong 2010). Changing the 

number of classes into which each pixel can be classified will invariably change the 

results of the classification.  

Both supervised and unsupervised classifications can result in a “salt and 

pepper” effect, whereby pixels are classified into categories dissimilar from the pixels 

surrounding them (Tangjaitrong 2010). Polygons can be made more homogeneous 

using either a clump-and-sieve or clump and eliminate approach. Clump minimally 

combines pixels within a specified neighborhood, while Sieve and Eliminate merge 

polygons smaller than a set size into the most appropriate neighboring class. The 

difference between the two is that Sieve reclassifies the polygons, while Eliminate 

maintains the original data. 

Once completed, classifications undergo an accuracy assessment to determine 

how well the classification matches actual conditions. Typically, 85 percent accuracy 
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is considered an acceptable classification, while field-collected data is considered to 

be 100 percent accurate. 

While several types of land cover classification schemes exist, this research 

uses the descriptive landform and vegetation classification scheme from 

DeMers et al. (2010) and Dugas et al. (2011) (Table 3). Landform classifications 

were based primarily on Peterson’s (1981) desert Basin and Range landforms, while 

vegetation classifications are mostly equivalent to those of Buffington and Herbel 

(1965), Dick-Peddie (1993), and Stubbendieck, Hatch, and Butterfield (1997). 

However, vegetation classifications were made more descriptive and applicable based 

on expert knowledge by renowned desert ecologist Dr. Walter H. Whitford. 

Supervised and unsupervised classifications are typical assessment methods 

used by remote sensors. Because REAL is derived from remotely sensed imagery, I 

thought it appropriate to use these classification schemes to test REAL at the model 

scale. 
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TABLE 3 
LANDFORM AND VEGETATION CLASSIFICATIONS 

Landform Vegetation (simplified) 
Aeolian terrain Alkali sacaton with burro grass OR burro grass flats with some 

tobosa 

Alluvial fan Creosote with scattered black grama and three awn-bush muhly 

Alluvial flat Alkali sacaton with burro grass OR tobosa grass and burro grass 

Ballena Black grama with scattered shrubs 

Depression Alkali sacaton with burro grass 

Disturbed N/A 

Fan piedmont Black grama with either creosote, yucca, or three awn-bush 
muhly OR presence of tarbush, with alkali-sacaton  

Fan skirt Presence of tarbush, with alkali-sacaton OR burro grass flats 

Inset Fan Tobosa and burro grass OR burro grass flats with some tobosa 

Lava flow Mixed black grama with creosote or tarbush OR burro grass 
flats 

Lake plain Alkali sacaton with burro grass 

Mountain slope Black grama with scattered shrubs 

Playa Alkali sacaton with burro grass 

Sedimentary bedrock 
hill 

Black grama grassland with yucca 

 
 
 
2.5. Natural Resources Conservation Service Soil Maps 

The Natural Resources Conservation Service (NRCS) is a federal agency 

responsible for leading all soil survey-related activities under the U.S. Department of 

Agriculture. The National Cooperative Soil Survey (NCSS), a partnership of private, 

federal, regional, state, and local entities, falls under the leadership of NRCS. NCSS 

inventories, documents, classifies, investigates, and disseminates information about 

soils in the United States (NRCS 2011). The soil surveys that NCSS creates and 

updates for NRCS are originally based on geomorphic features (NRCS 2011). 

Though the primary purpose of soil surveys is the classification of soil types, not 
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geomorphology, soil scientists use geomorphology-soil-vegetation relationships to 

determine their soil boundaries (Neher 1984), making the NRCS soil maps a potential 

method to compare with REAL’s geomorphic boundaries.  

Given the amount of area to cover, and the verification of collected data 

involved, soil surveys are constantly underway on a rotating basis. The most current 

soil survey performed in Sierra County, New Mexico was completed in 1980 and 

published in 1984 (Neher 1984). Soil surveys are typically conducted by digging soil 

profiles to test for thematic accuracy. No testing is done to determine the accuracy of 

soil boundaries on the surface. 

 
2.6. Line-Intercept Transect Sampling 

Transect sampling, specifically line intercept-transect sampling (LIS), is the 

most appropriate field method for determining boundary location on the surface 

(Klimaszewski-Patterson 2009).  LIS quantifies any element of interest (element) that 

breaks the plane, or intercepts, a line (transect). Elements can include, but are not 

limited to, trees, shrubs, grass, slow-moving animals, signs, or any other item that is 

nearly stationary (D. R. Anderson et al. 1979). LIS is not the same as a line transect. 

With line transects, the observer travels along transect, counting and recording the 

distance, direction, and angle to elements (Buckland et al. 2001; Melville and Welsh 

2001).  Line transects are typically used for wildlife. LIS quantifies elements either 

continuously or at standard intervals (Rich et al. 2005). Elements recorded include 

any portions touching, underlying, or overhanging transect (Roth 1984).  To perform 

LIS, a tape measure is stretched between two points. The observer records the starting 
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and ending points of all elements, including bare soil, intersecting the transect.  

Observer bias can occur for the following reasons: bends in transects due to wind, 

shrubs, and/or stems; interpretation of gap sizes; and vertical estimates due to canopy 

cover. These observer biases can be mitigated by: suspending the transect line 

between two points, establishing a gap threshold (e.g. 5 centimeters), and using a pole 

to site the canopy along transect (NBII 2005). In addition to observer bias, statistical 

bias can also occur due to transect’s direction, length (random vs. fixed), and 

placement of transect’s center (Kaiser 1983). Direction and length are relevant biases 

for vegetation surveys, but boundary verification requires a specific direction and 

consistent length (Klimaszewski-Patterson 2009).  Random direction methods are 

also inappropriate because transect’s direction may run parallel with the boundary 

(Figure 6).  To ensure the boundary is tested, transect must be placed perpendicular to 

the boundary (Figure 7) (Buckland et al. 2001).  Fixed-length transects ensure the 

transition zone is consistently covered to best estimate the boundary’s location.  

Randomly locating transect’s central point mitigates some statistical bias while 

ensuring the boundary is the object tested, not the vegetation coverage and/or density. 

LIS is recommended for open vegetation types such as steppes, open grassland, and 

shrub lands (Küchler and Zonneveld 1988). LIS also works well in relatively natural 

desert grassland environments (Klimaszewski-Patterson 2009) and can be quickly and 

easily implemented. 
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FIGURE 6 
RANDOM LENGTH AND DIRECTION 

TRANSECTS 
Shades of grey indicate polygons  
(Klimaszewski-Patterson 2009)

FIGURE 7 
FIXED LENGTH WITH 

PERPENDICULAR TRANSECTS  
Shades of grey indicate polygons 
(Klimaszewski-Patterson 2009)
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LIS is performed at the human scale. Because a moving average can be used 

to determine where a vegetation shift occurs along transect, LIS is appropriate for 

determining boundary locations. Therefore, LIS is an appropriate technique to test 

REAL at the human scale. 

 
2.7. Coefficient of Areal Correspondence 

A quantifiable value, such as a coefficient of areal correspondence (CAC), is 

necessary to assess REAL at the model scale. Simply stated, CAC is the amount of 

overlap between two polygons (P. Muehrcke and J. O. Muehrcke 1992). CAC is used 

primarily when the data being tested is nominal, and the emphasis is on the 

correspondence between two data sets. CAC is calculated as: 

 
Overlap of regions A  B 

 
Area covered by regions A  B 

 
No overlap results in a CAC of 0.0, and perfect correspondence results in a CAC of 

1.0 (Figure 8). CAC quantifies how well boundaries between two datasets compare 

(Johnston et al. 2009), making it an ideal measure for testing the spatial accuracy of 

REAL against other models at the same scale. 
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Landscape boundaries imply an abrupt change in the landscape that rarely 

occurs in nature due to the fuzzy nature of ecotones. Most research to this point has 

assumed landscape boundaries to be accurate and a subjective interpretation of 

polygon variance (Crist and Deitner 2007). This research, therefore, determines 

whether the accuracy of synthetic landscape boundaries can be assessed. To 

accomplish this goal, the accuracy of REAL’s synthetic boundaries is assessed at two 

scales: the human scale and the model scale. Line-intercept transect sampling will be 

used to assess accuracy at the human scale. Common remote sensing techniques of 

supervised classification, unsupervised classification, and image segmentation will be 

used to create alternative boundary models at the model scale. CAC will then be used 

to assess the comparative overlap between the alternative boundaries and REAL’s 

boundaries. A conservative strategy of 0.5 CAC (50%) will be considered successful 

FIGURE 8 
SAMPLE COEFFICIENT OF AREAL CORRESPONDENCE (CAC) 

CALCULATION 
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agreement (Crist and Deitner 2007) of the land type boundary, given that one model 

is being compared against another. Determining CAC’s statistical significance is 

inappropriate for this research because the data does not relate to the Central Limit 

Theorem. 

Geomorphology, soils, and vegetation interrelate on the landscape; however, 

they rarely leave crisp boundaries under natural conditions. Therefore, synthetic 

boundaries are created to manage the land, creating a thematic expectation within the 

polygon. Traditional accuracy assessments test thematic accuracy and assume the 

boundary’s location to be accurate enough (Crist and Deitner 2007). My research 

tests whether the accuracy of synthetic boundaries can be assessed, and if so, at what 

scale – human or model. At the human scale, surface boundaries are most 

appropriately tested with LIS and an automotive-assisted random walk. CAC is the 

most appropriate quantification to determine overlap between REAL and computer-

assisted classifications at the model scale. 

 



24 

3. METHODS 

3.1. Research Design 

I assessed the accuracy of REAL’s predictive synthetic boundaries at two 

scales: human and model, with model being the scale at which REAL was created. 

These two scales were chosen to determine the appropriate scale at which REAL 

could be assessed. Given the primary goal of REAL was to rapidly “triage” an arid 

environment using “low-tech” methods, the human scale assessment method was 

designed to keep with this spirit of the original work. I did not assign this restriction 

to the model scale assessment because computer accessibility and retail software was 

required. 

 
3.2. Study Area 

The same study area used in the development of a model, such as REAL, 

needs to be used when testing the accuracy of synthetic boundaries. This is because 

the model’s boundaries are being examined. REAL was developed for use in 

semi/arid environments, and was calibrated in the northern Chihuahuan Desert 

ecoregion. 

The northern Chihuahuan Desert (Figure 9) is sparsely vegetated and has 

elevations ranging from 600 m to 1675 m. In southern New Mexico, the Chihuahuan 

Desert has grass-shrub ecotones with very clumped and patchy vegetation (Chopping 

et al. 2004). Grasses include black grama (Bouteloua eriopoda), blue grama 

(Bouteloua gracilis), mesa dropseed (Sporobolus flexuosus), red threeawn (Aristida 

purpurea), tobosa (Hilaria mutica), and burro grass (Scleropogon longisetus). Shrubs 
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include mesquite (various), creosote bush (Larrea tridentata), tarbush (Flourensia 

cernua), and alkali sacaton (Sporobolus airoides) (Chopping et al. 2004; DeMers et 

al. 2010; Dugas et al. 2011). The topography is predominantly Basin and Range. 

  
 

 
 
 
 
Chosen as the calibration site by DeMers et al. (2010), Armendaris Ranch 

(Ranch; Figure 9) is located in Sierra County near the town of Engle (33.2042 N, 

-106.9183 W), 120 kilometers north of Las Cruces, New Mexico. Situated within the 

Rio Grande rift zone, the Ranch lies in the basin between the Fra Cristobal Range to 

the west, and San Andres Range to the east (Figure 10). Precipitation varies greatly, 

both  

 

FIGURE 9 
RANCH AND THE CHIHUAHUAN DESERT 
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FIGURE 10 
TOPOGRAPHIC PLACENAMES SURROUNDING ARMENDARIS RANCH 

 (Adapted from Kelley (2008)) 
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between years and throughout the entire study area (Figure 11; Table 4). The Ranch’s 

355,600 acres are considered to have some of the last “pristine”, minimally impacted 

desert grasslands in the northern Chihuahuan Desert (Bowser 2003). Privately owned 

for over 300 years, the Ranch was created via Spanish land grant in 1819, and 

patented in 1881. William Bell purchased the Ranch in 1895, followed by Victorio 

Land and Cattle Company in 1903, the Armendaris Corporation in 1968, and finally 

Ted Turner in 1994 (Bowser 2003). Though Ranch is used in commercial bison 

production (approximately 12,000 heads), the site has been used to reintroduce and 

provide habitat to endangered desert grassland species such as bison (Bison bison), 

aplomado falcons (Falco femoralis septentrionalis), willow flycatcher (Empidonax 

traillii), and bolson tortoises (Gopherus flavomarginatus) (Truett 2002; Bowser 2003; 

Edwards et al. 2009). An additional advantage of Ranch is that its geomorphology 

and vegetation are identical to the Jornada Long Term Experimental Research Station 

(Jornada), located near Las Cruces, New Mexico. Jornada is an anthropogenically- 

impacted area with over 100 years of ecological records and research, allowing for a 

comparison of the calibrated model (Ranch) against another control.  

Given the vast size of Ranch, the study area was limited to Sierra County 

(Figure 11), and smaller sample areas (SAs) within the study area were selected for 

this analysis so that vegetation boundaries tested are at least 1,000 meters in length or 

the length of the boundary itself, whichever was greater. SAs were selected to 

maximize the number of unique boundaries on Ranch into the smallest number of  
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TABLE 4 
VARIATION IN AVERAGE PRECIPITATION THROUGHOUT RANCH IN 

CENTIMETERS (INCHES) 
 (Waddell pers com; APPENDIX A) 

 1998 2002 2003 2005 2007 

Engle 27.97 (11.01) 18.19   (7.16) 10.24  (4.03) 24.66  (9.71) 31.19 (12.28)

Casa Grand 14.22   (5.60) 27.03 (10.64) 9.50  (3.74) 25.02  (9.85) 42.06 (16.56)

Mesa Camp 19.05   (7.50) 34.32 (13.51) 12.62  (4.97) 23.62  (9.30) 19.86   (7.82)

 
FIGURE 11 

RANCH PRECIPITATION STATIONS
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SAs (Figure 12). SAs were selected a priori, without any knowledge of roads, 

fence lines, other forms of anthropogenic impact, or accessibility. 

 
 

 
FIGURE 12 

ORIGINAL STUDY AREA WITH PLANNED SAMPLING AREAS 
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3.3. Human Scale – Line-Intercept Transect Sampling 

Line-intersect transect sampling (LIS) is used to quantify objects that 

intercept, or break the plane, of a line transect. Based on conclusions by 

Klimaszewski-Patterson (2009) and Küchler and Zonneveld (1988), I used line-

intercept transect sampling as the human scale method for assessing the synthetic 

boundaries’ accuracy. The following sampling rules, based on Klimaszewski-

Patterson (2009), were used: 

1. A minimum sampled boundary length of 450 m long, with transects placed 

perpendicular to the boundary (Figure 13); 

2. Three transects per boundary type; 

3. A 90 m buffer from the boundary of the study area and other vegetation 

types, to help eliminate edge issues (Figure 13); and 

4. Transects spaced at least 90 m from each other 

 
 

 

 
FIGURE 13 

TRANSECT BUFFERS 
(Klimaszewski-Patterson 2009) 
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For human-scale testing only, which is based on vegetation (Table 5), land 

was excluded from the original study area based on a high likelihood of human-

induced impact. ArcGIS shapefiles indicating roads, streams, rail, sections, properly 

boundary, and vineyards (past and present) within the study area were acquired from 

Tom Waddell, Ranch Manager. Vineyards and military bases were excluded in 

entirety from the revised study area. Based on recommendations by renowned desert 

ecologist Dr. Walt Whitford (pers comm.), a one-mile exclusion buffer was placed 

around all known wells, tanks, mills, and camps/residences. As a result, two of the 

original SAs (B and F) were excluded from field sampling, and all but one SA (D) 

were affected with reduced area/boundary types (Figure 14). 

I used a stratified random sampling with 90 meter LIS perpendicular to the 

tested boundary. To minimize edge effect, I buffered boundary edges 90 meters from 

the SA edge, and/or where a neighboring boundary ran near the LIS. Locating a 30 

meters “pixel” in the field can be difficult; therefore, I also applied a 30 meters (one 

pixel) buffer on either side of the tested boundary for my positional inaccuracy. This 

was done to ensure that transect would cross the modeled boundary. As such, 90 

meters became the standard distance from the SA/neighboring boundary edge, the 

distance between transects, and the length of a LIS. For each tested boundary, the 

initial LIS was determined by selecting a random number between 1-2. The number 1 

represented north and west, and the number 2 represented south and east. The random  



	

 

TABLE 5 
REVISED HUMAN-SCALE STUDY AREA – VEGETATION TYPES 

 (Legend modified from Dugas et al. (2011)) 
 

V1. Black-grama (Bouteloua eripoda) grassland with scattered creosote (Larrea 
tridenta) and ocotillo (Fourquiera slendens) [Shrub-Mixed Grass Series] 

 
V3. Creosote (Larrea tridenta) with scattered black grama (Bouteloua eripoda), 

three-awn (Aristida spp.), and bush muhly (Muhlenbergia porteri) [Grama-
Threeawn Series] 

 
V4. Black grama (Bouteloua eripoda) grassland, with blue grama (Bouteloua 

gracilis) and hairy grama (Bouteloua hirsuta) [Grama-Grass Series] 
 
V5. Tobosa (Hilaria mutica) and burrograss (Scleropogon brevifolius), 

vinemesquite (Panicum obtusum) in clay-loam soils [Closed Basin-Playa-
Alkali Sink Riparian] 

 
V6. Burrograss (Scleropogon brevifolius) flats with Tobosa (Hilaria mutica) 

[Tobosa Series] 
 
V7. Black grama (Bouteloua eripoda) grassland with soaptree yucca (Yucca 

elata). Localized mesquite due to disturbance [Grama Grass Series] 
 
V8. Mixed black grama (Bouteloua eripoda) grassland with creosote (Larrea 

tridenta) and tarbush (Flourensia cernua) [Shrub-Mixed Grass Series]. 
Burrograss (Scleropogon brevifolius) flats on silty, clay-loam soils 

 
V9. Grass cover mixture of alkali sacaton (Sporobolis airoides) and burrograss 

(Scleropogon brevifolius) [Sacaton Series/Closed Basin-Playa-Alkali Sink 
Riparian] 

 
V10. Mosaic of mesquite (Prosopsis glandulosa), creosote (Larrea tridentate), and 

alkali sacaton (Sporobolis airoides) [Chihuahuan Desert Scrubland]  
 
V11. Creosote (Larrea tridentate) with black grama (Bouteloua eriopoda) 

[Disturbed Chihuahuan Desert Scrubland] 
 
V12. Occurances of tarbush (Flourensia cernua), alkali sacaton (Sporobolis 

airoides) [Disturbed Chihuahuan Desert Scrubland] 
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FIGURE 14 

REVISED HUMAN-SCALE STUDY AREA 
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number determined the starting edge of the SA from which the following steps were 

performed: 

1) Buffer in 90 meters from the SA or neighboring boundary edge; 

2) Select a random number from 0-5; 

3) Multiply the random number by 30 meters and move along the boundary by 

the additional amount; 

4) Place the center of the LIS on the boundary and extend by 45 meters in 

either direction; and 

5) Place all subsequent LIS in 90 meter increments along the tested boundary 

I used a five centimeters gap-threshold when performing LIS. Readings were taken 

from the point where vegetation crossed (intercepted) the transect in a vertical plane. 

A minimum of three transects were performed for each boundary type. 

Considering that homogeneity is not typical in the natural environment 

(Stohlgren 2007), dominant plant species coverage was used to establish the actual 

location of the tested boundary with a moving average (Figure 15). The boundary is 

considered accurate for that transect if it falls along the transect length (equivalent to 

three pixels on the base image). Agreement of 75% of the transects per boundary type 

indicates that the boundary placement is accurate, correlating to two of three transects 

per boundary (majority rule). 
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Alternatively, as the goal of REAL was a “rapid” assessment, I took a GPS 

reading at the point where the visible vegetation boundary crossed the transect if the 

boundary between vegetation types was self-evident (a sharp ecotone). I performed an 

ocular estimate using a 20 centimeters quadrat (Küchler and Zonneveld 1988) along 

transect at 10 meters intervals to collect ancillary data for dominant vegetation types 

and coverage (eight total quadrats). These quadrat data could be used to confirm the 

vegetation types on either side of the boundary, as well as offer additional coverage 

data to aid in quantifying the descriptive nature of the vegetation classes. 

I performed fieldwork from September to November 2009, and again in July 

2010. The 2009 fieldwork was sporadic due to logistical issues, and was conducted 

FIGURE 15 
DETERMINING BOUNDARY LOCATION 

(Klimaszewski-Patterson 2009) 
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primarily when the grasses were senesced but towards the end of their flowering 

period. I conducted fieldwork towards the end of the flowering season so that all 

grasses had flowered to make species identification easier. The 2010 fieldwork was 

conducted at the beginning of senescence due to logistics. Species identification was 

still possible, but the amount of cover each plant provided may have been less than 

expected later in the season.  

 
3.4. Human Scale – Automotive Random Walk 

In 2003, DeMers et al. assessed REAL with an automotive random walk  

(DeMers et al. 2010). The use of this random walk technique led to an automotive 

scale being incorporated into the original assessment. I thought it appropriate to 

recreate the original assessment method as another human scale method of accuracy 

assessment. 

I performed automotive-based random walks in July and September 2010 on 

roads that appeared accessible to my field vehicle. I determined positioning using 

both a Trimble Juno SB and an HTC G1 Dream (G1) Android smartphone running 

OruxMaps. A discussion on G1’s viability as a GPS device is available in 

Klimaszewski-Patterson (2010). I recorded approximate location on a paper map 

displaying REAL vegetation boundaries when I saw a vegetative transition occur. 

When crossing a REAL boundary, I visually determined whether a vegetative 

transition occurred or not, and often left the vehicle to confirm general vegetation 

types before and after the hypothetical REAL boundary. 
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3.5. Model Scale – Computer-Assisted Classifications 

Different remote sensing classification schemes, and even variable settings 

within a scheme, can cause different polygon (and boundary) configurations. Because 

remote sensing classification schemes are in themselves constructs, REAL’s 

geomorphic boundaries were compared to computer-assisted supervised and 

unsupervised classifications created in ERDAS IMAGINE 2010 (Erdas; Tables 6-7) 

(ERDAS 2010). All classification schemes used the same ETM+ imagery (Table 2) 

and were performed on a layerstack of bands 1-3 a mosaicked digital elevation model 

(DEM). These setting were used to most closely approximate methodology used by 

Dugas et al. (2011) when creating REAL boundaries. The unsupervised classification 

used 14 classes (the same number of geomorphic classes in REAL), 1,000 maximum 

iterations, and a convergence threshold of 0.999. The supervised classification used 

15 training sites per land cover type (Buenemann pers comm.), except where the 

geomorphic type spanned multiple visible colors (i.e. Alluvial Flat).  In this case, 

similar areas within the spectrum were classed separately and merged together post-

classification to minimize pixel confusion.  

 
 

TABLE 6 
UNSUPERVISED CLASSIFICATION SETTINGS 

Initialize 
From 

Max. 
Iterations 

Convergence 
Threshold 

Skip Factors 
X/Y 

Classify 
Zeros 

Standard 
Deviation 

Statistics 1,000 0.999 1/1 No  
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TABLE 7 
SUPERVISED CLASSIFICATION SETTINGS 

# Training 
Sites 

Fuzzy 
Classification 

Non-Parametric 
Rule 

Parametric 
Rule 

Standard 
Deviation 

15 No None Maximum 
Likelihood 

 

 
 
 
I performed post-processing on all classifications. Due to the “salt-and-

pepper” effect that can occur in a classification, functions Clump and Eliminate were 

used in Erdas to create more homogeneous areas (polygons).  I performed Clump 

with a neighborhood setting of 8.  I subsequently performed Eliminate for clumped 

polygons smaller than 40 hectares (400,000 square meters).  I chose 40 hectares as the 

minimum mapping unit (MMU) because (1) it corresponds most closely to the 

smallest dissolved polygon created by REAL, and (2) it is the MMU under GAP 

(Crist and Deitner 2007). 

I calculated Coefficient of Areal Correspondence (CAC) for each geomorphic 

class (Appendix B) to compare the overlap of REAL and supervised classifications 

(Appendix C).  Next, I converted the classified raster data to vector for analysis, as 

Raster Calculator does not perform actions for cells with “NoData”. 

I did not perform accuracy assessments for any of the classifications, as 

REAL would have been used as the source for expert knowledge. Using REAL in this 

way would have resulted in circular logic, with REAL being both the truth set and the 

source being tested. 
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Third, at the model scale, training sites used for supervised classifications are 

a matter of personal assessment, and more art than science. A different technician 

could create a supervised classification with the same dataset and achieve a differing 

set of CAC results, while maintaining the same aspatial overlap in area. 
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4. RESULTS 

4.1. Human Scale 

Human scale testing using LIS was performed before exclusion zones were 

created (Figure 14). I also performed LIS before realizing that the originally digitized 

boundaries were misregistered, and approximately 200 meters too far west. 

Therefore, most LIS fieldwork is invalid for the purposes of this research because 

(1) the examined boundaries fall within excluded areas, and (2) examined boundary 

locations are off by 200 meters. The only field data remaining where exclusion zones 

are not a factor is for SA D (Table 8), as I was unable to gain access to SA A’s V4-

V9 boundary. Within SA D, boundaries V11-V12 and V12-V3 may not have been 

significantly impacted by the eastward correction of boundary locations, as the 

boundaries themselves were mostly east-west. However, while conducting LIS, I 

misunderstood the definition of vegetation class V12 to mean that its polygon should 

be dominated by tarbush. I later learned through consultation with Dr. Dugas (pers 

comm.) that V12’s definition meant that tarbush could be present, but not necessarily 

the dominant type (creosote is dominant type in SA D). Because there was no tarbush 

along the proposed transect’s path, V11-12 and V12-3 were recorded as incorrect 

boundaries and no LIS was performed. 

Automotive-based random walk scale testing was performed before exclusion 

zones were created, but after correction of misregistered boundaries. Outside of 

exclusion zones, vegetation types and REAL boundaries matched well with REAL. 
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Inside of exclusion zones, vegetation types within polygons and bordering REAL 

boundaries were mostly incorrect (Figure 16).  

 
 

TABLE 8 
LINE-INTERCEPT TRANSECT SAMPLING (LIS) RESULTS 

Sample 
Area 

Boundary 
1 

Boundary 
2 

Exists? Comments 

D V9 V11 N/A Too close to road 
D V11 V12 No No tarbush along transect 
D V12 V3 No Creosote to creosote transition 
D V3 V9 N/A Too close to road 
D V9 V8 N/A Mislocated 
D V8 V7 N/A Mislocated 
D V7 V9 N/A Too close to road 

 
 
 

4.2. Model Scale 

The unsupervised classification proved unusable for analysis due to 

uncertainty in class allocation. I was unable to perform either a CAC or an accuracy 

assessment for the unsupervised classifications because I could not confidently 

determine which unsupervised class corresponded to which REAL geomorphic class 

(Figure 16). Based on polygon placement, the unsupervised classification seems to 

have given greater weight to the topographic layers (DEM, slope, and aspect) than to 

the spectral signature (Figure 17). As a result, I performed an unsupervised 

classification using only a layerstack of ETM+ bands 1, 2, and 3 to remove the 

perceived topographic bias and possibly improve the classification results 

(Figure 18). Uncertainty in class allocation persists, and the two unsupervised 

classifications demonstrate the variability in polygon placement based on inputs. 
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FIGURE 16 
UNSUPERVISED CLASSIFICATION OVERLAID WITH REAL 

BOUNDARIES FOR VISUAL COMPARISON 
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FIGURE 17 

UNSUPERVISED CLASSIFICATION OVERLAID WITH 60M CONTOUR LINES 
(TOPOGRAPHY) 
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FIGURE 18 

UNSUPERVISED CLASSIFICATION USING ONLY LANDSAT 7 ETM+ BANDS 
3, 2, AND 1 
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The supervised classification had mixed results when compared to REAL 

(Figure 19). Spatial correspondence (Figure 20) meeting the established 50% 

threshold (0.5 CAC) occurred for only three of the 14 the geomorphic classes: lava 

flows (0.60 CAC), mountain slopes (0.64 CAC), and playas (0.74 CAC). Geomorphic 

classes with the least overlap (<0.2 CAC) include: ballena, depression, disturbed, lake 

plain, and sedimentary hills (Table 9). These same classes were considerably 

overestimated by the supervised classification (10,000+ sq km). Inset Fans had no 

spatial correspondence between REAL and the supervised classification. Aspatially, 

geomorphic classes with area values overlapping by at least 50% were: aeolian terrain 

(97.4%), alluvial fan (88.0%), alluvial flat (56.2%), fan skirt (75.9%), lava flows 

(91.9%), mountain slopes (85.5%), and playa (97.8%; Table 9). Though half the 

geomorphic classes had similar aspatial values for area, the results of CAC are more 

valid because CAC takes the spatial position of the geomorphic classes into account. 

Overlaying both computer-assisted classifications (supervised and 

unsupervised) showed no visual correlation (Figure 21). I did this to determine if the 

two computer-assisted models shared greater similarities with each other than they 

did with REAL. Based on a visual assessment, there does not appear to be any greater 

similarity between the supervised and unsupervised classifications than there is with 

REAL and the unsupervised classifications. 
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FIGURE 19 
SUPERVISED CLASSIFICATION OVERLAID WITH REAL 

BOUNDARIES FOR COMPARISON 
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FIGURE 20 
COEFFICIENT OF AREAL CORRESPONDENCE (CAC) FOR REAL AND 

SUPERVISED CLASSIFICATION, BY GEOMORPHIC CLASS 
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TABLE 9 
COEFFICIENT OF AREAL CORRESPONDENCE (CAC) AND AREA BETWEEN 

REAL AND SUPERVISED CLASSIFICATION, BY GEOMORPHIC CLASS 
Geomorphic 
Class 

CAC 
REAL Area 
(sq km) 

Supervised 
Area (sq km) 

Difference in 
Area (sq km) 

Similar 
Area 

Aeolian 
Terrain 

0.4171 116,211.948 119,304.236 -3092.288 97.4%

Alluvial Fan 0.3613 44,545.380 50,622.619 -6,077.239 88.0%

Alluvial Flat 0.2745 60,265.067 107,291.181 -47,029.144 56.2%

Ballena 0.1405 2,736.114 14,253.641 -11,517.527 19.2%

Depression 0.0894 3,976.297 31,616.962 -27,640.665 12.6%

Disturbed 0.1082 3,967.259 33,266.423 -29,299.164 11.9%

Fan Piedmont 0.2151 158,072.970 68,185.155 89,887.815 43.1%

Fan Skirt 0.2242 110,128.323 83,625.737 26,502.586 75.9%

Inset Fan 0.0000 656.525 131.096 525.429 20.0%

Lake Plain 0.1832 6,388.781 28,942.012 -22,553.231 22.1%

Lava Flows 0.6022 39,880.338 43,392.771 -3,512.433 91.9%

Mountain 
Slope 

0.6423 48,934.145 41,834.535 7,099.610 85.5%

Playa 0.7371 2,664.003 2,605.118 58.885 97.8%

Sedimentary 
Hills 

0.1067 5,572.843 41,977.494 -36,404.651 13.3%
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FIGURE 21 

UNSUPERVISED CLASSIFICATION OVERLAID WITH SUPERVISED 
BOUNDARIES FOR COMPARISON 
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5. SUMMARY 

Classifying land to establish management boundaries predates Carl Sauer 

(1921); however, Sauer clearly established two questions that classifications seek to 

answer: (1) how is the land used, and (2) what is the land’s potential. This research 

aims to see if it is possible to not only assess boundary accuracy, but to assess that 

accuracy for a model that maps a land’s potential. All while using existing land 

conditions for the assessment under the assumption that minimally impacted land will 

demonstrate the land’s potential vegetation based on geomorphology. I tested 

REAL’s boundaries at two scales: the human scale, and the model scale. 

I used LIS and automotive-based random walk to test boundaries at the human 

scale. Though fieldwork was invalidated for most SAs, I could clearly see that the 

LIS method I had established would not work well in capturing ecotones. If a 90 

meters transect could capture an ecotone, then I could just as well approximate the 

transition at an accuracy of 30 meters (the size of a Landsat 7 ETM+ pixel). I do not 

think any intercept-transect sampling method would work well because specific 

vegetation types, such as yucca elata, would have to fall on the transect. Instead, line 

transects, similar to those performed in wildlife surveys, may be more appropriate. 

However, labor and time costs remain factors given the quantity and length of line 

transects that would need to be performed. The automotive random walk was far 

more successful at the human scale. Though limited to roadways, the compression of 

space in time allowed me to notice boundaries that were not self-evident when 

walking through the same area. This is likely because small patches appear larger the 
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closer you are to them, both in space and time. The overlapping nature of ecotones is 

less evident at an increased speed, allowing for the boundary to be perceived. 

Granted, the random walk is pre-defined in a certain way, given road placement, but I 

could also look several hundred feet in to the tested polygon to determine whether the 

vegetative boundary appeared to be correct or not. Of all the methods tested, 

automotive random walk seems the most promising, both in terms of assessing 

boundaries closer to the scale they were created in, and in maintaining the “rapid” in 

REAL. 

I used computer-assisted supervised and unsupervised classifications to test 

boundaries at the model scale. Unsupervised classifications were unsuitable because I 

could not decipher class correspondence between the classification and REAL. In 

addition, the original unsupervised classification (bands 1-8, DEM, slope, and aspect) 

appeared to give greater weight to topography than to spectral signatures (Figure 17). 

While topography was a factor in the creation of REAL boundaries, it was used to 

determine breaks in the landscape. Because REAL was created based on an image 

using bands 3, 2, and 1, I decided to perform a simplified unsupervised classification. 

The resulting unsupervised classes were even more chaotic, and showed no 

resemblance either to REAL or the supervised classification (Figure 18). Given the 

class correspondence issue, and the fact that included bands in the analysis will result 

in drastically different classifications, I highly recommend that unsupervised 

classification not be used for boundary analysis in the future. 



	

52 

The supervised classification demonstrated reasonable correspondence with 

REAL where geomorphic features exhibited strong spectral signatures, such as lava 

flows, mountain slopes, and playa. The result is to be expected, as even an untrained 

geomorphic eye can readily distinguish the three landforms in the satellite image. 

Unfortunately, the supervised classification I ran was limited to spectral signatures, 

and could not take texture (i.e. ballenas) or topography into consideration. As such, 

the CAC was below 0.50 for all other landforms. This limitation may have also been 

a major contributing factor to inset fans having a CAC of 0.0 (no overlap). In REAL 

inset fans were determined based on slope and topography, two factors which were 

not used in the supervised classification. 

Though CAC is, for the purposes of this research, the best method for 

comparing classifications with REAL, there is a limitation. REAL is a smoothed 

vector model. Classifications are raster, and by nature, pixelated. Even when 

classifications are converted from raster to vector, the original “jaggedness” of the 

classification remains. Therefore, a CAC of 1.0, indicating perfect correspondence, is 

impossible (Figure 22). This limitation is best seen in the playa landform (Figure 23). 

Even with considerable visual correspondence, the CAC indicates only 74% overlap 

between the two models. Unfortunately, determining a maximum CAC other than 1.0 

is not reasonable, because the maximum value would depend on the area being 

compared.  
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FIGURE 22 

VISUALIZATION IN OVERLAPPING VECTOR AND 
RASTER DATA FOR CAC 
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FIGURE 23 

PLAYA EXAMPLE OF COEFFICIENT OF AREAL CORRESPONDENCE 
(CAC) LIMITATION 
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6. CONCLUSIONS 

Assessments need to be performed at the scale relative to the patterns being 

observed. Assessments taken at a finer scale may demonstrate unrelated trends to 

those observed at a broader scale, as was the case with LIS at the human scale. LIS 

can capture specific information about the landscape, but cannot be reasonably 

performed over the entire width of an ecotone due to the high cost of time and labor. 

However, expanding the human scale to include an automotive scale may allow 

researchers to rapidly, and with reasonable confidence, assess a boundary’s location 

at a scale closer to landscape patterns and processes. This is possible because space 

becomes compressed in the same amount of time, and the human eye more readily 

skips over minor differences in the landscape. The landscape at an automotive scale 

can be assessed with a broad stroke, allowing the researcher to see the forest instead 

of the trees. Though pinpoint accuracy should not be expected with an automotive 

random walk, such an assessment can provide researchers with reasonable confidence 

to the model’s accuracy. 

All the approaches used to assess REAL’s boundary accuracy at the model 

scale are themselves models, leading to mixed results. Comparing the classified 

models to REAL is similar to asking different impressionist artists to paint the same 

subject – though there are similarities, each model is a unique result of the attributes 

used to assess the subject. Unsupervised classifications are unviable because I cannot 

confidently determine class correspondence with REAL. In addition, class boundaries 

can change based on the inputs used (area of interest, spectral bands, ancillary data, 
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etc.) when creating the unsupervised classification. Supervised classifications 

eliminate the class correspondence issue, but do not take texture, elevation, or 

ancillary data into account – pixels are simply assessed by their spectral signature. 

Geomorphic classes with highly distinct spectral signatures, such as playas, mountain 

slopes, and lava flows, can be extracted reasonably with a supervised classification; 

however geomorphic classes with less distinct spectral signatures, or where texture 

may play a part in their delineation, are poorly extracted. Therefore, the use of 

supervised classifications is restricted as a comparative accuracy assessing method. 

Overall, this research determined that though some synthetic boundaries can 

be partially assessed given caveats, the exact position of any boundary can not be 

specifically determined. At the human scale, an automotive random walk allows 

boundaries to be most readily assessed, but not located precisely. At the model scale, 

supervised classifications can extract highly distinct spectral signatures, but boundary 

placement can differ depending on training sites used in the classification. Expecting 

a quantifiable accuracy assessment on precise boundary placement of a synthetic 

model, such as REAL, is largely unreasonable. At best, an agreement on the general 

location of polygons can be reached, especially when using a method such as an 

automotive random walk.  
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7. DISCUSSION 

In conducting this research, I made two important assumptions: that the study 

area exhibits minimal anthropogenic impact, and that vegetation within polygons is 

correctly labeled. I use these assumptions so that I am examining purely whether 

synthetic categorical boundaries can be assessed. While the study area has been 

privately owned for nearly 300 years, there is some impact from cattle grazing and 

human use. While I made efforts to remove from the original study area portions of 

the Ranch known to have some kind of impact, there may be some unknown 

impacted areas that remained in the study area (i.e.: faunal grazing patterns impacting 

perceived dominant vegetation cover). Additionally, the buffers applied to areas of 

impact may not have been broad enough (ex: 1.6 kilometers around sources of water, 

90 meters from man-made structures such as roads and fences). I assumed vegetation 

within the boundaries to be accurate based on informal random walk conducted in 

2003 and 2010. These assumptions were made so that I could examine purely whether 

the accuracy of categorical boundaries can be determined. 

I encountered several issues when conducting this research, especially at the 

human scale. First, I used misregistered boundary data when performing LIS. Former 

students created the boundaries using a digitizing tablet around the year 2001. I 

assumed the data to be valid, and never verified the data against the satellite imagery. 

I did not realize the misregistration until I zoomed in on the map when visualizing my 

imported transects. At that point I could see the misregistration because even my 

untrained eye could detect certain geomorphic boundaries on the satellite image 
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(notably the lava flows and alluvial fans). Upon consultation with Drs. DeMers and 

Dugas, I rubber sheeted the original REAL boundaries approximately 200 meters 

east. The boundaries then lined up well with the satellite image, though I could see 

some minor areas where I would have digitized the boundary differently. I think that 

if REAL were updated and digitized directly on the satellite image today, some 

boundaries may shift slightly, but not enough to impact general land use. 

Second, I had a misconception of the term “pristine”. I thought pristine meant 

wholly and completely untouched, in a perfect, non-impacted state.  Instead, 

“pristine” should be interpreted to mean that minimally impacted areas exist and are 

as close to natural as is possible in the modern day. Because of my semantic 

misunderstanding, it never occurred to me to gather infrastructure information (roads, 

fencelines, vineyards, etc.) for the study area prior to determining SAs. Nor did I 

realize that prior cattle use in the study area would have impacted the land so greatly 

in such a short time. It wasn’t until late 2010, when I spoke with Dr. Walter H. 

Whitford, that I learned of the cattle impact within the study area, and the need to 

create exclusion zones around known tanks and wells. If I had gathered infrastructure 

and impact data before creating the SAs, I would have placed SAs outside of 

exclusion zones to and made sure that testable boundaries met my LIS rules. 

Third, I was forced by circumstance to conduct fieldwork over a protracted 

period of time; therefore, seasonality may have had an impact on quantifying 

dominant plant species by coverage. After fieldwork was performed in 2009 and 

2010, I concluded that 90 meters transects rarely captures the entire width of an 
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ecotone, especially with the descriptive categorical boundaries involved. 

Unfortunately, capturing an ecotone several kilometers long would be time and cost 

prohibitive, especially when testing a model based on a rapid assessment.  

Last, I misunderstood REAL’s descriptive vegetation categories, especially 

V12 (tarbush and alkali sacaton). I thought each category meant that the vegetation 

listed would be the dominant vegetation in the polygon. Instead, some categories, 

such as V12, indicate that the vegetation is present, but not necessarily the dominant 

type. REAL’s vegetation categories should be described more clearly to indicate 

whether the class indicates that the vegetation can appear, versus being dominant. 

Doing so would eliminate this type of confusion. 

When performing human scale testing in the future, I would recommend 

verifying all data prior to use, speaking with persons intimately familiar with the 

study area to gather land use history and infrastructure data, and clearly 

understanding definitions being used to describe categorical data. Doing so will 

eliminate, or at least minimize, main issues I encountered with human scale research. 

For computer-assisted classifications, results may vary based on inputs used, 

study boundaries, training sites, bands used, auxiliary data, and the skill of the 

technician performing the classification. The key is computer-assisted, not computer-

independent. While the computer is assisting in the classification, the resulting 

classification ultimately depends on the skill and knowledge of the technician. I 

performed unsupervised and supervised classifications to the best of my ability. 

Unsupervised classifications carry an inherent uncertainty because the technician has 
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no control over how classes are created. Therefore, some ambiguity in determining 

correspondence between unsupervised classes and known classes is expected. 

Additionally, unsupervised classification boundaries can change based on using 

software other than Erdas. However, results can vary (Figure 24), even with 

supervised classifications. Ultimately, model scale testing uses one construct to test 

another. As such, expert knowledge is required to determine which model is more 

accurate than the other. REAL is based on expert knowledge. 

 
 

 
FIGURE 24 

EXAMPLES OF A SUPERVISED CLASSIFICATION BY DIFFERENT 
TECHNICIANS 
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I looked at NRCS soil maps as a comparative method; however, a establishing 

a relationship between NRCS and REAL was not reasonable for a variety of reasons. 

First, the geomorphic definitions between the two models did not appear to match. 

The fieldwork for the Sierra County soil map was completed in 1980, with soil 

descriptions approved in 1981 (Neher 1984). 1981 is the same year Peterson’s 

Landforms of the Basin and Range Province Defined for Soil Survey was published, 

the foundation from which REAL geomorphic units were defined. Therefore, the 

NRCS soil map could not have used Peterson’s geomorphic definitions. The disparity 

in geomorphic definitions could explain items such as why NRCS soil maps placed 

alluvial fans at the very top of mountain slopes, or why piedmont and fan piedmont 

definitions varied greatly between NRCS and REAL. Attempting to crosswalk the 

two models proved ineffective, as the amount of categorical joining left only five 

categories for analysis: depression, lava flow, mountains, piedmont, and playa/basin 

(Figure 25). NRCS’s low hills did not fall into any appropriate REAL geomorphic 

unit. Second, NRCS soil maps are created from a three-dimensional view of the soil 

through use of soil profiles. REAL was created purely from what is visible on the 

surface (i.e.: a two-dimensional satellite image), without knowledge of underlying 

soil structure. Third, NRCS takes the approach of studying the soil first, considering 

soil-vegetation relationships to establish boundaries (Neher 1984), and assigning soil 

units to a geomorphic unit. REAL looks at geomorphic units and then assigns a 

vegetation relationship to the unit. In short, the two models approach mapping from 

two different methodological directions.  
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FIGURE 25 

CROSSWALK OF NRCS SOIL MAP AND REAL 
 

 
 
Another method that could be used to examine correspondence with REAL is 

image segmentation. Image segmentation takes the approach of dividing images 

based on shape, similar to the way the human eye perceives. Pixels are divided into 

segments, also known as superpixels, based on context. Segments are typically 

determined based on edge detection, intensity, color, and texture. Image segmentation 

software, such as Definiens eCognition (Trimble 2010), is typically expensive and 

difficult to learn. Given the power of segments, several geographic programs are 

attempting to incorporate the technology, with varying degrees of success. Thus far, 

eCognition is recognized as a leader in image segmentation software. In eCognition, 

object-based analysis is possible through defined rule sets. Rule sets may consist of a 
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segmentation algorithm, classification algorithm, and layer operation (Trimble 2010). 

Segmentation algorithms include multiresolution and quadtree segmentations. With 

the multiresolution algorithm, objects are based on a scaling factor, where pixels are 

merge into segments based on their “degree of fitting” (Baatz and Schape 2000). 

Image segmentation does not automatically identify all objects at their final scale. 

Instead, smaller segments are created that are grown into larger segments through 

classification (Baatz and Schape 2000). A classification algorithm, such as nearest 

neighbor, compares and classifies each pixel based on its neighbors (Schowegerdt 

2007). Layer operations are additional means by which segments can be further 

distinguished. Layer operations include slope, aspect, and edge detection (Trimble 

2010). Slope is the steepness in changes of value, aspect is the cardinal direction in 

which a surface faces, and edge detection seeks sharp contrasts between pixels. A 

combination of segmentation, classification, and/or layer operation algorithms creates 

a rule set with which software such as eCognition can perform image segmentation. 

Image segmentation can be difficult and costly to perform, both in time and 

money – two resources I did not have at the time of this research. However, the 

process works similarly to the human eye, and requires expert knowledge of the 

image being segmented. Because expert knowledge was used in creating REAL, I 

find it circular logic to use REAL as both the test set and truth set. 

Given all of the above issues and observations, several future research 

opportunities exist. First, I would explore whether 90 meters is a sufficient distance 

from roads, fences, etc. to minimize impact on vegetation, with regard to field testing. 
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Second, I would examine if vegetation boundaries can be determined if integrating 

line transects (for rare vegetation, such as yucca elata) with point-intersect transect 

sampling of vegetation, assuming transects than span the entire ecotone. Third, I 

would explore how a supervised classification that takes elevation, texture, and 

spectral signature into account compare to REAL. Finally, I would determine how 

image segmentation compares to REAL, both spatially and in the time needed to 

create the segmentation.
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APPENDIX A 
PRECIPITATION RECORD FOR ARMENDARIS RANCH, NEW MEXICO 

2002 - 2009 
 

   2002    2003    2004    2005   
 Engle C.G. Mesa Engle C.G. Mesa Engle C.G. Mesa Engle C.G. Mesa 

Jan. 0.08 0.08 0.15 0.02 0.06 0.10 0.16 0.15 0.10 1.11 2.62 1.55 
Feb. 0.36 0.34 0.20 0.69 0.51 0.60 0.07 0.10 0.23 1.24 1.53 1.20 
Mar. 0 0 0 0.02 0.02 0.02 0.71 0.48 0.40 0.66 0.43 0.90 
Apr. 0.03 0.04 0 0.05 0 0.15 2.21 2.25 2.10 0.62 0.49 0.70 
May 0.43 0.91 1.50 0.04 0.04 0.05 0.40 0.26 0.30 1.22 0.52 0.30 
June 0 0.10 0.75 0.11 0.02 0.40 0.10 0 0.30 0 0.10 0.15 
July 1.45 3.00 5.55 0.43 0.12 0.30 0.39 2.00 1.35 0 0 0.40 
Aug. 0.58 1.50 1.15 1.26 0.50 1.00 1.64 0.80 0.75 3.31 2.31 1.60 
Sept. 2.10 2.38 1.86 0.11 0.35 0.10 0.89 1.50 1.45 0.67 1.00 0 
Oct. 0.74 0.47 0.70 0.58 1.49 1.50 0.99 1.20 1.19 0.88 0.85 2.50 
Nov. 0.47 0.59 0.60 0.72 0.63 0.75 2.03 1.40 1.00 0 0 0 
Dec. 0.92 1.23 1.05 0 0 0 0.34 0.55 0.95 0 0 0 

Total 7.16 10.64 13.51 4.03 3.74 4.97 9.93 10.69 10.12 9.71 9.85 9.30 

             
             
  2006    2007    2008    2009  

 Engle C.G. Mesa Engle C.G. Mesa Engle C.G. Mesa Engle C.G. Mesa 
Jan. 0.09 0.10 0.02 1.13 1.10 1.50 0.08 0.15 0.05 0 0 0 
Feb. 0.05 0.05 0 0.12 0 0.75 0.10 0.15 0.10 0 0 0 
Mar. 0 0.01 0.05 0.15 0.20 0.40 0 0 0 0.14 0.05 nr 
Apr. 0.07 0.02 0 0.44 1.12 0.60 0 0 0 0 0 0 
May 0.10 0.50 0.50 4.40 3.94 1.80 0.30 2.31 0.85 2.25 1.30 nr 
June 0.76 0.53 0.36 0.19 3.06 0.25 0.03 0 1.11 0.28 0.20 0.10 
July 2.64 3.13 2.77 1.38 0 0.85 5.36 5.30 1.50 1.08 3.65 nr 
Aug. 3.64 1.80 2.06 1.82 3.87 0.72 0.36 1.55 0.90 0.02 0.03 nr 
Sept. 2.95 0.95 1.05 0.90 2.12 0.55 3.85 3.85 2.35 0.15 0.10 nr 
Oct. 2.40 2.25 1.40 0.70 0 0 0.42 0.80 0.85 0.40 0.30 nr 
Nov. 0 0 0 0.45 65 0.30 0.15 0.05 0.35 0.48 0.32 nr 
Dec. 0.39 0.70 0.25 0.6 0.5 0.10 0.05 0 0 0.97 0.80 nr 

Total 13.09 10.04 8.46 12.28 16.56 7.82 10.70 14.16 8.06 5.77 6.75 0.10 

 

Engle: Engle, NM 
C.G.: Casa Grand Camp, Armendaris Ranch 
Mesa: Mesa Camp, Armendaris Ranch 
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APPENDIX B 
ACTIONS FOR CREATING COEFFICIENT OF AREAL CORRESPONDENCE (CAC) 

 
1). For each REAL geomorphic class: 
 
Step Action Toolbox Settings Purpose 

1 Dissolve Spatial Analyst Default, on 
GEOMORPH 

Create solid, multipart geomorphic polygons 

2 Export Data Spatial Analyst Default Separate SHP for each geomorphic class 
 
2). For each supervised class: 
 
Step Action Toolbox Settings Purpose 

3 Extract by Attribute Spatial Analyst Default Separate raster file for each geomorphic class 

4 Raster to Features Spatial Analyst Default Convert raster to vector (polygons) 

5 Dissolve Spatial Analyst Default, on 
GRIDCODE 

Create solid, multipart geomorphic polygons 

 
3). For each class created in parts 1 and 2: 
 
Step Action Toolbox Settings Purpose 

6 Union Spatial Analyst Default (Join all) Union the supervised and REAL class 

7 Edit Table Spatial Analyst Default Add data to support calculations and display 

     Add Column 
        AREA 
        CAC 

  
Sq. Meters (LONG) 
(FLOAT) 

 
For calculating CAC 
Store calculated CAC 
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APPENDIX C 
COEFFICIENT OF AREAL CORRESPONDENCE (CAC) FOR EACH 
GEOMORPHIC CLASS, REAL VS. SUPERVISED CLASSIFICTION 
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