THE CONSTRUCTION OF MODERN WIRE. WOUND ORDNANCE.

No. VI.

Tre barrel having been passed for diameter and straightness, and having received the official stamp which indicates that work on it may be continued, passes to the lathe for fine turning. It is necessary, however, to go
back a step. Whilst the barrel was being bored the next hoop or jacket which has to be shrunk on to it was in progress, also being hardened, rough turned, annealed, \&c., hoops is an easier matter than that of the barrels; they are larger in diameter, so that not only can larger boring bars be used, but the progress of the work can, as once put right. On the other hand, several steps occur in every hoop, and there are corresponding has to be observed, both in the concentricity of the bores and the regularity of the shoulders. As the latter have to withstand the longitudinal stresses in the
piece, the work is usually done in very heavy and stiff machines, which attain very great sizes when the outer hoops for the largest guns have to be dealt with. The boring tool itself is quite different from that used for
barrels, and resembles very closely the used in ironworks for boring steam cylinders. In the largest size the bar itself does not move longitudinally, but the tool head carefully fitted upon it is moved slowly
along by two or more screws all worked simultaneously along by two or more screws all worked simultaneously
from a single central toothed wheel. The work itself in this case being fixed, and not revolving as in the barrel, the boring bar has to be made as stiff and short as possible. The work is often thus very much cramped or shut up, and the difficulty of dealing with it increased. exceeds four, and is generally two, except for the first borings, when a pair of roughing-out tools precedes
a pair taking a finer cut. The finishing cut is frequently a pair taking a finer cut. The finishing cut is frequently
executed with one tool only. The part of the bore of greatest diameter, if of any extent, is bored to size first, the tool for the next diameter being adjusted from that already bored by gauging between the cutting edge
and the inside of the work, an ordinary point or bar gauge being used. It should be mentioned that a horseshoe gauge is used to check the diameter of the first
part bored, the method being that adopted in all engineering works. The tool for the other steps is set in a
similar manner, as a rule oft the first bore. This class similar manner, as a rule off the first bore. This class
of boring, it is hardly necessary to say, is exceedingly tedious work, the greater diameter of necessity making the progress far slower than on the barrels. To give longitudinal strength to the gun-that is
to say, to make as stiff as possible, considered as a cantilever or girder-it is necessary that the hoops
should be joined together where they butt. It is should be joined together where they butt. It is
also of importance, for the same reason, that the steps in the hoop should in contracting bring an equal amount of pressure on the corresponding steps on
the barrel, or in the case of an outer course, on the hoops below it, and at the same time the joint must do its
full work without being unduly stressed. In the case of the $12 \mathrm{in}$. service gun the steps are formed by
the fastening rings of the wire course. In a case where there are a number of consecutive steps, it is of the greatest importance that all the steps bear equally;
for as it is impossible from the nature of the construction to present a large excess of area in any one shoulder, damage to the material is likely to occur if the load is not distributed over all the bearing surfaces. It will be evident, too, that unless all the shoulders act
the gun is less well supported. The necessity, therefore, of knowing absolutely the length from shoulder to shoulder, and finally to the joint, if it be a contraction joint, is of the first importance to the excellence of the gun. This gauging for length is done with steel plate
templates of the form shown in the figure. The extemplates of the form shown in the figure. The ex-
tremity A of the longer piece is pushed up against a tremity A of the longer piece is pushed up against a
shoulder, the hook of the shorter placed against the next shoulder, and the two square ends brought together. They should, of course, just touch, when the distance

between the shoulders will be that required. The greatest care is necessary with the use of a gauge of this
description to ensure that it is lying. on a true median description to ensure that it is lying, on a true median
longitudinal line, otherwise an error will occur. To check longitudinal line, otherwise an error will occur. To check
these these dimensions further, and to make sure that the
shoulders are presenting a true surface, a gutta-percha shoulders are presenting a true surface, a gutta-percha
mould is taken, embracing a pair of steps. The guttamould is taken, embracing a pair of steps. The gutta-
percha is steeped in hot water till it is soft and plastic, when it is spread in a very thick layer on a special board prepared for it, which is then placed in position and the gutta-percha pressed between it and the part of the bore
of which the impression is to be taken. When the guttaof which the impression is to be taken. When the guttapercha has quite hardened the
the mould readily examined.
A few sentences back reference was made to a contraction joint; of this and other gun joints it will now be necessary to say a few words. The object of their use is, as we have said, to connect two hoops together, or occahoop to the barrel. They are so arranged as to cause the contraction of the hoops or tubes to take place all in one direction, so that the courses of the gun are drawn closely together. A common form of joint consists in turning a number of rings on the outside of one tube, and corresponding rings on the inside of the adjoining and $\begin{aligned} & \text { In section the rings present the appearance of } \\ & \text { serrations in the form of a buttress screw thread, and }\end{aligned}$ serrations in the form ocasionally made as screws. They are only
very shallow, but deep from back to front. When the outer hoop is heated its serrations pass over those on the other part, but as it cools its serrations fit into those on the other, and bind the two firmly together. Another form of joint resembles a bayonet catch. The outer tube whilst hot is dropped into place and given a partial turn, when it is at once locked.
The formation of the female part of any of these joints has to be made on the boring machine in which the rest of the work has been executed; or occasionally the exigencies of management make it necessary to transfer the work to another machine, in which case the resetting has to be performed with the utmost care. The serrated whole, the the most commonly used, and is, on the gauging the serrations and making the male exactly to fit them has to be observed.
The second course-the barrel is known technically as the first course-being ready, and having been gauged with the greatest accuracy by means of bar gauges or length gauges, already described, the same gauges themselves, if suitable, being again used, the fine turning of the barrel is commenced. In that this description does not strictly apply to it. The barrel is generally chucked first with the muzzle end held and centred by four dogs on a face-plate, for which purpose an excess of length is left, whilst into the opposite end-in small guns, as a rule, rough-chambered usual way. The work is then set by the smooth places on its
boring.
Turning is a comparatively rapid operation. The tool, as a rule, is not in any way lubricated. Frequent portions have been reduced to size, the shoulders are carefully cut to length. The final scraping to gauge is done with a rather broad tool, used dry, which produces a surface with very slight, regular undulations; this is rarely, and generally only locally, in places which are so slightly above the gauge that the tool cannot be made to cut.
Various forms of gauge for external diameter have form are used On the Continent some of rather complex with the simple form figured below as with any. This is steel, of shout tin.
so
to 3 in. thick. The $\xrightarrow[S]{\sim}$ to zin. thick. The
extremities A and
B are hardened B are hardened,
and the distance
between their polished face adjustment with a
hammer, a blow at C increasing the a blow at D -on the flat side, be it understood decreases it. The final adjustment is made by rubbing the faces A and B with an oil stone. The gauge is set either by another gauge or by a standard measuring machine of any good description. The use of such a gauge is, we fee tempted to say, psychological, the exact very nealy ing the gauge is of considerable importance. The lowe limb of the gauge is supported by resting in the hollow securely. The point of it is pressed firmly against the work and held there steadily. The operator with his right hand grasps the gauge rather above its centre, and
by moving his arm slightly backwards and forwards by moving his arm slightly backwards and
Gauges of smaller diameter which can be dealt with by one hand are firmly grasped by the centre. In either case, whether using one or both hands, the instrument is not pushed straight over the cylinder to be measured.
The motion is rather a rotation about one of the extremi. The motion is rather a rotation about one of the extremities, which is always that which is either lowest or nearest to the opcrator. An exception to this action, and, indeed,
to the whole method, is necessitated when the gauge is to the whole method, is necessitated when the gauge is
too heavy to be held satisfactorily in the horizontal too heavy to be held satisfactorily in the horizontal
position. The same pattern gauge is employed, but the operator stands over the work and lowers the gauge so
that both points touch simultaneously. Another reason that both points touch simultaneously. Another reason
which favours this method for large gauges may be which favours this method for large gauges may be
mentioned. It will be understood that when the calliper is used horizontally, the lower limb being supported by the
left hand, the distance between the points will be slightly decreased by the bending downwards, due to its own weight, of the upper leg, and unless the precaution is But with the gauge used vertically and supported by two hands, each of which should-of course, theoretically -be placed exactly on the centre of gravity of its corre-
sponding half gauge, there is no deflection due to weight sponding half gauge, there is no deflection due to weight.
Certain continental houses take the further precaution of insulating the steel by wooden handles, so that no heat deflection may occur. This, however, is an unnecesssary refinement, and is never, we believe, employed in this
form of calliper, as it is found by long experience that the gauge is always a little superior to the capabilities of to say that, unless the highest refinements of grinding to size were adopted, finish to anything under, say, $\frac{2}{200} \mathrm{in}$. is practicaly out of the question. In the hands
of an expert-gauging is by no means to be learnt in a day-the form of calliper we have described will give gauger can, moreover, tell very approximately by the
feel of the calliper how many thousandths eel of the calliper how many thousandths the work is over
size. size.

Gauging is never trusted solely to the turner, although he, of course, is provided with the gauges, and has to use to sir. But when he has brought the wor, as a rule, foes over the work, too ; if it is to his satisfaction one of the staff of regular gaugers repeats the measurements, gaug. apart. It is usual to make long cylindrical parts very the greatest compression of the hoop is at the breech end, than with a view to letting the hoop go on easily -just as in the old whipping days it was usual to count sure of being on the safe side.
It will, perhaps, be of interest to explain that the gun turners do not work from drawings in the ordinary sense of the word, although such are, of course, supplied to the
shop. These shop drawings-we speak of the Elswick system-are mounted, as a rule, on boards, and are dimensioned to those sizes and diameter which the gun theory of the construction of modern ordnance, the internal bore of a hoop is slightly less than that of the barrel over which it is to fit; it being, of course, put on hot, consequently the dimensions given on the mounted hoop or barrel. The drawing is, however, useful to work to, and from it rough sketches on long narrow strips of drawing paper are prepared in the gauger's office, and on such dimension sketches, as they may be called is prepared for each individual gun, and they are filed and preserved for reference.
We may now suppose that the barrel has passed the inspector's hands and is ready to receive the next course.
This consists of one, two, or three hoops in all wire guns over 4.7 in., except the 12 in . This gun, it will we remem bered, has a double barrel, it has an "inner A tube" and and outer A tube." The former is turned slightly taper in the latter bored to suit. The inner is then placed dista outer into which it enters easily to withi a great "dolly," or pressed home. The object of this arrangement is that when erosion has occurred to such an extent that the barrel is useless, the inner A tube disturbingoved, probably cut out, and replaced of these two tubes temainder of the nearly 36 ft ., one of the finest achievements of modern ordnance manufacture. It should be said that in order to prevent any rotation between the two, due to the movement of the huge shot along the rifing, the outer tube is scored longitudinally for the forward half of its length.

SHIPBUILDING IN 1897.
 (Concluded from page 147.)

Roughly considered, the productive capacities of the shipbuilding works in foreign countries, including British Colonies, was requisitioned during 1897 to the extent of 513,000 tons, war as well as mercantile shipping included. This is, in round figures, the return made by Lloyd's Register. It does not include torpedo boats, and possibly it takes no account of some vessels of small tonnage, particularly sailing and fishing vessels, built in the more remote districts, which are included in the returns sent
by individual firms to the Glasgow Herald and other journals. Few, if any, merchant vessels of any import. ance, however, have been omitted.
The total output of the United Kingdom, war and merchant tonnage, being $1,047,950$ tons, the above total, it will be seen, comes very near being one-half-48.9 per advane the United Kingdom proauction, an enormous the two on the returns of only a few years ago. Adding for the whole world during 1897 as $1,561,000$ tons.
Deducting warship tonnage from the above, one may derive some conception of the volume of merchant tonnage added to the fleets of the world, and of how this is affected by the losses during 1897. Exclusive of war-
ships, the total output of the world, in round figures, ships, the total output of the world, in round figures,
appears to have been $1,331,000$ tons, $1,202,000$ tons being appears to have been $1,331,000$ tons, $1,202,000$ tons being
steam, and 129,000 sail. Now, Lloyd's Register Wreck steam, and 129,000 sail. Now, Lloyd's Register Wreck
Returns show that the tonnage of all nationalities totally Returns show that the tonnage of all nationalities totally lost, broken up, \&c., in the course of twelve months amounted to about 712,000 tons- 316,000 steam, and 396,000 sail-so that it will be seen that while the sailing tonnage of the world has been reduced by 267,000 tons during 1897, the steam tonnage has increased by about 886,000 tons. The net increase of the world's mercantile tonnage is therefore 619,000 tons. Of this total, the net increase in the tonnage of the kingdom is rather less than
8 per cent., but of the new tonnage launched the United 8 per cent., but of the new tonnage launc
Kingdom has acquired about 54 per cent
Our three great national rivals in shipbuilding were, of course, Germany, the United States, and France, and that more particularly in regard to mercantile shipbuilding, although Germany's output of warships- 51,000 tons-
includes six vessels of 7100 tons to Chinese account, and America's one vessel of 4760 tons for Japan. Leaving America's one vessel of 4760 tons for Japan. Leaving
warships aside, Germany's output during the year warships aside, Germany's output during the year
amounted to $£ 140,000$ tons, the United States to 87,000 amounted to $£ 140,000$ tons, the United States to 87,000 by Germany, as much as 39,350 tons were contributed by three vessels alone, the Kaiser Wilhelm der Grosse, of 14,350 tons; and the Kaiser Freiderich and the Pretoria, each approximately of $12,5 \theta 0$ tons.
60 pre tonnage reported from the United States about 60 per cent. does not affect directly the general commerce the Great I, the Great Lakes of North America. Of the vast trade carried on these are are capable of adequately concelving. This is not the place to think of deat in thew of ing the general commerce of the world, it may be stated,
on the authority of a member of the American Society of Naval Architects, who read a paper at the recent conference in New York on "The Commerce of the Great Lakes," that Duluth shipped flour to Liverpool last $\frac{1}{\text { summer for } 14 \frac{1}{2} \text { cents per cot., and that rails had been }}$ coming by the various railways from Cleveland to tide
water, bound for Liverpool, also nails and iron rods. The wheap Lake transportation to Cleveland was a factor of prime importance. During 1897 over $28,000,000$
tons passed through the Detroit River, which, in placed in 20 -ton cars, would extend from New York to San Francisco and back. It was a greater commerce
than that of Liverpool and London combined. The better class of vessels employed were able to make the coal record 55 oz . per ton-mile, which economies were and the increased length of vessels, which were now from 475 ft . to 520 ft . long. During 1897 three of the steamers built for Lake service were each between 4100 and towing barges ranging between 3180 and 3800 tons.
As regards French shipbuilding the most noticeable feature, as already indicated, was the continued developstanding the generous support which the merchant receive from the Government in many ways, shipbuilding there is-as has frequently been pointed out in these columns-in anything but a flourishing condition. Only three merchant steamers aggregating 13,240 tons were launched during the year. Norway launched twentyvessels of 13,540 tons, and Holland forty-two vessels of 20,350 tons.
As regards the largest and fastest steamers produced Britain one has to to Germany rather than to Great made to the big liner Kaiser Wilhelm, which in speed and other qualities has shown herself the equal at least of our
champion liners the Campania and Lucania. The most champion liners the Campania and Lucania. The most were the Briton, of 10,248 tons, by Messrs. Harland and Wolff, for the Union Line; the Egypt and Arabia, each of about 7900 tons, by Messrs. Caird and Co., for the
P. and 0 . fleet; the Carisbrook Castle, of 7500 tons, by the Fairfield Company, for the Castle Packet Company's fleet; and more notable still as regards size, though not of speed and outfit, the Cymric, of 12,340 tons, by Harand and Wolff, for the White Star Line; and the
Brazilia, of 11,100 tons, by the same firm, to German Though less in number than in some previous years, large cargo-carrying steamers were certainly one of the
features of the year. The Cymric, for example, is the largest cargo-carrying vessel afloat, being 6Coft. long, 64 ft. beam, and 42 ft . deep, and her gross measurement of
12,550 tons exceeds that of the same company's Georgic, 12,550 tons exceeds that of the same company's Georgic,
built two years built two years ago, by about 2300 tons, and that of the
leviathan Hamburg liner Pennsylvania, built the year subsequently. The Cymric, moreover, marks an important departure in the methods of the White Star Company, for, following the example of the Wilson-Furness-Leyland Line, and the Boston and Liverpool boats of the Leyland
Line she is provided with accommodation for a limited Line, she is provided with accommodation for a limited number of cabin passengers. Cattle accommodation is
provided on two decks, while three large chill chambers provided on two decks, while three large chill chambers
are provided for the carriage of dead meat and dairy produce. If occasion requires, the Cymric can be quickly arranged to carry steerage passengers or a large number of
troops. Notwithstanding all this, the arrangements and troops. Notwithstanding all this, the arrangements and
appointments of the saloons and berths are the same as those of the "express" mail steamers Majestic and Teutonic, and doubtless the comfort and convenience will
not be behind what is experienced on board these crack not be behind what is experienced on board these crack
greyhounds, although "the pace" may not be so marked
Though not so large, several steamers of the combined cattleecarrying and passenger type were produced from Clyde shipyards, and the complete fulfilling of the con-
ditions for conveying satisfactorily in the one bottom, ditions for conveying satisfactorily in the one bottom,
luxurious man and live-not to say lively-cattle, forms testimony to the ingenuity and ability which builders
bring to bear on their work. Whether such huge bring to bear on their work. Whether such huge
steamers as the Cymric and her predecessors and contemporaries of the same type are quite fitted for the
highest class - the most "go-ahead" and the most highest class - the most "go-ahead" and the most
luxurious-of cabin passengers has yet to be seen, but luxurious-of cabin passengers has yet to be seen, but
of second and third-class passengers they can, if required, carry an enormous number. On each voyage they
can take more deadweight than the largest cargo boats of ten years ago could take in five voyages, and the con-
veyance of live stock is altogether safe from the risk of a large death-rate by stress of weather. The carrying trade of the world is being changed considerably by the
building of these enormous vessels, and while they will building of these enormous vessels, and while they wir more than ever difficult for cargo steamers of ordinary dimensions to earn paying freights, it is some
compensation to think that largely through their agency, compensation to think that largely through their agency,
the days of high prices for foreign food products in one mall bit of territory arg never likely to return.
Apart from the torpedo boat destroyers and other craft for the Navy, there were few vessels of very high
speed constructed during 1897, if we except several fast Channel steamers, and, of course, Parsons' notable Turbinia, which is as yet not a type, but a thing apart,
though of great promise. For the Holyhead and Kingsthough of great promise. For the Holyhead and Kings-
town service, Messrs. Laird produced the twin-screw town service, Messrs. Laird produced the twin-screw
steamer Connaught, which, like her predecessors of the previous year, attained the 23 -knot speed stipulated
for. For the Irish trade, Messrs. barton, produced the Cambria, and for the Channel service conducted by the Great Western Railway Com-
pany the celebrated works at Barrow produced the Roebuck and Reindeer. Besides a number of paddle steamers for river passenger service of types now pretty
common, 1897 saw the production of the Empress Queen, the most powerful, and one of the largest-those on

American rivers excelling in this respect-paddle steamers in existence. This notable vessel was built by the Fair
field Company, and, like others above named, has already field Company, and, like others above named, has al
been fully described and illustrated in our columns.
The output of large and splendidly-appointed steam yachts from the shipyards of the Clyde and the Forth formed one of the most notable features of the year's
work in shipbuilding. The vessels of this class, from work in shipbuilding. The vessels of this class, from
50 tons upwards to 1800 tons yacht measurement, numbered eighteen, and the aggregate tonnage was 9450 tons. The three largest vessels were the Mayflower of 1780, the Nahma of 1800, and the Aegusa of 1200 tons, all being for American owners. The two first-
named were built at Clydebank from designs by Mr. G. L. named were built at Clydebank from designs by Mr.G. L.
Watson, and are at once the largest and finest private yachts yet built on the Clyde. The Ailsa Shipbuilding Company, of Troon, which has now a high reputation fo work of this class, produced three vessels each of
450 tons, all from Watson's designs, and noteworthy as being provided with boilers of the water-tube type Messrs. Ramage and Ferguson, of Leith, whose annua output of such work is usually large, during the year produced five vessels ranging from 470 to 85 tons.
Besides the magnificent new vessel for Baron Roths Besides the magnificent new vessel for Baron Roths-
child, building at Fairfield, a number of steam yachts child, building at Fairfield, a number of steam yachts for American ownership are at present being designed by Mr. G. L. Watson and contracted for-notably one for
Mr. Gordon Bennett, the renowned newspaper proprietor of New York. The operation, however, of the new American Payne Bill for the protection of American shipbuilding can scarcely fail to have a curtailing effectas it was intended to
orders in the near future.
Not one of all the palatial yachts built last year, or in any previous year, can cross the Atlantic at full speed
under her own steam, and in connection with the yacht being designed for Mr. Bennett, a problem involving the coal endurance necessary to cross the Atlantic at a speed
as near the top speed as possible is being tackled by her as near the top speed as possible is being tackled by her designer. The record in this matter is at present held
by the Varuna, designed by Mr. Watson for Mr. Eugene by the Varuna, designed by Mr. Watson for Mr. Eugene
Higgins, of New York, which vessel succeeded in doing the voyage at an average speed of $13 \frac{1}{2}$ knots, very much
below the maximum of which she was capable. The below the maximum of which she was capable. The
question whether a steam yacht, having all the properties question whether a steam yacht, having all the properties and luxuriance of living accommodation-can be built to carry all the coal necessary, and do the crossing at an
average rate of 15 knots, has presented itself to Mr. average rate of 15 knots , has presented itself to Mr.
Bennett, and believing the conditions can be complied with, he has commissioned Mr. Watson to prepare the
plans for such a vessel. The length, it is said, will be over 300 ft ., and the engines of the quadruple expansion four-crank type, capable of developing 7000 -horse power
It is more than likely that water-tube boilers will be adopted but in any case the bunker capacity will be unusually large, so that the paramount condition of steaming from
the Old World to the New at 15 knots speed without recoaling may be fulfilled. A steam yacht intended to demonstrate the same problem has, it is understood, been placed in a United States yard by Colonel Oliver H.
Payne, author of the protective Bill above referred to. Payne, author of the protective Bill above referred to
She is to be 300 ft . long, 35 ft beam, and, with abnormal oal bunker capacity, to steam 15 knots.
While there has been during 1897 the usual-perhaps more than the usual-number of novelties, or eccentri-
cities designed to revolutionise naval architecture-and cities designed to revolutionise naval architecture-and
in this connection we need only mention the Bazin roller ship, and the roller ship, or cylinder rather, of Mr. F. A Knapp, a Canadian lawyer, both of which notions, in respect of nothing short of failures-naval architecture has progressed on lines not very far removed from the "turret" deck and "trunk," An increased number of turned out from North-East Coast of England yards, turned out from North-East Coast of England yards
from which so very many utilitarian, and of course valuable, modifications of accepted types and methods first set its face against these mild innovations, telling us that "during the year under review six steamers hav duced in 1896, all having been built under the supervision of Lloyd's Register.'
As regards the material employed in the construction of the ships of 1897, it goes without saying that, so far as Siemens steel, only $1 \cdot 1$ per cent. of the tonnage having been built of iron, and this was virtually made up o steam trawlers, no vessel being larger than 200 tons. Of
the craft sent abroad in pieces, however, a certain perthe craft sent abroad in pieces, however, a certain per-
centage was made up of iron, due to the exigencies of service in foreign and sometimes havoc-working waters Of the sailing tonnage, 95.5 per cent. was steel built, and
4.5 per cent. wood. In connection with the question of 4.5 per cent. wood. In connection with the question of
structural material, however, it may be worth while to refer to the condition of things abroad in this respect Undoubtedly, many of the great yards in Germany, Russia, France, \&c., get large supplies of material as
manufactured in this country, but it may interest many to learn that, as pointed out recently in an importan Lloyd's Register, now engineer-in-chief to the Manches ter Steam Users' Association, German ships and boiler are very largely-Mr. Stromeyer says "almost exclusively" built of basic steel. The basic steel referred to however, is not that made either in a Thomas-basic-
converter or in a basic open hearth, two qualities which have not earned for themselves in this country a goo reputation in shipyards and boiler shops. The kind o basic steel in question-which Mr. Stromeyer refers to as
"basic-refined" steel-although produced in a basic "basic-refined" steel-although produced in a basic in Germany, and which in Mr. Stromeyer's experience o it in various continental countries has proved itsel equal if not superior to steel made in this country." In view of the highly important bearing which this basi
system has upon the possibility of rendering native ores During 1897 some progress has been made in this country in introducing nickel-steel as an improved material for boiler shell plates, forgings, and other such purposes, due boiler shell plates, forgings, and other such purposes, due reference to which
January 7th issue.
anuary 7 th issue.
With regard to
With regard to outstanding features in marine engineering practice, the year 1897 was not fruitful in such, except
in the way of emphasising the value and still greater in the way of emphasising the value and still greater
promise of departures previously institutcd or just promise of departures previously institutcd or trist said on such points has already been said in the annual said on such points has already been said our issue for January 7th.

HARBOURS AND WATERWAYS.

Swansea.-A movement has been on fuot for some time
past for developing the resources of the Mumbles, and a Bill is now before Parliament for giving power to construct a ailway and extend the Mumbles pier, so that large steamer may also that it may be used for landing and embarking pasand also that it may be used for landing and embarking pasmay lead to a diversion of traffic from their docks, intend to oppose the Bill, and consequently the chairman, who is als on the Trust. Although at present there is no definite scheme for the construction of a new dock at the Mumbles, yet, considering that a low-water entrance could without difficulty be constructed at this part of the coast, and the advantage it would be to the Rhondda and Swansea Bay Railway by developing the coal district along their line, the farbour rustess Mumbles may affect them in the same way that Barry has Cardiff.
ester Ship Canal.-The report of the directors of the Ianchester Ship Canal for the last half-year shows a balanc water department $£ 22,052$. The interest for the half-year on he first and second mortgage debentures amo upplied from the accumulatad Bridgwater revenue. The unpaid half-year's interest due to the Manchester Corporation, $£ 112,500$, makes the accumulated amount now outstanding
this account $£ 618,750$. The traffic increased from n this account 6618,750 . The traffic increased from 25,65 ons in 180
As showing the difficulty to be overcome by the managers in securing traffic, the case of the Irish trade may be quoted. thas thought hat considering the very large amount of district, and the export from there to Ireland of manufactured goods, th between Ireland and Manchester, yielding a considerable
evenue to the canal. No less than five unsuccessful revenue to the canal. No less than five unsuccessful attempts have been made to maintain a regular weekly
steamship service between Manchester and the South of Ireland, but, owing to railway influence, both these and imilar attempts made to run a regular service from Belfas embraces the principal railways connected with the steamship services between Ireland and the West of England, which arranges for through traffic and rates between the interio towns of the two countries on such a basis that there shall not be any outside competition. This hitherto has pre-
nented the steamships trading direct to Manchester from competing with the Conference Companies. The railway rate in many cases from the Manchester docks to English station re higher than the through Conforecce rates from Belfast to the same stations. Since the beginning of this year th irect sonco t more itevals and a determined attempt is be made to enter into a successful competition with the Conference Companies. Almost from the opening of the conal there has been direct steamship service betwee Newcastle-on-Tyne, and in these cases the steamers hav proved successful competitors with the railways, but in tho ase of Ireland, where the ship Canal is the natural channe of communication to and from Manchester for a large and proftable trade, owing to the action of the Conference the failed to divert to any considerable extent the trade from the more expensive route. Of the total cross-Channel traffic from Belfast to the Lancashire ports, amounting to about 800,000 tons, only 50,000 tons cleared for the Ship Canal large trade of its own with Ireland, is more favourably
situated for dealing with through traffic than any of the other ports.
Grand Junction Canal.- The last dividend declared by the
directors is at the rate of 4 per cent, being the thirty-fifth directors is at the rate of 4 per cent., being the thirty-fifth
half-year in succession when a similar amount has been paid o the ordinary shareholders. The balance of $£ 10,439$ carried orward would have allowed of another 2 per cent. being paid, prudent to carry forward a less balance. The agreements with the Leicester and Loughborough Navigation and the Erewash Canal companies, for extending the through traffic rrangements, with the optional power of purchase, haved mprovement of the lockage system at Watford and Foxton. The increasing traffic has rendered the dredging and deepening of the canal in parts necessary.
ine Crand Canal, Ireland.-At the half-yearly meeting of t company the directors were also able to declare a dividend at the rate of 4 per cent. per annum against $3 \frac{1}{2}$ per cent.
for the corresponding period of the previous year. man pointed out the difficulty of maintaining the traffic in competition with the railways, and the advantage of further Shannon with Lough Erne, which would form the keystone f the whole system.
Kennet and Avon Canal.-A serious landslip occurred reand Frestly the banks of this canal between Limpsley Stoke rom a nine miles' length of canal giving way, and the water the low land adjacent. Fortunately there was no traffic on this part of the canal at the time of the accident. The place where the slip occurred has always been a source of trouble,
the bottom being on the bare rock.

Buenos Ayres.-It is expected that the extensive dock and port works which have been in course of construction for the about $£ 7,000,000$ in have cost the Argentine Governmen short time be completed. These works were designed and have been carried out under the direction of the late Sir John Hawkshaw and the partners of his firm, Mr. Dobson acting as resident engineer. The late Mr. Thomas A. Walker was the original contractor, and since his death the works have been in charge of his nephew, Mr. Charles Walker, for his executors. These works were authorised in 1882, and consisted of the conversion of the flat muddy banks of the River Plate for a distance of three miles in front of the city of Buenos Ayres into a succession of basins, locks, and docks, the whole arks area of building long massive stone walls, reclaiming means of two dredged channels, one to the south and the other to the north basin the two converging in the River Plate seven miles below the city. The works were so designed that the several basins or docks could be opened successively as they were completed. The south basin, covering 35 acres, was opened in January, 1889; and the first dock in January,
1880 ; the second in September, 1890 ; the third in 1893, and the fourth in 1896; and the north basin last March. Large

Boston and Worcester Railway in 1836, with the name Lion -No. 31 -which had 13 in . by 20 in . cylinders, and four The remaining engine of the list built by the firm was th Wilmington-No.37-built in 1836 for the Philadelphia the Wilmington Railroad. It had cylinders measuring 12 in by 18 in ., and four coupled wheels 5 ft , in diameter, with a wheel base of 6 ft .6 in .
From the point of view of numerical importance, the firm of Messrs. Braithwaite, Milner, and Co., of London, ccmes next. In 1833 one engine was ordered by Mr. MeNeil for the Paterson and Hudson River Railroad, with the name McNeil, having 10 in . by 16 in . cylinders, and four coupled wheels, 4 ft . 6 in . diameter, and the dimensions of this engine which was the standard pattern of the firm, and of what is known as the "Bury" type, are given by Whishaw as:13 in . in diameter fire-box, 2 ft , 31 in . by 3 ft , by $3 \mathrm{ft}, 10 \mathrm{in}$ heating surface, tubes, $219 \cdot 40$; firc-bcx, $45 \cdot 35$; total, $264 \cdot 75$ square feet.
Three engines of this pattern were ordered by Mr. A. E. Young, through Messrs. Baring Brothers and Co., for the Allegheny Portage Railroad, their nomes and dates being respectively Delaware, 1833; Alleghery, 1834; and Comet,
meter, and a single pair of 5 ft . driving wheels. According to Whishaw, the boiler barrel was oval in section, being 6 ft . in length, with two diameters of 38 in . and 27 in . respectively, fire-box measured, according to the same authority, $24 i n$ by $38 \frac{1}{2}$ in. by 36 in., and the heating surface was, tubes, $215 \cdot 60$. fire-box, $35 \cdot 59$; total, $251 \cdot 19$ square feet. To the Bangor and Piscataguis Railroad, the firm supplied two engincs having Piscataguis Rairoad, the firm supplied two engincs having
3 ft . leading wheels and 4 ft . 6 in . driving wheels, Pioneer-No. 4-being built in 1832, and Bangor-No. 6-in 1886. The former had 9 in . by 18 in . cylinders, and, according to Whishaw, a boiler 6 ft . 4 in . long by 2 ft .8 in . diameter, containing fifty $1 \frac{3}{4} i n$. tubes. The Bangor, on the other hand, had 11 in . by 16 in . cylinders, and a boiler 6 ft . 8 in . long by 3 ft . box measuring 28 in by 40 in $1 \frac{1}{2}$ in. in diameter, with a fircbux measuring 28 in . by 40 n . by 42 m ,, and a total heatios Nottoway-No 5-was built in 1833 for the Greensville and Roancke Railroad, of the same dimensions as the Pioneer. In 1836, the Tennessee-No. \&-was built for the South Carolina Railroad, this being a bogie engine constructed to Mr. Allcn's design, and exactly similar to the Cincinnati of Messrs. Tayleur and Co., which is described and illustrated later on. The other engines built by Messrs. Rothwell and Co. were two four-

E BURY \& CO'S "CREOLE" (No. 10), 1833, PONTCHARTRAIN RAILROAD
TAYLEUR \& CO'S "CINCINNATI," (No. 20), 1835, SOUTH CAROLINA RAILROAD
warehouses have been erected, two graving docks have been quipucted of sufficient size to take warships, and a thorough provided. The original estimachinery, shedding, and railways the delays due to the troubled state of the country, and additional works carried out beyond those originally intended, rowded with has been nearly do revenue gives a return nearly 4 per cent. on the outlay
Owing to the immense amount of deposit brought down by the river, in its long course of 1200 miles, there is considerable difficulty in maintaining the deep-water channels which are being dredged to give access to the docks, and the large liners of the Royal Mail Steamship and of the Italian companies prefer to discharge at Ensenanda, some distance down the river. Vessels drawing over 23 ft . still run risks in navigating the River Plate up to Buenos Ayres. To obviate this
difficulty a project has for some time been under consideration for the construction of a new harbour at Monte Video t is proposed to enclose an area of 363 acres by means of breakwaters, and thus to afford shelter to the dock and wharves. From an inner harbour to the sea it is propose to dredge a channel nearly two miles long, with a depth of 23 ft . at low-water. The estimated cost of this scheme is $£ 3,000,000$. The amount of tonnage which now enters the port of Monte Video is about $3 \frac{1}{2}$ million tons.
Rochdale Canal.-At the annual meeting of this company, a dividend at the rate of only 1 per cent. for the year was
declared, which was attributed by the chairman to the attieclared, which was attributed by the chairman to the attiCanal Company.
Nicaragua.-The Commission sent out by the United States Government are now engaged in making the preliminary surveys for the purpose of preparing a report as to the feasibility of the canal and its cost. The amount of appropriation for the cost of the survey appears, however, to have been very inadequate, and unless fresh funds are voted, the
spect of the work not being properly completed.

LOCOMOTIVES SUPPLIED BY BRITISH FIRMS TO AMERICAN RAILROADS

Part IV.

The Pontchartrain Railroad obtained two locomotives from he Clarence Foundry. The first of these was named Creole tion being a copy of one of the working drawings to which it was built. It had cylinders 11 in . by 18 in ., and four coupled wheels 4 ft . 6 in . in diameter, standing on a wheel base of 6 ft . The boiler barrel was 8 ft . long, and contained eightysix tubes, 8 ft . 10 in . long by 2 in . diameter; and the fire-box and smoke-box had lengths respectively of 3 ft .8 in . and 2 ft . while the length of framing was 17 ft . over all, and the height to top of chimney 13ft. Three years later, in 1836, the Orleans-No. 39-was built for the same road, this being an engine of similar type, but with $12+i n$. by $20 i n$. cylinders
Messrs. E Bury and Co built in 1894 two
 Augusta-Nos. 15 and 16. These had cylinders $12 \frac{1}{2}$ in. by $20 i \mathrm{in}$., and were otherwise practically identical with the Creole already illustrated, except that the height to the top of the chimney was 1 ft . more, or 14 ft . altogether.
The same working drawing was also used for the Boston-
No. 17 -built in 1835 for the Boston and Providence Raiload, which had 12 in . by 18 in . cylinders, but was otherwise dentical with the Creole.
One engine was built by the Clarence Foundry for the

Reading Railroad afterwards sold to the Philadelphia and Weldon, built in. The Petersburg Railroad had one, named and Potomac road had one, the Jefferson, ordered by Messrs Summer Graves and Day, and built in 1837. This engine was afterwards sold to the Philadelphia and Reading Railroad. eight engines of this type for the Philadelphia and Reading Right engines of this type for the Philadelphia and Reading
Railroad, which bore the names of Rocket-No. 1 in the railway company's books-Fire Fly, Spitfire, Dragon, Comet Planet, Hecla, and Gem. The accompanying illustration shows the Spitfire after it had been "Americanised" by its owners, the smokestack, bell, "caboose," and tender being all of them foreign to the original design of the engine. This locomotive was subsequently, in 1849-50 sold to the Delaware, Lackawanna, and Western Railroad, of which compreserved in the Field Museum at Chicago, after being in
coupled loccmotives with 10 in . by 16 in . cylinders, and 4 ft . 6in. wheels, turned out in 1837 for the Richmond, Fredericksburgh, and Potomac Railroad, with the names of Robert Mentioned by Whishaw-No. 7 -of the same class as Bangor was sent to Canada, not to the United States, so that it should not be included in this list
Messrs. Charles Tayleur and Co., of the Vulcan Foundry built seven locomotives for American roads. In 1833 two bogie engines-Class G, Order No. 3, Rotation Nos. 4 and 5 were built for the Camden and Woodbury, now a part of the Pennsylvania Railroad system. These, which are illustrated by the accompanying reduction from the firm's workin drawing, were named respectively Fire Fly and Red Rover, and had each a pair of inside cylinders 9 in . by 14 in ., and a boiler barrel measuring 6 ft . by 2 ft .7 in . The bogie wheels wer each 3 ft ., and the single driving wheels 4 ft . 6 in . in diameter,
with a total wheel base of 10 ft . 4 in .

braithwaite, milner \& co's "spitfire," 1837, philadelphia \& reading railroad
almost continual service. Its coupling rods are removed as happened to many of the four-coupled engines sent over.
The two other engines built by Messrs. Braithwaite were different type. They had horizontal outside cylinders 9 in in diameter, with a 16 in . stroke, and four coupled wheels 3 ft .7 in . in diameter, and were built for the Natchez and Hamburg Railroad in 1834 and 1835 respectively, with the names Mississippi and Natchez. The weight of these engines was about 6 tons 5 cwt . each. No very detailed record seems to be in existence with regard to these engines, but the Mississipp was in work from 1836 to 1838. Thirty years later, in 1868 , it was removed from uspalness, buried in sand. For ten years this state of things losted, until in 1878 it was dug out, and put to work again on the Meridan, Brookhaven, and Natchez Railroad, a seven-mile branch line, on which it hauled trains until as late as the year 1891.
Messrs. Rothwell and Co., of the Union Foundry, Bolton, sent seven locomotives to American railroads. The first of train, built 2 in the books of the makers-was the Pontcharit remained in measuring 10 in . by 18 in ., a pair of leading wheels 3 ft . in dia-

In the latter part of 1835 three more bogie engines were built by this firm to Mr. Allen's design for use on the 5 ft . gauge of the South Carolina Road. These were officially 22, and were named Cincinnati, Allon Nos. 20,21 , and respectively. In contradistinction to the earlier bogy engines, these had outside cylinders and inside frames, the cylinders being 10 in . by 16 in ., and the boiler barrel 7 ft . 7 in . by 2 ft . 8 in . A peculiarity of Mr. Allen's design lay in the employment of unequal-sized wheels for the bogie, the leading pair being 3 ft ., and the second pair only 2 ft . 6 in . in diameter. The driving wheels, 4 ft . 6 in . in diameter, were placed in front of the fire-box, thus reducing the wheel base to 8 ft . Other builders turned out engines of the same pattern, as has he lea The other engines built by the of engine.
vere two in number- Roundry for America No. 20, Rotation Nos. 38 and 39 -and are illustrated in ther accompanying drawing. They were built in 1836 for the Raleigh and Gaston Railroad, and had 12in. by 16 in . cylinders and four coupled wheels 4 ft . 6 in . in diameter.
Hick engines were the contribution of Messrs. Benjamin

In 1834 the Fulton was built for the Pontchartrain Railroad, with 10 in . by 16 in . cylinders, and four coupled wheels 4 ft .6 in . in diameter. Then followed, in 1836 and 1837 respectively, Fredericksburg, and Potomac Railroad, having 10 in. by 16 in . ylinders, a four-wheeled bogie with 3 ft , wheels, and a pair of single-driving wheels 4 ft . 6 in , in diameter. In 1837 the New Orleans was built for the Carrollton Railroad, with $13+i n$. by 18 in . cylinders, a pair of 4 ft . leading wheels, and a pair of single-driving wheels 5 ft . 9in. in diameter. This engine enjoyed the distinction of having the largest driving wheels of any of the locomotives sent to America, it being the idea of Mr. Charles Carroll, the founder of the railroad, to "go one better "than the prevailing English practice, as has,
indeed, been the idea of his countrymen from that time to indeed, been the idea of his countrymen from that time to this, with varying success. When this engine was ordered,
early in $1836,5 \mathrm{ft}$. 6 in . was the mark reached by English makers, so Mr. Carroll expressly ord The fifth engine his engine to be 3 in . larger, or 5 ft . 9 in . The fifth engine sent Road with the name Virginia was equally noteworthy as the only one of its kind. It was a six-wheeled engine 18 in ., four-coupled wheels of 4 ft .10 in . diameter, coupled in front, and a pair
of trailing wheels 3 ft . 6 in . of trailing wheels 3 ft . 6 in . in diameter. So far as we are aware, this was the first
and only instance of a sixand only instance of a sixgine being in use on an American road.
The Petersburg Railroad obtained three locomotives
from the firm of Messrs. Mather, Dixon, and Co. These were built in 1833 and 1834, and were named respectively New York, Philadelphia, and Petersburg, the two first-named ders, and four coupled wheels of 4 ft . 6 in . diameter, while the Petersburg had 12 in . by 20 in . cylinders, a
pair of 4 ft . 6 in . leading wheels, and a single pair of driving wheels 5 ft . 6 in . in diameter. All these seem to have had the same type of boiler, the barrel measuring 7 ft .4 in . by 2 ft . 8 in ., with 90 tubes of 2 fin . diameter, and a fire-box having the following dimen-
sions: 2 ft .6 in . by 3 ft .4 in . by 3 ft . 3 in . The heating surface sions : 2 ft .6 in . by 3 ft .4 in . by 3 ft .3 in . The heating surface total, 438.97 square feet.
Messrs. Hackworth and Co. built two engines for the Wilmington and Raleigh Railroad in 1838 to the order of Mr. Jennings, through Messrs. D. and J. Burr and Co., both being six-coupled engines with cast iron wheels. The Halifax had inclined cylinders at the sides of the smoke-box, with the connecting-rods driving on to the cranks of the middle pair
of wheels, which had "blind " tires, i.e., without flanges.

Foster and Rastrick Mather, Dixon, and
 Hack worth and Co.

${ }_{3}^{3}$ locomotives

106

Of these 19 were bogie engines, 80 were on four wheels, and seven were on six wheels with a rigid base. A further analysis shows that 45 had a single pair of driving wheels, 58 were four-coupled, and only three six-coupled. With the exception of the 19 bogie engines, it may be pointed out consideration for the roads on which they have to run They were generally the standard pattern of the different firms at the periods when the orders were given. That being so, and the condition of the primitive American tracks being
taken into account, there can be no doubt that many of taken into account, there can be no doubt that many of landed on the other side. Some were capable of being adapted, as witness the Stevens-John Bull-and several others, and, indeed, it is possible that few, if any, performed any efficient service until so transformed.

At the same time, this article will not have been written in vain if it serves to show that American mechanics were at the outset largely indebted to British makers for providing that many of the most famous railroads in the United States derived their first engine power from this country. If with this common ancestry, British and American practice have appeared to develop widely divergent traits, it may be pointed out that the difference has at all times been more apparent than real, and that, as time progresses, there are not wanting

No. 5000 from the Baldwin shops-which was sent over in No. 5000 from the Baldwis shops the Eames brake than for any other purpose. It was a single driver, with a Wootten fire-box, and after working a few trains on the Lancashire and Yorkshire and Great Northern railways, was scrapped in 1884, as no company seemed inclined to taks it over.

CENTRAL LONDON RAILWAY.

THE following particulars of the system to be adopted in working the Central London Railway have been supplied to us by the Thomson-Houston Company :-
The total length of continuous railway over which electric
raction is to be provided is about six and a-half miles, exclusive of traction is to be provided is about six and a-half miles, exclusive of
crossovers at stations and sidings. It is intended to run a two and a-half minutes' service, with trains of seven carriages each, with a total seating capacity each of 336 passengers, and weighing 105 tons loaded, exclusive of the locomotive. The average speed of the trains is to be fourteen miles per hour, including stoppages at
stations. The electric plant, which is to be installed by the stations. The electric plant, which is to be British Thomson-Houston company, is on the eng engineer, Mr. H. F. Parshall. There are to be three sub-stations in the lower portion of the lift shafts at the Davies-street, Notting-hill Gate, and Postoffice stations. Additional plant is to be installed at the Marble Arch station, but will at present be only of the nature of a spare
plant. The boiler plant will consist of sixteen Babcock and Wilplant. The boilers in eight batteries of two each. The evaporative power of each boiler is to be $12,000 \mathrm{lb}$. per hour, the heating surface 3580 square feet, and the pressure 150 lb . per square inch. The boilers will be fitted with Vickers' mechanical stokers, which will be supplied with coal by a conveyor from a storage tank on the top
of the boiler-house, having a capacity of 1500 tons. The coal conveyor also serves to remove the ashes, and will be driven by an electric motor. Each engine will be supplied with an independent combined jet condenser and air pump of sufficient capacity to take the maximum quantity of steam. The condensing and injection water will be forced to the top of four Barnard cooling towers, each tower being furnished Reynolds-Corliss cross-compound condensing engines running at 94 revolutions per minute, to give 1300 indicated horse-power each, with cylinders 24 in . and 46 in . diameter by 48 in . stroke. The engines are capable of being run noncondensing, and either high or low-pressure side can be run in-
dependently. The steel fly-wheel is to weigh 44 tons, and is built up in eight segments. The engines are guaranteed for a consumption of $13 \frac{1}{2} \mathrm{lb}$. of steam at 1000 indicated horse-power whin run condensing with $266_{2} \mathrm{in}$. vicuum.
The three-phase generators will have 32 poles, and a capacity of 850 kilowatts, 500 volts, and $\Sigma 5$ cycles. They are of the revolving
field type, the coils of the stationary armatures being held in slots, field type, the coils of the stationary armatures being held in slots. similar to the standard armature construction of the British Thomson-Houston Company. The total weight of each generator is nearly 36 tons. Four of the six units will be sufficient to take care of the average load. There is, therefore, a margin of 50 per boards have been specially designed, the high tension switches being double break, half of the break being on each side of the panel. All high-tension contacts are mounted on ebonite.
The Notting-hill Gate and Davies-street sub-stations will contain one rotary converter in each station, with necessary transformers
and switchboards. At the Marble Arch and Post-office sub stations there will be two rotaries in each. Each rotary has a capacity of 900 kilowatts, and will be of the 12 -pole type, running at 250 revolutions per minute. They are capable of being run up either from the three-phase or the direct-current side. The step-
evidences that in many vital respects the two practices are In later years two engines coming together again.
In later
In later years two engines have been sent to America. The

 10正
C. TAYLEUR \& CO.'S "FIRE FLY," (No. 4) 1833, CAMDEN \& WOODBURY RAILROAD

G. FORRESTER \& CO.'s "NEW YORK," 1834, boston \& PROVIDENCE RAILROAD

The Samson, on the other hand, which was in use for about first of these was a Webb compound engine of the well-known orty-hive years, had outside vertical cylinders, driving downomething of an anachronism, as English practice had certainly at that date achieved a better method of driving than that most objectionable one.
One engine was built by Messrs. G. Forrester and Co., dence Railroad in 1834 , and was for the Boston and Proviyear. It was named New York, and as can be the following accompanying illustration, was a four-wheeled single engine embodying all the peculiar features of the firm's standard patterns of the period, to which the nickname of "Boxers" so appropriately attached itself. The New York was, in fact, built to the same drawings as the three engines which were supplied to the Dublin and Kingstown Railway at about the same time.
In all, as the foregoing brief description will have indicated, there were 106 engines built by English firms for American railroads between the years 1828 and 1838, the distribution being recapitulated in the following table:-
R. Stephenson and Co. ..
E. Bury and Cond
Braithwaite, Milnor and Co.
Rothwell and Co.
C. Tyyleur and Co. .
Benjamin Hick and Co.

London and North-Western type, which was purchased by an American railroad for the purpose of making elaborate tests of Mr. Webb's system, and which, despite the vastly different working conditions under which it had to labour, seems to have ably maintained the high reputation of its designer. Still more recently Mr. F. C. Winby designed, and Messrs. R. and W. Hawthorn, Leslie, and Co., built, the large eight-wheeled engine, James Toleman, which was sent across to the Chicago Exposition in 1893, and subsequently ran for a short time on the Chicago, Milwaukee,
and St . Paul Railroad. It was described and illustrated in this journal at the time, and in an article published in The Engineer of January 29th, 1896, we gave details of its working and present fate.
Neither of the engines last named, however, call for detailed mention here, as they scarcely come within the than the barest article. Nor, on the other hand, need more examples of locomotives be made to the few isolated English railways. These were five in number, four being engines with leading bogies and single driving wheels, named respectively England, Philadelphia, Columbia, and Atlantic, supplied by Messrs. Norris and Co., of Philadelphia, to work the Lickey in 1840. The fifth Birmingham and Gloucester Rail-
down transformers reduce the line potential from 5000 volts to the usts. They are of the air-blast type, but instead of following is drawn through, and the hot through the transformers, the air pipes running up the centre of the spiral staircase of the stations, thus providing ample ventilation for the sub-stations, as well as ffrectively cooling the transformers. The weight of each trans The cables conn
be carried through the tumnels on be with the sub-stations will B.I.W. Co.'s standard paper insulation type. The third rail will be of steel, weighing 801 lb . to the yard, of channel section, supported on creosoted wood insulators, each joint being bonded with fous
flexible crown bonds. The rails of both up and down fexible crown bonds. The rails of both up and down lines will be
divided into four sections, and interconnected by circuit breakers The locomotives will be mounted on two trucks, each truck carryin two motors of 150 -horse power. The total weight of the loco motive is about 42 tons. Wotal length of locomotive 29 ft ,; tota height, 9 ft . 8 in . The motor will be controlled by series paralle
controllers, provided with magnetic blow-outs, which will plas ontrollers, provided with magnetic blow-outs, which will placs
the four motors in series, two in series and two in parallel, or al four in parallel, as desired. The trains will be fitted throughoul with Westinghouse air brakes. Lifts will be provided at each station, and it is proposed that these should be operatcd electrically, with current taken from a separate power wire

It is estimated that the railways bring into London

MODERN CHINA FROM AN ENGINEER'S POINT OF VIEW.
No. I.-RALLWAYs AND RAILWAY prosects [From our Special Commixsioner.]

Shanghai, January 15 th.
Most English engineers will remember that there was a modest, though energetic attempt to obtain for railways a footing in China as far back as 1876 ; and before dealing with the present state and future prospects of railways here, it is as well to recapitulate briefly the career of that first and unfortunate enterprise. Many people look to railways as affording the only practical method of modernising China; and as there is no doubt that foreign pressure will force their adoption on a considerable scale

GABMEL JAMES MORRISON, M. INST. C.E
in the country before many years are over, the vicissitudes of the old original railway scheme besome endowed with considerable interest at the present time. All sorts ago to explain the tearing up of the line, the prevailing ago to explain the tearing up of the line, the prevailing impression being that it was due to religious fanaticism on the part of the simple Chinese, who regarded the locomotive as an evil spirit destined to play havoc with their morals and their prospects. This was rather sen-
all events, the people took to them with enthusiasm, and their future success in that country was already assured Then why not try them in China, where the field was immensely larger, where the population was immensely greater, where the distances and cost of transporting produce to available markets were immensely heavier, and where, above all, there were no earthquakes worth mentioning? For the simple reason that Chinese methods do not resemble those of Japan, and that it by no means follows that what is a success in the one country will prove to be so in the other. So, if the Woosung Road Company, as this railway company was called, built its hopes at all on the success of the railways in Japan, it made a miscalculation.
In 1876 Mr. Gabriel James Morrison, of Westminster, came out as engineer in charge of the laying and running of this line, and in the dual capacity of representative of June of the same vear about half of the line was opened for traffic. I enclose a photograph of the starting of the first train. The prospects of this railway still looked ver satisfactory, as the Chinese population took a vivid in terest in the undertaking, making long journeys from al sorts of places to have the satisfaction of riding up and down the line-treating, in fact, the new means of loco motion as we in England treat a "big wheel" a "fai motion as we in England treat a" at a show, "Long before the line was closed, however, the business value of it was recognised by the Chinaman, and he utilised it steadily as a practical time-saving machine Great steadiry ase, was the consternation of this energetic littl company when the British Minister from Peking notified company of mofthe the start to close its line The Chinese officials had soid they would mothe in spite of the concession. That was all, and we, as we in spite of the concession. That was all, and we, as we by agreement, which means by "making things right" in certain quarters, the Chinese allowed the railway to be completed, and the whole lom from Shanghai to Woo completed, and the whole length from Shanghai to Woosuctually ran successfully for about twelve months, during which time it carried 300,000 passengers. Meanwhile, the Chinese anthorities purchased the line at a fraction the cher the cost price, the company selling it to them over the cost price, the company selling it to them because would Chinaman had bought the railway or rather the day after he had paid the final instalment, he began quietl
 to take the line up; and such of the material as was no lost, stolen, or spo
island of Formosa.

There were no " hordes of infuriated religious fanatics," tearing up the white man's work, and "wreaking their vengeance on the foreign devils." The Chinamen wanted and appreciated the railway, but the mandarins,
whose safety lay in keeping the country closed to them, whose safety lay in keeping the country closed to them, said simply that they would not have it, and that was enough. If Great Britain had chosen to make a stand then, or on many of the occasions which presented them-
selves afterwards from time to time, she could have in selves afterwards from time to time, she could have in-
sisted on the proper introduction of railways into China sisted on the proper introduction of railways into China, and have arranged for them to be controlled by Englishmen. It is to be hoped that if she is lending money to Such railways, for the purpose of "saving the Chinaman's
capital, which perhaps was a fortunate thing, for had it been otherwise it would have been hardly likely that the mining tramway would have been allowed to develope by degrees into the first permanently established railway in the Chinese empire.
This was not all brought about in a day, however, for there was no suggestion in the first instance of a line for public traffic, nor was the idea of mechanical traction even admitted. Whether or not the original tram line was a wide-gange one I do not know; but at the end of a ew years we heard of a 4 ft .81 in . gauge, and also of a sort of nondescript locomotive made by Mr. Kinder out of, I believe, an old traction engine adapted to the work and fitted to a trolley. This apparatus must have been crude in the extreme, and one need hardly lay stress either on its speed or on its economy in working; but it was something to have got the Chinese to accept the

SHENG TAOTAI, Director-General of Chinese Railways
principle of mechanical traction, even had it taken the form of a steam roller. The thin end of the wedge, howver, having been inserted, Mr. Kinder did not let it rest here. He later on constructed locally a rough locomotive, from which better results were obtained, and ventually got the authorisation to purchase locomotives from England and America. Finally, this line became extended from Kaiping to Tonku, which is within a mile railway sketch map herewith. There were about eighty

THE STARTING OF THE FIRST RAILWAY TRAIN IN CHINA, JUNE, 1876

The principal promoters of this enterprise, which was a purely British one, were Messrs. Jardine, Matheson, and Co., of Shanghai and elsewhere in the Far East. The joint contractors were Messrs. Ransomes and Rapier, of Ipswich, and the late Mr. John Dixon, of Cleopatra Needle fame, who were also large shareholders. A concession was obtained for the building of an experimental line of light railway of about ten miles in length, locality was well chosen, for Shanghai was the most prosperous, cosmopolitan, and enlightened city in China. It was in great need of rapid communication with a town nearer the mouth of that interminable river and beyond its exasperating bar; the country was a dead level, and there was, as Chinese opposition goes, practically no opposition to the scheme. By this time, too, the railways in Japan had begun to show that there, at

Railways;" but the revenue from them should be controlled by Great Britain as security for her loan, as in the case of the Chinese import duties.
On the first railway above referred to Mr. Morrison employed only four foreigners, all of whom were British subjects, viz., one contractor's foreman, one platelayer, and two engine drivers.
The next step towards railway making in China came itself so gradually that the railway became an established thing almost before people realised its existence. In 1877 or 1878, Mr. Claude Kinder was appointed as assistant engineer to the Kaiping Collieries, in the neighbourhood of Tientsin. One of the first things he was called upon to construct was a tram line for the purpose of carrying
miles of $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. railway between these points, constructed in the cheapest possible manner, except that the rails and bridges were of good quality. But, bearing in mind the funds at Mr. Kinder's disposal for the purpose, the work has been extremely well done. About twelve years ago this line, owned by the Chinese Engineering and Mining Company, was opened to passenger as as goods traffic, and its owners bec
Here again we have a forcible example of the contrast between Japanese and Chinese methods. In Japan it was the Government who introduced and nursed the railways, until they had taught private companies how to run them satisfactorily; whereas in China we find that there has been a steady and uphill fight on the part of foreigners and private individuals against the Government to force railways on the country. This persistent pres-
sure took practical effect in about 1888, when the Imperial Government, always on the initiative of Mr. Kinder, decided to construct a line on their own account, connecting Peking with Tientsin and Shan-Hai-Kwan. This they did, utilising as far as they went the existing lines belonging to the Chinese Engineering and Mining Co., but not taking them over. These combined railways, having a total length of something under 200 miles, represent at the present day the whole of the lines in operation in China, as far as public railways are concerned, and this little system affords the strange incongruity of a private line sandwiched in between two extremities of Imperial railway - a line begun in the centre at unimportant towns, and extended outwards in both directions. The greatest railway engineering triumph that has been carried out up to the present in Chisa is the buidang of the briage across the Lan Ho. This stracture stands on principle. It measures, between abutments, 2174 ft ., and the main spans are 200ft. each. The principal workshops of these railways are at Tongshan and Tientsin. The of these railways are at Tongshan and spee of the trains does not exceed 20 miles an hour.
It was the opening of the Peking.Tientsin section of the railway last year that may be said to have finally broken down the barriers of prejudice from certain quarters as to the adoption of railways in this country; important centres like those having brought an objectlesson with it that even the opposition of highly-placed individuals will find it hard to elface There is consequently every prospect of a reasonable and contina
yow or it mitain as to which the foreign countries are to get the benefit of this work, the Germery, Germany, and France between them, to run China for theirs inelined to let them do present-we shall see seems inclined to let them do at present we sex very thing else in China f in in spite of the fact that Great Britain Bitish subjects bave been at once Grore Bretic and more disinterested than any other more energetic and more disernise han any other people feared that we cave let matters slide too far to admit of having a voice in railway concessions north of Peking, and it is probable that the Chinese, in bringing their roilway up as far as Shan-Hai-Kwan, have reached the northern limit of their extension, for the Russians, who, in dealing with China do not mince matters as we do, have, as will be seen by a glance at the map, per do, have, as will be seen by a glance at the map, percluding one line running south as far as Shan-Hai-Kwan. Anyone who studies Russian methods in the Far East knows quite well that she does not wait, like Germany, for the murder of missionaries, or of anybody else, to afford her a lame excuse for violating international law, but whendealing with a weaker party she always takes what she wishes to take. So that, unless some other Power should endeavour to check Russian action, it may be taken for granted that the Russian railway projects shown on the map will have effect.
If any illustration is required as to the practical back ing which Russia affords to her engineers and share holders when building a railway in a foreign and nominally friendly country, it is conveyed by the following extrac from the North China Daily News of a few days ago, and refers to the Russian troops who are destined to protect the Manchurian railways:-

The Russian volunteer steamer Voronish, from Odessa to singa pore and thence direct to Nagasaki, left that port on the 4th inst, materials. General Tchetchagoff, and a large staff of officers and their families, were passengers ; she is taking also a fine body of 850 Kuban Cossacks to form a guard for the Manchurian Railway where the banditti have been giving great trouble to the con structors. These men have been engaged for years in similar duty
in protecting the trans-Caspian railways against the Tekkes and n protecting the trans-Caspian railways against the Tekkes and
other nomads. They are all mountaineers from different tribe other nomads. They are all mountaineers from different tribe selected out of a large number of volunteers from the railway troops in the trans-Caspian region. They are very well found in everything, and have besides a pay of a rouble a day; and many
have their families with them.
It speaks volumes for the skill of the Russian rule, that it can successfully change in a few years such implacable foes into faithful soldiers. They are particularly fine riders, and they will be mounted from the large
mobs of wild Siberian horses in the trans-Baikal, and any bandits mobs of wild Siberian horses in the trans- Baikal, and any bandits that may happen to meet them will be promptly attended to.
When the great length of the railways projected under Russian influence in and about China is compared with the extent of those in trans-Caspia, it may be taken for granted that this force is not the last one of its kind to find its way to the plains of Manchuria.

Thus the North of China is to be flooded with irregular troops, and other legalised desperadoes in the pay of Russia; and it may be taken for granted that the presence of these men will have a much more powerful effect on the Peking Government than any half-hearted diplomatic negotiations which we may think well to institute.

Let us, however, assume that we have no right to interfere with Russian projects in Northern China, and that the railway schems of Frojects of lines across the already beginning to push her projects of lines across the frontier from Tong-King into China proper, are equally outside our sphere of interest. Let us assume with an
exaggerated humility that British interests are mainly confined to the provinces in and around the Yangtsze Valley, or at all events that they oo not extend further north than Peking, or further south than Canton.. Under us and Peking, and filling the Shantung Province with troops-there will be five or six thousand of them there sive programme which includes the building of a railway from Kiao-chow to Tientsin and Peking, with the avowed object of tapping the trade from the northern provinces, which now inds its way down through waterways to the Yangtsze, and of diverting it into her own hands. Thus
the Russians are backing up their demands for railway concessions by armed troops on the north of Peking, and
the Germans are doing the same between Peking and the Yangtsze Valley. The French are building railways on territory acceded to them by China in violation of China's treaty with Great Britain. And finally, we are told, but I cannot say yet whether it is a bona yide sohene or not, Chinese G ave practicall a Belgian Syndicate for the construction of line between Peking and Hankow. This, if it is true resents the most valuable railway This, if it is the mely indicated on the map a po in the points, as its the map by a bee line between the two points, as that Great Britain or British financial people, unless they wish to be left out altogether, should lose no time in wish to be left out altogether, should ase no be got securing any represent the districts where railways are most needed, and would bear the greatest profit.
Mr . Gabriel Morrison, whose photograph I enclose,

One of the most promising signs as to the intention of the Chinese to extend their railway system is that Mr Sheng, who was at one time Tao-Tai, or District Governor, of Tientsin, has been appointed herewith Railways. I send his phoman the Chinese owe the organisation of the system of telegraphy which now permeates their country. The area of his contro over the railways is said to cover from the Yangtsze northwards; but as he has nothing to do with the Government or the private lines above referred to, and there are no others open in China as yet, he may be said to be a king without a kingdom. It is to be presumed that it will be to his advantage to build railways else where to justify his title, the more especially as a hand some building has just sprung up in Shanghai, a little off the Bund, which bears the promising inscription on the door plate, "Imperial Chinese Railways." He ha already a little project in hand, and it is a strange thing

The"Erainetr"
and who besides being the pioneer railway engineer in China, is thoroughly acquainted with the whole of the above defined area of country, states that there are no very great obstacles in railway building to be encoun tered throughout the whole route from Peking to Canton with the exception of the traversing of the Yellow River, with its shifting bed. A railway from Peking to Canton, via Hankow or Nanking, would probably have a length of some 1400 or 1500 miles, and in conjunction with the Yangtsze River, which cuts it at right angles at a little more than half way down its length, would control all that is valuable, commercially and industrially speaking, of get-at-able China of the present day. With such a railway concession, properly authenticated and adequately protected, Great Britain could afford to lend China any money she might want, and to be indifferent with regard to the concessions accorded to other nations But unless we take measures to obtain some very substantial concession in China for railways, Englishmen stand the greatest chance of seeing their trade and thei prestige, both of which until now have been able to hol the first place among nations here as elsewhere, rapidly dwindling and being absorbed by the representatives of more enterprising countries.
that this first undertaking to which he is destined to devote himself should be to construct, over practically the same road as that used by the former English company, a new $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. railway between Shanghai and
Woosung. Thus it would seem that a sort of postmortem tribute of respect is being paid to the excellent judgment of the shareholders of the defunct company by judgment of the shareholders of the defunct company by
the Chinese who killed it. Let us hope that the new road will be as well built and meet with better treatment road will be as well built and meet with better treatment
The construction of the new line has been placed in the The construction of the new line has been placed in the
hands of Mr. H. Hildebrand, a local German engineer, hands of Mr. H. Hildebrand, a local German en
who, from all accounts, is an extremely able man.
who, from all accounts, is an extremely able man.
A reference at least to the orthodox Chinese wheel barrow is not so out of place in a railway article as one might think, for it is against this primitive vehicle that the railways of China will have to com pete both for passenger and goods traffic. Until now it may be said to have held its own, and as a practical conveyance it has its merits, for on it I have seen as many as six people being wheeled by one man on the level. Nor is it so out of date as one might imagine for I understand that the British Government have recently ordered a number of them for carrying cement in connection with railway work in Africa. An ordinary

load of cement in this country for these barrows is two

 400 lb . casks.Thus while we complain of Chinese procrastination in adopting our civilisation, they at all events let us build a railway for them twenty-two years ago, even though they purchased it and destroyed it. Well, now it would seem that our Government is adopting the time-honoured Chinese national means of locomotion. It is highly probable that after a short trial we shall discard the chinese barrow, as they did our railways, for 1 do not one. Thus Great Britain will have had her revenge. And that is all that Great Britain is likely to get, unless our Government should wake up to the fact that our prestige as a nation and our commercial interests are at stake in China. Russia, France, Belgium, and Germany are all on the railway concession hunt out here, and three out of the four Powers named are prepared to back their demands with a big display of force. America, too, seems likely to cut England out in the supply of materials for China. Great Britain and Japan, the only two countrie who would seem to have a legitimate claim on China fo concessions or consideration, are the only ones who are not attempting to push their interests here. Perhaps this is because they are the only two Powers with interests in this part of the world who have had any regard for inter national law-and China knows it, and consequently i not afraid of us.

SHIPBUILDING AND MARINE ENGINEERING ON THE THAMES IN THE VICTORIAN ERA. o. XIV.

Before leaving on her maiden voyage to Melbourne the roesus had a three-days' trial at sea, as a test of speed kc,, when the following results were obtained:-In a stiff breeze, under canvas, with screw disconnected, she made from 13 to 14 knots; close hauled, with double-reefed topsails, courses, trysail, and jib, and no steam, her speed was $10 \frac{1}{2}$ knots. In smooth water, with no sails, she steamed $10 \frac{1}{2}$ to 11 knots; and against a heavy N.E. gale with a rough sea-coming up the Channel-she went hrough the water $4 \frac{1}{2}$ to $5 \frac{1}{2}$ knots.
Being but an auxiliary steam-powered ship, the results attained at her trials were deemed most satisfactory, a throughout them the engines worked admirably, without any heated bearings, the boilers giving an ample supply of steam at all times. During the trials the engine averaged fifty-two revolutions a minute, the average stean pressure being 16 lb . and the vacuum in the condense 27 in . The ship having bunker room for a supply of coa more than sufficient for the voyage out, and having towed in the hold an additional 600 tons for the home ward passage, it was thought that she would be able to make her voyage to Australia and back either way in ixty days or under.
Having taken on board a fair complement of passeners, the Crœesus, shortly after the completion of her trials, eft Southampton for Melbourne. As she was fitted with a screw-lifting apparatus - somewhat similar to that described and illustrated in a previous article-it was onl intended to use her auxiliary power as occasion required.
All went well on the passage until the ship was off the Cape of Good Hope. The previously favourable winds having dropped, orders were given to ship the propeller nd proceed under steam. In doing this the lifting ear gave way, and the propeller falling several feet, so damaged the keel and plating of the ship-where attached to the stern-post-that it was deemed necessary to put in at the Cape for assistance. Here there was procured sufficient clay and clinkers to enable a watertight dam to be built, to prevent the water made by leakage finding its way to the engine and cargo spaces. With this temporary provision for safety the ship proceded on her voyage under sail, and eventually reached Sydney without further mishap. Arrived there, it was ound necessary to detain and repair her before she could be allowed to proceed on her homeward passage.
Now, at that date- 1853 -there were no graving docks in any of the Australian ports, so to repair the damage done, it had to be effected while the ship lay afloat in deep water, the plan adopted being that shown in our ketches Figs. 72 and 73. After mooring the vessel in a protected bay on the north side of Sydney harbour, a wooden cofferdam, B B in the sketches, was built on the adjacent beach, one end of it being made to fit the shape of the ship under water at a point as far forward as the damage was thought to extend. This dam was launched into the bay and towed into position at the stern of the ship, sufficient weight-some fathoms of the ship's cable -being put into it to sink its bottom below the level of he ship's keel, and it was then drawn under her bottom. When in position it was firmly secured to the vessel, and he deadweight within it taken on board and carried orward.
On relieving the cofferdam of its temporary ballast, the upward pressure of the water caused its shaped-out end to press upon the ship's plating, some sheepskins being interposed to form the joint; the dam was then pumped free of water, a few shores being fitted to relieve the outside pressure of the water on its sides, and in a short time it was ready for workmen to start the repairing of the damage done. On an examination of this damage it was found that all the rivets securing the ends of the lower strakes to the sternpost and those in the plate landings were started, and, in addition, the keel bar was fractured in the middle of the screw space. In due time this damage was repaired-work being carried on day and night-when it was decided to test the riveting by water pressure from within, which showed that some of the rivets beyond the forward end of the dam were leaking, but how to get at them was now the difficulty. This, however, was overcome by fitting small camels-C C in the sketches-made to fit the ship's sides, which were kept in position by chains, taken
under the ship's keel, at their lower ends, and by
athwartship chains above kept taut by stretching screws. Through the open tops of these camels the workmen descended, and in a few days replaced all leaky rivets by resh ones. After the repairs were completed, the ractured keel bar being strengthened with fish-plates, the cofferdam was released from the ship's bottom, with the assistance of her cable to sink it until clear of her keel, when it was hauled from under her, possibly again to do duty in a similar emergeney. From the foregoing brief description of a great damage done and successfully

Figs. 72 and 73-CRGESUS REPAIRS, 1854
of Limehouse, and engined by the Messrs. Rennie, of Blackfriars. As the engines of this vessel were of a type differing from any yet noticed in these articles, we are glad to be able to include them as a class, the product of the second decade of the reign of our Queen, after whom the vessel in which they were fitted was appro priately named.
The engines were designed and built on the patented direct-action principle of the Messrs. Rennie, each cylinder, with its condenser and air pump, being placed on either side of the main crank shaft; the position of these, which are both on the singletrunk principle, being alter nated, so that the pull and thrust on the shaft is equalised. The general arrange ment of the engines, with their details, given in our illustrations of them in Figs. 74, 75 -the first being an elevation and the second a plan-shows their simplicity and compactness, a great advantage being derived by the condensers being close to the cylinders, thereby ensuring a better vacuum Beyond this they need little
seeming difficulties of the situation were surmounted ith what were in reality very simple appliances
The misfortunes of the Crœsus were, however, not at end with the falling of her screw propeller off the cape. With the repairs effected in Sydney harbour she succeeded in reaching England safely, where she was docked and made thoroughly seaworthy; but by this ship was taken up by the Italian Government for the conveyance of troops to the Crimea, and while engaged
further description than a few particulars as to their
dimensions and the kind of boilers that supplied them with steam.
The diameter of the cylinders was 41 in ., with a piston stroke of 1 ft .10 in . The engines drove, at 82 revolution a minute, a common two-bladed screw 10ft. diameter and 15 ft . pitch, its length being 2 ft . 10 in . They were supplied with steam by two four-furnaced boilers of box form, worked at a pressure of 20 lb . per square inch that were not required to be kept below the load-line of

Figs 74 and 75-ENGINES OF THE SLOOP OF WAR "VICTORIA" BY MESSRS. RENNIE, I 1855
in this work she caught fire and was run ashore in the Gulf of Genoa-a sorry ending to a very fine ship.
Although there were no instances during the Crimean War of our Australian dependencies being molested by hostile cruisers, yet as their populations-particularly that of Victoria-were rapidly increasing in numbers and wealth, it became necessary for them to provide themselves with some maritime protection. This was specially necessary to the rich gold-producing colony just named. To this end the Victorian Government ordered in this country, in the early part of 1855, the construction of a screw of Mr. O. Lang, of the Royal Dockyard at Pembroke. of Mr. 0 . Lang, of the Royal Dockyard at Pembroke.
The vessel was built by Messrs. Young and Co.,
vessel, which had a water draught of 11 ft .6 in . he vessel was timber-built-on the diagonal principle her designer-consisting of two thicknesses of plank worked diagonally from gunwale to gunwale across the middle line at right angles to one another, and then externally planked in the usual way. She was $166 \cdot 5 \mathrm{ft}$. long on deck, $27 \cdot 16 \mathrm{ft}$. beam, and $14 \cdot 5 \mathrm{ft}$. deep in hold, her tonnage being about 581 tons. She was completely fitted as a sloop of war.
While noting the typical iron steamships built on the Thames in the early part of the decade, 1847-1857 those constructed of wood must not be overlooked. Of these the most notable-and at the same time the most unfortunate-was the steamship Amazon, built by Messrs.
R. and H. Green, of Poplar, for the Royal Mail Company. This vessel, which was the largest timber-built paddle wheel steamer ever constructed in England, was 310 ft . long and 42 ft . moulded breadth- 72 ft . over paddle-boxes. She was fitted by Messrs. Seaward and Co. with side lever engines of 800 -horse power, having cylinders $96 \mathrm{in}$.
diameter, with a piston stroke of 9 ft. diameter, with a piston stroke of 9ft. These engines
drove paddle-wheels of 40 ft . 8 in . diameter at fourteen drove paddle-wheels of 4oft. 8in. diameter at sourteen
revolutions a minute, which gave the ship a speed of 11 knots an hour. The Amazon was tastefully fitted for the accommodation of passengers, having cost over
$£ 80,000$; but an ill fate awaited her on her maiden $£ 80,000$; but an
voyage. She left Southampton on January 2nd, 1852; but when about 110 miles to the westward of Scilly a fire broke out on board, which entirely consumed her, some ninety-six of her passengers and crew perishing in the conflagration.

Another notable Thames-built wooden ship of the time was her Majesty's line-of-battle ship Hannibal, of 91 guns, built at the Royal Dockyard at Deptford, and launched thence in January, 1854. She was considered to be
one of the finest specimens of a fighting ship that had one of the finest specimens of a fighting ship that had
ever been seen afloat, combining with a full bow above water-giving ample room for working her guns-a fine entry and run below, while the extra length given to her
for the admission of the machinery imparted a lightness to for the admission of the machinery imparted a lightness to
the vessel not possessed by the old man-of-war sailing the vessel not possessed by the old man-of-war sailing
ships. Her principal dimensions were :-Length between perpendiculars, $217 \mathrm{ft} .6 \mathrm{in} . ;$ moulded breadth, 58 ft .11 in . depth of hold, 23 ft . 11 itin.; displacement, 3300 tons, on a mean water draught of 20 ft . $6 \frac{1}{2} \mathrm{in}$.
The auxiliary propelling machinery
The auxiliary propelling machinery of the Hannibal,
ever before appropriated to sea travellers. The ship would carry 1000 tons of measurement goods, could stow
1200 tons of coal in her bunkers, and had besides, the 1200 tons of coal in her bunkers, a
usual mail, baggage and store-rooms.
asual mail, baggage and store-rooms.
At the time of the building of the Himalaya there At the time of the building of the Himatran, or Tables
were no definite Lloyd's Rules of construction, of required dimensions of parts of iron ships. The first of these, based on the gross tonnage of the ship, was not issued until January, 1855. By this table it would appear hat no iron ships at that date exceeded 3000 tons, so
fair comparison cannot be made between the scantlings fair comparison cannot be made between the scantlings
of the Himalaya and those that would have been required of the Himalaya and those that would have been requied
by the Committee of Lloyd's at the time. We give, howby the Committee of Lloyd's at the time. We give, how.
ever, in tabulated form below, for comparison, the scantever, in tabulated form below, for comparisond those that
lings adopted in this ship's construction and thes would now be required by Lloyd's for a three-decked ship 340 ft . by 46 ft . 2 in . by 26 ft . 3 in .:

Items.	Scantlings of s.s. Himalaya	Lloyd's scantlings for three-decked vessel.
	Incher.	Inches.
Frames, midship		
${ }_{\text {conds. }}^{\text {end }}$ ghacing	hip	th
Reverse frum	$\times 3$	$\begin{aligned} & \begin{array}{l} \times 3, \\ 13 \text { to } \end{array} \end{aligned}$
Sheer strnke		tit to
Remainder	nd \#to \#tand	\%
		Plate. ${ }^{\text {L }}$ b
Upper deck beams.,		10×12
Lower "" "\%	10×1	10, $\times 18$ Complete Iron
Maper deck plating		

THE BIRKENHEAD DESTROYERS:

H.M.S. Wolf completed on the 9 th inst. her official full. power speed trials on the Clyde, in the presence of the Admiralty representatives. Six runs
measured mile, with the following results
First mile
socond mile
Toirn mile
FTorth mite
Firth mile
Sixth mile

speed.
$30-46$
$30-98$
$31-23$
$31-11$
$31-93$
$31-14$

The mean speed thus realised was $31 \cdot 2 \mathrm{knots}$. After comto complete the three hours' steaming at her contract speed of $30 \cdot 0$ knots, which was easily obtained, the results at the finish showing a speed of considerably over a quarter of a knot in excess of the contract. After completion of this trial the usual steering trials at full speed ahead and astern were carried out, and the stopping, starting, and reversing of the engines demonstrated for efficiency. The Admiralty were represented by Messrs. Welch and Wisnom, Devonport Dockyard by Messrs. Rider and Barry, and the chief engineer of
the vessel, Mr. Glanville, was also present. Mr. R. Ratsey Bevis, jun., and Mr. Roy M. Laird represented Messrs. Laird Bevis, jurs, the contractors. The Wolf is the tenth 30 -knot destroyer that Messrs. Laird have now completed for the British Admiralty.

MOTOR CAR NOTES.

The following members have been elected judges for trials of motor vehicles for heavy traffic to be held by the SelfPropelled Traffic Association in May next:- From the
London Council: Sir David Salomons, Bart.; Mr. Boverton Redwood, F.I.C. F.R.S.E. From the Liverpool Council Redwood, F.I.C., F.R.S.E. From the Liverpool Council:
Professor H. S. Hele-Shaw, LL.D., M. Inst. C.E., \&c.; Mr. John A. Brodie, M. Inst. C.E., \&c.; Mr. Everard R. Calthrop. Reserves: Mr. S. B. Cottrell, M. Inst. C.E., \&c.; Mr. Henry H. West, M. Inst. C.E., \&c.

The Automobile Club of Great Britain is organising a somewhat ambitious tour for Easter, to occupy six days. The
proceedings will commence with a lunch at the Club, No. 4 proceedings will commence with a lunch at athe cheurt, on the Thursday ; and at 3 . the tourists will make a start for Guildford, where there will be dinner at the White Hart Hotel. The members of the Club sleep at Guildford that night, proceeding on Good Friday morning to Winchester, by way of Farnham. The night will be spent at the old cathedral city, which will be left for Chichester the following morning. The Club makes Chichester its headquarters for the night, and proceeds the next day to Worthing to Tunbridge Wells, and the next day will witness the closing of the tour by the run home to London through Sevenoaks. As there will be no adequate re-charging stations will put in an ispearance. The extent of the tour will be somewhat over 220 miles.

ENGINEERING NOTES FROM SOUTH AFRICA. (From our oren Correspondent.)
The engineering strike at home has caused some inconvenience to the Witwatersrand gold mines, owing to delay in the delivery
of machinery on order. In one case the starting of a stamy of machinery on order. In one case the starting of a stamp
battery had to be postponed for a couple of months because of the non-arrival of the mill engine from the works in England. Mine managers complain that British firms are very lacking in this important respect of punctual delivery. The Americans are
much more dependable, and will strain every nerve to execute an order to time. Probably the restrictions introduced into British order to time. Probably the restrictions introduced into British fortunate thing, so far as the local foundries and engineering shops are concerned; they receive work which would certainly not reach
them but for the difficulty of calculating on a prompt execution them but for the difficulty of calculating on a prompt execution
of the work at home. The two principal works in Johannesburg of busily engaged at present. The wages paid to fitters range
arom $£ 1$ to 30 s . a day. It is small wonder that the men have
from been able to contribute liberally towards the support of the men on strike at home. By the way, the engine drivers at one
mines have just struck on a question of wages and hours
The considerable loss of power which occurs in rock drilling with compressed air has led to an eager desire to apply electricity to
this class of work. Several electric rock drills have been tried in this class of work. Several electric rock drills have been tried in the mines of the Witwatersrand, but so far none have secured any practical success. The electric rock drill has not only to compete against the important fact that the exbaust air is of value for the ventilation of the mine. One of the latest electric drills to be tried on these fields was made by the firm of Siemens and Halske of Berlin. It did not answer, but its comparative failure is said to be due to its being put to do work not suited to its construction. The claims of deal of disent from of the Bladras
Dock questionsare still exciting a great deal of attention in South Africa. The proposal to spend five millions sterling upon the extension of the harbour works at Capetown, by taking in an additional area of Table Bay, has aroused considerable opposition. It is urged that the annual interest upon the debt would involve would not compensate. At Durban the Right Hon. H. Escombe has been returned to Parliament as an opponent of Sir Charles Hartley's and Sir J. Wolfe Barry's scheme for the exteusion of the
North Pier. A limited North Pier. A limited company proposes to spend a million
sterling in improving the docks at Lourenco Marquis-Delagoa sterling in improving the docks at Lourenco Marquis
Bay-and installing additional plant for handling cargo.
Several new railway schemes are about to be put into active Several new railway schemes are about to be put into active
execution in the Transvaal. The survey of the Pietersburg line is at once to be pushed forward, and the contract for the Vryheid line has just been signed. The routes for the two railways to Lydenburg and council. A new line is to be woek or two, from Middelburg to Graaf-Reinet,
It may be of interest to many of your readers to learn that the head of the Public Works Department at Pretoria has applied to the Government to be allowed to use the metric system in the work of his department in place of the present English measures this request will probably be granted. It may have some sligh effect in strengthening the already strong inclination of the Government to go to the Continent in preference to England for machinery. In answer to the Witwatersrands demand for an efficient school cf mines in Johannesbarg, the State mining engineer has introduced a draft law proposing the establishment of
such an institution. One clause of the Bill provides that all the instruction must be given in Dutch. As nearly all the engineers in the mines are English or American, with a few Germans, the absolute absurdity of this proposal can easily be gauged.
For some time past the Cape Government has been giving the free use of machine drills for striking underground water supplies. use of these drills in the Colesberg district.

THE UNITED STATES BATTLESHIP MAINE.
We take it for granted that our readers know all that is known in this country concerning the terrible catastrophe a few minutes. Various illustrations of the ship have been published. These are for the most part fancy sketches. We this week publish two views, both taken from photographs, one illustrating the perfect ship, the other so much of her as appeared above water after the explosion. This last was taken on the morning of Wednesday, February the 16th, 1898, by the photographer for the New York Herald. The ship was blown up at 9.40 p.m. on Tuesday, February 15 th. plans which will make her construction clear
plans which will make her construction clear.
The Maine was the first ironclad possessed by the United States, for the Monitors scarcely deserve that title. She was built at the New York Navy Yard. Her keel was laid October 11th, 1888, and she was launched on the 18th November, 1890 She was 310ft. long between perpendiculars ; length over all, 324 ft . 4 in . ; beam, at load-water draught, 57 ft . ; her normal draught was 21 ft .6 in .; displacement, 6650 tons ; and coefficient of fineness, 0.596 .
In her design there are certain features more or less undesirable. She was provided with two echelloned turrets, each carrying two 10 in . breech-loading guns. The turrets were carried in part outboard, so that to a certain extent they resembled caponiers. In a seaway they must have stressed the
ship considerably. The guns and turrets were worked by ship considerably. The guns and turrets were worked by breech-loaders mounted in her superstructure two firing ahead, two astern, and one on each broadside. These were all hand-served behind 2 in . shields. She had a number of small quick-fire guns of the Gatling type, and four torpedo tubes fitted on the broadsides of the berth deck.
She had an armour belt of Harveyised steel, 180ft. long and 7 ft . deep. It was 12 in . thick above the water-line, and tapered to 7 in . below it. There was a 2 in . protective deck, and a steel 6in. bulkhead across the ship forward. The turrets were of 10 in . plate, and the barbettes protecting the
base of the turrets were of 12 in . mild steel. base of the turrets were of 12 in . mild steel.
The ship was propelled by twin screws. The triple-expan-
sion engines had cylinders $35+\mathrm{in} .+57 \mathrm{in}$. $+88 \mathrm{in} . \times 36 \mathrm{in}$. sion engines had cylinders $35 \frac{1}{2} \mathrm{in}$. +57 in . +88 in . $\times 36 i \mathrm{in}$.,
giving 9000 -horse power at 125 revolutions. The safety valves were loaded to 135 lb . Steam was supplied by eight singleended "Scotch" boilers, with twenty-four corrugated furnaces. Each boiler had 72 square feet of grate and 2373 square feet of heating surface. They were 14 ft . 8 in . in diameter and 10 ft . long. The closed ashpit forced draught system was used. All the machinery was supplied by the Maine took place in Long Island Sound on October 17 th

1894, and lasted four hours, during which the average speed were old-fashioned. The ship would, however, no doubt have was $17 \cdot 45$ knots. The indicated horse-power of the main withstood a good deal of hard hitting and put in some shrewd engines at 123.5 revolutions was 9171 ; and of the auxiliary blows in return, but there is a certain measure of consolation machinery 121, the aggregate being 9292 . The coal consumption was 35 lb . per square foot of grate surface and 2.18 lb . per indicated horse-power per hour.

The Maine was a useful type of cruiser, but she scarcely deserved to be called a battleship. No vessel of the type nest circumstance that the Maine was far from being the As to thip possessed by the United States.
rally held in the explosion, we may say that it is gene the outside. It is stated that portions of her bottom plating,

THE MAINE FROM THE PORT QUARTER, LOOKING FORWARD
would be laid down in the present day. While carrying four which was painted green, have been found cinside the hull, by heavy guns, only two of these could be brought to bear at the same time on an enemy taking up a position a ittle to port or to starboard, either ahead or astern. The firing of her heavy guns over her deck and parallel to her superstructure indeed, if under the circumstances her bow 6 in. guns could bave been worked at all. The above-water torpedo tubes
ow why or by whom the villainous deed was done, it is impossible to say anything. It is to be feared that the catastrophe will have to be added to the list of the world's mysteries. In this country the warmest symsome consolation is to be found in the fact that the people of two great nations have in this way been drawn closer together.

SIR HENRY BESSEMER.

Sir Henry Bessemer died on Tuesday evening at his residence at Denmark Hill. He was born on the 19th of eneration for whom his achievements lack the interest which they possessed for the few great metallurgists his ontemporaries, yet alive. By those who had had the amented. But his increasing years and infirmities have long withdrawn him from public life; and for the younger netallurgists his name is not one with which to conjure. Concerning the work which he accomplished, most of facture of steel, and nothing more is necessary-or indeed possible-just now than a recapitulation of certain prominent facts and dates. But the man himself was too remarksuggestive, to be passed over wholly in silence. It is satisfactory to know that for a considerable period he was at work on an autobiography. Bessemer wrote excellent English. He was extremely genial, and very happy and
sanguine in disposition, and brought therefore excellent qualifications to the work of authorship. The history of his life and work will consequently no doubt possess exceptional interest. It will be necessary, however, to read between
the lines to learn what manner of man he was. Bessemer was a very peculiar product of the nineteenth century. His total lack of systematic scientific training at once made him and marred him. It is a noteworthy fact that in all ages, consciously or unconsciously, those who teach deem it finality. We very seldom meet in text-books or hear from lecturers suggestions that improvements in such and such directions are possible. If it was understood in the days of such men as Truran, process. On his own showing, indeed, he rather blundered upon it than invented it; and he was carefully assured
by those who were supposed to know all about steel making that ever had been known or could be known, that the process was wholly impossible. No scientific training stood in the way and stopped Bessemer from trying experiments. In a single instance he was
successful, and his success worked a greater change in the world's ways than it is easy to realise. But it is said that he spent no less than £10,000 on Patent-office
fees; and of all the hundreds of inventions which fees; and of all the hundreds of inventions which
he made, very few attained to success. The reason he made, very few attained to success. The reason
must be sought in Bessemer's character. His ideas singularly lacked proportion. He failed to catalogue all the conditions affecting an invention, and determining its
success or its failure; and to those whose existence he success or its failure; and to those whose existence he
did recognise he was wholly incapable of attaching a just value. For example, he invented a steady cabin for
ships, which was to prevent sea sickness. This cabin or ships, which was to prevent sea sickness. This cabin or
saloon was hung upon gimbals, and somewhere about the middle of it was mounted a fly-wheel weighing a couple of tons, which was to revolve at 1000 or 1500 revolutions per minute. The gyroscopic action of the revolving mass was to keep the saloon steady. That it would operate
to prevent rolling under certain conditions was admitted. to prevent rolling under certain conditions was admitted.
Bessemer had a model saloon fitted up in his grounds at Denmark Hill, on a rocking platform, to resemble the hull of a ship. Everything worked admirably. What
the inventor failed to see was that no strict parallel could be drawn between the mechanical action of the rolling platform on land and the tumultuous universality of English Channel. The Bessemer steamship, on which he English Channel. The Bessemer steamship, on which he a pronounced failure. Again, he spent very considerable
sums on the production of a steam gun. In order that sums on the production of a steam gun. In order that
the action of the steam on the bullet might be sufficiently prolonged, the barrel was coiled up in itself in a flat prolonged, the barrel was coiled up spinal terminating in a few feet of straight pipe at a tangent to the rest. He took an almost childish delight
in seeing this weapon flatten lead bullets against an iron in seeing this weapon flatten ead bullets against an iron of Jacob Perkins. No doubt if Bessemer had had a sound mechanical training he would have avoided this class of work; but, on the other hand, he would have lost that
splendid audacity of ignorance which led him to magnisplendid audacity.
ficent triumphs.
Until Sir Henry Bessemer's autobiography is published very little will be generally known concerning his early
life. His father was a Frenchman, an artist, and a member of the French Academy of Sciences. We believe we are correct when we state that young Bessemer first made a living by designing patterns for Paisley shawls. nated gift book, in which were so-called gilt letters. She set about illuminating a book for herself, and asked her brother to get her some "gold paint." This used to be
sold in "shells," and when the lad went to buy one, he found to his dismay that the shells cost half-a-crown each. Half-crowns were very scarce, but he bought a
shell, and formed the idea that he would himself gold paint. The story of his endeavour we have had the good fortune to hear from his own lips. He believed that the paint was made of Dutch metal "gold" foil, ground up to a powder with a little honey, and subsequently treated
with varnish. He was on the right track, but his gold paint would not shine ; it lacked lustre. At last he discovered that it was not an amorphous powder that would do. The foil must not be ground up, but torn up, until
each little flake resembled the feather on a butterfly's wing. He made his machinery, and to this day the The machine described in his patent will not work whole story is far too long to tell here. It must suffice to say that bronze paint was the foundation of Bessemer's Farty
Early in his career, long before the advent of the steam
gun, he turned his attention to ordnance, and tried to
make shot, with spiral feathers and other devices, to do away with rifled grooves in the gun. But he could not
get cast iron strong enough to satisfy his needs, and nothing would serve him but he must try to make a tougher metal. His first experiments were made in 1855. He melted pig iron in a reverberatory furnace, and into the molten metal he put broken-up bars of blister steel. He got the very high heat necessary to secure fusion by making a wide grate and giving the hearth a narrow throat. This he patented on January 10th, 1855. He
found the clue to this process in Fairbairn's attempt to found the clue to this process in Fairbairn's attempt to toughen cast iron by adding some malleable scrap to cupola, which, however, only resulted in proda his new metal and took it over to France. He presented it to Napoleon III., who was much pleased with the weapon, and wished to reward the inventor with the Grand Cross of the Legion of Honour, which, however, the English Ambassador would not permit him to wear. He proceeded, however, to erect gun-casting works at Ruelle, for the French Government; but these were stopped by a discovery which he made in London. We must here quote Bessemer's own words from a paper which he
read before the American Society of Mechanical Engineers.
On my return from the Ruelle Gun Foundry 1 resumed my experiments with the open-hearth furnace, when the remarkable
incident I have twice referred to occurred in this way. Some pieces of pig iron in one side of the bath attracted my attention by remaining unmelted despite the great heat of the furnace, and
turned on a little more air through the fire-bridge with the intention of increasing the combustion; on again opening the
farnace door after an interval of half an hour these two pieces of
pig still remained unfused. I then took an iron bar with the pig still remained unfused. 1 then took an iron bar with the they were merely t thin shells of decarbonised iron, thus showing
that atmospheric air alone was capable of wholly decarbonising gray pig iron, and converting it into malleable iron without puddling of other manipulation. It was this which gave a new turn to my thoughts, and after due consideration I became eonvinced that if
air could be brought into contatet with a s sufficiently extensive surface of molten cr
into malleable iron

The history of the Bessemer process, even in its earlier stages, would fill a volume. The invention as it is known now was not arrived at for years. Up to a certain point Bessemer had things all his own way, and then came a but only with utter uncertainty as to the quality of the product. It was necessary to leave a little carbon in the metal, but the percentage depended on the duration
the blow, and no satisfactory commercial result w possible. But besides this, far from getting rid sulphur and phosphorus, the process seemed to aggravate the evil of their presence. In a word, the whole process
was a failure. He worked away for more than two years, was a failure. He worked away for more than two years,
and at last succeeded in producing a saleable article from a pure ore, but by this time the steel makers had lost all aith in the affair. Bessemer, however, about 1858 started a small steel works in Sheffield, with a partner, Robert Longsdon, Messrs. Galloway, of Manchester, supplying the plant, and steel was made and sold in small quantities.
Next Robert Mushet appeared on the scene, and it Next Robert Mushet appeared on the scene, and it
appears to us to be beyond all doubt that to him the appears to us to be beyond cale of the Bessemer process was due. To settle the carbon question he blew all the carbon out of the charge, and then added a definite quantity of speigeleisen, the manganese of which formed an invaluable ingredient. Of the disputes as to priority
of invention, and the validity of Mushet's claims, we do not care to write. They are matters of history Mr. Bessemer nd his partners we eninor
ful, and realised huge profits. We have heard Sir Henry Bessemer say that he had realised himself personally one million sterling. He went on inventing various improvements in the apparatus used for conversion; and ventions, such as sugar-cane crushing machinery and telescopes. In 1875 the Bessemer Channel steamer was launched. She was designed by Mr.-now Sir-E. J Reed, and was fully described and illustrated in our with four paddle wheels, two of which were forward and two aft of the swinging saloon. She was a failure from the first, slow and unhandy. On the very first trip she made she fouled Calais Pier, and did herself and the pier great gyroscope in the saloon could not be made to work properly. The company was wound up, and we believe a screw cattle boat, and plied in the North Sea.
screw cattle boat, and plied in the North Sea.
To say that Sir Henry Bessemer was a genius gives but an inadequate idea of the man. The curious way in which he got at results, almost, as it were, by instinct, really mastered the chemistry of his process, and we are strongly disposed to believe that he took far more details of the machinery he used than he did in the to tell Bessemer that any given device would not answer. He seemed to possess some special power of making things succeed which ought to have failed. Of course he lowed up in his successes. We should but write platitudes did we attempt to dilate on the importance of the part which his process has played in the development of everyone who pleases to wive the facts are patent to
The world began to appreciate Bessemer at a tolerably early period. He got the Telford Medal for a paper on his steel process read berore the Institute of Civil En the Iron and Steel Institute. In 1877 he was elected a member of the Institution of Civil Engineers. In 1879 he was elected a Fellow of the Royal Society. In the same year he was knighted, and in 1880 he was presented with world-wide, and the world delighted to honour him. He married in 1833 Miss Allan, by whom he had several children. Lady Bessemer died last year,

Sir Henry Bessemer retained his health and his facul lies, notwithstanding his great age, until quite recently About three weeks ago he was taken ill and had to keep
his bed, but he rallied, and wrote and talked, and no his bed, but he rallied, and wrote and talked, and no
immediate danger was apprehended. On Tuesday afterimmediate danger was apprehended. On Tuesday after-
noon, however, he collapsed suddenly, and passed away quietly about twenty minutes past seven.

PASSENGER S.S. BRUCE.

By the section of the vessel given on page 258 we now complete our illustrations of the passenger steamship Bruce, full description on January 21st of the present year.

THE METRIC SYSTEM.

 in chemicals and electrical apparatus, where metrical weights and
measures are already largely adopted for transactions at home as measures are already largely adopted for transactions at home as
well as for those abroad. This exampleis of importance in converting hose whose interests lie only at home, and who oppose our claim for
change for which they themselves feel no need. In this regari it is significant to note that quite recently a deputation from the Agriculture, to impress upon him the great inconvenience caused by the variety of methods used in the different markets of the Surely if uniformity is desired they ought to side with us and
make the bold plunge into metrical weights. It is almost certain make the bold plunge into metrical weights. It is almost certain
that we shall have the immediate support of the United States,
whose decimal whose decimal coinage lends itself to metrical measures, and who
heve already taken steps in the right direction by abolishing the he ve already taken steps in the right direction by abolishing the
weights intermediate between the pound and the ton, and who
make their contracts in tons of 2000 lb . If the United States join weights intermediate between the pound and the ton, and who
make their contracts in tons of 2000 lb . If the United States join
us, Canada will -certainly come in, and our Colonies will have
to for us, Canada will-certainly come in, and our Colonies will have
to follow. India has already adopted for her light railways
the metre gauge. Mr. Arthur Balfour in Darliament last

 the reasons put toryyard by traderem, demonostrated that the motre
 of that sort. We claim the metrical system for two main reasons-
one, because it is decimal, and banishes the confusion of what is known as compound arithmetic ; but second and principally The world has adopted the British railway gauge for the sake of respormity, by adopting the world's gauge of weights and measures.
It is the break of gauge in the journey made by our merchandise that we want to remedy. On the question of Government contract I leave the representatives of the Bristol Chamber to speak.
This resolution was seconded by the Chamber of Commerce, who urged that the Government should help to educate public opinion by at once adopting the metrical system
in contracts. Sir Samuel Montague, M.P., and Colonel Sir Edward Hill, M.P. for Bristol, who have long taken a lead in promoting the change, cordially supported the resoluti
further discussion, was carried unanimously.

THE NEWPORT HARBOUR COMMISSIONERS WEEKLY TRADE REPORT.

There is still a great pressure for steam coal, and owing to the uncertainty of the agreement about the sliding scale there is a
difficulty in arranging stems. Prices are advancing and very firm,
especially small coal. There is rather week for house coal. The quantity of a better demand than las
ending March 12th was :-Foreign, 67,500 tons; coastwise, 15,047 tons. Imports for week ending March 15 th were: -Pitwood,
tis1 loads; iron ore, 10,605 tons ; pig iron, 1550 tons ; and spiegel
iron, 550 tons. Steel and iron works are well employed with iron, 550 tons. Steel and iron works are well employed with
orders for rails, bars, and billets. The Ebbw Vale Company have
an order for 15,000 tons steel rails, The various foundries in the neighbourhood were well off as regards orders.
Coal: Best steam, 11 s , to 11 s . $6 \mathrm{~d} . ;$ seconds 10 s .6 d ; 3 d . extra
 Pig iron: Scotch warrants, 46s. $5 \mathrm{~d} . ;$ hematite warrants, 49s. 5d.
f.o.b. Cumberland ; Middlesbrough No. 3, 40s. 8 d prompt ; Mid
dlesbrough hematite, 51 s . Iron ore, Rubio, 13s. 8d. to 13s, $9 \mathrm{~d} . ;$ Tafna
 Siomens, coke finish, 10 s . Pitwood, 14 s ,
chango telegram:-Copper, £50 $10 \mathrm{~s}, \quad$ Str
very firm, especially Mediterranean ports,

RAILWAY MATTERS.

In New Orleans, practically the whole of the street railway system has been converted during the past three years
from mule haulage to electric traction. Out of 170 miles of road, 163 miles are now operated elec
has been close upon $£ 3,000,000$.
The total number of passengers carried on the Prussian State Railways for the year $1896-97$ was $436,717,857$, as agninst
$397,759,674$ in the former, being an increase of $38,958,183$ or of 9.79 per cent. Of these, 33 per cent. were first.class passengers
$10^{\circ} 53$ per cent., second-class ; $52 \cdot 11$ per cent., third-class

而
He contract for the construction of the extension of Common is said to have been placed. This extension, which is to le completed in fifteen months, with the opening of the company's
line to Moorgate-street, now being rapidy pushed on, will, it is
confidently expected, open a new era of prosperity for the company.

Visirors to the South of France resorts will be pleased have arranged with the Paris and Lyons Railway Company for the Homeward Mediterranean Express Train de Luxe to start two
hours earlier from Mentone, Monte Carlo, Nice, and Cannes, hours earlier from Mentone, Monte Carlo, Nice, and Cannes,
beginning on March 25th, in order to secure the connection in
Paris for Con Holborn at $7.30 \mathrm{p} . \mathrm{m}$.
A Birimghasi correspondent telegraphs to the Finan. large orders in Staffordshire and the Midland districts for for locomotives, railway material, and rolling stock for the State railways.
One well-known Staffordshire firm has secured contracts representing over $£ 20,000$. Considerable contracts for steel and other
requisites
have been phace in South Yorkshire, whilst the Birrequisites have
ningham Wag
and carrianes.
Last Saturday afternoon on the South-Eastern Railway an engine attached to several empty carriages slipped the points
in the centre of the track on the Bermondsey side of London Bridge Station, and ran off the metals. The track for a short
distance was torn up, and the metals were damaged. The carriages, however, kept the rails, and these were easiy uncoupled from the
derailed engine and shunted back. A breakdown gang was quickly set to work, but two or
replaced on the track.

The attention of locomotive builders is drawn to the fact that the Russian Gevernment has set aside the sum of $20,000,000$
roubles for the purchase of locomotives for the Russian State Railways during the current year. A large number will have to
be ordered abroad, as the Russian works, which are elleady full up with orders, cannot turn out more than about 1000 per annum
at the most, says the Consular Jonrmal. In addition, 400 locomo tives have been ordered for the Siberian Railway, and 100 more
will be ordered this year, while $1,500,000$ roubles will be spent
A recent report of the British Consul at Belgrade states:- "A Government Commission is sitting at Belgrade to
consider the improvement of internal communication, and is expected to elaborate a general plan for the construction of railways
to act as feeders for the main line. Foreign capitalists will pro bably be asked to tender for these lines, which Servia bas no means of constructing for herself. The long-talked. of railway between
Nisch and Kladovo, will it is said, be specially given to y Belgrade
syndicate. A contract has been signed between Servia and syndicate. A contract has been signed between Servia and
Roumania for the construction of a bridge at Kladovo on the
and Tanube, wher
A serious accident, which happily resulted in no loss of life, occurred at Potter s Bar Station on Saturday night to the
7.50 Great Northern passenger tran from Hattiel to King's Cross.
The train connects wath the service of the Luto sto St. Albans, and The train connects with the service of the Luton, St. Albans, and
Hertford branches, but fortunately on Saturday there were, con trary to custom, very few passengers. It left Hatfield at the
appointed time, and travelled on the up slow line, in order to allow train is turned on to the up fast line to admit of passengers alighttrain is turned on to the up fast line to admit of passengers alight-
ing and entering the train at the station platforme. On Saturay
evening, however, for some reason to be explained, the driver ran evening, however, for some reason to be explained, the driver ran
past the signals, which were at danger, with the result that the on to the platform with terrible force. The front part of the engine was smashed, and the first coach wrecked, the driver, fire
man, and guard escaping injury by a miracle. Some of the pas. sengers complained of being much shaken, but they were able to
proceed to their homes
We learn from an American railroad contemporary tha a new profession has sprung up on that side of the Atlantic. The
profession seems to depend for its existence upon faulty maintenrarily disable himself, and sue the company for damages. The Mrreet Raxilxay Revier gives the following account of a professional
contortionist who has chosen or a vocation the dislocating of his
hip joint when the circumstances are favourable to securing a hip joint when the circumstances are favourable to securing
verdict for damages against a rairoad company. Some month polis, having caught his heel in a crack, and the result was a dis-
located hip. The company settled for $£ 440$ and attorney's fees, and extended courtesies in the way of furnishing transportation for the man and his nurse, \&ce. Quite recently a similar accident
occurred in Virginia, and a claim of damages presented. The man had been seen the day before hunting about the platform for hole in which to eatch his heel, and a traveller who was present
recognised him as the victim of the "accident" in Indiana. The
Vin Virginia road did not settle his claim, and the Indianapolis com-
The action of the railway companies in nearly equalising their rates for the carriage of timber from Rouen and east ports,
such as Caen, Dieppe, Havre, and Honfleur, to towns in Central and Northern France, is a most serious consideration for those competition for traffic, and the increased efforts of the companies
to secure for themselves that now carried by the canals. The position of Rouen upon one of the main navigable waterways of
the country bas the country has always made it a favourite port for the timber
lands. Freights to Rouen from the Gulf of Bothnia and other
timber.exporting centres are higher than to the above coast ports. timber-exporting centres are higher chan in lengths and despatched by cheap carriage to any port of France. As a general rule
timber despatched from Rouen to towns in the South of rancee is carried by canal as far as Grenouille on the Canal latéral a ia
Loire, or to Roanne in the Department Loire, and there placed on trucks and sent to its destination, the railway at both places joining the canal. The port of Rouen is now at a disadvantage,
relatively with the east ports, so far as timber is concerned, as
freights to Rouen will always be higher than those to the coast, and the inference in the railway rates for carriage of timber is
insufficient to compensate for the higher freight. The brige
"Arhodin." or Pont Trasbordeur, which is to span the Seine at height of 16 oft., and convey passengers and goods, carriages and
tramcars across the river in a car sung at the level of the quays, progresses slowly. The foundation has been constructed, and the
placing of the ironwork will shortly be commenced, but the whole

NOTES AND MEMORANDA.

Tee total output of gold from Auckland, New Zealand, during 1897 amounted to $£ 402,501$, being an increase of $£ 73,760$

Near Boise City, in one of the States of America, there is said to be a subterranean lake
temperature, 400ft. below the surface.
It is interesting to note, as demonstrating the almos cxclusive employment of steel in shipbuilding, that during last nitt of that material, and only about 1.2 per cent. of iron.
A proposal is on foot to invite the British Association Aradrord for the year 1900. It was unanimously decided at a tion to the Association for the year 1900, and an executive conmittee was appointed
should be accepted.
A number of tests have been made with roller bearings on a 3in. line shaft 80ft. long, running at a speed of 200 revolutions a minute, and found to show a remarkable saving in power, says
the A merican Miller. When running in babbitted boxes the shaft consumed 6. 21 -horse power, and came to a standstill two minutes
after being disconnected from the sonrce of power. After the after being disconnected from the sonrce of power. After the
haft was fitted with roller bearings the power renuired to come the friction was found to be olly 3 .01-horse power, and the
shaft revolved ten minutes after being disconnected from the ource of power.
The average daily supply of water delivered in the metropolis rom the thames dea, $57,668,200$ gals.; from springs and wels, $1,184,975$ gals, from ponds at Hampstead and Highgate, used or $193,824,953$, gals., for a poppulation estimated. at $5,748,366$,
total was
representing a daily consumption per head of 33.72 gals. for all purposes. The relative proportions of the supplies from the above
various sources were
cent. cent.; from the Lea 29,5 per cent.;
per cent.; from ponds, 0.06 per cent.
According to a return made by Mr. Bathurst, of the Public Carriage Department of the Metroplitan Police, there are
3190 omnibuses and 1378 tramears in the metropolis, makin together 4568 public vehicles. Added to this there are 3583 four
wheeled cabs and 7923 hansoms. Together we have a grand total wheeled cabs and 7923 hansooss. Together we have a grand total
of 110,076 cabs and omnibuses and tramears. The General Omnibus Company runs 1151 vehicles, and these carry 172 millions
passengers, the Road Car Company runs 350 , and these carry
nilli millions. But there are still to be included in the aggregate
ominuses lieensed by the Commissioner of Police 1650 omnibuse
that are not owned by the two

Tests as to the effects of impurities on the electrical conductivity of aluminium have recently been communicated to
the Franklin Institute. The results show that with $1 \frac{1}{2}$ per cent. impurity the specifice conductivity of the aluminium was 55 per
cent. that of copper. If the impurity were decereased to 1 per
per. impurity the conductivity is 61 per cent. that of copper. Finally with absolutely pure aluminium, a specific conductivity of 67 per
ent. that of of commerce, when pure, can be reduced until it costs one -third
less than copper, it can cornpete commercially with this latter
The monthly report of the Labour Department of the Board of Trade shows a marked improvement in the state of em
ployment in the month of February compared with the previou ployment ing mot quite up to the level of the correspond previou month in last year. The improvement is not fully shown in the figures
given below, owing to the fact that the number of unemployed members by a certain number who have not yet succeeded in finding mployment after the engineering dispute, and who in previou out. In the 116 trade unions making returns: with an aggregate
nembership of $466,362,20,517$-or $4 \cdot 4$ per cent.- were reporte is unemployed at the end of February, compared with 496 pe ent. at the end of January, and with 3.0 per cent. in the 11. .
nions with a membership of 453,144, from which returns wer nions with a membership
received for February, 1897 .
The circumstances attending an explosion during the thawing of gelatine dynamite called gelignite, which occurred at
Porthcaw, in Glamorganshire, on JJanuary 1oth last, form the subject of a Home-oftice report by Captain J. H. Thomson, R.A.
H...I Inspector of Explosives. The accident, by which two me lost their lives, occurred in a rock cutting made for some nev
sewage works, and was caused by placing the cartridges in a says the report, "is not far to seek. If an explosive is deliberatel placed on top of a fire and gradually heated, it is only a questio
of time and degree of temperature which determines whether when an explosion shall occur. This aecident is the eighty-firs
of which we have record, eaused by the improper thawing of nitro ight killed nd ninety-seven injured. It is unfortunate that idea still prevails that nitro-glycerine compounds can only be
exploded by means of a detonator, and that they can be ignite or thrown on a fire with impunity. No greater or more dangerous
fallay could be maintained, as is shown by the above large

the operation of thawing

A practical demonstration of Dr. Linde's method of pro dacing extreme cold and Squefying air, The princinday and ues apparatus, which was shown in operation, is based on the reduction of temperature which takes place when air-as well as other gases,
except hydrogen-is allowed to escape from a higher to a lowe pressure. The most important parts of the machine employed are two-cylinder air compressor and a counter-current interchanger changer consists of a triple spiral of three tubes wound one inside
the other. The eycle is performed in such a manner that compressed air at about two hundred atmospheres flows through the nmost tube of the spiral from top to bottom, and passes out at the tmospheres, returns upwards through the annular space between the inner and middle pipes, and is then again raised to a'pressure
of two hundred atmospheres by the smaller cylinder of the com pressor to begin the same cycle over again. A small machine, in which the air is deiivered at two hundred atmospheres pressure, horse-power to drive it, and to give about $0 \cdot 9$ litre of liquid air per hour. Confirming certainexperiments sy Profossor DDewar, Dr L. Linde finds that on evaporation of liquid air the nitrogen escapes first, so that the percentage of oxygen remaining in the liquid progressively
ncreases.
liquid has oxygen, and when 95 per cent. of the liquid has evaporated. the remainder still contans 90 per cent. of the oxygen originally
present. Besides the application of this highly oxygenated liquid or scientific experiments, Dr. Linde proposes to utilise it in the it in combination with powdered charcoal as an explosive in blasting it in combin
operations,

MISCELLANEA

The Manchester Corporation have had under consideration the utilisation of the water supply at Longdendale, as a
neans of generating electrical power. The question is to be means of generating electrical power.
referred to an electrical engineer for report.
An Industrial and Mining Exhibition is to be opened in Auckland, New Zealand, in December next, and will remain open
during January. The Exhibition will be under the patronage of the Governor, the Earl of Ranfurly, The secretary is Mr. W. R.

At a meeting of the Lynn Town Council on the 9th inst., the resignation of Mr. E. J. Silcock, C.E., Borough Engineer,
was accepted, but it was decided by the Council to retain Mr. upply to the town and the completion or the works for a new water depigned and commenced by him. We understand that Mr.
Silcock has been appointed engineer to the Kings Lynn Harbour Silcock has been appointed engineer to the King's Lynn Harbour
Conservancy Board, and that he will also carry on a general practice
The Government of Newfoundland have decided to dispose of the dry dock at St. John's to Mr. Reid, owner of the
screw steamer Bruce, of 1155 tons measurement, and high speed, built last year by Messrs. A. and J. Inglis, of Pointhouse
bid illustrated this week on Placentia and Sydnev, Cape Breton, performing important service
in the linking together of separate railway systems. It is the in the linking together of separate railway systems. It is the
intention of Mr. Reid at once to give the orders to Clyde builders Ior no fewer than seven new steamers intended to ply about the
A financlaL contemporary states that a French company has requested the French, Belgian, and Dutch Governments to
allow them to establish along the navigable rivers and canals in these three countries a system of electric traction, in order to form an Therational network of electric towage which wistern province-
the Rhine, in Holland, to Marseilles, though the eastern to
of France. Several canals of the North of France are to be con of rance. Several caanal of te. North of rance are the peon-
nected with the Upper Meuse. It is urged that when this project
is realised a great and probably favourable influence will be exerted upon the French and Belgian coal mining industry.
Messrs. Ramage and Ferguson, engineers and shipbuilders, of Leith, on the approaching expiry of the present lease
of their premises from the Dock Commissioners of Leith, are arranging to have a portion of the foreshore reclaimed, whereby
they will be enabled to lay down vessels of double the length at present. possible. They have now on their stocks a vessel
of 340 ft in length to the order of Swedich owners, which is the largest steamer ever built at Leith. The firm have it in con-
templation, also, to introduce the system of electric-motor driving templation, also, to introduce the system of electric-motor drivin
for the various isolated machine tools throughout their worls
The defects of Dublin on account of the neglect of sanitary arrangements were again made public at the meeting of
the Dubbin Sonitary Association held last week. Owing to the amount of sickness which has been prevalent during the past year,
and the consequent crowding of the hospitals, the Council have brought before the proper authorities the subject of the very in
adequate accommodation afforded by the existing hospital arrange ments for the treatment of infectious and febrile diseases. Th vide accommodation for this matter, says the A rchitect, is to prohouses specially selected and properly, fitted up would make roon
for other patients to be admitted to the hospitals. The president drew attention to certain seaside summer resorts in the vicinity o and, indeed, good prondt, be improved. The health of Dublin
and sust suffer if disease instead of health be the result of a summer

The fountains of Paris are among the most interesting eatures of the city, and the authorities are careful to increas ment has been tried by which the waters will become luminous. It vas not contemplated to have the variety of colours which are
displayed from time to time by fountains in the grounds of inter apparatus placed at a height. In Paris a sort of golden yellow will alone be employed; but the waters will assume the appearance of cascades of diamonds and topazes. According to the A rclitect
the effect will be attained by means of electrie lights and coloured lasses placed around be basin in such a way by che beauty o fountains which were selected for trials were those in the Place
Theatre Francais and the Place de la Concorde and up to the present the दanticipations of the municipal engineers are satis

According to a Consular report machinery, instru ments, and arms were imported into Servin in 1896 to the value o
£45, 184, an increase as compared with 1895 of £11,489. This rade was divided between Austria-Hungary and Germany
Great Britain supplied some $£ 3325$ worth of sewing and knitting Greachines and sspientific instruments. The total value of metals
mimported in 1896 was estimated at $£ 115,397$, or $£ 23,047$ more than in 1895, distributed as follows : Austria, Hungary, $£ 90,184$ Germany, $£ 19,080$; and Great Britain, $£ 2139$. The importation
of nails, screws bolts, nuts, clamps, \&c., during 1896 was valued mplements are estimated at axes, tires, tools, and gardening little over $£ 100$ was spent in England. Considerable improve.
ment can be made in this class of goods by our manufacturers, and the contemplated reduction of sea freights from England to
Fiume, if carried out, will be of material Fayse the Conssular Journal. The Consulate at Belgrade is
sate ing the importation of bar, hoop, and plate iros and tin-plates fro Great Britain. On application his name will be given to
any British firm wishing to open up correspondence upon the
In the House of Commons last Friday evening Lord Charles Beresford asked the First Lord of the Admiralty if he
would settle all doubts as to the qualities of the Belleville boilers by ordering the Diadem when ready for sea to steam across the Diadem, like all other ships in commission, will, have to make her
der twenty-four hours' passage trial as provided by the regulations once
a quarter. Any further trials that may be enecessary to satisty the start a newly-commissioned ship on a long-continued run at full speed until the engine-room staff have had time to become case of emergency. Much better results would be obtained by graaually training the men to the use of the machinery under con-
ditions that admit of errors being pointed out, and of any defects being remedied as they occur. In reply to Mr. Allan's remarks on
the recent trip of H.M.S. Powerful, Mr. Goschen said he had an intimate knowedge of the captain who conducted the trials of the
Terrible and the Powerful, and that distinguished and experienced naval officer was convinced of the propriety of having the water
tube boilers. They would not be abbe to oo back to the cylindrical oiers any more than they would on the muzze-loading guns
Naval opinion had distinctly come round to the water-tube boilers. He admitted that they required more scientific stoking, and the stokers of the Navy were being instructed in their management.
It was a fact that the more the stokers were instructed in their
management the more

S. S. B R U C E

messrs. a. and J. inglis, point house, glasgow, engineers
(For description see page 256)

Plan of Main Deck

FOREIGN AGENTS FOR SALE OF THE ENGINEER

Hina.- Kklly and Walsh, Litd., Shanghai and Hong Kong RANCE.-BOYveav and Chevilest, Rue de la Bangue, Pa
A. Tweitmever, Leipzic.
taly.-Loescher and Co., sot, Corso, Rome
Bocca Feres, Tur
Japan.- Krlay and Walsh, Ltd., Yokohama.
USSIA.-C. Reker AFRICA. - Gordon and Gorch, Long-street, Capetoren
R. A. Thompson and Co., 33, Loop-strect, Capetoron. AUSTRALIA.-Gordon and Gotch, Queen-atreet, Melbourne; George
R. A. Trompson And Co., 1so, Pitt-strect, Sydney: 36 Little Collins-street, Melbourne; 7, King Willian street, Adelaide; Bdieard-street, Brisbane.
NER AND Henderson, Hunt-street, Sydney.
new zealand.-Upton and Co., Auckland.
Craio, J. W., Napier.
anada. - Montreal News Co., 386 and 388 , St. James-street, Montreal Toronto News Co., 12 , Yonge-street, Toronto.

Duane-street, New York
ubscription News Co., Ch
traits settlements.-Kklly and Walsh Lid., Singapor EYLON- Wisarama aid Cotombo.

SUBSCRIPTIONS

Re Enornerr can be had, by order, from any newsagent in town or country at the various railway stations; or it can, if preferred, be supplied direct from the oftice on the following terms (paid in didynee)

Hatit gearly (including double number)

 completo set of Tux Examazr can be had on application.

Half-yearly ..
Yearly
PaPk Copies
Half- yearly ..
Yearly
${ }_{c}^{80} 18.180 \%$ od

ADVERTISEMENTS

arr The charge for advertisements of four lines and under is three
shillings, for every two lines afterwards one shilling and sixpence odd
 Poot-ofice Order in payment. Atternate advertisements will be teod in wny sich coseciol rels except weekly advertisements are taken
subject to this condition. Prices for Displayed Advertisements
positions will be sent on application.
dvertisements cannot be inserted unless dellvered before Six o'clock on Thursday evening; and, in consequence of the necessity for going to press early with a portion of the arrive, ALTERATIONS to standing advertisements should In each week.
Paper are to be addrcased to the Publiane Publishing Department of the Sydney White; all other
letters to be addressed to the Editor of THE ENaINEER
Telegraphic Address, "ENGINEER NEWSPAPER, LONDON."

PUBLISHER'S NOTICE.

- If any subscriber abroad should receive THR ENangekr in an
imperfect or mutilated condition he weill oblige by giving prompt
intornation of the fuct to the Publisher, woith the name of the
 iv suffered,
ihis oftice.

CONTENTS

The Engineer, March 18th, 1898.

Mxickr Sr	

TO CORRESPONDENTS.

replies.

J. A- - 17,000 ib. prossuro is considerably over 34 tons per square inch ;
more nearly 8 . A solid forged steel cylinder would have to be used. J. 8. - The vessol you have designed would make a cheap and economical colier, but
than one deck.
C. R. W. - There is nothing whatever worth noticing in such a perform-

 Unscrinks.-Address as follows :-Metropolitan Co: G. H. Whissell, 32,
Westbourne-terrice ; Metropolitan District: A. Powell, Parlinent:

 moderate thickness consists in provid
that it breaks the points off the shot.

 should, therefore, fall tot the e ight and upper parts of the drawing, but
they are not infrequenty phaced as if the object had been put on its
side to draw the plan viow.
EKExX." -The Illustrated descriptive matter of the engines referred In Your letter is from authentic information supplied by the butiderer
of them Surface condenstion was, as you know, no now thing in
1854, but the use of the pestion

inquiries.

SiR, -Can any render oblige me with the name of a firm who supply
MANAKR.
sprinklers
. sprinklers ?
Morecambe, March 13th
grinding french chalk.
$\mathrm{Sink}-\mathrm{I}$ shall be obliged for the eddress of a maker of machinery for
Brinding French chalk to an impalpabile powder.
March 1 thi. stinding
March 1then.
clearing out ponds.
SIR, -1 shall be glad if any reader can refor me to any frm of engineer.
ing contractors, or to some irm of civil engiveers, who have had special
 steanm power.
Nottinghaim, March 11th.

meetinas next week.

The Institution or ElisctricaL Exansers. - Thursday, March 2 tth,
 Electrical Energy, by Mr. R. Hammond, Member

death.

THE ENGINEER.

MARCH 18, 1898.

THE MINERS' PROVIDENT FUND AND WORKMEN's

 compensation.The colliery proprietors and miners of South Wales and to the Employers' Liability Amendment Act, which comes into force in July next. During seventeen years a Provident Fund has existed in the district for the relief of men injured in the course of their daily work in the pit, and to make provision for their dependents in the case of fatal accidents.
It is true that the subscribing members comprise only 75,000 out of the 125,000 workmen, and that when such calamitous explosions as those at Cilfynydd, the Great
Western, and Llanerch collieries have occurred, the fund has proved inadequate to the demands made upon it with out an appeal to the benevolent public. But as everyone concerned in the mining industry knows, individual casual.
ties and fatalities sum up a far larger annual total than those caused by the wholesale disasters which shock the sensibilities and move the pity of the nation. Thanks, however, to the sound basis on which the permanent
fund is established, it has always been able to meet the ordinary claims arising out of the distressing incidents which seem to be inevitable in colliery operations. The tribute $3 \frac{1}{2}$ d. per week, and the employers add 25 per cent., in consideration of the men agreeing to contract
themselves out of the Liability Act. The manage ment of the fund, which is mainly in the hands o the miners' elected representatives, is able to point with satisfaction to the fact that it has $£ 200,000$ to its credit. The scale of distribution is, in the event of death, $£ 5$ for funeral expenses, 5 s . per week to the widow, 2 s . 6 d . week per child up to the age of 13 ; or if the victim be an unmarried man, $£ 20$ to the next of kin; while in the case of disablement, 6s. per week is paid for the first six weeks and 8s. per week afterwards so long as the man is incapaci tated for work. In this connection it is interesting to learn, on the authority of a member of the Board of Management, that from 30 to 40 per cent. of the South Wales colliers who are injured recover within a fortnight and the remainder are generally able to resume thei employment within a month.
The authorities of the Provident Fund, taking time by the forelock, have been considering the effect of the new Compensation Act upon their organisation, and they have come to the conclusion that, unless the society is re modelled, its beneficent operations must be restricted to the pensioners on its books in July. The $£ 200,000$ would be ear-marked for the widows and orphans; but as subscriptions would cease, the capital must be gradually exhausted by the grants made to the present beneficiaries. But is it necessary that a contingency, which would be little short of a catastrophe, should be allowed to arise ? The board of management takes a very strong negative view of it, and it has devised a scheme, certainly merit orious in its purpose, with nothing doctrinaire or impracticable about it, so far as we can see, and one which
would avert all the disputes and litigation under the would avert all the disputes and litigation under the
Workmen's Compensation Act, if the South Wales Workmen's Compensation Act, if the South Wales colliery proprietors approve the plan. It is proposed
that the colliers, at least the members of the Provident that the colliers, at least the members of the Provident
Fund, shall continue to contract themselves out of the Act, on condition that the coalownors increase their contribution to 6d. per head per week, the miners' subscription remaining at $3 \frac{1}{2} \mathrm{~d}$. per, week as before. It is pointed out that the employers' quota upon this scale would amount to considerably less than the estimate of Sir William Lewis and others that the new Act involves an extra burden of 3 d . per ton on the total output. The argument that the increased subventioni.e., from 25 to 70 per cent.- would fall upon the coal
and be borne by the purchaser, seems to us far-fetched and be borne by the purchaser, seems to us far-fetched, and need not be discussed now. The question at present is rather which is the most advantageous course for masters and men-a joint and mutual arrangement on the lines suggested, or recourse to the Act, which, it is coared, must introduce a disturbing element in every colliery, and flood the Law Courts with claims of compensation for all sorts and conditions of accidents, from a broken leg to such a catastrophe as is sadly too
familiar in the mining annals of the fiery coal basin. "Whether 'tis better to bear the ills they know, or fly to others that they wot not of," aptly describes now confronted. The project of the Provident Fund is recommended to the employers by its authors as not only the most amicable, but the most economical method of procedure. For one thing the doctrine of common employment is gone, and their ously increased. Whereas, under the old rule, uhe serious or wiful misconduct of a mir," almost nvariably statute only disqualifies the culprit or his relatives from claiming compensation, and leaves the employer the object of attack by all or any of the injured survivors, or the relatives of the dead. One hears from the colliery districts, now and then, that this and that solicitor is surrendering a public position or private business to devote himself to practice under the Compensation Act, and the announcement contains a sinister indication of the abundant crop of suits the lawyers expect to follow the enforcement of the new law. But the managers of posal to the most stress on the benefits of their proIt is calculated that each collier sends up 280 tons per annum, on which 1d. per ton would amount to 23 d. per week, while the proposed 6d. per head per week would represent 26 s . per annum. That sum is compared with did nomployers own statement that the Act, the men the whole output, and it is urged that the coalowners would therefore be greatly the gainers by the bargain. Apart from the heavy sums payable under the Act for fatal accidents, which would be ruinous on the occurrence constant and scarcely diminishing series of individual injuries would reach a portentous amount in the aggregate. When the members of the Fund numbered 70,000 ablement during one year, and the Act prescribes that these persons shall be entitled to half their average per wer the previous twelve months, or, say, es pays now, or the 10 s . it proposes to pay if its revised scheme is adopted. A further reason in favour of the 6d. per week basis is placed before the colliery owners. They would be spared the cost and onerous labour of administering the compensatory allowances paid by agreement chief, the waste, and extravagance, likely to ensue from the delivery of lump sums to a disabled collier or a bereaved family. The Fund is in a position to safeguard the money and profitably dispense it in weekly grants.
The advantages to the colliery population of the proindirect If are more obvious, and are derect of the Act as it stands, the probable consequence will be, as a thoroughly competent authority has predicted, that the old men who have been permitted to remain in the pits as a favour, and in recognition of long service, will be weeded out, together with a very large class who have and, as far as possible, preference will be given to
young unmarried miners, because if anything happens to the relatives of a married man may claim from $£ 150$ up the relatives of a married man may claim from $£ 150$ up
to $£ 300$. The Act ignores the collier who is injured as to £300. The Act ignores the collier who is injured as
the result of his own negligence; if he be a subscriber the Fund relieves him irrespective of the cause of his disablement. The Act directs that compensation is not
to be paid for the first fortnight; the Fund grants to be paid for the first fortnight ; the Fund grants
relief at once. The average cost to the Fund for the widow and orphans of a decsased member has been $£ 227$; the average under the Act is approximately set down at £180. It may be taken for granted, without
going further into details, that by contracting out of the going further into details, that by contracting out of the
Act, according to the plan of the Provident Fund, with Act, according to the plan of the Provident Fund, with position of the South Wales collier would be vastly improved. Whether in its re-modelled form and its
increased revenue the Provident Society could bear the increased revenue the Provident Society could bear the
burden, as is suggested, of an old-age pension fund, is burden, as is suggested, of an old-age pension fund, is
a matter for the actuaries, on which Mr. Neison, the adviser of the management, must needs be consulted; but the idea is favourably regarded by men in the district whose opinions deserve respect.

So far we have confined ourselves to describing the proposals of an association which has rendered ines-
timable service during its seventeen years of life, timable service during its seventeen years of life, sympathetically, it must not be assumed that we
are unconscious of the obstacles which have to be surmounted before it is carried into effect. Little more than half the mining community is at present associated with the Provident Fund. All the colliery pro-
prietors are not yet contributors to its revenue. There are close on 50,000 men outside the society who are under no restraint, or, it might be said, inducement, to avail themselves of the opportunity of contracting out in order
to secure the more solid advantages the scheme of the Provident Fund offers them. It does not appear probable
that the colliery owners will consent to the increased contribution, and abrogate a right which is indefeasible while they stand united together, until they are assured
that the Board of Management of the Fund can speak that the Board of Management of the Fund can speak
with more binding force for a greater majority of the with more binding force for a greater majority of the
whole body of colliers. As the proposal is presented, whole body of colliers. As ane proposal is presented,
they would be giving a subvention to members of the
society, but they would still run the risk of being shot at society, but they would still run the risk of being shot at
under the Act by all the franc-fireurs and independent under the Act by all the franc-fireurs and independent
skirmishers whom the South Wales Provident Fund has skirmishers whom the South Wales Pr
hitherto been unable to bring into line.

Among the problems which vex the soul of the thoughtful physicist, few are more interesting, none more
important, than the question, how is energy stored up? What do the words quean? That energy is stored up What do the words mean? That energy is stored up there is no dispute. The sudden and awful destruction home to us all in a very unmistakeable way. So common
is the practice of storing up energy, indeed, that we forget is the practice of storing up energy, indeed, that we forget
the extraordinary peculiarities of the process. When we wind up our watches we store energy, and we perform
the operation in an automatic fashion, which takes no the operation in an automatic fashion, which takes no
cognisance of the fact that much the same natural laws are prokably involved in the working of our watches as those which attended the effects of the explosion on board
the Maine. It is to be noted that nothing can exceed the density of the ignorance prevailing concerning the storage of energy. The mathematician, the chemist, the natural philosopher, have all pushed inquiry to its limits in have left severely alone. We may ransack a library of
physical text-books, and we shall find little more than a bare mention of facts. No serious attempt at useful speculation has been printed; and the world has had to devoid of meaning, to explain phenomena of the utmost importance to mankind.
Let us consider first what is meant by the word Energy. capacity for performing work be told that it meant power of exerting a Force; but the word Force is gradually and happily disappearing from the language of precise science, and so we may confine
our attention to the modern definition. After all, however, that definition only works round in a circle. A far better definition is, that energy means the power of pro-
ducing motion. If we think the matter out, we shall soon see that work always means movement of something. There is no work done unless there is motion ; at least, none of which man is able to take cognisance.
Thus, for example, when the Maine was blown up, it was the motion of gas which did the work of destruction; and that destruction consisted, in turn, in the movement
of certain parts of the ship in relation to other parts; as, for example, the blowing up of one of her decks meant the movement with more or less violence of that deck
away from the other portions of the hull. It is not easy, we think, to mention any manifestation of energy ajart from motion. We insist on this fact for reasons
which will be understood in a moment. The idea of work implies motion against a resistance. It, is indeed, impossible to form any conception of work or energy
which does not in some way or other mean motion. It has more than once been suggested that the words "conservation of motion " are far more precise than the use lies in our ignorance, and the fact that apparently they will not cover all the ground that ought to be
covered. But be this as it may, we invariably come covered. But be this as it may, we invariably come
back mentally to the same position. Manifestations of energy are manifestations of motion. Bearing this truth in mind, grasping it firmly so that it may not be lost,
let us proceed to consider some of the statements made about the storage of energy, which must not be con-
founded with the conservation of energy, which is quite another matter, That is to say, the storage of energy is
a particular case of the general theory covered by the onservation of energy.
Physicists tell us
Physicists tell us that there are two forms of energy-
inetic or dynamic, and potential. As an example of the former, we have a weight in the act of falling. As an example of the latter, we have a weight at rest, on the
top of a wall let us say. The word "potential" top of a wall let us say. The word "potential " is so far unsatisfactory that some physicists have rejected it in
favour of "energy of position." But no one has attempted favour of "energy of position." But no one has attempted
to explain how energy is stored up in the weight on the to explain how energy is stored up in the weight on the
top of the wall. Let us suppose that we lift a mass of top of the wall. Let us suppose that we lift a mass of
iron weighing $38,000 \mathrm{lb}$. 16 ft . in one minute and retain it there. We have expended energy at the rate of 16 -horse power in lifting the mass, and we are told that it represents potential energy equal to 528,000 foot-pounds.
Meanwhile, what has become of the energy expended in Meanwhile, what has become of the energy expended in
lifting the weight? How is it stored up? How is the lifting the weight? How is it stored up? How is the wholly inert. We know that energy is only a mode of motion. How can a mode of motion, or motion at all, be stored in that which is at rest? The text-books leave us without a glimmer of light on this subject. Either their authors regard the whole subject as an inscrutable
mystery which it is useless to tackle, or they fail to undermystery which it is useless to tackle, or they fail to under-
stand the nature of the contradiction of terms involved stand the nature of the contradiction of terms involved in these propositions. It may not advance matters much, but it does advance them a little to say that the work
done in lifting the weight has been done against gravity, and that the energy exerted is stored in gravity, where it remains kinetic, and can be got back again as kinetic energy by letting the weight fall; which is far more easonable than saying it is stored in the weight.
But this set of phenomena are extremely pared with those presented by explosives. It is commonly assumed that the energy of any explosive is the precise equivalent of the energy expended in the isolation of its separate elements. But this is really pure assumption in part ; in part pure deduction from particular known facts in chemistry. There is no absolute certainty, for example,
that explosives do not utilise forms of ether energy. It is enough, however, merely to mention such speculations. Let us take it not only for granted, but as proved, that the energy of combination is the precise equivalent of the de-combination which necessarily preceded combination,
and ask ourselves what follows. In what is the energy of a charge of powder stored? The Maine is lying quietly at anchor at one moment, the next she is rent and
tortured and ransacked by torrents of white hot gas. Where did this energy come from? If all energy is kinetic, how could it have been stored up in motionless cordite or gunpowder? If it is not kinetic-if, in a word,
energy is not a mode of motion, how is it to be defined? what is it? As regards explosives, we know that the chemists find salvation by believing that "chemical attraction " explains everything. In point of fact, of deficient in all that relates to explosion by detonation. We can burn gun-cotton or cordite quietly. If we explode I percussion cap in either the result is entirely different. Is the energy exerted by a pound of gun-cotton burning pound of gun-cotton detonated? Be this as it may, we are driven back to the old problem, where and how a the foot-pounds of work stored away in an explosive It may seem at first sight that to look for the answer to such questions is to attempt a vain thing. But it is not so. The reward of the man who could tell the world how and whera and why energy is stored in explosives would be showered upon him. If the facts were known a great doubt would be removed from our minds. There are not wanting signs that the advent of new, so-called high explosives is probably accompanied by dangers herealways be a large factor of safety in the magazines of our warships. It will not do to carry ammunition of such a nature that it is an even chance whether it will or
will not "go off" of itself. It would, perhaps, be too much to expect absolute immunity from risk; but the chances ought to be not less than a thousand to one
against accident. It has been admitted in the United States that certain new high explosives have been tried experimentally, and that they have not been proved to possess the requisite stability. Now, stability is of two
kinds-that which is obtained by using materials of maximum purity; all about this is known. But there is another stability about which very little is known, detonation are but ill understood-if it can be said that any rational comprehension at all of their nature exists. According to one view a detonator causes explosion by driving red hot gas through the mass of gun cotton, and "pebble powder" is perforated with holes, to principle the burning surface. Rockets are rammed on a spindle with the same object. There is reason to believe, however, that a detonator seems to work by viointended should explode. At one toxample, which it is heat was essential to the setting up of explosive combination; but it has long been recognised that the equivalent of heat is to be found in concussion. One theory is that heat sets up combination simply because it sets up vibration. If, now, it is found that for the higher explosives lacking stability nothing more is wanted than the rapid vibration clue to more than one mysterious explosion, and once a ing of future peril which it would not be wise to neglect. And so we come back to our previous statement, and repeat that the modern man of science desirous to find a settle exploration cannot do better than endeavour to up in explosives ; and and not in some force of nature which is not yet recog. that all the energy of combustion was stored up in the solid fuel, which was so much bottled sunlight ready to
be let loose. More sensible views have found their way as the kinetic energy of wateris very much less than that of oxygen and hydrogen, so the combination of the two gases oxygen and hydrogen, so the combination of the inasmuch as the kinetic energy of carbonic anhydride is much less weight for weight, than that of oxygen, that a large par t least of all the energy got out of the combustion o In like is derived from the oxygen instead or the coal In like manner it may be found that the energy of explosives is derived from some up to the present un suspected source, and that the materials of the explosives are themselves acted upon as well as acting. Energy is chimney, although energy was expended in putting it there
british and foreign types of battleships
The discussion of our Naval Estimates in the House brought up the question of the type to be adopted and the proportioning of the various features according to the special requirements of the time-requirements
necessarily shaped by the character of the warships built necessarily shaped by the character of the warships buil
by other nations, as well as the development of wa by other nations, as well as the development of way
material at home. The Cressy class, we are informed material at home. The Cressy class, we are informed,
awaits the final conclusion as to some features till the awaits the final conclusion as to some features till the
last moment, in order to benefit by the latest information last moment, in order to benefit by the latest information
as to foreign construction, as well as to obtain all possible as to foreign construction, as well as to obtain all possibl course of production. Anyone who has followed the development of ships and guns must see the necessity for this. We propose, however, to call attention to a few features in the most important types of warships to published and in the reach of all. The Inflexible class, including the Ajax, Agamemnon, Colossus, and Edin burgh, completed in 1886 , form the last batch of ships whill depended wholly on a artillery power, these guns being gathered in turrets in a
central citadel. In the Admiral class was first recognised the importance of a secondary armament of medium guns, and this was placed in a central battery, the heavy guns, and this was placed in a central battery, the heavy
gun positions being fore and aft. As quick-fire guns came in, the importance of the medium guns enormously increased up to the present moment, when, as we have often said, most naval captains depend probably more on their heavy quick-fire pieces than on their primary heavy guns. In this matter England has completely taken the
lead. No unprejudiced man can fail to see in such vessels as the Russian Sissoi Veliky and Tria Sviatitelia, the Italian Garibaldi class, the United States Kearsarge and Indiana classes, and even in the German Kaiser Friedrich IIL, the essential plan of the British ships reproduced; while even in detail the later designs of Sir William White have been copied to such an extent in many cases that he may almost be said to be the designer of the principal warships of all nations. France, no
doubt, constitutes an exception, yet even she has at last adopted double gun turrets fore and aft, and has placed plan, quick-fire guns amidships, precisely on the British carrying her water-line up to the bows and stern, leaving inviting unarmoured spaces beneath her batteries where common shell may enter freely, we must bear in mind that her national amour prôpre may be still more susceptible to injury and of more account to her central heavy gun position in the Admiral Baudin and other ships by a battery of quick-fire guns, France is illustrating the necessity of conforming to the development new features and increased power in her rivals.
Before leaving the general question of types to pass to our readers to look at the figures of the most character istic types of war vessels of England and other Powers, as depicted in the plates in "Naval Annual" or the distribusian Almanac." Let us suppose artillery fire either such discrimina oser suchikg unarmoured parts in fair measure with common shell, and armoured now and then with armour-piercing shot. It will be concluded, we think, that our own Magnificent and Royal Sovereign classes will bear almost any conceivable amount of fire without suffering very seriously in fighting power, while such a class as the Charlemagne could hardly escape something like ruin. Some French types might no
doubt bear punishment a little better, but some older ships, such as the Magenta class, would be liable to even worse injury; while the very best Russian ships, such as the Sissoi Veliky and Tria Sviatitelia, structures, have their quick-fire substantial central batteries with open interiors, so that a single common shell from a primary gun might work wholesale destruction. Such an examination should strengthen our conmence in our own Admiralty and construction depart more, and enable us to leave matters in their hands with ments. mentioned. We have described the Vickers quick-fire 6 in . gun, recently tried and approved. Besides this there power. Inmplation 12 in . and 2 m . guntings and also involves increased length of gun. It is well worth while sacrificing something for such pieces, however, if they In the results expected of them. Take the 6in. gun ing of the contested action much depends on the silenc are generally protected by from 3 in . of steel upwards happily in our case generally by 6 in . Very few foreign quick The Catteries have at present anything approaching this 4in., while the Sissoi Veliky and Trin Sviotiteli have 4in., while the Sissoi Veliky and Tria Sviatitelia have
5in.; so that at present our 6in. quick-fire guns ought to be able to use armour-piercing shells and occasionally to be able to use armour-piercing shells and occasionally
common shells with effect, while hardly open to attaoli
even by the enemy's quick-firing shot. As time goes on no doubt the shields will thicken, and 6in. or even more may be met with. It is thus specially important to master such shields to the greatest possible extent. bursting charges; when thicker, to use if possible armour bursting charges; when thicker, to use if possible armour-
piercing shell, and failing these, shot, which are very piercing shell, and failing these, shot, which are very our 6 in . guns is therefore of great importance, and should be secured if possible; and the same reasoning applies to the other guns in their own spheres of action. How priority, depends much on the features of foreign ships until the latest possible date, cend we hope the open readers feel with us that we are justified in doing so with confidence.

RMOUR FOR THE NAVy.
Much satisfaction has been expressed in Sheffield at the discouragement given by Mr. Goschen to the proposal for
establishing Government armour works. While it is certainly a fact that the supply of plates for her Majesty's Nav as not been equal to the requirements of the Admiralty, is only fair to remember the cause. There are, in fact, two strike. The managers of local works exhibited remarkable placed in their way when the engineers went out, and it i entirely to their credit that they were able to continue working in any of the skilled departments while that trouble was attendant upon the planing, slotting, and other machines had to be placed upon skilled craftmanship under the super-
intendence of the managers, who practically worked night and day to meet the emergency. Aifficulties, but the was taking place at a time when the requirements of the Admiralty were exceptionally pressing, it was impossible for required. It is held in Sheffield, however, that this is no armour plate works, as the three large armour-producing past, to expend any amount of capital in providing additional plant and machinery if they are assured of abundant work history of the armour plate trade when the mills have stood practically idle for months at a time. The loss upon capital many months now the demands of the Admiralty, owing to aroused public opinion in the Navy and the country, have been adequate to keep the plant fully employed, it is only
fair to remember that this activity is but of recent date, and came in consequence of the threatened coalition of cont nental Powers against this country. Mr. Goschen, it continuity of the policy in keeping up the strength of the brought before the annual dinner of the Press Club, Sheffield, on Saturday night, when the Marquis of Lorne was
the principal guest, and he too shared in the general view that the enterprise of private manufacturers, properly encouraged and utilised, would be found sufficient
for the needs of the nation. Lord Charles Beresford is very popular in the city, and his pronouncement in favour
of Government-assisted armour mills was accepted as part of his characteristic rôle of a judicious alarmist, who raises his voice in order to keep the Ministry in power up to what he
regards as the rightful and patriotic standard of maintaining the nation's strength. Nor should the second cause o in a continual state of evolution. Iron gave place to iron and steel-the compound plate-then came steel treated by the
Harvey process, and now it is the Krupp plate. The changes in plant and other re-arrangements on this account have been very great, involving heavy expense and immense trouble ;
but they are now being steadily overcome, and the Sheffield but they are now being steadily overcome, and the Sheffield
firms will soon be in a position to meet the utmost demands that can be made upon their resources, and there will be no Admiralty with all they want.

LITERATURE

Railuay and Track Work. By E. E. Russell Trutman,
Am. Soc. E.E. New York: The Enginering Neus Pub. lishing Company. 1897.
Is his introduction Mr. Tratman tells us that the railway system of the United States now aggregates about
181,000 miles of railway, with 237,000 miles of track; of this 180,000 miles are single. The traffic over the system amounts to about 800,000 train miles a year-which is a
mistake, for it really amounts to about $767,000,000$ o mistake, for it really amounts to about $767,000,000$ of
train miles-and about 1 per cent. of the entire population finds employment in working it. "It will be seen at once that the maintenance of 237,000 miles of track to
keep the railways in normal condition for traffic is a keep the railways in normal condition
stupendous work, and one which affords great opportunities for the exercise of good judgment and executive ability in combining efficiency and economy in the con-
duct of the work." further, and add that the railroad track of the United States affords excellent opportunities for technical litera ture, and that Mr. Tratman has taken full advantage of these and produced a very interesting book
It is not very easy for the reviewer to settle on the best way of dealing with a volume of this kind. There is
nothing in the world of literature with which to compare nothing in the world it is better than this treatise, worse
it. We cannot say than that. We can only form an idea of its merits
by considering what such a book ought to be, and comby considering what such a book ought to be, and com
paring the volume before us with this ideal standard paring the volume before us with this ideal standard
Unfortunately, working in this way, it is easy on the one hand to over-estimate the worth of the book, or, on the other, to depreciate it too much. However, proceeding as best we can, we ask ourselves how it has come to pass
that in all these years no book of this kind has ever before that in all these years no book of this kind has ever before
been written? The answer seems to be that it was not
anted; and the more carefully we study the pages of Mr. Tratman's work the more we doubt its utility. Ou literary merits are considerable. The style is terse, lucid and yet ample. It is a text-book of the whole subject. Who, we ask, is to be taught by it? The rising generation of railway engineers, we presume ; but will they be content to take their knowledge from text-books? Mr Tratman tells us in his preface that "Inquiries are being ontinually made for a modern comprehensive book o Track Work,' and it appears that there is a large fiel and it is to meet this demand that the present book has been prepared." We are disposed to think that its principal value will be found to lie not in its educational utility, but in the information that it will supply to various railway engineers as to what other railway ngineers are doing. In this country distances are so mall ; our whole railway mileage is, comparatively speaction are so uniform, that every railway engineer from the Land's End to John o'Groat's House knows what every other engineer is doing, has done, and is going to

But in an enormous country like the United State he case is very different, and a book such as this may small utility at this side of the Atlantic. Judging the merits of the book from this standpoint, we can hav nothing for it but praise. The author has been throughou
minute, thorough, and comprehensive. We have failed however, to discover much that is applicable to u practice. But the book will
interesting by English readers.
The contents are divided into twenty-five chapters, the first of which is introductory. Then comes "Road Bed ross Sections;" "Ballast, Ties, and Tie Plates;
'Rails, Rail Fastenings, and Rail Joints;" "Switche Frogs, and Switch Stands;" "Fences and Cattle Guards;", "Bridge Floors and Grade Crossings;"," Track Signs;"' "Tanks and other Track Accessories;" ." Side ganisation of the Maintenance of Way Department "Track Laying and Ballasting;" " Drainage and Ditching;" "Track Work for Maintenance;" "Gauge Grades System :" ": Switch Work ${ }^{\text {." }}$ "Bridge Work Pre Tele graph Work;" "General Improvements;" " Handling tions :" and finally "Records and Reports." It will be seen from this list that Mr. Tratman has covered the whole ground, and he seems to have said pretty well all W. worth saying about each subject.

We naturally turn to such a book as this to test the made in this way. For some reason which we fail to understand years a violent onslaught on British railway method and an exaltation of those of the United States. Among other things we have been assured that we are all wrong much hat United States practice been praised, that we have felt much the same curiosity as the little girl, who,
after a course of inscriptions on gravestones, asked her after a course of inscriptions on gravestones, asked her of 237,000 miles of track there must surely be some not superlatively excellent. We learn from Mr. Tratman that this is indeed the case, and that the good track is quite the exception. "On many main lines there is, it is
true, a very excellent and substantial track construction second to none in this or any other country; but the aggregate length of such track is but a small proportion
of the total mileage of railway track carrying heavy of the total mileage of railway track carrying heavy
traffic." Our author gives ample details as to the number of sleepers-or as they are called in the United States " ties "-on principal lines. The main difference Ameen them and those used in this country is that the American sleeper is a little thicker. He tells us that the deflection of arail under aload varies as thecube or the tie spacing. So that itwe take 1 as he delectiond 3 sleepers 24 . apart cenc deflection will be 1.9 and 3.4 respectively It is to be repted as mislealing that he gives the price It is to be regretted as misleading that he gives the price that we stated recently that the cost of sleepers is very that we stated recently
much less in the United States than in this country, not greatly exceeding, indeed, a shilling each over wide areas greatly exceeding, indeed, a shilmg each over wide areas
of country. To this Mr. Tratman took exception in a etter which we published. Here, however, are his own figures :- "The cost of material in a short-leat pine tie is $1 \frac{1}{2}$ to 3 cents; transportation to port, 3 to 5 cents ; total虽 from the port to the locality where it is wanted. But even t New York the sleeper only costs 38 cents, or 1s. 7d. It is obvious that over large tracts of country, where forest land still remains, sleepers can be had for a very small price. As we read the fourth chapter we rub our eyes permanent way, which we have been told is so excellent, so superior to anything met with in this country, can really deserve what Mr . Tratman says of it. The passage is too long to quote, but we may refer our readers to that our chair roads are all wrong, say to the following passage on page 41 :-
As already noticed, there is usually considerable trouble from hod the wear and tear and disintegration of the softened wood by the motion of the rail. This is especially the case with soft ties.
The cutting also decreases the hold of the spikes by letting the rail drop poose below the spike hend, and, by causing rot aro tond
the spike ohos, allowing the rail to get out of gauge, and to tilt on

Now in this country we found out all this long ago, and bandoned the flat-footed rail for the chair-held rail, and in the United States they are now drifting in the same direction, because they have found it necessary to interpose a "tie plate" of steel between the rail and the leeper. These tie plates are made with teeth to tak into the sleeper, and ribs to take the flange of the ail. They have been in use, we are told, but a shor me, and yet they have become so popular that many ittle further development is needed to produce a veritable hair.
Not the least interesting portion of the book is Chapter XV., on "Track Laying and Ballasting." This ctual formation of a permanent way, and from it a curious picture may be drawn of the work and life of those engaged in a country whose characteristics are ery different from those of Great Britain. In the United States the engineer has to deal with lines far removed from the centres of civilisation. Indeed, the oad is usually in advance of it by months, if not year. utely nothing is practically known in this country, Mr Tratman writes:
While track-laying machines have been very extensively used on tively little is known by engineers generally of their operation. The common system of track laying is to have the ties hauled on o the grade by teams, and the rails run forward on small hand
ars. For long stretches of work, however, and on difficult countr -rugged or swampy-especially where teams cannot be used to istribute the ties ahead in the usual way, machine track laying is very extensively employed, and permit
saving in cost over the ordinary method.
Our author then goes on to describe the system, which is very well worth consideration by English engineers,

Lack of space prevents us from saying much more. We ive superintend, if not all, railway engineers and locomo Tratman's book. They will find in it much that is worth thinking about quietly, some things to be avoided but lew that might in this country be done with advantage. But we rise from its perusal, certified, so to speak, that for every climate, every country, there are methods thought, ways of doing business, systems of working, which are the result of more or less occult influences preventing uniformity; and those who argue that what others, are wrong. It is not to be disputed that mechanical truths are equally true all over the world. But somehow mankind does not always utilise these truths in the same The outcome of whi her because the permanent ways of Great Britain and of the United States are unlike, that those responsible for their construction are either or both wrong. At its best, the railway track of the United States is quite as good as the best English track. Of what either is at its worst we do not care to write.

The Isstrutriox of Jusion kxariers. - A highly successful
 Westminster Palhee Hotel. In addition to the usual musical
entertaiment there was a aice ocolection of exhibibs of engineering and scientific interest, including a working seetional model of a utilising the forere of of waves; ;eectional fallsizize modelse and dia-
 automatic machine gun, illustrated by the aid of lantern slides,
the provid. John A. Prestwich, who is a member of the Institution, bers and friends were received by the President, Mr. John A. F.
A spinall, M. Inst. C.E. Mrs, Aspinall, Mr. H. B. Voren Aspinall, M. Inst. C.E., Mrs. Aspinall, Mr. H. B. Vorley, the
chairman, and Mrs. M. Vorley.
Trade and Bcsiness Announcements.-Messrs. Lockwood and
Carlisle, Eagle Foundry, Sheffield, have, for family reasons, registered themselves as a limited company, under the Companies
Acts, $1862-93$, by the title of Lockwood and Carlisle, Limited. the eapital of the company will be all subscribed by the partners, and no shares will be offered to the public.- The directors of Messrs,
Crompton and Co., Limited, have to inform the shareholders that, in consequence of certain differences of opinion between them-
selves and Mr. J. F. Albright as to the management of the company's business, Mr. Albright is relinquishing his position as soon as may be convenient to the company he is desirous of this course should have become necessary. To provide for the future management of the company the directors have appointed
Mr. F. R. Reeves, the company's secretary, to the post of general manager; Mr. K. E. Crompton contin
Death of an Old Raiway Enginerr.-The death is anyears the locomotive superintendent of the Great North of Scotland Railway Company. Mr. Cowan was born in Edinburgh in 1823,
and was educated at the High School there. He began his railway career in 1839 in the locomotive department of the Arbroath and Forfar Railway, and afterwards held posts in the Edinburgh and
Glasgow Railway, the Great Northern, and other railway com Aberdeend, last of all, in the Great North of Scotland Railway a Company in 1854, and three years later he was promoted to the charge of the locomotive department, and in that important posi-
tion he remained till October, 1883 , when he severed his connectic with the company. The first locomotive superintendent of the
Great North of Scotland Railway was Mr. Daniel Kinnear Clart who afterwards became a well-known consulting engineer in held the post for only a couple of years, and in May, 1857, the
then vacant locomotive superintendentship fell to Mr. Cowan. p to that time Mr. Cowan had been acting as an engine driver of a railway stood him in good stead in his new and responsible
sphere, and his refime at the Kittybrewster Works was attended
with conspicuous success, He was a with conspicuous success. He was a general favourite with th workmen eraployed under him, and, on his retirement, was pre-
sented with a handsome testimonial from the staff. Mr. Cowan
kept himself well abreast of the developments of ongineering
science, and many of the early improvements on the plant of the
Great North Railway were due to his undoubted enterpriso and
skill 18 an engineer. Mr. Cowan is said to have been the first to

FEED.WATER HEATER
messis, Joseph wright and co., tipton, engineers

THE EXCELSIOR FEED-WATER HEATER.
Most steam users are now keenly alive to the great importance of obtaining pure boiling feed-water for their boilers, but in many cases the water is of such a character that it requires to be softened and filtered as well. The grease
contained in condensed steam water often prevents it from being used for feed-water, when if it could be extracted the water would prove valuable.

Messrs. Joseph Wright and Co., Tipton, have made a very careful study of this question for some time past, with frequent experiments, and have introduced into their own works, and several others, a system by which all that is necessary is done at a very moderate cost in a single
apparatus, namely, their "Excelsior" patent heater, softener apparatus, namely, their "Excelsior" patent heater, softener, separator, which has lately been supplied by this firm to the separator, which has lately been supplied by this firm to the
Iron and Steelworks of the Frodingham Company, near Doncaster. This heater will take the exhaust steam from a new rolling mill engine, having three cylinders, 45 in . by 52 in . stroke, and will deal with the feed-water for eighteen Lancashire boilers, 30 ft . by 8 ft .6 in ., having a total evaporative capacity of 10,000 gallons pêr hour.

This remarkable heater, which is 29 ft . high by 8 ft . diameter, with 28 in . steam inlet and outlet, is perhaps best described as follows:- Its height is divided into three separate chambers, the upper one being by far the larger. The central chamber is the one which first receives the steam, and in which all the thick grease in the steam is extracted.
The upper chamber is occupied in its lower portion by the
feed ,water in process of Leing heated, and its upper part contains an ingenious series of devices for mingling the water and steam. Large vertical pipes are attached to the floor of chamber through the water lying in the upper chamber to the devices referred to. Here the steam is so directed on emerging from the pipes as to be compelled to pass through emerging from the pilling water, and such steam as remains uncon-
showers of densed passes out at the top outlet. The feed-water enters the top of the heater by the pipe shown, and its quantity is controlled by a float valve, which delivers the water exactly in accordance with the requirements. The effect of the commingling of the steam and water, and also of the steam passing through the tubes surrounded by water, is to raise the temperature of the water to boiling point.
heated water passes by a pipe provided for ther chamber the heated water passes by a pipe provided for the purpose to under pressure to pass through an enormous mass of filtering material-specially suited to the purpose-and is finally delivered from the lower outlet of the heater, softened, filtered, absolutely free from grease, perfectly clean and hot, and ready for use in the boilers, to which it is delivered by the usual boiler feed pumps at 200 deg , to 208 deg.
By means of very large manholes easy access is obtained to every compartment for cleaning out and changing the filtering material; in fact, everything that the large and varied experience of the makers can suggest has been introduced into this unique apparatus, in order to ensure its giving the most satisfactory results. As regards the saving, it is reason-
ably anticipated that the saving in coal, water, and boiler
repairs, effected by the heater in our illustration, will be so
large that the heater will pay for itself in two years' time or less.

DOCKYARD NOTES.

Last week we made some reference to the Alexandra, now alongside the jetty at Portsmouth Dockyard for her re-fit. Since then we have renewed our acquaintance with the Duke of Edinburgh's old flagship, and, despite all that has been said in criticism, cannot lose our original opinion that the Admiralty have acted very wisely in the amount of rearmament that they have given her. For the benefit of those who are not au fait with battleship armaments, it may four 25 -ton and eight 18 -ton rifled muzzle-loading guns, profour 25 -ton and eight 18 -ton rifled muzzle-loading guns, pro-
tected by 12 in . of iron armour. This armour covers a great tected by 12 in . of iron armour. complete belt; there is also a
deal the ship, and includes a comple 2 in . steel protective deck. The gun decks are two, four guns on the upper deck training nearly ahead or astern, or on the broadside, through an are of about 75 deg . On the main deck each side another gun has a 75 deg . are forward or on the beam, and on either broadside are three guns with an are of perhaps 30 deg. before and abaft the beam. This is a very restricted are of fire. On this deck all the old guns have been left; but in old 25 -tonners. They are better guns, having 10,900 tons old 25 -tonners. They are better guns, having 10,900 tons
muzzle energy, against 7015 ; and their muzzle perforation muzzle energy, against 7015 ; and their muzzle perforation
is, theoretically, just double. On the other hand, their common shell is but 380 lb . in weight, against the 541 lb . of the old muzzle-loader. The 18 -ton muzzle-loaders fire a shell of a trifle over 400 lb .; had breech-loaders been substituted, the shell would have been only a little more than half that weight. The newer guns-they, too, are old now-have it is true, a better trajectory and range, but the advantage is not great that way. As common shell is the staple ammunition of even our most modern ships, and is certainly the projectile
that the Alexandra would most need in war time, those with heavy bursting charges have obvious advantages. The newest 8 in . guns would certainly have much greater penetration, but as implied above, any action in which we should be likely to employ the Alexandra would not probably be won by penetration. Against cruisers and lightly-armoured ships such as she would meet, solid shot-which alone have much penetration value-would not do much harm. Bad as the old muzzle-loading guns may be, the breech-loading guns of the in itself confers no particular value. True, the gunners of a muzzle-loader would be more exposed to a hail of small projectiles, but few captains now-a-days contemplate using the tertiary armament against ships. The cost in life would be too great ; such guns would be silenced almost immediately by a single big shell. It should also be borne in mind that the supply of modern guns is limited, that we barely keep pace with our requirements for new ships as it is, and that a new ship is better far than an old one, no matter how reFrench phrase it-six 4 in. guns were supplied to her, mounted on the top'sides. These are now to be replaced by 4.7 quick-firers. The Alexandra is a singularly roomy ship. nearly twice as high 'tween decks as a modern vessel. Despite her bluff bow, she is, and always has been, a fast ship, making a continual sea speed of 12 knots very easily, and good for more if pushed. The Majestic can do about 15 knots, or keep station at about 14 knots , so the Alexandra is not very far behip.
ship

The old battleships Iron Duke and Invincible were to have been fitted with fighting tops, but the Admiralty have decided that they are not worth the expense, so the order Angamos and the Yalu-the fighting top has had its share At Angamos it is claimed that the Blanco Encalada and Almirante Cochrane cleared the Huascar's decks with Gatlings in their tops, but gun fire in that action was slow. At Yalu every man in fighting tops seems to have been killed or wounded by ricochets. Hundreds of projectiles must miss, and whether they go high or low the military top runs a high risk of being hit. It is questionable whether they have any value at all : certain that their value is not great. Consequently the Admiralty have probably shown considera
sister.

The Medea is having her 6in. guns taken out for conversion into quick-firers. These converted guns always have the latest breech action fitted to them, and are a good deal call them; but it is only their rate of fire that is improyed The old 6 in. breech-loader is a short gun with a high tra jectory; between it and a new 6 in . gun, like the Vickers gun, for instance, there is no comparison possible. Since, however, guns cannot be manufactured in a day or two, the best is being made of a bad bargain. After all, a very large proportion of foreign quick-firers are merely converted guns.

While on the subject of quick-firers, we may mention that the Japanese have replaced the old 6in. guns of the Chin Yen ex Chen Yuen-by quick-firers. They have also mounted a couple of $4 \cdot 7 \mathrm{in}$. quick-firers abaft the funnels, an improvement in the ship's fighting capabilities. Recently they substituted six 6 in . quick-firers for the $4 \cdot 7 \mathrm{in}$. of the Trafalgar ;
but the matter excited little if any comment, although it but the matter excited little if any comment, although it
certainly doubled the value of the secondary armament of thi ship.

From time to time one reads in the papers that the Formidable is to be laid down at Portsmouth. As a matter of fact a good deal of her is already in existence, and she grows rapidly. She is building on a slip, as the Prince George was, and not in a dock as is so frequently done now-a-days.

The Terrible is in dry dock, at Portsmouth preparing for commission. It is necessary to see this ship in dock to get the full idea of her enormous size ; it is something of an eye-opener" even to those who are fairly well acquainted in dock, and the water. Close alongside the old Inflexible is is heightened by the fact that several destroyers lie astern of the Inflexible: the cruiser occupies as much space as the the Inflexible: the cruiser occupies as much space as the
battleship and three destroyers. It is reported that the

BOILER EXPLOSION, DEVONPORT DOCKYARD

Terrible is to undergo very exhaustive steam trials for a considerable while. There is a general idea that she is some-
what of a white elephant; but at the same no one believes what of a white elephant; but at the same no one believes
very much in the sensational rumours about the Powerful.

Mr. Goschen is to be congratulated upon his attitude about the discharged dockyardsmen; their action was tantamount to rank mutiny, and for him to reinstate them
after the demands that have been made would be absolutely detrimental to every form of discipline.
Thi: Barham is being fitted with topmasts instead of the pole masts that she originally carried. When complete she differently placed, all resemblance ends, of course, with the masts. The bow and stern guns, which were formerly carried close to the sides, are now nearer the centre line, and the sponsons have been done away with.

As accident by which one man lost his life and two others were injured happened at the Formidable's slip in Ports mouth Dockyard on Tuesday. A number of old wooden derricks, 60 ft . high or more, surround this slip, and men were
engaged in cutting the guys preparatory to removing them. Directly the guys of one were severed it fell, killing the man who cut these supporting ropes. It then transpired that the derrick was not sunk in the ground at all, but merely stood on a post.

BOILER EXPLOSION
THE official report-No. 1052 - of a serious boiler explosion which occurred at Devonport dockyard, on September 23 rd, is before us. The annexed cuts, reproduced from the report, will give a notion of
the enormous force of the explosion. By it two men lost their lives, the enormous force of the explosion. By it two men lost their lives,
and two others were severely injured. The boiler was of the ordinary and two others were severely injured. The boiler was of the ordinary
vertical type, with a central uptake and two cross tubes in the high, and 4 ft . in diameter, and was composed of two rings of plates with one plate tin. thick in each ring. Its crown, which was made of one plate 筑. thick, was dished upwards about win. and
flanged downerds at its outer edge for attachment to the cylindrical part. The fire-box was 4 ft . 6 in . high, and 3 ft . 4 in . in diameter The cylindrical part was made of two plates, each sin. thick, which were flanged outwards at the bottom to meet the shell. Its crown, which was slightly dished, was composed of one plate 3in.
thick, and was flanged downwards at its outward edge and thick, and was flanged downwards at its outward edge, and riveted to the cylindrical part. The uptake, a welded tube, $10 \frac{1}{2} \mathrm{in}$.
in diameter, and fin. thick, was flanged at its bottom and riveted to the crown of the fire-box, and was attached to the crown of the shell by an iron ancle ring. The two cross tuhes, which were each 7 inn . in diameter, and ${ }^{\mathrm{s}} \mathrm{in}$. thick, were welded, flanged at their
ends, and riveted to the sides of the fire-box. The boiler was lapends, and riveted to the sides of the fire -box. The boiler was lap-
jointed and single riveted throughout with rivets
in jointed and single riveted throughout with rivets $i \mathrm{in}$. in diameter,
spaced 2 in . apart. A manhole, 15in. by 10in., fitted with a compensating ring, was cut in the upper part of the shell ; there were also two hand-holes opposite the cross tubes, and three mud-holes. The boiler was fitted with a safety valve loaded by a lever and
Salter's spring balance, a feed injector, a blow-off cock, a glass water gauge, and a steam gauge.
The boiler was occasionally used at a pressure of 80 lb , per square inch, but on the occasion of the explosion was supposed to be working at only 50 lb . It was, however, shown at the inquest that the safety valve had been tampered with, so that the pressure greatly exceeded this limit. It was a spring safety valve, and
orders had been given shortly before the accident that it should be fitted with a ferrule, bat this precaution had not been taken. The boiler was cracked and broken in a very remarkable manner, as the cuts show, and parts of it were projected to great distances.

Electhic Lights in Hunan.-The North China Daily Neirs says Hunan has got so far forward in her adoption of western
civilisation that her provincial capital of Ch'angsha can now boast of an electric light company. Incandescent lights are used all over the offices of the company and the residences of the directors and higher officers, while, in addition to a large 2000 -candle power light-called by the natives "a moon "-at the gates of the
governor's yamên, the greater portion of the yamen itself is also governor syamen, the greater portion of the yamen itself is also pared to light up any house or shop in Ch'angsha, and a notification to that effect has been published, giving prices per lamp per night as follows:-No. 1 grade electric lamp, 500 cash (about 1 s .3 d.$) ;$
28 cash
$2 \mathrm{No}$.2 grade, 32 cash ; No. 3 grade, 30 cash; No. 4 grade,
grade, 25 cash. That is to say, there will be five 28 cash: No. 5 grade, 25 cash. That is to say, there will be five
descriptions of lamps, and the above charges are made for lamps that are lighted from sundown to the second watch of the night about 10 oclock. Lamps used all night are to be charged double the above prices. The U.S. Consul at Hankow states that the
electric plant has proved such a success that the large halls for the electric plant has proved such a success that the large halls for the
examinations of the students for the M.A. degree, lately held there, were lighted by electricity, something undreamed of in this -the central - province, and in excess of any other province of the empire. In Hankow a native company has been organised to
light the city with electricity, and it will only be a short time light the city with electricity, and it will only be a short time
before it will be under way, as most of the capital has been subbefore it will be under way, as most of the capital has been sub-
scribed. Several of the tea hongs in the English concession aro now lighted with electricity-a great improvement on kerosene amps.
M. PATIN'S NEW FLY.WHEEL DYNAMO. We illustrate this week a somewhat novel type of dynamo In use at the fine central station recently established at
Puteaux, Paris, by the firm of Patin and Co. It is not generally known that Monsicur Patin has been one of the first, if not actually the first, to set up electric-light stations on the alternating system in France.
Although, as will be noticed from our illustrations and diagrams, the dynamo machines employed are themselves of a sufficiently novel type, it was, nevertheless, not actually the invention and design of a new type of electric generator that formed the central object in M. Patin's studies. The remark type, as contrasted with the increased expenditure of the high-speed engines usually employed in connection with dynamo machines, attracted, M. Patin states, his attention some time back, and a dynamo-whose magnetic field forms, as will be seen from the accompanying illustrations, an integral part of the engine itself, thus performing its appointed work at the low speed of 60-120 revolutions experience.
The system employed in all of M. Patin's stations-viz the
motive force and general output required from the dynamo on the necessary speed of rotation, \&c. The inner and outer rings of magnets are bolted together by a number of radial arms proceeding from the central axle E, Fig. 2. Fig. side yiew; b shows the coils in position, as they appear when clamped on to the steel ring supporting the armature T. It wil be seen that these are Ferranti copper tape coils, and lie all round the fly-wheel in the narrow spaces at the ends of the bobbins. We have alreadystated that a latcral movement along the main shaft of the engine permits the whole ring of coils to be dis placed bodily out of the magnetic field. Each coil is inde pendently fastened to the rim of the armature, thus making each coil N is of bronze, and the winding is compesed of a band of thin sheet copper, the various layers being isolated bya strip of material resembling asbestos. The whole is covered with a thick coating of lacquer. The armature itself is supported by a massive pillar of cast iron, through the centre of which passes the cravk shaft. The revolving electro-magnets, a has been already stated, are firmly bolted to the shaft, and a second series of bolts prevent the rotation or shifting of the armature in the magnetic field. The exciting current for M.

PATIN FLY-WHEEL DYNAMO
generation of high tension alternating currents, and their dynamo or by a shunt circuit taken from the main leads. subsequent reduction, per transformer, to the 200 -volt maxi- These are the principal details of M. Patin's dynamos. mum-has been everywhere recognised as being the most here. We will proceed at once to a detailed description of the dynamos themselves.
The engines employed at the Puteaux Station are of the improved high-speed Corliss type, from the workshops of M. Boyer, at Lille, acting without slide valves or dashpots, and furnished with an ingenious device for regulating the
admission of steam from 0 to 75 per cent, at will. Want of space forbids us to attempt a more detailed account of the various devices employed to assure regularity and economy in working, \&c. The fly-wheel alone claims our attention forming, as it does, an integral part of the dynamo itself. The three essential parts of M. Patin's dynamo may be stated in order:-(1) The fly-wheel, which carries the field magnets of the dynamo. (2) The armature, fixed but capable of being slid out of the magnetic field by a lateral movement thus permitting the coils to be re-varnished or re
The revolving magnetic field-Fig. 1-is formed of two which the inner and outer rim of magnetic poles, between of one of these poles is seen in Fig. 3. The cylinder of soft iron b is cast into the circumference of the fly-wheel d. The number of these poles is variable, depending on the electro-

These are the principal details of M. Patin's dynamos.
They are constructed in sizes varying from 50-horse power to 600 -horse power. We will now give a few figures concerning the output, efficiency, \&c., of two dynamos of this kind. They are the
result of a series of experiments conducted in two of the lead result of a series of experiments conducted in two of the lead ing central stations fitted with M. Patin's generators. The first dynamo was coupled direct to a turbine of the Faesch and Piccard make, the second to a steam engine from th
workshops of Boyer in Lille :-

The expenditure of energy required for the exciters ha been, of course, taken into account in the calculation of tota workshops is of a far higher output in hiking in the Boyer engine employed to drive it; so that the efficiency may b almost taken to be really higher than the above-mentione figures indicate. The absorption of power per number of

THE PATIN FLY-WHEEL DYNAMO

lamps is as follows :-280 lamps of 16-candle power absorb 3	,		steamers, with triple-expansion engines, working at 180 lb , pressure, are
power ; 380 lamps of 16 -candle power absorb $38 \cdot 6$-horse power	(e)	cluded several honorary members of the Institute, works proprietors, and others interested in the scheme.	power hour in practice for an expenditure of 1.4 lb . to 1.5 lb . of Seotchor North Country coal, which is not quite so good as Welsh. Arguing
		others interested in the scheme. The difference in annual cost between water and steam power supplied	
	industries within a radius of about six miles from Tipton, at which place the central station would be estabished. The iron and steel	2 a large scale for general purposes is practically the cost of coal and of	
Central station eleotric power supply.	masters and manufacturers are most of them favourable to the scheme, and a meeting convened at Birmingham by the Midland Iron Trade	handimg iter, he author anows E200 per annum for stoking a 1000 -horse	
dland schem	Association has provisionally approved it, but a good deal of opposition	per indicated horse-power for cleaning boilers and other necessary duties,	more than in the case of steamer conl, the atowace being made in consequence of the lower calorifo value of Stafordshire conl. At this
	has been forthooming from several of the eighteen local authorities whosedistricts it would affect. The chnir was ocupuried on Saturday by the		rate we get $2240 \mathrm{lb} . \div 2 \cdot 25 \mathrm{lb}$, or, say, 1000 indicated horse-power for one hour from one ton of coal. Now, there are 8760 hours in the year.

If we assume that a plant could be run for 8000 hours, allowing
the remainder-about 10 per cent.-for repairs, the remainder-about 10 per cent.-for repairs, \&ce, it it clear power going for one year. TThis, at 5 S. per ton, amounter to to $£ 2$;
or, if no stoppage is allowed for at all for under $£ 25$.
Inci-
 power continuously. But in most
being only fifty-four hours per week.
But if the power is supplied to wo
hours per week, little more than one-third of the only fifty-four wages will be needed, all the other items remaining the same in
both cases or being similarly reduced. Consequently the costs of an indicated horse-power per annum. Cromsequently the coasts of for a 3000 -hour
load are only about $1 \overline{7}$. 6 d per annum in lond are only about 1 is. dd per annum in excess of what they
would be for conveniently situated water power, if such were to be got, while the capital costs would water power, if such were to be the se seme. And he
thinks that probable improvements in steam working and posible advances in gos ongine construction will during the next ten or
fifteen years, reduce this difference further. At the voltage at fifteen years, reduce this difference further. At the voltage at
which the primary mains will be worked the cost of a cable to convey 1000 -horse power, laid complete, will not exceed $£ 1000$ per
mile, or $£ 1$ per horse-power capacity; a abble for 600 -horse power about 22 s . per horse-power; anda a cable for $30-$-horse power about
12 s . per horse-power. In their a areements with such local tis. per horse-power. In their agreements with such local authori-
ties as have so far come to terms with the Midland Electric Corporation, the following are the rates for power supply, which
are not to be exceeded:--Three pence per unit for the first hour's ase per diem, on the maximimum pemanee per unit for the tirst hour's
of first hours being taken as 78 , i.e., six darter, the number
uner week for thirteen weeks, and 825 of a penny fore each subsequent hour's uose.
The president, Mr. J. W. Hall, in opening the discussion, gave calculations which he had made independently of the author, and own. The president also pointed out that these calculations coincided in beth cases pretty nearly with figures which
had been iven by Mr. Prilip Dowson. The president
further said that astonishingly necessary for the permanent works required to gete the waterally
up to and away from the wheels, excluding the wheel $£ 10$, $£ 20, £ 30$, and $£ 40$ per horse power had been spent in different places on that one item alone. That item had cost at Lyons
$25,000,000$
francs, or about $£ 1,000,000$ English money. Interest on large outlays of capital soon counterbalanced fuel saving. In
other ceses the cost was not so great.
He believed the costof installing water-power at Interlaken was $£ 34$ per horse-power. In conse-
quence of droughts, frosts, and floods, engines had to be kept atmany quence of droughts, frosts, and foods, engines had to be kept at many
stations in case the turbines went wrong. But in casse on the
Continent where coal cost 28s. to 30 s. a a ton it might pay them to use water. He believed that at Galway a gas-producer plant and
gas engine had to be kept as well as the water plant. Someo the
Siwise installations were not so costly
Ho thought the thise average was about $£ 4$ per horse-power per annum. Bayonne was
$£ 5$, Montreux $£ 8$ and Fribourg $£ 82.6 \mathrm{~d}$. The lowest figure in the world was at Holyoak, Connecticut River, where electric power
was sidid to be supplied for 18.s. 3d. per horse-power per year,
deli down numbers of installations, estimates-by letter-the cost of installing water power in this country per brake horse-power as
varying from $£ 10$ to $£ 15$;and in America as $\& 10$ to $£ 14$. Working
costs for a power costs for a power of, say, 100 -horse power could be managed working
night and day, by two men to attend to sluices, screens, and oiling.
The The working expenses would not exceed $£ 2$ per horse-power per
annum. If a water power costs more than $£ 4$ or $£ 5$ per horse-power it
 Wolverhampton, pointed out that the idea of the promoters of the scheme was to accumulate manufacturers as customers, so that
they might keep pretty much a maximum load on the station.
This was where the waste came in in the case of the Corporation installations. The plast at Wolverhampton, for instance, was
practically doing nothing for fifteen-sixteenths of the year, for, if worked continuously to its full capacity it could generate in
twenty-two days so much as was now supplied to the town twenty-two days so much as was now supplied to the town in a
yeart and the position was similar at planchester, where the
station was practically idle save for one-twelfth of its time. He station was practically idle save for one-twelfth of its time. He
could not understand the opposition with which the scheme had been met by some of the local authorities.
Mr. Spence, Wolverhampton, described installations in Switzerland and other portions of the Continent, and found that the expense of those systems was vastly greater
than the cost would be of putting down steam power in England. than the cost woold be of putting down steam power in England.
Mr. Edmund Howl, secretary and general manager of the South
Staffordshire Mines Drainage Commissioners, described his visit Staffordshire Mines Drainage Commissioners, described his visit
to the installation at Niagara Falls, which quite bore out the
the assertions of previous speakers ass to the enormous cost of per-
manent works in water installations, counterbalancing saving in fuel. In fact, he was very disappointed with the works there,
frome a civi engineering point of oview. As a maker of patent
forced-draught boilers he had just had a letter offering him "good fine coal-dust at at 3d. per ton," Mr. Belliss, of Beiliss
and Co., Ledsam-street Engineering Works, Birmingham, dwelt on the enormous and rapidly.-growing scope for the employ-
ment of steam engines for electric driving. His firm had put down engines and installations up to 1500 -horse power in single
works. At one electric lighting station in London his firm first put down three
ago; then three funthorse power sets eighteen months
and there were six more sets puit down there elast spring,
through his works at and there were six more sets going through his works at
the present time, making about 0000 horse power for that
one station. There was an enormous demand for this class of work just now. And whereas some ten years ago 200-horse
power or 300 -horse power per set wwas considered a large unit,
electrical engineers were now making 500 , 600 , 700 , 800, and 1000 -horse power sets. There was a great future before engines
for electric driving. Thiscussion was continued by Mr. T. T. Arnall, from the office of the City Surveyor, Birmingham, Mr.
Le Neve Foster, Mr. Alexander Tucker, and others. The last. named gentleman suggested that copies of the paper and discussion
should be sent round to the various local authorities whose interests would be affected by the scheme, so that the imprimutur of the
Institute might be given to the movement. It was understood that this suggestion would be considered by the Council.
ege Enginering Societx.-At a general meeting hheld on Friday, March 4th, Mr. C. E. Atkinson read a paper on
"Gold.". Commencing with a short history of the gold fiels, he
paseed on to the methods of extraction by panning, hydraulicing passed on to the methods of extraction by panning, hydraulicing
of placers, the treatment of quartz loads, chlorination by the vat and barrel process, and the McArthur and Forrest process of
cyaniding, concluding with the refining of bullion. The paper was
. cyaniding, conclucmeros lantern slides and specimens. The meet.
illustrated by numer
ing then terminated with a vote of thanks to Mr. Atkinson for his ing then terminate
interesting paper.
Sewerace or Leloh-oN-SEa.-Mr. E. Bailey Denton, M. Inst.
C. - Bailey Denton, Son, and Lawford -has been instructed by the Urban District Counci of Leigh-on-Sea to report to them as
to the best means to be adopted for the to the best means
disposal of their district. Since the the provision of of a public water
supply supply, and the development of several estates within the parish,
the population has greatly increased, and sewerage has become a matter of necessity. Leigh is the last town on the Essex side of the river Thames within the jurisdiction of the Conservancy Board,
and is immediately above Southend, where the council, on the advice of Mr. James Mansergh, have recently spent a large sum of money upon sewerage. The method of sewage disposal, therefore,
which will utimately be adoped at Leight, is a matter of grat
interest to other towns situated within the tidnl interest t

LAUNCHES AND TRIAL TRIPS.

Br Saturday afternoon's stide there was launched from theshipbuild-
ing yard of Messrs. D. and W. Henderson and Co., Partick, a large ing yard of Messrs. D. and W. Henderson and Co., Partick, a large
steel screw cargo steamer, which they have constructed to the order of Messrs. MacLay and Mclntyre, Glaggow. This latest addition
to the large fleet of vessels already owned by this firm is in length
 She has been fitted with all the latest improvements to ensure the rapid and safe working of the large cargo which she has been
designed to carry, including seven powerfulwinches, and also large designed to carry, including seven powerful winches, and also large
derricks fitted at the hatches. Steam steering gear by Messrs. Bow, MacLachlan, and Co., Paisley, is fitted admidships, the saloon a chart-room and wheel-bouse have been end of bridt above this, with a bridge which will give every facility to the officers in the naviga-
tion of the vessel. A set of triple-expansion engines will be sup of tied and vessel. A set of triple-expansion engines will be
suthe builders, having cylinders 25 in ., 41 in., and 67 in. diameter by 4 ft . stroke. As the vessel left the ways she
was named Angola by Mrs. Thomas E. MacLeod, Regent ParkMessrs. Sir W. G. Armstrong, Whitworth, and Co. launched the s.s. Haliotis from their Walker Yard on the 22nd February, the
vessel being named by Mrs. Samuel, wife of Mr. Alderman Mareus Samuel, to the order of whose firm the ship and a sister vessel are
being built. The dimensions are 248 fft . 隹, overall, toft. moulded and 17 ft . 3 in. depth moulded; and the vessel has been specially constructed for the carriage of petroleum in bulk under the
supervision of Mesrs. Flannery, Baggallay, and Johnson, of London vessel, she being intended one or vessel, she being intended to use liquid fuel on her service in the
East, and her engines and boilers have been fitted up with this
special view. Sie is constructed on the trunk. turret system, which gives a larger carrying capacited in proportion to register tomange
than the ordinary form of contren
 63 in. diameter by 39 in. stroke. Electric light is fitted throughout the vessel, and there is a complete installation of duplex pumps
for prompt dealing with oil cargo. The bunkers of the vesel are for prompt dealing with oil cargo. The bunkers of the vessel are
stayed, riveted, and caulked so as to contain oil fuel, and they On the 9 th inst. Messrs. Ropner and Son, Stockton-on-Tees, launched a fine steel screw. steanmer of the following dimensions,
viz:- Lengthbetween perpendiculars, 336 ft . 6 in. ; breadth extreme 46 ft 6in.; depth moulded, 27 ft . 3in. The steamer has been built
to the order of Messrs. Evan Thomas Radclife and Co., Cardiff, cked rule, and fitted with the builders patent trunk, funir poop, bridge, and topgatlant foreceastlo. The
saloon and cabins or captain and officers will be fitted up in an
iron saloon houss on the ridg de deck, and the accommodation for iron saloon house on the bridge deck, and the eccommodation for
engineers will be provided under the bridge deck at the after part,
the crew being berthed in the double bottom on the cellular principle for water ballast, and has been designod to coarry a dead peight earao of about 5925 tons on
Lloyd's summer freeboard, on a light draught of water ; she wil have all the most recent appliances for the expeditious and
economical loadiog and unloading of cargoes, has direct steam
 auxiliary boiler working at 160 lb . pressure, stockless anchors, \&ce.
This is the fifth steamer built by Messrs. Ropner and Son for the same owners, and the third of the patent trunk type. She will be marine superintendent. She will be fitted with a set of powerfal
thet triple-expansion engines by Messrs. Blair and Co., Ltd. The
naming was performed by Miss Ropner, of Preston Hall, who gave her the name of Paddington.
The screw steamer Berry
The screw steamer Berry, Captain Alberti, went down the Mersey converted to high pressure compoond by Messrs. David Rollo and ended bioiles, ench 111t. diameter by 16 ft . 6 hin. long, built of
steel to the requirements of stel to the requirements of Bureaul Veritas for a working pressure,
of 160 It. per square inch. Each boiler has four Parves patent flues, made on the late Mr. Ashlin's patent interchangeable plan, and is
also fitted with his very effective water circulator. The new
cylinders are 34in cylinders are 34in, and 63in. diameter respectively by 42in, stroke,
intended to indicate in ordinary working service i200-horse power the vessel maintaining an anverage speed of twelve knots. The
Berry is a vessel of 1600 tons register, her dimensions being 255ft., by 3ift. by 166 ft , and is one of the loet of the societct Generale de
Transports Maritimes in Vapeur, of Marseilles The altantion
 the companysp representatives in this country for between thirty Cohen, Mons. Latatinet. the company's superintendent engineer,
being also present. Mr. L. Murphy, representing the United being, also present. Mr. L. Murphy, representing the UVited
States Metalice Packing Company, whose packing was supplied to
the Berry, was also on board, and was congratulated as to its the Berry, was also on board, and was congratulated as to its
merits. Advantage was taken during the lay-up to fit steam merits. Advantage was taken during the yas-up to thigison's. steam quarter-master replacing
steering gear, a
the original hand gear. The trial proved in every way perfecty satisactory, the consumption of coal being much mess than perfectly bere,
whist the peed was considerablyinceresed thus showina whilst the speed was considerably increased, thus showing the advis-
ability and economy attached to the conversion of ordinary compound engines to the high-pressure compound type. The vessel
proceeded to sea with a full cargo oo Sunday for Marseilles. On the 9th inst. Messrs. C. S. Swan and Hunter launched from
their yard at Wallsend the fine twin-scew passenger liner s.s. America Maru, one of three large steamers being built in this country to the order of the Toy Kisen Kabushiki Kaisha, of Japan,
for regular service between that country and the United States.
The vesel
 pool, who are associated in their duty with Captain Tomioka, the
marine superintendent of the company. The vessel has been
speciall designed to
 Soft. 6in. in breadth. Both ship and engines are to the highest
class at Lloyds, and in accordance with the rules of the Imperia Japanese Government and the British Board of Trade. The pas-
senger accommodation, which is of the most complete and luxurious senger accommodation, which is of the most complete and luxurious
description, provides for sixty-four frrst-class, forty second-class,
servis.
 sons, surmounted by a large arched skylight tastefully panelled and gilded, the decoration througbout having been most carefully
considered as regards scheme of colour thirty a suite ; a lofty social hall supplied with piano, bookcase, and other appurtenances of like nature: ladies room; smoking-room of
similar scheme of decoration to the saloon; and a spacious entrance hall fitted up ns a lounge. Special attention has been paid to the lighting, which will be by electric lamps tastefully and effectively
arranged ; and ample provision has been made for heating during the cold season, and entocisiston ventilation throughout. The secondclass passengers will be housed in an equally efficient manner, being
allotted one berth to four persons, and the accommodation consists of a sallon for forty-five people, smoke-room, and ladies room. A sufficient number of baths is provided, those for the
first-class passengers being of marble ; and there is also a complete arrangement of other necessary accessories, such as barber's shop, doctor's room, \&ce. The vessel will also be supplied with specially
constructed mail and silver rooms, and refrigerating facilities for the storage of fresh meat. As she is also intended to carry express
cargo, a very complete arrangement of deck gear has been supplied,
so as to enable cargo to be dealt with very expeditiously. The
electric light installation is of a very complete description, and the electric light installation is of a very complete description, and the
vessel will be lighted throughout with an ample number of lights. The engines, which are being constructed by the Wallsend Slipway there beineering Company, Ltd., are of the triple-expansion type, by 75 in . by 4 Sin. stroke, taking steam from four double-ended
boilers 15 ft . by 10 ft , working at a pressure of 180 lb . It is ex. pected that the vessel 'will maintain a s speed of nearly 17 knots. in the presence of a large company.

LETTERS TO THE EDITOR

We do not hold ourselves responsible for the opinions of our

the engineers' lock-out
$\mathrm{Sin},-\mathrm{On}$ my return from the Continent, my attention has been drawn o parargaphis appearing in the Press during the past week
to the effect that "Messrs. Tangye had last week forwarded to the
Federation of Engineering Federation of Engineering Employers a cheque for $£ 500$, which wholy misleading, I would like to be permitted to set forth the
ehe At the end of January last, we were urgently invited to con-
tribute to the Engineer Employers' Special Fund, on the ground of the heavy strain which had been imposed upon the employer in the recent struggle.
On the 10th Februar
E500 to the fund, but, in handing over the cheque, expressly stipu lated that the amount should be applied to the relief of the less
 in aid of the men who were still out of employment.
and paid into the fund and an aturned, the cheque was cashed
 Committer eo acknowledge with thanks your firms handsome Contribution of En $^{2} 500$ towards the Federation's Special Fund
On February 28 -it., seventeen days after this banker's draft for $£ 5500$, with a letter in which he says, We have now had an opportunity of reporting
your contriution of £500 to our Committee. This is tho first
meeting held since your cheque was received." He goes on to meeting held since your cheque was received." He goes on to say
his first lotter was sent per incuraium butas it contained the distinet the explanation of this extroordinary discrepancy must be left to that gentleman.
Federation it was well known to every member of that body that we were not in sympathy with their policy. This fact we expressly when handing over our cheque. It was again laid stress upon knowledge that the Federation accepted and thanked us for the
gift we had been invited to make. With their reasons for subsequently reversing their own action I am not concerned.
In some of the paragraphs which have appeared, reference is
made to the "probable reasons" actuating us in making our gift It is natural to a certain class of mind to ascribe motives that are base, but my Company is no more moved by these insinuations
than it was affected by the threats so freely showered upon us at an early period in the struggle.
Our wourse has been perfectly
set. What was it we were asked to do? Having no prom the outour wen, having received no demands from them, having had an
unexampled record of forty years of peaceful relations with them,
 said that such an act on our part would be a crime. Its folly will be appreciated when I state that we have long possessed all the
advantages the cmployers chim to advantages the employers claim to have secured as a result of the
late ruinous contest-advantages which I firmly believe they also late ruinous contest-advantages which firmly believe they also
might have possessed without conflict had their relations with their employés been the same.
Birmingham, March 15th.

Richard Tangye.
coaling warships
Sir,- In your issue of February 4th you gave an interesting
account of the coaling experiments at Portamouth and if not trespassing too much on your space, I would like to know the six bags basg referred to, when you say the coal whips take
sags a time. You also say, "the fore Temperley could do twe Marse
bime the whips beat the bags a time. You also say, "In the Mars the whips beat the
Temperley by fifty bags nn hour on the average, thus taking in
 water, whether it introduces any additional risks of spontaneous
igaition or other troubles, beyond some deterioration in steamigaition or other troubles, beyond some deterioration in steam-
raising qualities. Perbaps some of your readers may have had some e experience in this
obliged for information. Buкквr.
[(1) The normal weight of a service bag of coal is 2 cwt . Thi given in The Exainekr of February 4th, but as thoes figures were given independently by two officers on board, they should be
accurate for that particular case. . (2) As regards coal being impregnated with salt, the question is not so much a matter of the salt as the water. There is no actual risk, in the first place, coaling is usyunlly under condititons where no such chance occurs,
in the second place, bunker lids are always left off if the coal In the seond place, bunker lids are always left off if the coal
should have got wet. Were they closed there would, of course difficult to collect exact indeed of spontaneous combustion. It is officers hold individual opinions, and no two ships are coaled alike.
For instance, one officer will claim that a Temperley can easily take twenty bags at a time, another will limit it toe six or sevenes, in

the labour bureau.

Sir,- - Now that the strike is over we hear little or nothing of the Labour Bureau which was frequently mentioned at that time. in the way of communicating with this agency. It seems to me
that if offices in connection with this aseociation were established in all our great centres, where workmen could go and register
their names when out of employment, for a payment of a small their names when out of employment, for a payment of a small
sum, and of course proper organisation between the various offices, that it ought to be of considerable advantage to non-unionist work men, and masters wishing to
Birmingham, March 14th.

the efficiency of screw-jacks,

$\mathrm{Sin},-\mathrm{In}$ answer to "H. E. W.'s" letter in your issue of March 4th, I may say that 25 per cent. is rather too small for the efficiency last year, I found the efficiency to average from about 30 per cent. London, March 10th.
$=$ G. P: W.

STEAM SHUNTING CRANE bedford engineering co., engineers
locomotive steam shunting crane.
The above engraving represents a 5 -ton locomotive steam Shunting crane of the type built by the Bedford Engineering Company, of Bedford, for Messrs. Sir Christopher Furness, Westgarth, and Co., Limited, of Midalesbrough, Messrs.
Fastwood, Swingler, and Co., Limited, of Derby, and others, for yard work and shunting purposes. The crane runs on the standard 4 ft . 8 tin . gauge, and has a margin of stability equal to 20 per cent. A special feature in the design is the revolving bed, which, instead of being a single casting as is usual, is built up of H -section steel girders, with cast iron transoms for carrying the anti-friction rollers, \&c., and of sufficient length to receive the balance box tank at the tail end, avoiding thereby trusting to cast iron lugs for ment consists in fixing both the hoisting and derrick barrel shafts so that they act as stays between the side cheeks, the barrels running loose upon their shafts. All motions are taken direct from the crank shaft.
Steel gearing and brass bushes are used. The total weight of the crane is 21 tons, and it will travel with its load suspended in any position.

CATALOGUES.

The London Emery Works Company, Clerkenwell, E.C. Cork rolishing wheels. - Areat advantage claimed for these wheels
ix that they are flexible, rendering them suitable for the finest Work.
Brett's Limited, Coventry.--Hlustrated and descriptive catalogue of Brett's patent lifts.
Kenway's electric traction system.
Consolidated steel and Wire Company, New York. Woven wire fencing.-This fence has no fine wire in its construction. It
has a slight bend at every joint, sufficient to allow of expansion and has a slight bend at every joint, sufficient to allow of expansion and and thereby start rust and decay. The London agents are Messrs. E. le Bas and Co., Billiter-street, E.C.

William Skinner, London.-Cycle fittings.
The Manchester Laundry Engineering Company, Manchester. Cooking apparatus,
Steinle and Har
Steinle and Hartung, Quedlinburg. - Illustrated pamphlet descriptive of their patented steel quicksilver thermometers.
Cole, Marchent, and Morley, Bradford. Steam engine Cole, Marchent, and Morley, Bradford. Steam engines and which the illustrations, nicely reproduced from wash-drawings, are worthy of special mention. The printing is a credit to its proucers. The Lozier Manufacturing Company, London. - Cleveland
icycles, 1897. bicycles, 1897 .
Sir Theodore Fry and Co., Ltd., Darlington.-Section book, 1898.

AMERICAN ENGINEERING NEWS.

(From our oun Correspondent.)

Large vailuay, shops.-The Boston and Maine Railroad have ocently completed extensive engine and carriage works at Concord, covering about $\frac{4}{3}$ acres of ground, and at these shops about have a capacity of 400 freight cars and 50 passenger cars per have a capacity of 400 freight cars and 50 passenger cars per
month. The machine and erecting shop is 305 ft . by 130 ft , with a oiler and tender shop 105 ft . by 70 ft . The freight and passenger car shops are 170 ft . by 162 ft . each. The buildings are all of brick, with steel roofs. The erecting shop has three longitudinal tracks, one of which, with an overhead travelling crane, runs on into the boiler shop. The engines will be dismantled on the middle track, on either side. The black mith shop has ten double forges and
ne harge forge, also four 1 ower hammers of 500 lb . to 1800 lb . ig and exhausting fass, and a 20 -horse power motor on ng and exhausting fans, and a 20 -horse power motor on the
ground drives the other machinery. Outside the car shops is Tronsfer tabbe Toft. long, running in a pit 280ft. long, and operated
by electricity. Very corplete systems of steam and electric dis. by electricity. Very complete systems of steam and electric dis
tribution are provided, and there is also a system of compressed lribution are provided, and there is aso a system of compresse air piping and a double system of water supply, one for fire service
at 1101 bb . pressure and one for shop use at 90 lb . The entire plant is heated
are as follows.

American locomotices for Jupan.- Nearly all the large locomotive
uilding firms in the United States have recently had orders for bcomotives for Japan, and the Brooks Locomotive Works has wheel or "f a sur coumped or wienty passenger engines of the eight ment Railways. These engines are of standard America con struction, with the exception of copper fire-boxes, brass tubes, and six-wheeled tenders. They have also spring buffers and screw couplings, and the Smith automatic vacuum brake, all of which goes to show that American builders can and will meet the requirements of purchasers, and do not tell purchasers that if the where for the engines. The general dimensions of the engines are as follows :

Cyinders	
Driving wheels (4) ..	
tal wheel	19 ft
eight on driving wheels	
eight, total	
eam po	
haust por	
dve travel	6 in in
dier, diameter	
Height of centre line from	ft
gth of smoke-box (with netting spark arrester)	4 ft .
er pre	
e-box (above frame	
\%ow sheet	2fted
bes (210) diamoter	
length	gft.
and	
dill fire-box	
f smokestack	
a axle journals	6jini. by

NOTES FROM JAPAN

IT is concurrently reported, and the report is confirmed by the best informed vernacular papers, that the Imperial Railway Bureau have engaged a German civil engineer of high qualifica tions to succeed to the post formerly occupied by Mr. C. A. Wh
Pownall, M. Inst. C.E. It was originally attempted to obtain the vervices of a British engineer, but the salary offered - $£ 1200$ a yea was not sufficient to attract a man possessing the high qualifica army is organised upon the German model, and as Imperial rail ways were primarily projected for strategical purposes, thos In any case there is plenty of scope for hisabilities, as the railway have been steadily deteriorating, poth in structural condition and in actual efficiency, while, in spite of the very considerable additionthat have been made to their locomotive and rolling stock, the congestion of tratfic grows daily more and more serious, In
recent, and by no means exceptional case, a package delivered to the Railway Company at Yokohama took just three weeks to reach Yokohama officials were recently arrested on the charge of receiving bribes, which had been paid to induce them to give preferentia
despateh to goods which were urgently wanted. The Japan Mail despatch to goods which were urgently wanted. The Japan Mail
states that this is the first instance in which a German expert has been employed on a Japanese railway ; but this is not the case, as
 his name-an engineer of high repute and abiwas
the employment of the German Government, was for some year engaged in laying out and developing the Kinshin Railway. It is now some years since he left, and 1 regret to say that-without
any imputation upon his abilities-that line has since earned the neputation of bing the worst found wort manared, and the most uncomfortable to travel upon of any of the Japanese railways of any importance or length.
The concluding remark of the Jupan Mail, when commenting upon the shortcomings of Japanese railways and the reported new
apointment, is too true and pithy to be omitted. "The trouble will not prove amenable to German management, however. No oreigner, whatever his nationality or capacities, is entrusted with any administrative authority in Japan, and so long as that is
the case no foreigner can be really efficient. The Japanese em. ployers are the sufferers.
Some time since a movement, influentially supported and strongly backed up by some of the leading capitalists, was set on foot for
the purchase from the Government of the most important section of its railways, namely, that connecting Tokyo, Kyoto, Osaka and Kobe, and for amalgamating it with tho Sanyo Railway, which runs southward from Kobe. At that time the capital required would probably have been readily subscribed; and if the excellent manage-
ment and accommodation to be found on the Sanyo Railway had been extended to the Tokaido-or Eastern route-line, as the above mentioned section is called, it would have been a distinct boon. But the scheme fell through, owing probably to the Governmen
manifesting no disposition to sell out. Now the pendulum is swinging in the other direction, and it has been seriously sug. gested that the Government shoula buy up the whole of the rail who re lable. In the first place, an enormous amount of capital, now locked up, would be released, and would be available for promoting innumerable industries now starving on account of the tightness of the money market. Secondly, the Government, which the scheme is rather hazy, but apparently the shareholders would be glad to exchange their shares, now paying 10 per cent. or more, for the sweet security of Government stock paying only 43 per cent., would make a clear profit of 1 per cent. (sic)-could remit half the
taxes, double the army, and treble the navy ! Further details taxes, double the army,
are much to be desired.
Teleph/mur serrici--Out of 1500 additional telephones for Tokyo, one-half have already been supplied, and the remainder will bo delivered by the specified date. During the fiscal year $1898-9$, 4597 new telephones are to be supplied in Tokyo, Nagoya, Sakai,
Osaka, Kobe, and Yokohama. Telephone exchange oftices are also Osaka, Kobe, and Yokohama., Telephone exchange oftices are also Kuwana In the northern island, Yezo, land for new buildings has been purchased in Hakodate, Otaru, and Sapparo. A lively scene was witnessed at the Nagoya Telephone-ottice on January 10th last, the first day for receivng applications for subscriptions, The installation had originally been designed for 200 telephones, of 1000 eager applicanter numbers increased every minute. The police were powerlesy to control the crowd, and the office was stormed and partially wrecked.
Vegetable wax, or ro, is an important item of Japanese com-
merce, and according to the Mainichi S Shimlunn-daily newspaper, merce, and according to the Mainichi Shimbun--daily newspaper,
published in Tokyo-is chiefly produced in Hyogo, Waknyma, published in Tokyo-is chieffy produced in Hyogo, Wakayama,
Yamaguchi, Yehime, Fukuoka, Saga, Oita, Nagasaki, Kumamoto, and Kagoshima, the total production of these ten provinces alone exceeding $3,000,000$ yen per annum in value, and the exports are said to range from 200,000 to 500,000 yen per annum, chiefly to China, England, rance, Germany, the United States, India, medicines, artificinal flowers, the prevention of rust, and the like From various causes the production of beeswax in the south of France, Austro-Hungary, and other parts of Europe has of late decreased considerably, and this appears to have stimulated the foreign trade in the Japanese product. Until recently the proces of manufacture has econicplo and primitive. The wax-trees, of jera and sylcestries, begin to bear in the fifth year nfter planting, each producing about 4 lb . of berries, increasing gradually to 60 lb . in the fifteenth year, and declining from the eighteenth. Four pounds of berries yield about 17b, of wax. After being dried and stored for some time, they are pounded in conical wooden bowl
by tilt hammers worked by foot, to separate the busk from the wax-bearing body of the fruit lying between them. Th latter, after winnowing, is steamed in hemp bags, pressed, and moulded into cakes. That intended for export undergoes a crude process of refining by being melted and dropped into water, which separates it into lakes,
More thare afterwards bleached in the sun More than one factory equipped with modern appliances ha a certain amount of experimental work will no doubt be required before the most effectual and economical mode of treatment is arrived at.
According to the Asalhi Sheimbun-daily paper-the Nippon Yusen Kaisha - Japan Steamship Company - has at present in it employment 1190 ships
without reckoning coors, experts, clerks, and other officialmore than fifty less than a year ago. It has for some time past been the steady policy of the company to reduce the number of foreigners in its service and replace them by those of its own nationality. This is, of course, natural enough, both from considerations of patriotism, independence, and economy ; but it i open to question if the last-named advantage is not being purchased
too dearly at the expense of efficiency, This company receive heavy subsidies from Government in various forms ; but, according to the Yomiuri Slimbun, the only lines which receive a fixed annua subsidy are those running to Australia and Bombay. Those rumning to Europe and "America only receive the "special
encouragement allowance" granted to vessels which have passed encouragement allowance granted to vessels which have passed
the very severe official examination, and, under the circumstances these two lines were unable to declare uny dividend for the less chese two lines were unable to declare any dividend for the las
half-year, and it was rumoured that they would be discontinued

added, so as to have one leaving Yokobama for Europe every fortnight. Two new boats, built in England, are expected, one in
March, the other during the summer ; and two others, each of 6500 tons, are approaching completion at the Nagasaki Shipbuild
ing Yard, with others to follow, all of which, it is hoped, wil a more satisfactory footing. It is also stated that the amount of cargo and number of passengers is increasing on the European
line especially between Shanghai, Singapore, Bombay, and Europe. At the present time the company
which they receive the special
bein

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS

one Correspondent.)

Manevacturers on 'Change at Birmingham to-day-Thursdaybusiness circles. The district mills and forges are kept in fairly regular operation, naval ironworks manufacturers being very busy
on home and foreign orders. It is also expected that the proposals of the Admiralty in regard to the heavy naval expenditure
will have a very considerable indirect influence on many of the district industries. The railway wagon and constructional firms bave good orders from the Indian Government and other sources,
which necessitate their taking large quantities of metal. The big engineers and machinists are fairly well occupied.
The sheet trade remains in a depressed condit plain, rolled, and galvanised sheets. Black sheets were this afterdoubles. The Welsh manufacturers ere still cutting prices in th hope of wresting trade from Staffordshire, and it appears to be a question of who can stand the ruinous competition the longest, as
the business at present prices is decidedly unprofitable. Galvan-
ised sheets were unchanged at sed sheets were unchanged at 9 10s. to $£ 9$ lod. foob. Liverpooi
The Mayor of Woverhampon has recived replies from the London and North-Western, Great Westecrn, and Midalan Railway
Companies, to his communication in regard to the excessive charge Companies,
levied upon sheet irom and other good s fom South Sthen otrdshire.
The companies assure the Mayor that the matter shall reeeive their The companies ass
careful attention.
In other descriptions of finished iron to-day, marked bar was
$£ 7$ 10.; ;econd grade, $£ 7$; unmarked merchant iron, $£ 6$ to $£ 65 \mathrm{~s}$.; and common bar, ± 5, 15s. to $£ 6$. Hoop iron was $£ 6$ '5s. to $£ 610 \mathrm{~s}$.;
special nail iron, $£ 8$; and gas strip, $£ 512 \mathrm{~s}$. 6 d . The demand for foundry pig was in excess of the supply, owing
to the continued increase of ironfounding estabbishments. Somee
smelters are consequently confining their attention to the mielters are consequantly contining their attention to the produc-
tion of foundry qualities of pig, and one of the two blast furnaces
隹

 Constructional steec continues in brisk request, but there is not
much doint in the soft steel for tube drawing. The large steel
works at Biston and Brierley Hill, however have plenty of current works at Biston and bogene thenen earlier in the quarter, and prices
 billets, and 5s. per ton extra for best Siemens ditto.
Great interest attaches to operations that have been carried
hat on recently upon the western side of the Cannock Chase coaltield.
Nearly twenty years ago a company called the Canock and
Huntingdon Colliery was formed, with a capital of $£ 100,000$, for Heary twan Colliery was formed, with a capital of $£ 100,000$, for
Huntingon
the purpose of proving and developing the seams of coal beelieved to be under the estate of Lord Hatherton, between Cannock and Stafford, although deeper than in the explored Cannock Chase
coalfield, there being down-throw fault of considerable magni-
tude to the west. A French firm-Kind-Chaudron-was engaged tude to the west. A French firm-Kind-Chaudron-was engaged
to carry a pair of shafts through the gravel beds, containing a
large volume of water. The French mode of piercing is that of large volume of water. The French mode of piercing is that of
sinking a series of rings of cast iron tubbing. The shafts,
about 1 aft.
anameter, were carried down in this fashion about
140 yards, at which depth it was thought work might be carried on in the ordinary way. But the water broke in beneath the
tubbing and quickly filied the shaft, compelling the company
the tubbing and quickly filled the shaft, compelling the company
to go into voluntary liquidation. A year ago the present Lord
Hatherton recommenced operations, placing the work in the hands of Messrs. S. and J. Bailey, mining engineers, Birmingham. They
have succesfflly cleared out the water, pinned iron tubing
below the trench work for 16 yards, and carried the sinking down below the trench work for 16 yards, and carried the sinking down
with brick lining to a total depth of
throo yards. It has passed through several seams of coal, identified as the upper measues of
the Essington and Cannock Chase district. A forther sinking to 300 yards is proposed, to prove the lower measure and the shallow
and deep seams of the Cannock Chase coalfield. The pumps used and deep seams of the Cannock Chase coalifield. The pumps used
are those of Messrs. Joseph EEvans and Sons, of Woverhampton,
which have done the work in a splendid manner. They were which have done the work in a splendid manner. They were
worked by special machinery arranged by Mesrs. Evans. The
further sinking is progressing satisfactorily. Should the results be further sinking is progressing satisfactorily. Should the ressults be
such a a are anticppated, a new company will be formed to work
the mines.

NOTES FROM LANCASHIRE.

Manchester.- No specially new feature is noticeable as regards
ither the engineering or the iron trades of this district. The irther market, although very slow in developing any appreciablo
improvement as a result of the general resumption of operations improvement as a result of the general resumptans a position of
throughout all branches of engineoring, maintins a
firmness, with makers not at all eager about booking forward at furmess, rates. So fars, the resumption of work in the engineering
industries has searcely made itself felt as regards increased reindustries has scarcely made itself felt as regards increased re-
quirements for material, consumers not being yet in a position to put in hand any realy heary new account of contracts during the dispute, and large purchases which were made in anticipation
just prior to the termination of the lock-out and strike, it is very exceptional where there are any really large requirements
just at present to cover. Throughout all branches of the
jhe engineering trade, however, extra pressure or work con makers
to be reported, more especilly amongst machine tool makers
and both stationary and locomotive engine builders, whilst boilermakers have been booking new orders freely during
he last fow weeks, and all the large concerns throughout Lancashire are very, full of orders. In many cases engineering
firms are compelled to allow orders to pass by owing to their is exceptional where any of the leleding concerns are in a position coptional activity prevailing throughout the engineering industry large amount of buying must before long inevitably come upon
he market, and it is not improbable prices may then take a ecided upward move.
Not more than a moderate sort of business was reported on
Tuesday's Manchester iron market, consumers still giving out only comparatively small orders either for raw or manufactured material.
Here and there low cutting might be come across for some special
time back. In fact, the belief is becoming much more prevalent that, notwithstanding makers are just now booking comparatively
little new business, they are nevertheless delivering so heavily on account of contracts, and stocks are so exceptionally light, that
when buying of any weight does come forward it will inevitably whon buying of any weight does come forward it will inevitably
give a decided upward move to prices, of pig iron are without quotable change, , but firm at 45 s .6 d . for forge, to 48s. 6d. for foundry, Lancashire, less 2 \& ; 43s. for forge, to
45 s . 6d. foundry, Lincolnshire ; and 48s. 6d. to 49s. 6d. for foundry, Derbyshire, net cash, delivered Manchester, the tendency in some quarters being if anything to hold out for rather better prices.
Outside brands fully maintain last week's improvement. Good
Gol foundry Middlesbrough averages 49 s . 4 d . to 49 s . 10d. net,
delivered by rail Manchester, and Scotch iron 47 s . 6 d . to 47 s . 9 d . for Glengarnock, and 47s. 9d. to 48s. for Eglinton net, delivered Lancashire ports, and 2s. 3d. more at Manchester docks. American
foundry pig iron is still offering as low as 45 s .at the docks, and a foundry pig iron is still offering as low as 45s. at the dooks, and
noticeable feature in the competition from America is that considerable quantities of forge qualities are now sent into the Lancashidere finished iron and stele-making districts to replace the ordi
English hematites, at a saving in cost of nearly 10s. per ton.
English hematites, at a saving in cost of nearly 1os. per ton,
Manufactured ironmakers generally report forge fully going on
bas wwith orders to carry them over the next couple of months ; but there is still no appreciable improvement in prices. The
but
advece of 2 s. 6 , per ton reently put on is only being very but
advance of 2 s .6 d . per ton recently put on is only being very partialy for Iancashire, with North Staffordshire bars $£ 517 \mathrm{~s}$. 6 d . per ton, deivered Manchester. Sheets, if anything, show
slight improvement ; but business is only practicable at very lo prices, averaging about $£ 615 \mathrm{~s}$. per ton. In hoops there
an indifferent trade doing at the Association list rates of $£ 6$ 10s, for random to $£ 615 \mathrm{~s}$. for special-cut lengths, delivered Manchester In all branches of the steel trade there is a decided improve ment, resulting largely, no doubt, from the exceptional activity harden, the minimum quotations being 57 s . 6 d . to 57 z . 99., with
 nnd bars are steady at $£ 6$ to $£ 6$
ss. per ton, common qualities
5 s . per ton, common qualities being now quoted $£ 62 \mathrm{ss}$. 6 d . to
$\mathrm{E6}$ 5s, and boiler plates $£ 610 \mathrm{~s}$., delivered in this district. At a meeting of the Northern Society of Electrical Engineers,
held on Monday, Mr. T. Hawkins contributed a paper on "The Practical Operation of Multiphase Currents.
The balancing of engines was dealt with
The balancing of engines was dealt with in a paper read before the Manchester Association of Engineers, at a recent meeting, by
Mr. James Whitcher, A. Inst. C.E., in the course of which he Mr. James .hat the demand for higher piston speeds in engines for marine and electrical work had forced this question much to the
front, so that the scope of interest in it, instead of being practically limited to locomotive circles, extended over almost the whole area of motor engineering. There was really no great obstacle in the way
of a perfect balancing of locomotives, even though standard patterns were held as entirely sacred as they had been deemed by those
who built them. Alterations of the dispositions of the crank and cylinders opened the way for many solutions. A simple one was possible when the cranks were opposice, by operating abob-weight
in line with each cylinder, from the opposite crosshead, provision being made for keeping strain off the slides, and compensating the secondary components by the mode of linkage. The same was applicable to stationary and marine engines, but ieten must from the cross-head the inertia stresses were not relieved from main bearbalancing was possible, a piston being employed to vibrate columns manner. Secondary pistons could be adopted to modify the movements of the columns to balance the secondary components if the
pump could not be operated by a reverse conneeting-rod Likeoperate the al linkages or
In conclusion, Mr. Whitcher drew attention to the want of
balance caused by the uneven rotation of shafts-of which the Otto cycle gas engine furnished a striking instance. For less than quarter of the cycle they had a very powerful torqueo appied to there was a reverse torgue of correspondingly smaller dimensions. The size of fly-wheel did not affect these stresses, as although with
heavier fl-wheel the variation of speed and therefore the acceleration were smaller, the mass was proportionately larger. There wa evidently only one solution to this dificulty, to steady the turning
movement. Until this was done it was almost useless to think of applying any of the refinements of balancing to the modern gas or
sil engine.
Mr. Hun
discussing, the pineer of the Manchester Ship Canal Company, point of view, unbalanced high-speed locomotives affected them in so ways. When the locomotives dashed over brigeses at a high
speed the bridge was subject to alternating stress and relief of stress, many parts being now in tension, now in comprossion, now
at rest. Added to that was a factor most difficult to take into ccount, but which serioush hected the lives of the bridges, material of the bridge by the dynamio shocks caused by the un balanced weight of the moving portion of the engine. maintaingine
builder must consider the man who had to make and mase ooads and the bridges over which the locomotives travelled. The pabably by a process of tentativ and some day, sooner or later, probably
procedure, the solution would be found.
At a meeting of the Manchester Association of Civil Engineering
Students, held last week, Mr. B. K. Adams read a paper on "The Crossing of the Manchoster, Bolton, and Bury Canal, by the Intercepting Sewer laid down by the conpany, and describing he proposed sewer, Mr. Adams gave a number of interesting
detais of the methods of carrying out the work, the cost of construction, \&c., and concladed his remarks by a description of the
manholes on each side of the canal. The president, Mr. Wðrthing manholes on each sid to tho canale
ton, observed that on, observed ocasionally at their meetings, as it dealt with com-
requiriely paratively small work in very minute detain, and brougit
them every-day pieces of construction, which in the ordinary class
and of paper were overlooked as being too seli--evident
mention, but which, as a matter of fact, were least known
The position in the coal trade is not more than steady, with only are not moving off quite so freely, with prices unaltered. Steam and forge descriptions continue plentiful in the market, and in some quarters are cut very low, especially for shipment, 6 s . to
6s. 6 d . being average figures at the pit mouth on inland sales, with commoner sorts of steam coal obstainable ad delisered Mersey ports. Engine class of fuel are moving off fairly well, but supplies ac ample, and prices not more than steady at late rates, common
sorts averamgng 3s. to 3 sk . d. . medium, 3 s . 9 d . to 4 s . 3 d .; and better qualities, 4s. 6d. to 4 s . 9d. at the pit mouth.
Burroci-- The hematite pig iron market is very steadily em-
ployed, and a good demand exists for both prompt and forward deliveries. Makers, however, are too fully sold forward to be able to quote for prompt deliveries, and as a conseqged in price
transactions are noted in warrant iron, which has ranged from 49s. 4d. to 49 s .2 d . net cash, and has recovered to 49 s . 6 d .
sellers, buyers, 49s. 5 d . Makers still quote firmly 50 s . per ton for parcels of mixed Bessemer numbers net f.o.b., and although this is
a normal quotation, it would be impossible to do much business
at at a lower figure. During the week stocks of iron have been
reduced by 1029 tons, and now total up to 181,358 tons, or 3092
tons less than at the beginning of the year, and 116,962 tons less
than in the corresponding week of last year. Forty- \mathbf{y}
hre in furnaces
blast, as compared with thirty-six in the corresponding period of last year.
Iron ore is in very brisk demand, and raisers have profited on new contracts on the last advance in the prices of pig iron. Good average prices are quoted at 11 s . per ton net at mines, with best
descriptions at 16 s . per ton. There is still a large consumption of Spanish Steel makers aro very busily employed, and the mills in the from the converters will permit of. Heaxy steele rails are in large output and in good demand, and are quoted at £4 10s.
per ton net, f.o,b. Ship plates are in very full demand, and both the heavy and the light mills are kept fally employed.
Makers have more orders offered to them than they can undertake Makers have more orders offered to them than they can und a very
at present, and prospects seem to indicate there will be of average plates are steady at t $£ 510 \mathrm{~s}$. per ton. In the minor branches of steel business is steadily maintained.
Shipbuilders are showing more activity in all departments, and much progress has been made with the arrears of work in the
engineering department.
Prospects of new business are very engine
good.
The
risk malt trade is very quiet, and prices remain low. Coke enjoys
The shipping trade at Wesest Coast ports is very busily employed
metal exports. Last week 10,610 tons of pif iron and 12,810 tons of steel were exported as compared with 11,155 tons of pig iron and 7025 tons of steel in the corresponding week of last year, showing a dercase of
5855 tons of steel. Since the beginning of the year 100,816 tons of pig iron and 116,392 tons of stee have been exported, as compared
with 72,024 tons of pig iron and 89,426 tons of stel in the corre-
sponding period of last year, showing an increase of 28,792 tons of sponiron and 26,966 tons of steel.

THE SHEFFIELD DISTRICT.

ALTHOUGH the appreciably altered, and it is too late now in the season to expect any considerable rise in quotations. About five days are being
worked per week on an average. In some directions there is rather worked per week on an average. An some
less now being done. The slackening trade in several quarters has led to a settlement of various disputes, which have to an amicable arrangoment to meet the liabilities imposed by the
Workman's Compensation Act, but it is not expected that these difficulties will lead to any exceptional trouble. Consignments to the metropolitan market have been quite up to the average for the
season, and there is now a distinct improvement in the demand for secondary qualities of coal, which, up to a short time ago, were in very little demand, finer qualitios having pre-
viously had the preference. Values continue firm, best Silkstones are 8s. 6d. to 9s. per ton ; ordinary from 7s. 6 d . per ton;
Barnsley house, 7s. 6d. to 8 s . per ton ; seconds from 6 s . 6 d . to 7 s. per ton. In steam coal, for which the demand is well
maintained, considerable advance is shown in the weight sent to Hull for export. It is expected that the Baltic trade this
season will be unusually good, and it is hoped that an advance may be obtained in steam coal for ciscant markets. Barnsley hards
make 7s. to 7 s . 6 d . per ton ; seconds from 6s. 3d. per ton. With mel lengthening days there is less doing in gas coal, but values
the now no disposition to fall. Engine fuel steadily maintains its
sher position, the diminished working of the soft coal pits causing the
supply of small fuel to decrease. Nuts are 6 s . to 6 s . 6 d . per ton supply of smal, fuel to decrease. Nit slack, from 2s. 6d. per ton.
screened slack, from 4 s . per ton ; pit There is rather less doing in coke, or ord
10 s. per ton ; washed coke, 11 s . to 12 s . per ton.
Nor a little restlessness has been evident in the iron market
during the last ten days, but a steadier feeling is now evident. during the last ten days, but a steadier feeling is now evident.
It is significant that, in spite of the provalent uncertainty, prices have shown a tendency to stiffen, although quotations do no
appear to be higher. All our large iron and steel works are stil fully employed, with every prospect of this condition of affair being maintained during the year. In the East-end further large orders for military material are looked for, and, as additions ane
also being made to merchant craft, the firms who make a speciality of marine forgings, castings, and similar appliances, are certain th
be well employed for a considerable time The activity noted in railway material is as great as ever, and steel manufacturers have been heavily pressed. In the rolling mills, tilts, and forges ful
time is being worked, the business done being steady, consisteat, Ind well sustained
In the lighter trades there is no change to record from what has ture of sheep shears, the accounts given are fairly satisfactory except in regard to the Cape trade, which has been injuriously
affected by the rinderpest and disease. It is not at all probable that the Cape market will be worth much this season. Some very there seems a gradual tendency to use a cheaper kind of goods,
instead of the higher qualities which were ordered at one time Makers for the Australian markets complain of the fickleness with which shearers forsake one pattern for another. Manufacturers
are at their wits' end to know why the shear which was in favour pretty genel drops out he now Australian wool-growers find the best article to be most in demand by their shearers. It is encouraging to know that the Russian
rade, which is now at its briskest, keeps on the up-grade, and very good business is at present teing done.
The cutlery trade cannot be said to be very brisk, but Sheffield re all satisfactorily employed.
The Sheffield Gas Company has decided to reduce the price of
as by 2 d . per 1000 cubic feet.

NORTH OF ENGLAND.

A mors favourable report can be given of the iron and aliied industries this week than has been possible for several weeks part,
businoss having shown improvement, though as yet there is onthing
lision year.
In this district the poor shipments, especially of pig iron, during the last few weeks have had a depressing influence, for something
quite different was looked for, and this slackness led people to quirm an opinion that we had experienced the best of the rovival in the better in this respect, as during the last few days a substantial increase has been reported in the pig iron exports, not only to the
Continent, but also to Scotland and there promises to be as good an increase in the shipments of finished iron and steel, for the number of steamers now loading in the Tees is larger than it has
been for many months. This month up to Wednesday evening the exports of pig iron from the Cleveland district reached 50,319 tons, as compared with 40,633 tons last month, and 66,481 tons in
March, 1897, to 16 th. The small-pox epidemic at Middlesbrough has somewhat interfered with shipments from the Tees, as shippers
held back whatever iron they could rather than pay the increased held back whatever iron they conld rather than pay the increased
freights. As, however, the epidemic is now abating, it is not likely that it will further interfere with exports, and these will probably
be all the brisker for having been delayed. Little Cleveland pig
iron is going into the public warrant stores, and there is an
uninterrupted decrease in the uninterrupted decreaso in the quantity of hematite pigiere iron held.
On the 16 th Connal's had 87,603 tons of Cleveland iron in stock an increase for the month of 1147 tons, while their stock of
hematite pig iron was 44,81 tons, or 13222 tons secrease this month.
The price of Cleveland No. 3 . M. .

 oundry, 40s.; grey forge, at 39s,; and mottled and white, at
8s. 9d. per ton for early delivery ; 3 d . per ton more being asked
or next quarter. For mixed numbers of East Const hematite pig iron 50s. 3d. is
uoted, and in exceptional cases 50s. was taken early in the week, but now the full 50 s. 3d. is is firmly held, though this is almost too high to allow of East Coast makers competing suceessfully for the
Shetfield trade. Sheffield has for some years been one of their principal markets, but such a good local and export business has heffield trade that they did, and the West Coast makers-who previoussy had the monopoly of it-are doing the chief part of it.
Though the West Coast frmm shave more to pay for carrige of their
pig iron and also for their coke, they are padersolling East Coast makers in Sheffield, and at the same time supplying what many consider a better quality of iron.
Foreigu ore prices are tending
3d. per ton this week, and average qualities delivered in Tees 3d. per ton this week, and average qualities delivered in Tees
wharves can scarcely be met with ugder 1bs. per ton, this being on
account of the advancing freights. Probably the advance in these account of the advancing freights. Probabiy the advance in these
will be very substantial, as there is a report that the Spanish
authorities, who are greatly in want of funds, will endeavour to relieve themselves by, among other things, putting a duty on
shipping. This will, in the first instance, have to be paid by the
shipowner, but by raising the freights it must eventually come out shipoonere, but by raising the freights it must eventualy come out
of the consumer of the ore, and will thus add to the cost of pro-
ducing hematite iron and steel. This puts ore sellers in a state of ducing hematite iron and steel. This puts ore sellers in a state of
uncertainty, and the merchants are no very ready to commit homselves for more than a short time ahead.
Rail makers report good inquiries
and they are so well supplied withes, orders that they keep their mills in fulley operation, as they have done for more than two years past,
Manufacturers are agreed in quoting $£ 4$ 10s. per ton at works for heavy steel rails. Businoss in plates and angles is improving, and is already very good, as nearlyjevery shipyard is again in full opera-
tion. This week the yard of Messrs. Ropner and Sons, at Stockton, has started on full time. The tendency of prices is more
favourable, and Scotch manufacturers baving advanced their prices, producers in this district are oxpected to follow suit. As yet, how-
ever, they quote $£ 58 \mathrm{~s}$. 9 d . for steel ship plates, $£ 5$ 3s. 9 d . for steel
 plates as it is for ship plates, and the bridge builders are very good
customers of the platemakers at present. During the period of the engineers'strike the platemakers in this district did a large trade with German shipbuilders, which went tar to make up for the loss
in local trade. The German platemakers look with envious eyes upon this invasion of their preserves, and they are endeavouring
to induce the State Railway anthorities ot reauce the rates for
carriage from their works to the shipbuilding centres to such an carriagec from their works to the shipbuilding centres to suces an
extent that they can there undersell the British manufacturer, who has the a avantage of cheap carriage by sea. The bar trade is
steady, a good demand being reported on home account, and the price for commonand iron bars is at at $£ 55.5$. per ton, less $2 \downarrow$ per cent.
f.o.t. Packing iron is about $£ 4$ 12s, 6 d . It is many years since the shippuilding industry was so brisk,
and at some yards a scarcity of workmen is reported. In all branches the coal trade is quieter than it was, and there is
In and
nothing like the imporement that is to be expected at this time of the year in the steam coal dopartment. Best Northumberland
ofteam coal is now t 8 s. per ton
 in rather quiet request, but there is a large order in the market
for Rotterdam. Coke is in anir request, and the average price
is 13s. 6d. per ton, delivered equal to Middlesbrough, or is 13 s . 6 d . per
$15 \mathrm{~d} .6 \mathrm{~d} . \mathrm{b}$.

NOTES FROM SCOTLAND,

 (Fiom on Conament)

 (Fiom on Conament)}The Glasgow pig iron market has been comparatively quiet this
week. Speculative businoss has been limited, but there was a
Slight
 46s. Gfd. one month. For Cleveland warrants the demand was
very backward at 40 s . 5 d . to 40 s . 6 d . cash, and $40 \mathrm{~s}, 8 \mathrm{~d} \mathrm{~d}$. one month. Only a very small business was reported in Cumberland
hematite warrants, the rpices of which have been 49s. 4d. to
49, 5 . 49s. 5 d . cash, wits scarcely any inquiry for delivery in one month.
In Middlesbrough hematite the was nothing doing While the warrant market is quiet at the mon
amount of Scotch-made hematite is constantly going into consump.
tion. Merchants quote for this class of iron 53s. 6 d . per
deliver delivery at the steel works, It is feared that there may be a scarcity of hematite rom England. Stocks of this class or iron
are much reduced, both on the Thes and the West Coast. The
stocks in Cleveland amount to only 45,000 tons, compared with stocks in Cleveland amount to only 45,000 tons, compared with
100,000 tons at this time last year, while in the Cumberland dis-
trict they are trict they are 182,000 tons, being 114,000 tons less than twelve
months ago. These decereases have taken place notwithstanding
that in the that in the Middlesbrough district there are three furnaces and in Cumberland five more than at this sime last year.
The output of pig iron in Scothand is maintained at what it was
and a year ago, although there are soveral furnaces out of blast for
re-building. Tho total number in operation is 81 , and of these 35
are producing ordinary, 40 hematite, and 6 basic iron. are producing ordinary, 40 hematite, and 6 basic iron.
The prices of Soctch makers iron show wittle chan

 Shipments of pig iron from Scotch ports, both coastwise and
abroad, are smal, amounting in the past week to only 2837 tons,
compared with 4871 in the corresponding week was sedt to the United Starresponding week of last year. There
whone India 236, Australia 25 ,
Italy 510 , Germany 468 , Hotland 50 , Belgium 20, other countries Italy 510, Germany 468 , Holland 50, Belgium 20 , other countries
125, the coastwise shimpents being 1359 , compared with 1768 in
the corresponding week of last year. The finished iron and engineering trades are well employed,
some departments of the latter being very active. In the steel trade the output continues slarge, and there is a po. pospect of the
business still further increasing. A large amount of fresh tof thage for r rivate owners is coming forward, and there is every likelihood
that a proportion of the new warships will be constructed on the that a
Clyde.
In some of its branches the coal trade has exhibited an improv-
ing tendency. There has been more inquiry for the better ing tendency There has been more inquiry for the better
qualities of eil coal for shipment. Steam and main are in fair
request request. There is a good domand for housse coal, and small coals
and dross are in brisk request for manufacturing purposes. The
week's coal shipments from Scottish ports amounted to 133.597 tons
 compared with 131,472 in the preceding week and 120,124 in the
corresponding week of last year. The prices f.o.b, at Glasgow are,
for main coal, 6s. 6d.; ell, 7s. to 7s. 3d.; splint, 7s. 3d. to 7s. 6d,
steam, 8s, to 8s. 3d. per ton.

WALES AND ADJOINING COUNTIES

(From our ouen Correspondent)

The discussion between the coalowners' representatives and journed meetings have been held since my last report, but the conclusion of the last gathering left matters pretty well as they
were before In one respect the men may be said to have shown were before. In one respect the men may be said to have shown
their hands more than at previous meetings. The adjourned meeting took place on Saturday, at Cardiff, and was well attended by Press had an official report supplied at the end. proposed by Monmouthshire men, intimated that no sliding scale arrangement should be accepted, unless it gave 10 per cent. in the shiling upon the present standard. Also a 5 per cent advance,
This brought on a stream of argument pro and con., Mr. D. Morgan declaring his advice to be: "No scheme, no scale; if they had Several of the delegates demanded a minimum. Most of them insisted upon the 10 per cent. One of the Moderate party sug.
gested due consideration, and spoke of the poverty of the people, gested due consideration, and spoke of the poverty of the people,
and their inability to stand a strike or a struggle in the present state of things. In Abertillery many miners were sending theeer
children to beg from door to door, although wages in that district were equivalent to what they were in other parts of South Wales.
Ultimately the following amendment to the Monmouthshire reso untion was put, and carried by 69 votes to 26 for the resolution The amendment was as follows :- That the conference be
adjourned to March 22did, Cardift, and that the delegates at this them, with a view to obtaining their conse men's representatives on the Sliding Scale Joint Cormmittee plenary powers to effect a settlement of the matters in dispute.
A fair inference, given by the latest i p
A fair inforence, given by the latest inpartial consideration of or two exceptions, show clearly a strong decasions there
Perlhaps "give and take." One of the ocncessions by employers-lookers on
say - might be that of a minimum. If coal ran down below a certanin figure stop work, but so long as it gravitated between two distinct tigures let the collier be apportioned his share. This is the
opinion of an old collier, who has now no interest either way, and it is worth quoting as the opinion of a practical worker.
Throughout the past week the coal trade, steam and
been in a buoyant condition, and the only complaints have been short tonnage coming in, and at times short supplies. The total coal exports from Cardiff list foreign and were 320,000 tons ; Newport totals 34,363 tons. In the Cardiff district stems at all the collieries are well filled for the present month, best steam coal is firmly held at
12 s . 6 d . to 13 s , and sellers, in many cases, state that they are 12s. 6 d . to 13 s ., and sellers, in many cases, state that they are
unable to nccept new businoss this month. Best seconds are very and
sarce at 111. 6d, to 12s., while ordinary seconds readily fetch 11s. 3d. has characterised regards the dry coal trade, the firmness which
 for shipment at Cardiff is in strong request, and a larger sale could
be easily effected if supplies came in more freely. W. Westerns are Small steam coal bas now touched higher figures than it has for some years past. One of the alleged reasons for this is the quantity
banked for emergencies, though there has been for some time a good open demand. Latest prices are as follows:-Special, 7 s . 6 d dry and inferior, 5s. 9d. to 6s. 3d. f.o.b. and larger demand for bunkering baving had a good effect. The inland domand has led to increased prices, but for ordinary ship.

 $88.6 \mathrm{~d} . ;$ small,' 5 s . 6 d . to 6 s . Al .
At Cardiff patent fuel is in good demand, and makers are fairly Vera Cruz, and 1400 tons to Barcelona, Prices range from 10 s , to 11s. according to brand. Swansea shipments were close upon 6000 tons. Prices, 9 s . 9 d . to 10 s .
In coke increasing firmness is very marked. Furnace coke is
 I note that larger exportation of Irish pitwood from Cork to
Cardiff is at present occupying the attention of the Cork Harbour Commissioners, with a view to its extension and improvement. Trench wood has been coming in pretty freely of late
Wales is evidently regarded
Wales is evidently regarded as a good place for opening trade.
Of late substantial cargoes of old rails have been sent from Waterford and Dublin
Animation is the distinguishing characteristic of the iron and steel trades, look in what direction one may.
The natural curative of an over
that natural curative or an over-abundance of supply is, clearly, that production should be reduced, and this is now soen very
clearly in connection with the tin-plate trade. The receipt of tinplates from works last week showed a marked falling away there
being a great number of mills laid off. Makers do this now freely rather than undertake orders at low figures, and the result is healthier figures in the trade. Last week the shipments from cams ap to 48,125 boxes. Present stocks are now only 91,917 boxes. Gratifying accounts come from the Far East. The exports for the Straits Settlements, China, and Japan are advancing rapidly. A
good idea of the improved trade is given by returns for February as compared with February, 1897 :- Ruspsa 5288 tons, as against
nil ; Sweden nil, agninst 18 tons ; Denmark 219 tons, against nil nil ; Sweden nil, agninst 18 tons ; Denmark 219 tons, against nil ;
Germany 880 tons, as compared with 1555 tons ; Holland 70 tons, Cermany 880 tons, as compared with 1555 tons; Holland 70 tons,
against
nil $;$ France 935 tons, against 342 tons; Italy 371 tons, against 1015 tons; Austria 119 tons, against 148 tons; Straits' Settlements, 197 tons, against
2095 tons ; China 375 tons, against nil ; Japan 452 tons, against 2095 tons; China 375 tons, against nil; Japan 452 tons, against
nil ; United States 4312 tons, against 4272 tons ; total 13,558 tons, compared with Swansea imported 1310
tons iron ore last week, tons pig, 350 tons scrap steel, and 1260 that there was no new feature to record in connection with pig
iron. Prices were affected by the disturbing influences of political news. Scoteh, Middlesbrough, and West Coast hematite have fallen in the past week between 313d. and 5 d . Welsh hematites
continue in fair demand at last prices. Closing figures generill continue in fair demand at last prices. Closing figures generally
are as follows:-Glasgow warrants, 46s. 3d, cash ; Middlesbrough No. $3,40 \mathrm{~s}$. 6d. prompt; hematite, 51 s . Welsh bars, $£ 57 \mathrm{~s} .6 \mathrm{~d}$. to
$£ 510 \mathrm{~s}$. Sheets, iron and steel, $667 \mathrm{~s}, 6 \mathrm{~d}$ to 5610 .

In the Briton Ferry district last week, eighteen mills worked
full time. There is now hope
near Llanelly, if satisfactory terms can be arranged with the men hole dispute in the sheet department has been arranged. Th large smelting furnace at Messrs. Wright and Butler's is being
 There is a rumour of the possibility of Birchgrove being again A new era was inaugurated at Llanelly this week by the cutting of the first sod of the new dock. This will be of satisfactory pro portions. Its area will be nine acres, length 1000 ft ., breadth
400 ft ., quayage 1200 ft ., depth on sill 27 ft , width of entrance 50 ft . The work will be conducted under the supervision of Sir Alex
Rendel, consulting engineer, and Mr. C. P. Fowler, resident Rendel, consulting engineer, and Mr. C. P. Fowler, r
gineer. The contractor is Mr. Nott. Time, two years.

NOTES FROM GERMANY

(From our oren Correspondent.)
As a rule, both makers and manufacturers in the iron and steel departent remain moderately well employed, some
branches are even reported to show increasing animation, but the tendency of prices, though perhaps inclined to improve for
some articles, is generally dull. In Rheinland-Westphalia and in Silessia the position of the iron industry is about the same as in previous weeks. Output of pig iron, which has been slightly
reduced lately, meets with ready demand ; much the same may b told concerning billets and blooms. The majority of the plate and girder mills have been well occupied upon the week, and prospect
are fairl are fairly good, it appears; the accounts that are given of the
activity in the bar and steel trade are, however, decidedly un favourable for the present.
present year was:-For the Ruhr district, conke in February of
 Silesia, $1,157,640$ t., against $1,118,150$ t.; and for the three district together, $4,893,460$ t., against $4,804,100$ t.; which shows an increase
of 0.2 p.c. for the Ruhr district, 8.9 p.c. for the Saar district, and 3.5 p.c. for Silesia against the corresponding month last year present year was:- For the Ruhr durng the frict, $6,6555,170$ t., against
$6,413,450 \mathrm{t}$.; for the Saar district, $1,094,250 \mathrm{t}$, against $1,013,690 \mathrm{t}$. for silesia, $2,521,370 \mathrm{t}$., against, $2,371,710 \mathrm{t}$, ; and for the thre against the same period last year being, for the Ruhr district 2.4 p.e.; for the Saar district, 8.0 p.c.; for Silesia, $6 \cdot 3$ p.c.; and or the three districts together, 4.0 p.e., or $381,940 \mathrm{t}$.
The last quarter of 1897 shows the highest figures as regard production and consumption of coal in Silesia for that year as woll
as for the preceding years. Compared to the year before, the 1897. 1st Quarter
2nd
 In spite of the mild winter, which caused a considerable falling
off in the demand for house coal, the last quarter shows a strong demand for industrial purposes, and also to the improving export business, which has been favourably influenced by the reduction in freights. Average prices have been good during the last
quarter, and the Silesian coal trade in 1897 is altogether regarded as having been quite satisfactory.
The Friedrich Krupp Gruson W.

Krupp Gruso Works in Mqgdeburg are reported India-for the purpore of negotiating with the directors of the
mining company that is working in North Celebes, regarding the forming of a central mining station to work ores that is gained.
The establishment is to be erected on the Gold Cost of North Celebes, district Sumalata. One of the most important agency firms quired having already been signed.
In a coliiery near Aachen an explosion occurred, causing the The number of menemployed in the German bicycle manufacture 35,000 men against 1896. Foreign demind for German bieycles is increasing, several firms having got orders from Japan, where
hitherto only English bicycles have been bought and there ar hitherto only English bicycles have been bought, and there aro likewise numerous orders coming in from South America,
especially from Bueno Ayres and Columbia. The Brennabo
Works in Brandenburg, A.H., has recently got a contract for 300 bicyles for South America
owhich nearly one-quarter of total export in sewing machines and in bicycles from America goes to Germany. Exports were in
1896 and 1897 : - Sowing machines worth $3,051,000$ dols. and $3,193,000$ dols., of which 484,700 dols. and 856,900 dols fall to 303,100 dols, bicycles worth $3,796,000$ dols. and $6,902,700$ dols, Hungariany small sales have been effected on the Austro Hungarian iron market during the week now past, the trade in
merchant iron developing much more slowly than was anticipated. There is a somewhat better business done in foop and for girders, too, a fair inquiry comes in. The machine company Ganz and Co. has acquired the water power of the river
Tanaro, in Piemont, with 2000 -horse power, which will be sufficien to provide the district within a circle of 25 kiloms, with an electri current.
There is no alteration and certainly no symptom of an improve
The number of orders that come in on the Belgian iron market
continues limited, and the prices realised are, as a rule, pretty low and unremunerative

AMERICAN NOTES.

 (From our oon Correspondent)

 (From our oon Correspondent)}THE latest features of a commercial Ngw York, March 9th. encourage expenditure in a few of the many long-standing paper industrial enterprises that have been pigeon-holed. The facts regarding railway earnings as just surmised are that 235 rail-
roads having 168,900 miles of track earned last year gross earnings $1,227,884,322$ dolss, against $1,162,303,527$ dols. for 1896 , an increas
last year of $65,558,795$ dols. These include roads in Canada and Mexico. Complete returns will probably show gross earnings last year at $75,000,000$ dols. Sales of bonds last week for permanent
investment $15,000,000$ dols. The banking situation is fermurale investment $15,000,000$ dols. The banking situation is favourable.
There is $7,000,000$ dols. gold on its way. Government gold There is $7,000,000$ dols. gold on its way. Government gold is
$168,000,000$ dols., and has latterly been increasing at the rate of $1,000,000$ dols. The
The iron and steel makers are disposing of their production at living margins, but the pressure is not sufficient to allow strong
prices to be asked. The capacity is sold up, but not far enougg prices to be asked. The capacity is sold up, but not far enoug
ahead to warrant an advance. There is and low prices prevail. The demand for all manner of finishe products is heavy, especially for rolling stock and engines,
machinery, boilers, engines. Steam pumps and electrical equipments ares still being ordered for early delivery.
The coal trade is
The coal trade is improving. The production in Pennsylvania
is so far this year not far from $1,000,000$ tons in excess of same is so far this year not far from $1,000,000$ tons in excess of same
time last year. Industrial requirements are expanding with regularity. The total volume of business as indicated by bank
clearings is over cearings is over one-half greater than last year. prices is something of a surprise in view of this fact.

THE PATENT JOURNAL.
condensed from "The Mustrated offcial Journal
Appliceation for Letters Patent. *When inventions have been "communicated" the printed in italics.

$$
\text { Brd March, } 1898 .
$$

5190. Traxs, W. Evans, Manchester.
5i9. Boxze. J. Kelly, Manchester.
5191. Bac, J. Ridings, J. D. Ainswort,

Manchester. Sla3. CRusurs, C. Keightley, S. Tozer, and w. H.
Keightley, Teignouth, Devon.

 Norwich
$\begin{gathered}520 \text {. WRENES } \\ \text { berland. }\end{gathered}$ for Cyclists, J. Reid, Millom, Cum$\underset{\substack{\text { berland. } \\ \text { 520. Sortisa FLAX, M. M. Montgomery and W. B. Morton, } \\ \text { Belfint. }}}{\text { and }}$

 Hudderstield.
5205. Wegraco R. Heggio, jun., Dundee.
5206. CARRYINO FIRE Scerkens, A. D. Mathews, Birmingham.
5027. Combination Gnramest,
 tion von Broncowaaren und Zink guss, vorm., J. C.
Spino and Sohn, and S. Ji. von Romocki,' Man
 Giasgow.
521. STrecket Whekls, J. Liddle.-(J. Kidd, United
Siatas)

 Bierlin.
S21. Scorisa Pork, A. E. Jerram and H. J. Taylor,
London.

 Manchester.

 Edidarce-box, H. s. Basnett and J. R. Nesbitt,

 Leicester.

 London.
$\substack{\text { S.4.4. } \\ \text { Vondocipens. }}$
 S24. Mgris. Boxes, J. Gersant and A. G. Buttifant,
London.

 Bishop, London.
S25.2. Portable Explorina X-RAY LAMP, A. E. Dean, Lindon.
5253 BENDNo Rins, S. T. R. Richardson and R. Price, Bismingham. Ting,
S. T. T. Richardson and R. Price, Birming.
ham
 Birmingham,
Litant
London.
 Germany.).
525s. ATMivaco Rollesr Blinds, R. F. Shillingford,
London.

 5262. BrizzELEss Crole Framg Joint, J. Soil, Birmingham. Cartridge Holders for Fire-arms, S. M. McClean,
London. 526. . Sant, J. G. Shearer and W. H. Flett, Ltd.,
Liverpool. grove, Birmingham Checkina Motion, H. G. Sad-

 6275. Carret - straktching Apparatue, H. Rosar,
London.
 5278. Shapes for Iscaxd Lackext Liohts, S. Biheller,
London.
5279. Presses, C. Schumacher, London,
6280. Suprokting Posst, A. W.'Gamage Edinburgh. 5282. Combining Trunks with Atr-tio
PPoole London.
5283.
 5285. OndNANGE, A. T. Dawson and G. T. Buckham,
London. Ondon.
 France.).

London, sza.. Driving Gear for Cycles, C. G. I. Schultz,
London. ${ }^{5202 . \text { Prenky }}$ Exeter.

4th March, 1898.

5295. Combined Mudeuard for Cycles, J. Crabtree,

 Liverpool.
S298.
Birminghams.
c. and H. Roe, and H. Knight,
 5300. LIfintiva Trains, R. R. Meacoeck and A. J. Harper
London. 530., "THy Rush to Klondyke," w. Clark, Kirkby, 53ear Eiverpkoil. Southall, Worcester.
5296. WATCH GL.Lsszs, G. Pelmear and W. H. Cummings, Mid Alech GLoughsss, G. Pelmear and W. H. Cummings,
5297. Dombstic Fire-gscapg Apparatus, J. Thompoon,

5298. Writiva, J. A. A. Percebobis, London.
5299. MM MINa Lids, J. King and W. G. Barrett, Stoke-
on. Trent.

 chester.
5300. PRintivg Machinss, J. A. Sackville and J. H. Swallow, Manchester.
S312. MECHANICAL OLL SPRAY, W. E. Maddock,
Burslem.
Burslem.
5301. Hair Curlers, J. F. M. Bennett, Wolver-

 GAs, E. Bauer, F. Fried, and J. Bredel, Brussels.
5302. MANUYACTURINo OLL-CAKEs, J. Kruis and E. Debo,

 632. Autonatic Traverse Motion, A. Dewar,
D.andee.
5303. Wraving of Texture Goods, r. Heggie, jun., 5324. Creis Driviso Gkar, J. Crosbb, Sheffield.
5304. Boukrs, La Societé Anonyme Du Templo

S34. Mprgenativo Fabhics with Fluids for Electric
Liohtino Puma

 53

5305. Borruss, L. M. Thomas, London.
5350 . Whekt for RoAD VEHICLEs, L. C. Mason and J. C. Cook, London.
53i. Provertion of HARD Stonss, P. A. Winkler,
 Kendal.
sisis Diding Grar for Bicycless, D. E. Norton,
London. 5354. Conssumption of SMoke, J. W. Meek, Glasgow.
5306. Coaspostron for BURNINo in Cyole Laprs, J. R. SASbury, Glasgow. Lowzriva and Rastina Boats, T. Dillon, Gुhasgow.
5307. ARTilury Fort, A. T. Dawson and G. T. Buck-
ham, London.

 and P. O'Donnell. London.
S361. OiL Laups, E. Berchten.-(Scherinter and Grüif,

 586.
536
56

5308. Plastreing of Walls and Celiunos, J. Bassett, S3iremingham. DErnvina Coal of Morsture, J. H. Darby,
 ${ }_{5378}$

 L3ondon. London.
s39. Nvarktios and Notation Frase, g. Horsfall,
Birmingham. 5th March, 1898.
5309. Boor Hekıs, D. MeNabb, A. Livingston, and J.
Cochrane, London.

 532.. Dock-Nut, C. A. Houfton, Shirebrook, near
 Lindon.
5399 IRoN
London. Rims for Rubber Trirs, S. Johnson, 5400. CRNNKS, C.M. Johnson, London. W. W. Exley,
Sition BREM C CTTER, J. W. Brown and
E. 5402. Cosstruction of TRuss, R. Hope-Jones, Birken-

 London,
5406 . Dvice for Fastesing boot Laces, A. Kotin
Len Liond Bestracting Impuritiesfrom Coal, H. Kirkham,
 5409. Laxprs, F. W. Harbord and G. M. Minchin,

5310. Tirkss, J. Crabtree, London. Kay, Manchester. 15. Construction of Fire Screress, r. H. Best, 6. Skcurino Cranks to Bicyoles, H. Tarbuck
 E. Dous, P. Eadié, jun.-(L. S. Liversedge and r_{1}

 5426. SBow Boxes, G. Gould and J. W. Moss, Man-
 hagow, Lacs, J. Paton, Glasgow,
Broor
UpskTIIs IRoN BARs, F. THIly and P. Fischer

 Keighley.
S43.2. Drving Gkar, W. Anyon, Manchester.
S43. Coprive Documext, W. G. Hoys. (N: Pons
 54336. PREHOLDRE, C. J. Bldiss, London.
5311. FAsTENERS for W 5436. FAstrexErs for WInDows, J. Somerville, Edin 5h37. Sompdiva AppARATUR, J. C. Dobbie, Glasgow.
5312. TiREs, J. H. Price, Brming hanm.
 mingham.
5440 . crev.
ham. git. Machinkry for Crubhing Orrs, T. Lees, Gla

 S44. ARsis. Pads for CRuTohss, J. Walker, Glasgow.
544s. ScrAprrs for GARDEN Roluks, A. J. Smith

 545d. A.v. Kergon, London.
Kensington.
of Stonisa Cyoles, E. S. Copeman

 London. London. Cans or Cases, J. H. Jack, 5460. Word.writixa Machines, C. C. Balston, Now
York, U.S.A.
 5462. Sorkw Prow Prollare, T. Makopeace and A. S.
Fowles, London. 5463. Appiratus for Holdina Cyoles, J. Harrington,
London

$\underset{\substack{\text { 5455. Cow } \\ \text { London. }}}{ }$
5313. Soundiva Boards, R. Haddan.-(c. Sclomidtlein,
Gamany,
5314. Cony.
 London.
5315. Electric Tractios, A. J. Boult.-(J. P. Anney,
 London Ale Coshos Tepss, H. J. Doughty, London.
5316. EARTH Scoors, J. Conrad, London.
5317. Trins, F. G. Waddington, London.

 London,
S484. Pozzes, C. J. Croft and F. E. Dannoll, London.
48S. Protocam
 London
S4S7. Apparatus for WAshiva Bed-Pass, S. Jennings,

 Statas.) s94. Bortle Labis, H. H. Lake.-(J. c. Stedman,
 L403. Hoorss and Erks, H. H. Lake.-(J. W. Burke, United State.
Son. Curs or Bands for Scafroldina, V. Berrurier,

 ith March, 1898.
5318. Machise for Propbllina Balloons, F. W.
 Birminginutivg tho Prgssure on Electric Mains,
J. S. Highield, Stafford 502. Creck Gorkms, A . Winser, Bristol.
han. How Wilton, Bina Wi. Wire Nath A. E. Gorse and G. A. Probert,
Worcester. Woorcosterer. for Dyeina Apparatues, F. L. Spicor, S507. Rassive Suxkev Surs, J. B. Pegden, Hull.
Sos. Stoves, E. W. T. Richmond, Liverpool. Liverpool. Liverpool.
sioer
near Kockilmarnock.
TARTs, near Kilmarnock. for Food, W. Warde, Burton-on-
 Ferryy
S54. BRoszing Paprr, F. G. Job, E. Marsden, and

 Trent. $\begin{aligned} & \text { 517. CYcle Fitrises, T. H. Fleming, Douglas, Isle of }\end{aligned}$ Mis. Cyole Futtixes, T. H. Fleming, Douglas, Isle of
Man. Man.
Dinde-Lioht Jerham.
Dur, Durham.
London. pondturable Tire for Cycles, H. Pace,
Lond London.
S521. Cows for Prevestive the Dows-bLow of Smoke,
E. J. R. Coxhead, London.

 chester.
5319. Cycle Tires, C. C. L. Jackson and J. Edge, Man-
 552s. Mhic Lhind for Washina Bottiles, C. B. Inman,
Leds

 53unger, Eximerming Cxcloranic Views, T. w. Barber, Lond Fone HEnds for BLasting, W. A. and S. R.
Malson, Sheffield. 534 SDDDLE Pror for Bloyclise, W. Bromneisen, Ger-

 Birmingham.
5544 . Fogesiexallino Apparatus, J. Woods, Wodifuri Green, Essox.
5555 . Prootocrapho Chasolso Boxgs, H. Posen,
P.
 London.
Boxse for Holdiva Maeszines, w. Neil,
London.

 Portheim, and A. C. Peebles, Edinburgh.
S51. BALL JoiNTs for GAs PENDANT, E. D. Burkitt,
 London. brakes for Bheycles, A. B. Wilkins S55...Foor. SIaNass, E. A. B. B. Bowden and M. C. I.
Partridge, London.

5320. Skcuring Elastic to Hats, A. Grant, Birming ${ }_{5}^{\text {ham. Couplivo, J. Morgan, J., C., A. E. A., and F }}$ Scherber, London.
5321. Krakive Fibrous Plants, F. J. Mazier, London
5322. Holder for CArbon Brushes, A. L. Armstrong London.
SSin. AR Pump, G. E. Brown and R. F. Adams
S. London. Inflatina Valve, G. E. Brown and R. F. Adams London. Ionitgre, H. H. Bühndel and A. von
S.jas. GAA
Theholka, Loudon. Tincholka, Lourps, G. Birch, W. Reilly, and J. T. Cowman,
Manchester. Manchester.
S5bs. Tresskis, C. A. Day, T. Burgess, L. H. Ren-
shaw, and J. J. Burgess, Manchester. 5566. Lasprs, B. Pierpoint, Manchester.
5323. Suctino Gkryan Sausaces
5324. Nickri. Bronze, P. E. Secrétan, Liverpool.
5325. Iron Castincis, S. Hufty and J. K. Caldwell, London.
550 . Motor Vehicles, J. Y. Johnson.-(A. L. Riker Vnited Stater.).
5326. ELEcrictr, W. T. Carter, J. A. Dawson, and
T. Gray, London. T. Gray, London.
5327. Pepils W. B. L. Graham-Toler, London.
5328. Filing Cigarette Tubss, G. F. Zimmer 557. Shors, G. Lemon, London.
5329. Shors, G. Lemon, London.
 57S. GAdon. G. F. Dinsmore, London.
5330. Preventing Injury to Cvcles,
5331. Preventing Injury to Cycles, J. L. A. Aymard,
London. London.
5332. CGARs, F. Littlewood, Manchester
5333. Docis KkNNEL, F. Laska, London.
55s\%. The
55s. Toot W. G. M1y Lerman, Loundon.
55S3. WATER METERS, W. L. Wise. (The "Kïlner
Wasermser weerke") Gesellochajt mit beachrinkter
 558i. Dish WAshers, C. Fellows, London. A. Cockle,
5334. SEwiso Machives. P. H. Hewitt, E. A. and C. Matthews, London.
558s. SEwng MACHINEs, P. H. Hewitt, E. A. Cockle,
and C. Matthews, London. 55s9. Fostentivas for Windows, F. J. J. Gibbons,
London. London.
5335. MICRophongs, A. H. Skïld, London.
5336. Armour PLATES, H. A Royce and W. Beardmore, London.
5337. Brake for Velocipedes, W. E. K. Shore,
Lindon London. (OLouring Matrer, C. D. Abel.-(The, Action
5338. (ousellachaft für Anilin Falnikation, Germany.). 659xelluckiaft tür Gas, C. H. P. Schliter and C. L. F.
Lidemanle London.
5339. LaNTERNs for STREETs, J. H. Sheldrake, 5595. Lanterns for Strekts, J. H. Sheldrake
London.
5340. Electric Abc Lamps, S. Bergmann, London. 5596. Electric Arc Lamps, S. Bergmann, London.
5341. CLosing Veskes J. Goriup, London.
5342. Fekd - WAtEr Pife Arrangement, C. Reich, London.
5343. GLove Fasteners, H. Sauer, London.

Sth March, 1898.

5600. Umbrellas, B. J. B. Mills.-(C. H. Bly, J. W
Danser, and F.B. Rue, United States.) 5601. Shurcies, W. Schalck, Barmen, Germany,
5601. Ralway Mile Churn Covers, T. Gr Derby.
5602. Purification Process, J. J. Deery, London.
5604 . Gland-cocks for Steam Engines, J. O'Neil, London.
5603. LLow Shutrles, R. Crompton and H. Wyman
London. London.
56606 . Loom Shuttles, R. Crompton and H. Wyman, London.
5607 . Brushes for Cleaning Cycles, T. J. Pickford, Leeds.
5608 Orthoptic Sighting Devices, H. Andrews,
London. London.
5604. TUNDISH, H. P. and T. Glazebrook, Northwich,
Cheshire. 5610. Smearing Fly Papers, T. Kay and Kay Bros. Ltd., Stockport.
5605. Metrod of Drawing Wire, A. T. Gorse and G. A. Probert, Worcester. Mondron, London.
5606. GLLss PANES, L. Manchester
5607. Shaft for ScRew Propelakrs, F. W. Lanchester London. Bearings, T. W. Blumfield, London.
56i4. Ball
5608. Cycle GEar Cask, J. Part Leicester. 5615. CYcle GEar Cask, J. Parr, Leicester.
5609. HANGNG DEsk Table, R. F. Barry, Parsons. town, Ireland. Soli. Tiress, G. L. Scott, Manchester.
5610. Refining Antal Subtaces, J. Williamson, Glasgow.
5620 . Brush for Polishing Machines, J. Cooper,
Manchester. Manchester.
5611. BIcycles, H. Tee, Liverpool.
5612. MANHoLEs, G. W. Beldam, Live
5613. Manholes, G. W.' Beldam, Liverpool.
5614. Sprivg Stekring Stem for Cycles, D. Edwards,
Liverpool Liverpool.
$5624 .-$ Electric Alarms, G. T. Moore, Dublin.
5615.

 5627. SAFkTY Bolt for Rifles, L. B. Taylor and E. H. Parsons, Birmingham.
5628. SEwAGE TNK Covers, H. Grimshaw and J Barnes, Accrington. Chapman, Nottingham.
5629. CAN OpENE, J. Chas M.
5630. Boriso Holes, A. M. and W. C. Walker an C. Craig, Glasgow. Toscco Pres, B. P. Wilson, Bradford.
5632. Tire Inflator, J. Dalgairns and C. J. Griffith, London.
5633. Drainage Syphon Traps, G. F. Matthewson, 5634. Bollers, W. B. Johnson.-(J. Pierpont, United Stater.
563 Singing Curtain Brackets, W. B. Whittaker 5636. Headstock, R. and W. B. Lang, Johnstone, near
Glaspow. Glasgow.
5637 BuNJoss, G. Birch and J. E. Sykes, Man-
chester. chester.
563s. Wool Horse Head Ornaments, J. W. Ricketts,
Londou. Londou.
5639. NuTs, T. Campbell, Glasgow.
5640. Skcuriva Hats, A. Mc.Mcekin and J. Stalker,
Glasgow. Glasgow.
561. INTERNal Combustion Tubes, G. McGhee,
Glaspow Glasgow.
564. PAckivg, A. E. Muirhead. Glasgow.
5633. Coatvo Moulds, J. W. Miller.-(E. A. Melling, Unital Statce.)
564L. Lsaps, W. C. Cubbin and G. E. Johnston,
Liverpool. Liverpool.
5545 FLuss for OHL Cookina Stoves, H. Lowe, Bir-
mingham. mingham. Desse
56t6. Music
London. London.
5647. 1oos Appliances, W. and R. Cornthwaite,
Burnley. Burnley.
564s. Tubs-makivg Machingry, J. F. Donaghy, J.
Humphrey, and W. Gregk, London. Humphrey, and W. Gregk, London.
5649. Ivan NDESCENT GAs Burners, F. W. Harland,
London. London.
5650. Tines, J. Pearson, J. B. Price, and E. T. White low, Manchester.
Sbsul. Driving for Spinying, J. Heald,
London.
5652. Apparatus for Bevellina Glass, w. O. Bailey,
London. L653. "Stegl Non-slipping Tire Shield," R. B. Baines, Liverpool.
5654. Reglete ing Golf Scores, P. Wigley, Birming. ham. Music Leaf Holders, w. Summerfield, Birmingham.
5656. Dik for Cutting Fabrics, W. Stevenson,
Aldershot,

Londoper Cutting Machines, \&c., w. Howard L659. Pencll Sharpening Machines, J. Marsh,
London. 560 . Drain Holes and Sink Gratines, G. Hyde,
London. London.
S661. Ferrules for Walking Sticks, w. Lederle,
London L662. Noqk Bao, E. Wells, Gunnersbury.
5663. Convecrors, P. C. Middleton and F. Huggins,
 near Glasgow.
5665. Tubless inflatable Tires, A. Lavelly, Li66. Spools, C. L. Burdett, London.
5667. IncavDescext Liaht, H. J. Cantley, and J. R. and G. Davies, London.
5668. Doors H. Becker, 566. Doons H. Becker, London.
569. Combingo Skile GAME, H. J. G. Pessers,
London London.
5670 . Stretching Boots and Shoes, F. J. Caparn, London.
567. Treating Skwage, D. Cameron, F. J. Commin, and A. J. Martin, Lendon.
56iz2. Miners Lamp, H. H. Lake.-(0 . Siedentopf, Germany.)
5673. AR Compressing Machine, H. H. Lake.-(P. 667. Roolvise Mrus, E. Norton, London.
5675. Botriks, E. Gerlach, London.
S6̄6. Levelaing Device, J. W. Roche and J. Berns, London
5677 . Cornice Pole Brackets, C. F. Grimmett, Bir${ }_{567 \text { s. Ball Bearings, The Pittler Co.-(F. W. won }}^{\text {mingham. }}$ Pittle, Gcrmayy.)
S670. Borglar ALarm, T. B. Thurgood and W. Smith, London.
beso. Telephone Tube Receivers, H. A. Cutmore, London.
6681, Pafer-cutting Machine Knife, T. F. McCoy, London.
Sesi. Henting or Cooling Liquids, A. Slucki,
London. 683. Cycle Attachment, E. C. Alexander, A. Spain, and A. Ogden, London. Le Lake.-(The Rorleater Benging Apparatus Co., United States.) London.
S6Si. Dynamo-electric Machines, S. G. Brown,
London. London.
56fi. Crcer Brake, C. Wheatland, Loadon.
S688. Wert Stop Motions for Looms, E. Slicer, London.
56s9. WEAING Shutrles, E. Slicer, London.
5690 QUICK-FIRING GUNs, J. MacKenzie, London. 5690. Quick-riring Guns, J. Mackenzie, London.
5691. GAME, T. Brighton, London
5692 . GAs BURNER for Asbestos Fires, E. G. Bagle London.
5693. ELEctric Lighters, w. von Zabern, London.
5694. Rotary Gymistic Apparatus, G. Grad London.
565. RIVETING Maceines, F. von Kodolitsch, London. 5696. Ball BEarings, G. E. Strauss, London.
5697. Bedsteads, T. F. Rigy, Liverpool.
569. Valve GEar for Steam Engines, J. T. Ma Se9s. Valueg Gear for Steam Engines, J. T. Mallinson,
Manchester. 5699. Horse SAddles, P. W. Peters, Birmingham.
5700 Mkasuring Lievids, D. V. Hallbergh and C. F. Denker, London.
S701. Gas GenERATOR, R. Clayton and H. B. Steward,
Liverpool. 7o2. Skwing Machine, D. Nadel and H. Herzberg London. Electrodes for Accumulators, H. Pieper, fils,
503. Liondon. Electrodes for Accumulators, H. Pieper, fils,
London. 5700. Elenectrodes for Batteries, H. Pieper, fils,
London. London.
5706. Machines for Threading and Cutting-off Pip 707. STEAM INJECTORS, F. Sticker, London. 770. MEZZEEs for Doas, w. . Coulter, London.
fos. Soles of Boots, H. Marlow, London. 709. Soles of Boots, H. Marlow, London. W. Jones, London. SEATs for Veloctpedes, O. Imray.-(D. M. B. H. Cochrane, France.)
571. Oil Vapour Burners, w. S. Sargeant, London.
5713. Charaing Turret Guns, A. T. Dawson and T. Thackeray, London.
sil. BLEACHING of FABRICs, W. Mather and R. H
Haworth, London. H15. Leop Pondon. 5715. Lead Pencils, J. Wood, London.
5716. PILE Fibrics, J. Reixach and H. Scott, London.
5717. Clennine WooL, A. J. Boult,- (H. Bunse, Gicmany.) pany, Ltd.- (M. Loyal, France.)
5i9. Treatrant of Metaliferous Ore, e. b.
Parnell, London, Parnell, London.
5720 . Gas and Petrolevem Engines, R. O. Allsop,
London, London.
L21. Production of Relier Photographe, C. Pietzaer
London. 572.2. Metallurgical Treatment of Metallic Ores,
E. J. Ball, Plymouth.

9th March, 1598.

E. Driving Gear for Velocipepes, T. Ryland and
724. VrLocirkDes, R. Smith, London.
725. Actions of Oranss, L. B. Cousans, Lincoln.
726. Mechanical Toys, J. C. Martin Lins, 727. Tession Devices for Cyele Cfains, A. Straus Collin, London.
Sis. Wast Belts and Garters, A. G. McKowan
Birmingham.
 Enaines, R. A. Miles, Coventry.
万30. Roller Blind Furitur, G. Watson, Croydon.
5731. The Osclulating Dustriv, G, Greensill, Douglas,
 Isle of Man.
733. Pseumatic Crutch Head, C. Salmon, London.
733. Attachasent to Stone -sawing Maching, Lewis, Blackburn.
573.4. HANDLina Incandescent Mantles, M. J. Silver, T33. Rotary Exhadsters, J. Sharp, Glasgow. 736. Alarm Call. Bells, A. Loewenberg, Manchester
737. Fixino Handles to Saucepans, T. C. Clark G. Hurdman, Wolverhampton.
78s. Crank and Chain-whek of Cycles, B. D Wilmot, Birmingham.
fis. Boxs for Suroical. Purposes, F. W. T. Turton, Birmingham.
Sid. HErmetically Skaling Jara, \&c., C. Emmet
Sheffeld. 5741, Lubricators for axle Bearings, W. Chappell,
Halifan. Halifax.
. Ashovard, C. Forrest, A. Sym, and F. Keating
744. Wisdow Rods, J. Davies, Bradford.
5745. Drivise Mechanism of Cycles, H. and J. B. Hardy, Bradford.
746. CoLourivg Mstres, w. E. Heys.- (The Chemical
Works, formeely Sandos, Seiter
5747. Nicoting, R. Mackill, Glasgow.
5748. FLV-CATCHINQ DEvICE, J. N. Wright, London.
549. 49. Cycle HEN-LOCK, R, Orme, Newbury.
50. SwITCH, J. E. M. Stewart, Bournemonth
5751. Cycle Cranks and Chain Wheels, G. A. Smith,
London.
575.2. Axle Cylinder for Cyoles, G. Thornhill, Manchester. Cluss, M. B. Castle, Bristol.
5i53. Golf Clubs, M. B. Castle, Bristol.
575i. WINDING Applince, G. J. May and S. A.
Everett, Penarth.
5755. Machinery for Moulding Bricks, w. A. Gill,
Leeds. mingham.
5757. Kntring Maching, J. C. L. Poron, Brussels.
575s. Apron Fastener, H. S. Basnett and J. R. Nes bitt, Edinburgh.
5759. Crank Buckers, D. Roche, London.
5759. Crane buckets, D. Roche, London.
5760. GENERATION of Acetylene Gas, J. Main, New castle-on-Tyne. Claughton, Leeds.
5762. Funss, J. Russell, Sheffield. 63. TuYkre Botrom BLocks, T. Harrop, Sheffield.
64. Flanoed Smoothing Iron, S. A. Greene Win ch. Flangeld Smoothing iron, S. A. Greene,
chester. Chester.
5765. Printing Machines, T. Cossar, Glasgow,
576. Connection between Underground Co

London.
576. PNEOMATIC Tirks and Rims, S. Scoble, London.
5769. GRINDINo MAchINEs, P. U. Askham, W. Wilson and W. G. Slack, Shetfield.
3770. Water Gavges, R. H. Radford, Sheffield.
571 . PREVENTINo the OvRFLow of WATER frent Cooking UTENSIS, F. OVERRLOW, Kithen, London.
5if2. Smoke-prevention Movable Furnace Grate, 577.2. Smoke-prevention Movable Furnace Grate,
G. H. Halliwell, London.
573. Advertising by Incandescent Lamps, C.

Raleigh, London. 57 . STockinos, J. Sedgley, London.
5775. Football boots, T. Welford, London.
5776. Prenenino the Braking of Ships' Chain Cibles, W. Jardine, Kingston-on-Thames.
577. RIDDINo Hoves of Rodents, T. H. Bradish and W. B. Edwards, Loudon.
ST7s. Ingerino Water into Steam Generators, J.
Kirkwood London

Kirkwood, London.
5779. Submarine Torpedoes, J. Jacobson, M. Johnson,
5780 . Pivot ADJUSTMENTs, B. Banks and E. Verity,
London. 5 . Unitad Statex.)
5782. Rovary Enaine, J. Croft, Bourne.
783. Electric Rallway Systems, W. C. C. Hawtayne 574. Lamp Chinngys, P. Symons, London.
5785. Rotary Engines, J. Keller and C. H. Haeseler, London.
5756 . Chain Gerbing for Cycles, W. A. McCormick, 5787. Chinsey Top, J. Markham, London.
578s. Construction of Plotoss, J. Hind and M. Rowan, London.
578. Tooth Subs
many.
5790. .
Meischines for Threading Screw-xuts, F. 579., Lockina Devick Igersheimer, Londo
5792. Cycuen S 5792. CYCLING'SKIRT, I. Rubinstein, London. LTd., London. Ltd., London,
5795. Bankers Thimbi.E, D. W. Owen, London.
Scekenina Coal., A. Oberegger and E. Grea
 Company, Ltd.-(W. T. Giblbs, Canada.).
Si97. SWIVEL HEAD HORSE PLovaHs, W Baverstock,
London. London.
5798. GENERATING Ozone, W. Elworthy, London.
5799. Boat Propellek, E. A. Storer, Lynmouth, No
Devon.
5soo. Stasp Batrerigs, J. F. Webb, J. E. Lilley, and
J. Chapman, London. Ssoi. Edoe RuNNERs, J. F. Webb, J. E. Lilley, and J. Chapm
5so2. NE
Londo
5son. Preprabing Syrup, E. Shaw, London.
5804. Holding Cycles in VEhicles, H.
So4. Holdina Cycles in Vehicles, H. A. Ivatt,
London.
5805. Biscurrs, W. T. Carr, London.
5806. METLL BAsks or LaMp, H. H. Lake.- (La Co
pagnie General des Lampes à Incandescrice, France.)
5087. Drodorisation of Cocoanur Oil, J. C. W.
Stanley, London.
Stanley, London.
5808. ITEREAL Combestion Enaines, J. A. Hurst and

5810. Electrical Conductor, W. P. Thompson.-(A.
Lessing, Germany.)

5SL1. INcandrecen Gislioht Burners, W. P. Thomp-
son
 583. Firelighters, H. Arrowsmith, Liverpool.
5814. Preserving Organic Substances, F. Dickma Lis. Preserving Organic Substan,
Lis.on. Cans, r. Parker, Manchester.
5815. CANs, R. Parker, Manchester.
581. Boots, J. Douglas, Birmingham.
6s17. Mertanical. PUZzis, J,
5818. Bufyer Guides, W. A. Austin, London.
5819. Fkeding Fukl. to Furnaces, C. W. Stauss,

London.
580 . Fo.ding Articles of Furniture, L. A. Cambier,
London
5821. WINDow Blinds, J. F. Adams and C. R. Iorns, London.
582. Automatically Gripping Cords, C. R. Iorns,
London. London.
S823. Cond
London. London.
5s84. Linotype Machines, G. H. Law and W. Ingle,
London L825. Controllina Motor Cars, A. Herschmann,
London London.
586. Artificial Leather, e. Heyl-Dia, London.
5827 . Umbella Fastening Device, W. F. Flo London.
Sked Drills for Gardeners, G. Abbey, jun.,
London. 5829. Rim and Tire for Velocifedes, L. Carmichael, London.
5830. Incandescent Electric Lamps E. Heyl-Dia,
Lona 5833. Retaining Ladies' Skirts in Position when CrCling, E. Matthews and C. Carter, London.
5832. RUBBER TIRE Cover Moulds, S. E. Wakelin,

SELECTED AMERICAN PATENTS.

From the United States Patent Office Official Gasette.

591,013. SArETY Valve, F. Sclireid, Manstield, ohio.

- Filed March 18th, 8996 . Caim. - The combination of the main-valve cham. ber, the main valve having a tubular stem extend-
ing into the inlet passage, and a tubular extension upon the back of said valve having a valve seat within
it, a tubular stem having a reduced lower end to pass it, a tubular stem having a reduced lower end to pass
through the partition of the main-valve chamber, a seat within the upper tubular extension of the main
valve the enlarged upper portion of said stem above the varve the enlarged upper portion of said stem above the
partition having a valve in its lower end and a piston pabove the valve forming a p pressure chamber, a tubular
follower screwed into said stem and forming an upper
extension thereof, a spring compressed between said
follower and said valve to hold it to its seat, the tension of said spring being regulated by the follower, a spriog to bear upon the pistou of the tubular stem and hol-
the main valve to its scat, a follower above said spring

in the upper end of the case, and the top cap of the
case having a screw-threaded neck to engage the external thread in the upper end of the case and
bear upon said follower, whereby the tension of the bear upon said follower, whereby the tension of the
main-valve spring is regulated, substantially as shown
and described. and described.
591,862. GAs Engine, C. L. Mayher, Saratuga
Springs, N. Y.- Filed December 11 1 , Claim.- (i) The combination with a cylinder, piston,
andet and exhaust ports, of plug valves G, H, and imlet and exhaust ports, of plug valves G, H, and
excentric and connections for rocking the valve H, an
arm extending from said valve, a lug upon the vals arm extending from said valve, a lug upon the valve G arranged to make contact with sidid arm and springs
connected with the valve G to hold it normally in oue position, substantially ns set forth. (2) The combina-
tion with the fixed and movable trical with the fixed and movable contacts of an elec-
trical carrying the movable contacts and an arm upon said
shaft adapted to make contact with a lug extending

from the valve, subbtantiully nat set forth. ${ }^{(3)}$ In an
gas engine, the combination with the oclinder and its

 ceyinder and compression chamber, and a ralve con--
troline

 clain-(1) In as gas engino the combination of an

to a point intermediate its ends, an exhaust port
extending through the other trumnion, a piston, and an electric sparking device arranged to produce a spark
when the piston starts on its downstroke substantialy as described. (3) In a gas engine, the combination of an oscillatory cylinder provided with hollow trunnious
mounted in bearings, a check valve arranged in one mounted in bearings, a check valve arranged in one
of said trunnions and opening inwardly, a valve casing communicating with senid hollow trunnion and provided with a gas-regulating valve, a gas-supply pipe,
an inwardly-opening air valve for supplying air to said an inwardy-opening air valve ror suppying air to said
valve caing, a port leading from the inner end of the
said trunnion to the bottom of the cylinder, a similar port communicating at its opposite ends respectively
with the bottom of the cylinder and at a point inter. mediate its onds, a piston, and an exhaust, sub-
metantilly as described.
sita mediate its ends, a piston, and an exhaust, sub-
stantially as described.

