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Abstract. The aim of component technology is the replacement of large mono-
lithic applications with sets of smaller software components, whose particular
functionality and interoperation can be adapted to users’ needs. However, the
adaptation mechanisms of component software are still limited. Most proposals
concentrate on adaptations that can be achieved either at compile time or at link
time. Current support for dynamic component adaptation, i.e. unanticipated, in-
cremental modifications of a component system at run-time, is not sufficient.
This paper proposes object-based inheritance (also known as delegation) as a
complement to purely forwarding-based object composition. It presents a type-
safe integration of delegation into a class-based object model and shows how it
overcomes the problems faced by forwarding-based component interaction, how
it supports independent extensibility of components and unanticipated, dynamic
component adaptation.

1 Introduction

Component-oriented programming aims at the replacement of monolithic applications
with sets of smaller software components. Its motivation is twofold. For software engi-
neers, assembly of applications from existing components should increase reuse, thus
allowing them to concentrate on value-added tasks and to produce high-quality soft-
ware within a shorter time. For users, component oriented programming promises tailor-
made functionality from the adaptation of ready-made components.

Component adaptation includes the customization of individual components as well
as the customization of a whole component-based application by replacing some com-
ponents with others that are better suited for a specific task.

Known approaches to component adaptation can be classified according to

– their need for preexisting “hooks” in the application as either suitable forantici-
pated or unanticipated changes,

– the time when adaptation is performed as eitherstatic, load-time or dynamic (run-
time)



– their ability to adapt whole component types or individual component instances as
eitherglobal or selective. Selective approaches can be further classified as either
replacing or preserving, depending on whether they replace an existing component
instance by its adapted version or let both be used simultaneously.

– the applied techniques as eithercode-modification-based, wrapper-based or meta-
level-based.

With respect to the above classification this paper presents an approach to unan-
ticipated, dynamic1, selective, wrapper-based, object preserving component adaptation.
It advances wrapper-based techniques by introducing typed delegation as a new basic
interaction primitive beyond simple message sending.

The need forunanticipated dynamic adaptation has been repeatedly pointed out in
literature (e.g. in [MS97]) and its practical relevance has been impressively demon-
strated by the recent transition from national European currencies to the Euro. As op-
posed to the “year two thousand problem” this change of requirements could not have
been forseen at the time that the currently deployed software systems were designed.
So the software departments of European banks, insurances and other companies pro-
viding 24-hours services to their customers were suddenly faced with the problem to
perform unanticipated changes to their systems, without discontinuing operation. Not
all of them succeeded, e.g. some banks needed more than three days to get their auto-
matic teller machines operational with the new software. Others succeeded thanks to
redundant hardware. Detailing the ideas sketched in [Kni98b] this paper explores the
feasibility of more timely and inexpensive, purely software-based solutions.

When active components can neither be directly modified nor unloaded from a run-
ning system, we are faced with the problem to change their behavior solely by adding
more components. This paper explores how far delegation can help to solve this appar-
ent contradiction and how component adaptation can be performed without deleting the
“old” version of a component. Delegation enables the joint use of different versions of
a component and the easy modeling of components that present different interfaces to
different clients.

An overview of the state of the art is given in section 2. This section also illus-
trates the limitations of pure message sending, which prevent adaptations of the type
required by the Euro transition example. It thus motivates the need for a more powerful
component interaction primitive. Section 3 points out that delegation could be a perfect
solution if it could be integrated into statically typed object models. Section 4 intro-
duces typed delegation in the framework of the DARWIN object model and the LAVA

programming language, an extension of Java. The use of DARWIN/LAVA for dynamic
component adaptation is described in section 5.

2 State of the Art

Currently, the problem of component adaptation is mainly tackled from a programmer’s
point of view with proposals that aim at easing reuse of existing components in the

1 The proposed approach can also be applied statically or at load-time. However, its dynamic
use is the most beneficial one with respect to component adaptation



development of new applications. Most proposals in this category are based on code
modification ([Bos98,HOT97,ACLN98,KH97,HK98]). The paper [KAZ98] proposes
programming guidelines for the construction of components, which anticipate and ease
the construction of wrappers.

A second line of work concentrates on the problem of adapting running applica-
tions. Proposals in this category are based on wrappers (e.g. [PBJ98]) or metalevel
architectures (e.g. [MS97]).

In the following we review these techniques in the light of their suitability for dy-
namic component adaptation.

Metalevel Architectures. Metalevel architectures enable extensive manipulation
of a system at run-time. In principle, every object-level approach can be mimicked at
the metaobject-level. The price for this generality is that metalevel architectures still
suffer from two main limitations: they defeat static type systems and are notoriously
inefficient.

One application of metalevel architectures to the problem of dynamic component
adaptation is described in [MS97]. It supports only anticipated adaptation because it
relies on special design guidelines, which have to be obeyed in order to construct adapt-
able systems.

Code Modification. Code modification uses two inputs, a class to be modified and
a specification of the modification. The result is a modified version of the initial code
which is used instead of the old version. Examples in this category are Jan Bosch’s
superimposition technique ([Bos98]), the class composition proposal of Harrison and
Ossher ([HOT97]) and the recent work of Keller and H¨olzle on binary component adap-
tation ([KH97,HK98]). Superimposition is a language construct within a special object
model, LayOM. LayOM programs are translated to C++ and Java, making the modified
source code available for further use. Class composition as proposed by Harrison and
Ossher is also applied at “compile-time” and requires source-code availability. Binary
component adaptation can be seen as a more general form of class composition, which
can adaptbinary components when they areloaded. The basic technique behind binary
component adaptation can be generalized to other approaches. In particular, it can be
used to produce a more dynamic (load-time) version of subject oriented programming
([HO93,HOT98]), with similar component adaptation properties.

Code modification is applicable at compile-time or load-time but has only limited
applicability at run-time. Its essence is the replacement of an existing class by a new
version of that class. This is very difficult in a running system, where instances of the
class to be replaced already exist and are being used. This is the well-known – yet still
generally unsolved – problem of schema evolution in database systems, transferred to
the run-time environment of an object-oriented language. Even if the schema evolution
problem could be tackled in some ad hoc way, dynamic class replacement would be
too coarse grained for many applications, globally affecting all existing instances of a
component, even if selective adaptation was intended.

Component instance replacement. In the extreme case when each component has
only one instance, neither the schema evolution problem, nor the granularity problem
would arise. Thus a component and its sole instance could be replaced by a new version.
However, component instance replacement has its own shortcomings. First of all, the



component to be replaced might not be prepared to hand all its relevant private data over
to the new version, if adaptation was not anticipated. Secondly, the application might
require joint use of the old and the new component. For instance, for the Euro transition
it is required that prices in the national currency be printed in addition to prices in Euro
during the first two years.

Wrappers. When active components can neither be directly modified nor unloaded
from a running system, we are faced with the problem to change their behavior solely by
adding more components. This leads us to the use of wrappers ([GHJV95]). A wrapper
is interposed between a component and each of its clients that should perceive some
new behaviour. For each operation visible to the client the wrapper either provides an
own implementation or forwards corresponding messages to the “wrapped” component.
In the sequel a wrapper will also be called achild and the “wrapped” component will
be called itsparent.

The wrapper approach enables unanticipated, dynamic, selective adaptation, joint
use of different versions of a component and easy modeling of components that present
different interfaces to different clients.

However, wrappers in traditional class-based object-oriented systems fall short of
achieving the desired adaptation functionality. The usefulness of the wrapper approach
is limited by the underlying object model, which provides message sending as the only
component interaction primitive2.

2.1 Adaptation and theself problem

It has been repeatedly pointed out (e.g. by [HOT97,Szy98]) that message sending lim-
its the range of component interaction and component adaptation that can be achieved.
This is due to the so called “self-problem” [Lie86] that is inherent in message pass-
ing. In [HOT97] Harrison and Ossher rephrased theself problem in component-based
terminology:

Robust solutions [...] require that when components of composite objects in-
voke operations [...], the operations need to be applied to the composite object,
rather than to the component object alone.

With respect to wrappers, this means that when a message is forwarded from a
child to a parent via message sending, the value of theself3 pseudovariable is bound
to the parent. Thus all messages toself in the context of the forwarded message are
addressed to the parent. So, even if the child provides an own implementation of a
method, say print(), the parent will ignore it and continue to use its own print() method.
As a consequence, the parent “is not aware” of modified behaviour in the child.

This effect is illustrated by the traditional wrapper-based modeling of the Euro tran-
sition scenario shown in listing 1. The classDM (for the German currency) represents a
component that existed before the decision to adopt the Euro was taken. It provides two
methods:
2 For the purpose of this discussion events do not add any new insight and are therefore not

mentioned.
3 The implicit self parameter is also calledthis (in Simula, Java and C++) andcurrent (in Eiffel).



– amount() computes the current value of an investment (deposit, stock, assur-
ance), using some private, non-shared data structures,

– foo() does something else but callsself.amount() in its implementation.

The classDMtoEURO represents the wrapper. It encapsulates a reference to aDM
instance and also provides two methods:

– amount() calls amount() on its wrappedDM instance and divides the result by the
fixed DM-to-Euro exchange rate,

– foo() callsfoo() on its wrappedDM instance.

public class DM{
// ... private data, constructor ...

int amount() { return ... }

void foo() { ... self.amount() ... }
}

public class DMtoEURO{
// the wrapped component:
DM parent;

// constructor:
DMtoEURO(DM p) { parent = p}

// redefined method:
int amount() { return parent.amount() / 1.96}

// forwarding method:
void foo() { parent.foo() }

}

Listing 1: The Euro scenario: Traditional wrapper-based adaptation fails

When afoo() message is sent to the DMtoEuro wrapper, the same message is sent
to its DM parent and in the course of its evaluation, theself.amount() message will
be sent to the parent. Thus the adapted definition ofamount() from the child will be
ignored, and a wrong result (in DM instead of Euro) will be produced in the end.

What is required in such cases is the ability to forward messages from a child com-
ponent to a parent component in a way that guarantees that the child and the parent will
have a commonself during the evaluation of the forwarded message. In the above ex-
ample this would allow theself.amount() message issued by the parent to be eval-
uated in the context of the child, thus accessing the intended version of theamount()
method. This is exactly what is provided by delegation or object-based inheritance.

3 Delegation

”Delegation” was originally introduced by Lieberman ([Lie86]) in the framework of a
class-free (prototype-based) object model. An object, called thechild, may have mod-
ifiable references to other objects, called itsparents. Messages for which the message
receiver has no matching method areautomatically forwarded to its parents. When a



suitable method is found in a parent object (themethod holder) it is executed after bind-
ing its implicit self parameter. This parameter refers to the object on whose behalf the
method is executed. Automatic forwarding with binding ofself to the message receiver
is calleddelegation (Figure 1). In contrast, automatic forwarding with binding ofself
to the method holder is calledconsultation ([KRC91]). Delegation is object-based in-
heritance whereas consultation is just an automatic form of message sending. To avoid
confusion, it is worthwhile to note that many authors use the term delegation to denote
consultation or simple message sending.

self

delegation
...

message
receiver

method
holder

message
receiver

self

method
holder

consultation
(message
sending)

...

Fig. 1.Different effect of delegation and message sending onself

In contrast to code modification, delegation does not require source code or abstract
binaries – it works equally well on native code and can be employed at run-time rather
than at compile- or load time. Operating by addition rather than replacement and at
the level of objects rather than classes delegation does not incur the schema-evolution
problems of run-time code modification.

Why simulations of delegation are not enough.In spite of its advantages, no
widely-used class-based object oriented language has incorporated delegation yet. In-
stead, various simulations of delegation have been proposed, either as language spe-
cific idioms ([Cop92]) or general ”design patterns” ([GHJV95]). The possible simu-
lation techniques and their drawbacks are summarised and evaluated in [HOT97] and
[Kni98a]. The main disadvantages of the discussed simulations are:

– the need to anticipate the use of a piece of software as part of a larger compos-
ite and to build in ”hooks” that allow the correct treatment ofself in the context
of the composite. Components that do not provide such hooks are not effectively
composable ([Szy98]).

– the need to obey rigid coding conventions for implementing the required hooks.
On one hand, the absence of a standard convention goes against any attempt to
make composable software by simulating delegation. Components made according
to different conventions cannot be deployed together. On the other hand, the risk
of standardising immature proposals has been demonstrated by JavaSoft’s ”Object
Aggregation and Delegation Model”, which was initially contained in the Glasgow



Proposal for the new JavaBeans model and has been dropped as result of public
criticism of its limitations4.

– the need to edit (or at least recompile, if a tool for automatic generation of for-
warding methods is available) the ”delegating” classes when the interface of the
class ”delegated to” changes, in order to propagate the change, e.g. the addition
of a method. This introduces another variant of the ”syntactic fragile base class
problem” ([MS97,Szy98]).

Each of the individual simulation techniques has additional weaknesses in terms of
limited applicability, limited functionality, limited reusability or excessive costs:

– Storing a reference to self in parent objects has a very limited applicability. Shar-
ing of one parent by multiple delegating children cannot be expressed at all and
recursive delegation can only be simulated with significant run-time and software
maintenance costs.

– Passing a reference to self as an argument of forwarded messages requires to ex-
tend the interface of methods in parent objects, which might not be possible, if the
parent object is part of a ready-made, black-box component.
Furthermore, the typing of the explicitself argument interacts in subtle ways with
the construction of subclasses of parent classes ([Kni98a]). In the end, the simu-
lation either does not reach the full functionality of delegation or it does so at the
price of excessive costs for managing class hierarchy changes, rendering reusead
absurdum.

Why delegation has been (said to be) difficult. Considering the above list of lim-
itations inherent to simulation approaches it is obviously worthwhile to rethink the rea-
sons why delegation has been considered unsuitable or unfeasible in the context of
mainstream object-oriented languages. A survey of literature would reveal that many
authors have acknowledged the modeling power and elegance of dynamic delegation
but at the same time called for ways to harness this power and to make it more amenable
to a “disciplined use” ([Don92,Szy98,Tai93,Wec97]). This is essentially a critique on
the lack of a static type system for delegation-based languages. However, even some
well respected authorities ([AC96]) claimed that delegation cannot be combined with
static typing and subtyping without severe restrictions of the way objects are used
([FM95]). Therefore, the use of simulations seemed to be the only choice.

It is the main achievement of the DARWIN model ([Kni99]) to have shown that
type-safe dynamic delegation with subtypingis possible andcan be integrated into a
class-based environment, laying the foundations for dynamic component adaptation.
The DARWIN model is sketched in the next section to the degree relevant in the context
of this paper, pointing out the interesting parallel between type-safety and independent
extensibility of components ([Szy96]). The use of DARWIN for dynamic component
adaptation is described in section 5.

4 Note that the limitations of the Glasgow Proposal’s rejected part had already been hardwired
into the design of COM ([Box98]).



4 Darwin and Lava: Combining Class-based and Object-based
Inheritance

We assume that the reader is familiar with the notions of class, instance, and class-based
inheritance ([Weg90]). For simplicity of presentation, we shall introduce DARWIN us-
ing the syntax of LAVA ([Cos98,Sch97]), a proof of concept extension of Java that
conforms to the DARWIN model5.

Parents and Declared Parents. In DARWIN / LAVA , objects may delegate to other
objects referenced by theirdelegation attributes. Delegation attributes are declared in an
object’s class by adding the keyworddelegatee to an instance variable declaration.
If classC declares a delegation attribute of typeT we say thatC is adeclared child class
of T (and ofT’s subtypes), andT is adeclared parent type of C (and ofC’s subclasses).

Dynamic Delegation.Since a delegation attribute can reference any value that con-
forms to its declared type, assignment to a delegation attribute can be used to change
the behavior of an object at run-time by changing its parent object(s). This is called
dynamic delegation. If desired, we can restrict delegation to be static by adding the Java
keywordfinal to the delegation attribute’s declaration.

Mandatory and Optional Attributes . An attribute is calledmandatory if it must
always have a non-nil value,optional otherwise. This distinction can be specified in
LAVA by corresponding keywords, which may be added to any attribute declaration. If
nothing is specifiedoptional is the default. If an attribute is declared as being manda-
tory, this invariant is automatically enforced by the compiler and by suitable run-time
checks. Mandatory attributes are most relevant in connection with delegation because
they influences the typing relation between a child class and its parent type(s). A manda-
tory delegation attribute ensures that a parent object of the declared type always exists
(cf example in Listing 2).

Types. In purely inheritance-based models, the type of an instance corresponds to
the signature of the methods defined by its class (and its superclasses). Delegation has
the effect of extending this interface by the interfaces defined for thedeclared types
of mandatory delegation attributes. Thus, in LAVA delegation and inheritance are two
orthogonal ways to create subtypes of a base type. Delegating objects may be used in
any place where an object of their declared parent type is expected.

An Example. In LAVA , a class of text formatting objects (Formatting) that may
use and dynamically switch between different line breaking strategies (typeLine-
Breaking) can be written as shown in Figure 2.

The Formatting class may use all methods of theLineBreaking type as
if they where locally defined or inherited from a superclass - with the essential dif-
ference that it may dynamically switch to a different set of method implementations
simply by assigning an object of a differentLineBreaking subtype to the variable
lb. Like in the case of inheritance, theFormatting class can fine tune the “inher-
ited” behavior via overriding. For instance, in the above example it was assumed that
theLineBreaking type specifies that the line breaking algorithm calls the method
getStretchability() to determine by how many pixels individual text elements

5 The only deviation of LAVA from DARWIN is the restriction to single inheritance following the
design of Java. This is not a real limitation because LAVA offers multiple delegation.



public class Formatting {
   // delegate line breaking requests to 
   // the object referred to by lb:
   mandatory delegatee LineBreaking lb;

   // create object with default strategy:
   public Formatting () { 
      lb = new SimpleLineBreaking();   
   }

   // switch strategy:
   public setLBStrategy (LineBreaking _lb) { 
      lb = _lb;
   }

   // By how many pixels can individual 
   // text components be stretched.
   // Overrides method from parent type.
   public int[] getStretchability() { 
      ... 
   }
}

Extended UML Notation:
“A delegates to B”

A B

LineBreaking

+ doLineBreaking()
# getStretchability()

Formatting

Simple
LineBreaking

...

lb

Fig. 2.The strategy pattern in LAVA

can be stretched. Then providing a specialized version of this method (as shown above)
might be all that is needed to adapt the “inherited” behavior to the delegator’s needs.
Note especially that the designer and the implementors of theLineBreaking type
do not have to be aware of its use as a parent class and hard-code any hooks to enable
this use. It is instructive, if not even revealing, to compare the Figure 2 with the recom-
mendations for the implementation of the original strategy pattern example presented
in [GHJV95].

4.1 Type Safety, Independent Extensibility and Overriding

So far, we have seen how delegation works, how it overcomes theself problem and how
it eases the construction and maintenance of dynamic systems.

One main promise and problem of dynamic systems is dynamic extension. The
promise of dynamic extensibility is that components with required behaviour may be
composed at run-time from smaller components with well-defined partial functional-
ity. For instance, application components could dynamically switch parts of their be-
haviour by selecting suitable strategy components as their parents. The problem of such
scenarios is to guarantee that two concrete components that have been independently
developed as extensions of a common base component (e.g. of the abstract strategy
type) will work together without undesired side-effects. In this section we shall focus
on the problem of independent extensibility in conjunction with delegation and on its
notable similarity to the typing problem that has often been cited as an argument against
delegation.

Let us consider the scenario illustrated in Figure 36: c, an instance of classChild,
delegates top, an instance of classParent; Parent is a subtype of the declared
parent class ofChild.

6 The notation is standard UML extended with a symbol for delegation, depicted as an aggrega-
tion relation with an inheritance-style arrow at the opposite end. The outer (white) arrowhead



DeclaredParent

b()

b() { self.bang(aBomb }
bang(Bomb) { ...  }

Parent

bang(SE) { ... }

Child

b() b()

self.bang( aBomb)

???

c : Child p : Parent

Fig. 3.What should happen during evaluation of the messagec.b()?

Typing Problem. In Figure 3 the twobang methods have different argument types:
Child expects an argument of typeStockExchange whereasParent provides an
argument of typeBomb. Therefore, Fisher ([FM95]) argues that during the evaluation of
the messagec.b() delegated fromc to p, the messageself.bang(aBomb) sent
back toc would be unsafe, because its argument would not have the expected type.
However, arguing about type-safety in the above example is misleading, because the
essence of the problem is not typing.

Independent Extensibility Problem. The astute reader might have noted that the
classesChild andParent might have been developed and compiled independently,
knowing onlyDeclaredParent but not each other. Therefore, even if the two inde-
pendently introducedbang methods had the same signature it would still be very un-
likely that they have the same semantics. Overriding of thebang method fromParent
by thebang method fromChild would therefore be undesirable anyway, because it
would silently change the semantics relied upon by methods fromParent, leading to
obscure, hard to locate errors.

The importance of independent extensibility for component programming has al-
ready been described by Szyperski ([Szy96,Szy98]) in a delegation-free environment.
Whereas Szyperski focused on the joint use of two independent extensions of a base
type by a third party, our discussion relates to the delegation-based composition of one
independent extension with another one.

Overriding . The point of the above discussion of type-safety and independent ex-
tensibility is that both seemingly unrelated problems have a common cause: the implicit
assumption that methods with the same name (and possible same signature) may over-
ride each other.

This assumption can be safely made only if it is guaranteed that the author of the
overriding method is aware which other method it will override. This is always the case
with class-based inheritance: a method implementation in a class can only override

indicates the direction of forwarding, the inner (black) arrowhead indicates the binding ofself
to the child object.



one in a known superclass. Assuming a sensible documentation of the superclass and
no intentional fraud, authors of subclasses will not create semantically incompatible
overriding methods. The assumption is unsafe if independent extensibility is possible.

Solution. The solution to both problems discussed above is to extend method over-
riding by a criterion for semantic compatibility. We propose the following adapted rule
for method overriding:

Definition 1. A method defined in type T1 may only overridea method defined in type
T2 if the method is contained in some common declared supertype of T1 and T2.

Thus in LAVA a method from a class will only override methods that had already
been defined in a superclass or adeclared parent type. This rule reflects the fact that the
common declared supertype (e.g.DeclaredParent in Figure 3 and Figure 4) is the
common semantic base on which implementors of independent extensions can rely.

DeclaredParent

b()

b() { self.bang() }
bang() { ...  }

Parent

bang() { ... }

Child

b() b()

self.bang()

c : Child p : Parent

different
origin of
bang()

common origin
of bang()

DeclaredParent

b()
bang()

b() { self.bang() }
bang() { ...  }

Parent

bang() { ... }

Child

b() b()

self.bang()

c : Child p : Parent

(a) Independently introduced methods: (b) Methods with common origin:
No overriding. Overriding enabled.

Fig. 4.Overriding

The above definition of overriding is used as a criterion for method applicability
thus influencing the operational semantics of the system.

Definition 2. A method of an object is applicableto a message if and only if it may
override the matching7 method from the static type of the receiver expression. Messages
with no applicable local method are delegated further to the next parent object.

For instance, in Figure 4a, the messageself.bang() sent fromp to c will not
find an applicable method inc and will therefore be delegated further up the object
hierarchy, back top (where the search will succeed). In Figure 4b the message will find
an applicable method inc.

7 A method with signaturem(T1, ...,Tn) : T0 matches a messagerecv.m(expr1, ...,exprn) if for
all i = 1...n the static type ofexpri is a subtype ofTi.



In the case of static delegation the type-safety of the approach follows from the
fact that the sender of the message toself is itself among the parent objects. The type-
safe treatment ofdynamic delegation is more involved and its discussion is beyond the
scope of this paper. Static delegation already suffices for most wrapper-based compo-
nent adaptation tasks. A complete presentation of the DARWIN model including type-
safe dynamic delegation is contained in [Kni99].

To recap, the integration of delegation into statically typed object-oriented lan-
guages offers, among others, an easy way

– to make an object appear to be part of and act on behalf of various other ones, and
– to extend existing objects in unanticipated ways, without fear of semantic conflicts.

As a general object-oriented language mechanism delegation has a multitude of
possible uses. For instance, many well-known patterns ([GHJV95]) turn out to be sim-
ple applications of delegation (e.g. chain of responsibility, wrapper, decorator, strategy,
state, visitor). In the sequel we shall concentrate on the use of delegation for dynamic
component adaptation.

5 DCA: Dynamic Component Adaptation

Dynamic component adaptation is a modification of a component’s functionality at run-
time that can be achieved by

– adding further components to a system and
– transferring part of the existing component’s ”wiring” to the new components.

The technical prerequisites for this functionality are language support for delega-
tion and support for component ”re-wiring” by the underlying component architecture.
This section discusses both aspects. For simplicity components are considered to be
JavaBeans. The described considerations equally apply to any other component model
(e.g. COM) provided that in a future version it will support type-safe delegation accord-
ing to DARWIN.

5.1 Incremental Component Assembly and Adaptation with Delegation

Delegation enables extension and modification (overriding) of a parent component’s
behavior. Child components can be transparently used in any place where parent com-
ponents are expected. Unlike other approaches, which irrecoverably destroy the old
version of a component, delegation enables two types of component modifications. Ad-
ditive modifications are the product of a series of modifications, each applied to the
result of a previous one. Disjunctive modifications are applied independently to the
same original component.

Additive modifications are enabled by the recursive nature of delegation. They meet
the requirement that the result of compositions / adaptations should itself be compos-
able / adaptable ([Bos98,Szy98]). In the user view (Figure 5a) additive composition is
depicted by stacking components one on top of the other. The system view in Figure 5b
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Fig. 5.Additive and disjunctive composition

shows the implementation by building chains of delegating components. E.g. the first
and second increment of the original component together form an additive modification.

Disjunctive extensions are enabled by the fact that each extension is encapsulated
in a separate component instance that can be addressed and reused independently. Dis-
junctive extensions are most useful in modeling components that need to present them-
selves differently to different clients. In the user view (Figure 5a), disjunctive extension
are visualized sitting on top of the jointly extended component. For instance component
5 and 6 represent different extensions of component 4, which itself is part of a disjunc-
tive extension branch of the original component. At the implementation level (Figure
5b), disjunctive extensions delegate to the same parent component.

5.2 Dynamic Component Re-Wiring

The effects described so far only take effect if the most specialized increment compo-
nents along each disjunctive modification branch are used as the receiver of messages
instead of the original component. Therefore, dynamic component adaptation requires
dynamic component “re-wiring”, i.e. rerouting of all “input connections” of a com-
ponent to its most specialized increments. In the JavaBeans model input connections
correspond to the registration of a component as an event listener of other components.

The complete schema for dynamic component adaptation, including component re-
wiring, is illustrated in Figure 6. Part a) shows the implementation view of the original
component configuration. Part b) shows the re-wired configuration after addition of
three increment components, one of which represents a disjunctive modification.

A component architecture that supports dynamic re-wiring must provide

– a run-time component directory, including information about the “increment of”
relationship between components and

– the ability to ask every component to abandon all its input connections in favor of
one or more other components. This must happen as an atomic operation in order
to guarantee that the system is not left in an inconsistent state.

These requirements are not met by current component architectures, although dy-
namic component re-wiring is an essential infrastructure which would benefit also sim-
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Fig. 6.Component wiring before extension (a) and after extension (b)

ple forwarding based dynamic composition techniques, not just delegation. For in-
stance, the ”Extensible Runtime Containment and Services Protocol” of the Glasgow
model for JavaBeans

– provides no run-time component directory; every BeanContext functions as a di-
rectory of nested components but there is no directory of top-level BeanContexts,

– a JavaBean is only required to maintain a list of registered Listener objects but
no list of objects to which it listens itself; thus it only knows about its outgoing
connections but not about incoming connections,

– there is no atomic operation for handing a bean’s incoming connections over to
another bean.

Dynamic re-wiring infrastructures have already been proposed and implemented by
other researchers, e.g. [PBJ98]. However, it is still unclear how they could be applied
to arbitrary JavaBeans. We are currently exploring suitable extensions of the JavaBeans
model.

5.3 Example: Delegation-Based Euro Transition

Coming back to the example from Listing 1 we now show how a delegation-based mod-
elling of the Euro scenario would look like. Listing 3 shows the delegation-based variant
of theDMtoEURO class. Note that an explicit definition of thefoo method is not nec-
essary. Messages forfoo are implicitly delegated to the object referenced byparent.
The<- operator in the amount method denotes explicit delegation to the object referred
to byparent. This is analogous to asuper call in class-based inheritance.

public class DMtoEURO{
// delegate to the object referred to by parent:
mandatory delegatee DM parent ;

// constructor:
DMtoEURO(DM p) { parent = p }

// redefined method:
int amount() { return parent<-amount() / 1.96 }

}

Listing 3: The Euro scenario: Delegation-based adaptation



Now afoo message to aDMtoEURO instance will produce correct results because
the subsequentself.amount() message sent by its DM parent (cf Listing 1) will
correctly be addressed to theDMtoEURO wrapper object thus using the adapted defini-
tion of amount().

Figure 7 shows two different clients that use the oldDM component and its adapted
DMtoEuro version simultaneously. The stock overview component calculates in Euro,
complying with the new regulations, whereas the internal accounting component con-
tinues to use DM as long as possible because calculations in DM are more precise.

delegation

stock value
overview

internal
accounting

: DMtoEuro

: DM

Fig. 7.Simultaneous use of the originalDM component and of its adaptedDMtoEuro version by
different clients

6 Conclusions

The crucial role of dynamic, object-based inheritance (delegation) as a basis of compo-
nent interaction and the need for an integration of delegation into the statically typed
class-based model has been repeatedly pointed out by many researchers. In this context
the contributions of this paper are twofold:

– In the first place, it introduced a general model for dynamic, type-safe delegation,
DARWIN, and an implemented language, LAVA , that provide the required language
support for component-oriented programming.

– Secondly, the problem ofdynamic component adaptation was discussed and a so-
lution based on delegation and dynamic component reassembly was presented.

There are, nevertheless, still many open questions. For instance, a high-performance
implementation of LAVA is required, to help the current proposal make its way into
mainstream commercial languages like Java or C++, thus providing broad language
support for delegation-based component interaction. Also, components to be composed
by delegation depend on the “specialization interface” of their parent components.
Therefore, advanced component interface specifications and approaches to the “seman-
tic fragile base class problem” are required ([Lam93,SLMD96,MS97,Szy98,Wec97]).
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