

Options for Lunar Power Beaming

A presentation to the FISO group

Henry W. Brandhorst, Jr.

President and Chief Technology Officer

October 27, 2010

Carbon-Free Energy, LLC

Outline

***** Introduction

***** Lunar applications

- » Equatorial
- » Polar

★ Mars

***** Summary

Introduction

***** U.S. Space Exploration Policy – past...

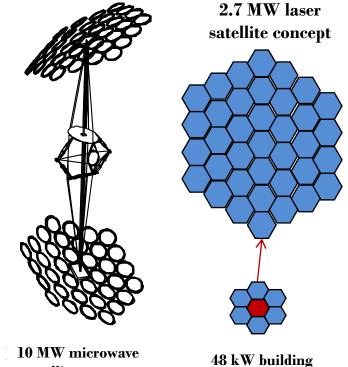
- » Envisions NASA exploration progression from lunar to Mars
 - ▲ Moon is challenging due to:
 - > ~2 week night time solar energy is an issue (nuclear?)
 - \clubsuit South pole location for sunlight plus $\rm H_2O$ possibility
 - > Hazardous dust abrasive, health issues, contamination
 - > Extreme temperature cycling
 - ▲ Mars is challenging due to:
 - > Thin CO₂ atmosphere plus dust (limits sunlight, shifts spectrum)
 - ✤ However, dust is much less abrasive, cleared by wind/dust devils
 - > High iron content, may impact fission reactor option
 - > Reduced level of sunlight ($\sim 36 52\%$ of earth AM0)
- ✗ But the plans are all in turmoil right now
 - » Evolving and dependent upon appropriations
 - » Past options may be relevant
- * Power beaming has been a topic of discussion for several decades
 - » Let's look at its applicability to lunar exploration (and a bit on Mars)

Lunar (and Mars) Orbital Operations

★ Lunar options

- » L1 location (~56,000 km) (L2 for the rear side)
- » Equatorial circular or elliptical orbits
 - ▲ Limited view time to N and S and to site location
 - ▲ Precession
- » Polar elliptical orbits
 - ▲ Excellent for N or S polar landing site
 - ▲ Largely "frozen" orbits
- * Mars options
 - » Areosynchronous orbit (17,000 km)
 - ▲ Equivalent to GEO stationary over equator
 - \checkmark Views ~1/3 of Mars surface

Power Beaming Options


* Lunar options

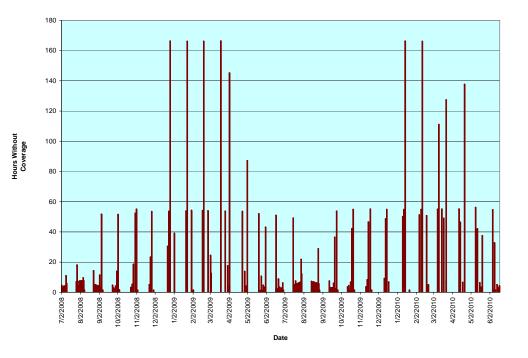
- » Microwave
 - ▲ 5.8, 10 and 35 GHz wavelengths
- » Laser
 - ★ 830 850 nm laser wavelength
 - ▲ Optimal for GaAs SJ cells (TJ won't work)
 - ▲ Other wavelengths are feasible, but must match with solar cell response
- ✤ Mars options
 - » Microwave
 - ▲ 5.8, 10 and 35 GHz wavelengths
 - » Laser
 - ▲ 1060 nm and 10.6 μm wavelengths
 - ▲ 1060 limits solar cell options, but 850 nm case is similar

Lunar Power Beaming from L1

- * Microwave option (10 MW)
 - » Transmitter 1.5 km dia.
 - » Rectenna receiver 4 km dia.
 - » Transmitted power − 17.6 MW
 ▲ 20 W/m² at beam center
 - » Satellite power $\sim 50 \text{ MW}$
- ***** Laser option (10 MW)
 - » Constellation of 14 2.7 MW satellites in halo orbit at L1
 - ▲ Each with 55 48 kW building blocks with laser
 - » Transmitters 770, each 1 m dia.
 - » Receiver dia. 50 m
 - » Transmitted power 14.6 MW
 - » Total satellite power 90 MW
- Ambitious design not practical due to large beaming distance

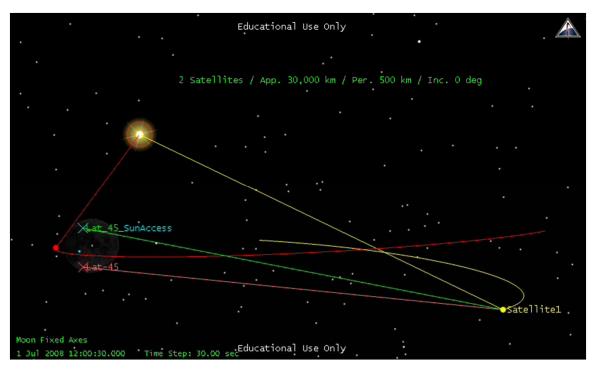
block plus laser

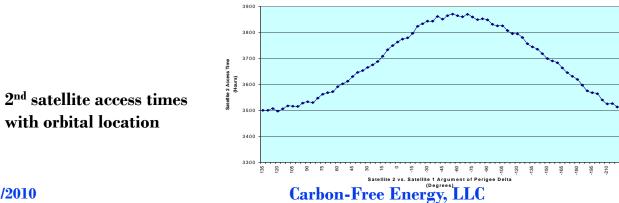
satellite concept


Lunar Laser vs. Microwave Beaming

- ✤ Microwave beaming
 - » Beaming from L1 is best situation
 - » Requires large transmitter area which limits size of satellite
 - » Or a very large surface rectenna
 - ▲ Need to pay careful attention to excitation of rectenna diodes
 - ▲ Limits orbital choice, not considered further
- ***** Laser beaming
 - » Distance from receiving site is not a major issue
 - ▲ Opens door to other types of orbits
 - » Aperture in space will set the system design
 - » Lower end-to-end efficiency at this time
 - ▲ With no atmosphere on moon, adaptive optics unnecessary, tbd Mars
 - » Pilot beam control necessary

Lunar Equatorial Elliptical Orbit

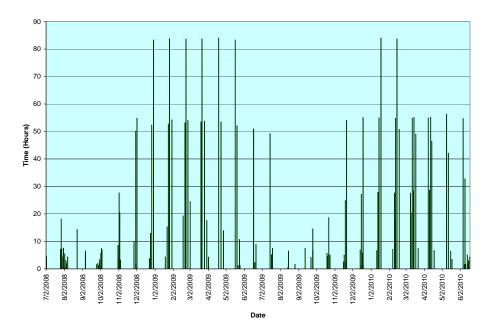

- ***** Wide range of orbits examined
- ***** Chose 500 x 30,000 km orbit
 - » Generally good coverage
 - » Beaming distance a concern
 - » Microwave beaming not considered due to sizes
- Ran STK 7.1 for 2-year period
 » July 1, 2008 to June 30, 2010
- ★ Beamed to surface sites 45°
 - » When in view of satellite
 - » AND satellite was in sunlight
- Times when no satellite power beaming possible:
 - » Up to 164 hours (~7 days) with single satellite



Lunar Equatorial Orbit – Two Spacecraft

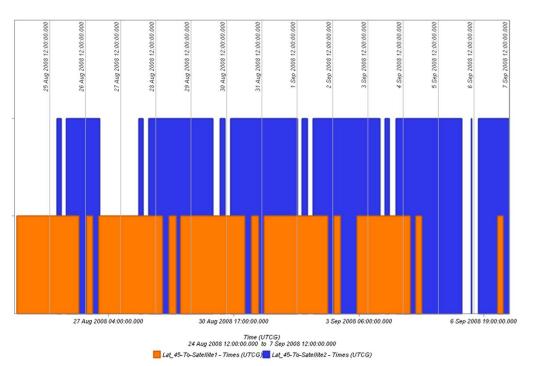
Satellite orbits around the moon with beaming

Satellite 2 Base Access Time vs. Satellite 1 Argument of Perigee Delta

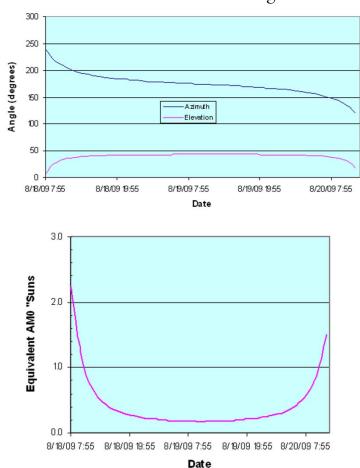

10/25/2010

Equatorial Two Satellite View Times

* 2nd satellite improved view times


- » Adjusted orbital angular offset
- » Power beaming times increased
- Times with no beaming decreased substantially
 - » Only 8 periods of 84 hours (3.5 days)
 - » Rest of the time it's lower than 54 hours (2.25 days)
- Will reduce the mass of surface storage system
 - » For equatorial $\pm 45^{\circ}$ inclinations

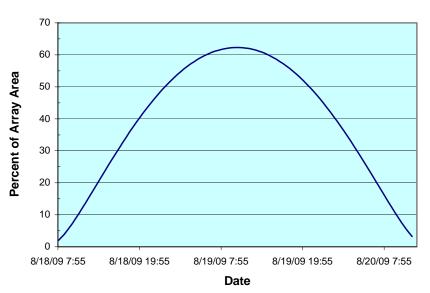
Overlapping Coverage - Equatorial


- Satellite view times often overlap
- Is an opportunity for substantial power increase
 - » Laser power to surface PV array
 - » Requires a non-tracking planar array with 1J GaAs cells
 - ▲ Monochromatic laser beam cannot be used with MJ cells
 - ▲ Did not compute this option
 - » Can't use tracking concentrator array to view dual satellites
- Many opportunities for increased power to surface location

Laser Power Beaming - Equatorial

- Uses 850 nm diode pumped laser, 4 m diameter beaming aperture
 - » 90 kW satellite power available
- Laser beam incidence angles determined by satellite orbit
 - » Surface array tracks E-W
- Laser intensity varies due to view angles and orbital elevation
 - » Satellite near moon when beaming starts ~2 AM0
 - » At 30,000 km, beam intensity ~0.2 AM0 sunlight

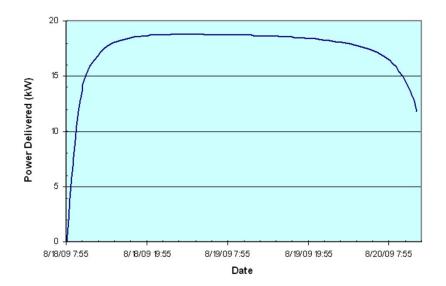
Laser beam incidence angles


Surface Solar Array/Laser Beam

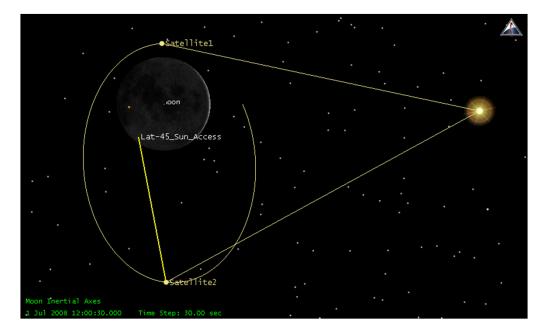
★ GaAs surface array

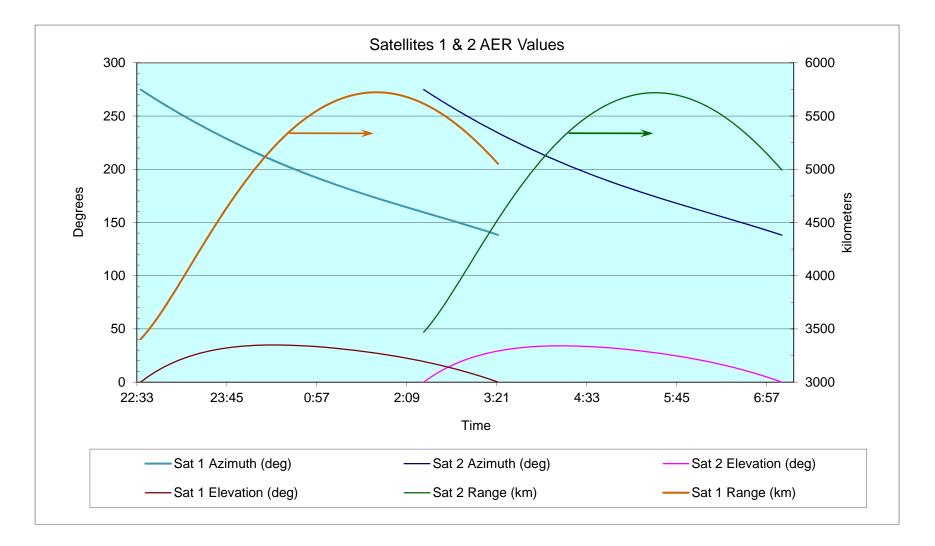
- » Nominal 60 kW
- » ~18% efficient GaAs cells
- » Temperature corrected

***** Size of laser spot on surface array

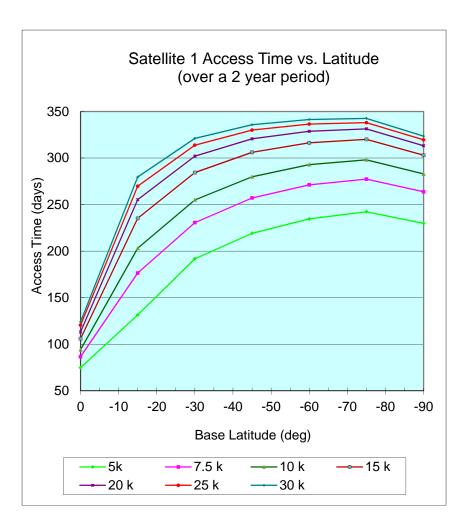

- » Must be less than total array area
- » Largest spot size is at 30,000 km elevation
 - ▲ ~60% of GaAs surface solar array illuminated

Lunar Power Produced by Laser


- ***** Chose 45° N site for calculation
 - » Most difficult case
- Calculated laser beam power from satellite
 - » ~90 kW, 50% conversion of orbital electricity into laser beam
 - » 12% mirror losses
- Calculated surface GaAs solar array as laser receiver
 - » 45% conversion of laser beam into power
- ★ 18 kW power delivered to site
 - » With tracking array on surface
 - » Further increase with planar array and dual satellite beams

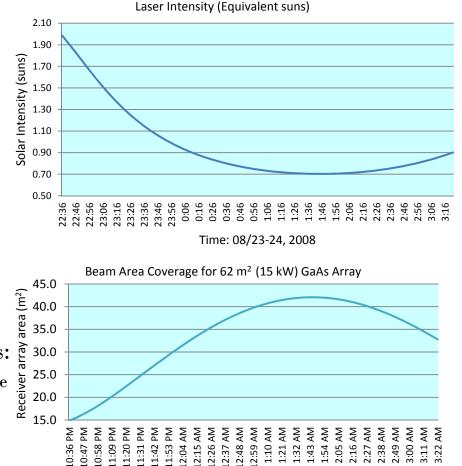

Polar Power Beaming Satellites

- Two satellites in polar elliptical orbit – "frozen" orbit
 - » Offset by ~180°
 - » 500 x 5,000 km orbit
 - » ~7.5 hr. orbital time
 - » Apogee over the south pole
- ★ 850 nm laser beam
 - » 1.5 m² aperture (1.38 m dia.)
 - ▲ Increases beam size on surface vs. previous case
- Uses 1-J GaAs tracking array on surface
 - » Can track one satellite
 - » Or can use fixed array
 - Receive power from two satellites


Satellite Parameters – 8/23-24/08 (500 x 5,000 km Polar Orbit)

Surface Access Times for Polar Orbits

- Polar orbits give excellent access times
 - » From the pole to $\sim 30^{\circ}$
 - » 5,000 km apogee has least view
 - ▲ Two satellites required
 - ▲ Both satellite access times are comparable
- Access time depends on satellite altitude
 - » Higher provides more access
 - ▲ Longer beam distance reduces power received
 - » Second satellite can provide more power
 - ▲ If it can also be tracked
 - ▲ Or use fixed planar array



Carbon-Free Energy, LLC

Power Delivered to Lunar Surface

- With a tracking array, power to the surface is essentially constant
 - » ~16.8 kW per satellite
 - \gg 50% power conversion to laser beam
 - » 45% conversion of laser into power
 A Includes other losses as well
 - » Assumes a 15 kW surface array (in sunlight, 62 m² in area)
 - ▲ Neither receiving array area nor laser beam intensity is excessive
 - ▲ Can also adjust beaming parameters
- With two satellites, the longest time a receiver at 45° does not receive power is:
 - » Only 1.5 hours maximum, less for a polar site
 - » <u>Substantially</u> reduces storage!
- * Laser beaming is a very plausible option!

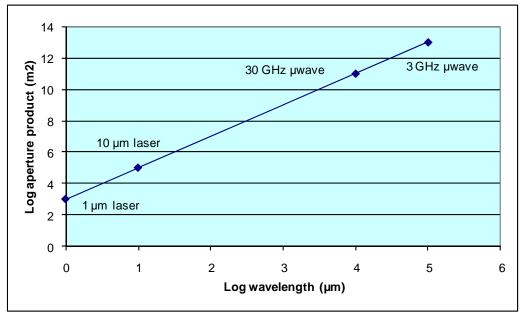
Time: 08/23-34, 2008

10/25/2010

Carbon-Free Energy, LLC

Lunar Power Beaming Summary

* Three cases of lunar power beaming were studied


- » L1 orbit microwave and laser
 - ▲ Extremely large 10MW satellites, mainly for microwave aperture
 - ▲ Both feasible, but laser more amenable to smaller satellites
- » Equatorial orbit, ±45° N-S, two satellites, 500 x 30,000 km (2 year), 90 kW
 - ▲ 850 nm laser, 4 m² beaming aperture, ~18 kW with two satellites, GaAs array
 - ▲ Eight times with storage times of 84 hours, rest of time <54 hours
- » Polar orbit, -90 to 45° S two satellites, 500 x 5,000 km (same for N), 90 kW
 - ▲ 850 nm laser, 1.5 m² beaming aperture, ~16.8 kW with either satellite
 - ▲ Maximum dark time of only 1.5 hours
- * Laser power beaming to lunar surface seems feasible
 - » Multiple orbits are possible, no adaptive optics
 - » Substantial reduction in energy storage times for any location
 - » Can yield significant mass savings for exploration architecture

Power Beaming Options for Mars

***** Power beaming options

- » Microwave -2.45 and 35 GHz
- » Laser 10.6 and \sim 1.0 μ m
- » Sized receiving station ▲ 95% effic. $-(2\lambda D)^2 = (A_R A_T)$
- ***** Summary of analysis
 - » Microwave impractical because:
 - ▲ Transmitter area limited
 - ▲ Rectenna area huge, therefore:
 - ▲ Diodes not fully activated
 - » Lasers have lowest areas
 - ▲ But lower efficiency thermal
 - > 0.9 μ m diode laser, >45%
 - A PV receivers for $<1\mu m dust$?
 - \bigstar 10.6 µm dismissed due to CO₂

Summary/Conclusions

- * Lunar power beaming
 - » Microwave option L1 is only realistic point (L2 is the same)
 - \checkmark Requires a large A_T higher power satellites and higher frequency
 - ▲ Diode activation in rectenna a large concern
 - » Laser option most flexible option
 - ▲ Satellite size flexible, equatorial ($\pm 45^{\circ}$) and polar "frozen" orbits two satellites
 - Pilot beam desirable, GaAs cell receiver with ~850 nm laser best (~50% conversion)
 - ▲ Laser efficiency needs to increase (thermal)
- * Overall, power beaming is a realistic option for lunar (and perhaps Mars)
 - » Lunar option reduces need for energy storage, but requires two satellites
 - » Mars areosynchronous orbit, but dust and atmosphere may be issues