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We discuss in detail the general-relativistically covariant Dirac equa-
tion derived by Fock for a particle of rest mass m and charge e in an
electromagnetic potential Ai, [iγk(∂k − Γ k − ieAk)−m]ψ = 0. The spino-
rial affine connection is given in terms of the spin connection ωabi and
spin operator s̄ab by the formula Γi = −ωabis̄

ab/4, which follows from the
assumption that the curved-space gamma matrices γi are covariantly con-
stant, and which we prove to be equivalent to the ‘tetrad postulate’ of van
Nieuwenhuizen, that the tetrad t a

i is covariantly constant. The intermedi-
ate result that γkΓ

†
i γ

k = 0 is also proven. Extension to dimensionality D is
straightforward, and results in the formula Γ̂I = −ω̂abÎ̄s ab

/4 for the spino-
rial connection. Reduction of the five-dimensional Dirac equation to four
dimensions has been shown by Klein, in the approximation linear in Ai, to
yield in addition an anomalous Pauli mass term 1

2 i
√
πGN Fijs

ij , which pro-
duces a correction to the intrinsic magnetic moment of the electron by the
factor (1+δ), where δ=−

√
1/αm/MP =−4.90×10−22, of theoretical inter-

est but beyond the range of current experiment. We also discuss the TCP
theorem in curved space-time, with particular reference to the heterotic su-
perstring theory of Gross et al., in the expanding Friedmann Universe. Pre-
viously, we have established the interrelationship between non-invariance
of the metric under T, defined with regard to comoving time by t → −t,
due to general relativity, and non-invariance of the superstring under P,
due to the asymmetric construction of the world sheet, which contains only
right-moving Majorana fermions, while TP is conserved. This motivates
study of C and the dimensional fermionic existence conditions found by
van Nieuwenhuizen, Chapline and Slansky, Wetterich and Gliozzi et al.
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1. Introduction

It is a result due to Fock [1] that the wave function ψ for a spin-1/2
particle of rest massm and charge e in curved space-time obeys the equation[

iγk (∂k − Γk − ieAk)−m
]
ψ = 0 . (1)

Here, γi are the generalized gamma matrices defining the covariant Clifford
algebra [2]

γiγj + γjγi = 2gij , (2)

where gij is the space-time metric, whose signature is

sgn gij = (+−−−) (3)

(we shall also consider the opposite signature

sgn gij = (−+ ++) (4)

below), Γi is the spinorial affine connection and Ai is the electromagnetic
four-vector potential.

Long ago, it was shown by Ricci and Levi-Civita [3] that gij can be
related at every point to a Minkowski tangent space ηab via the tetrads tia,
which obey the orthogonality conditions

ti
atja = δji , ti

atib = δab , (5)

as
gij = ti

atj
bηab , ηab = tiat

j
bgij . (6)

Application of the tetrad method to general relativity was discussed by Ein-
stein [4] in the context of distant parallelism, and by Wigner [5], who noted
the freedom to make Lorentz transformations in tia.

We can now define the spin operator

s̄ab = 1
2 (γ̄aγ̄b − γ̄bγ̄a) (7)

and the spin connection

ωabj = tka

(
∂jt

k
b + Γ k

jlt
l
b

)
, (8)

where barred quantities are defined in the tetrad frame, that is γ̄a = tiaγi. (It
is a straightforward exercise to prove the anti-symmetry of ωabj in the first
two indices, ωabj = −ωbaj .) In terms of these two quantities, the connection
Γj can be expressed as

Γj = −1
4ωabj s̄

ab . (9)
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The starting point for the derivation of Eq. (9) is the purely geometrical
assertion that the curved-space gamma matrices are covariantly constant, in
the sense that

∇′jγk ≡ ∇jγk + γkΓj + Γ †j γ
k = 0 , (10)

where ∇j is the tensorial covariant derivative operator, so defined that

∇jγk = ∂jγk − Γ l
jkγl , (11)

and the Hermitian conjugate is † ≡T∗.
Since the γ̄a are constant, Eq. (10) is precisely the ‘tetrad postulate’ of

van Nieuwenhuizen [6] — namely, the hypothesis that the tetrad is covari-
antly constant, that is

∂jtk
a − Γ l

jktl
a + ωabjtkb = 0 . (12)

For multiplication of Eq. (12) by the constant gamma matrix γ̄a, defined in
the tetrad frame, leads to Eq. (10), taking into account the anti-Hermitian
character of Γi, which we shall shortly prove,

Γ †i = −Γi . (13)

The resulting first two terms simply comprise the covariant derivative
(11). With regard to the second two terms in Eq. (10), using Eqs. (9) and
(13) we have

∆jk ≡ γkΓj + Γ †j γk = γkΓj − Γjγk = 1
4ωabj

(
s̄abγ̄c − γ̄cs̄ab

)
tk
c

= 1
8ωabj

(
γ̄aγ̄bγ̄c − γ̄bγ̄aγ̄c − γ̄cγ̄aγ̄b + γ̄cγ̄

bγ̄a
)
tk
c . (14)

Let us examine the contribution to ∆jk for fixed a 6= b. When a 6= b 6= c,
we find that ∆jk

∣∣∣
a6=b 6=c

= 0, after permuting terms. Alternatively, when

c = a 6= b, we have

∆jk

∣∣∣
c=a6=b(6Σ)

= 1
8ωabj

(
γ̄aγ̄bγ̄a − γ̄bγ̄aγ̄a − γ̄aγ̄aγ̄b + γ̄aγ̄

bγ̄a
)
tk
a

= −1
2ωabj γ̄

btk
a , (15)

since γ̄aγ̄a(/Σ ) = 1. Similarly,

∆jk

∣∣∣
a6=b=c(6Σ)

= −1
2ωabj γ̄

btk
a . (16)

Adding Eqs. (15) and (16) and lifting the no-summation sign, we now obtain
the result

∆jk = −ωabj γ̄btka , (17)
substitution of which into Eq. (10) yields Eq. (12).
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2. The derivation of the Dirac equation

Before deriving Eq. (1), we have to discuss the question of Hermiticity. In
Lorentzian space-time, the zeroth component of the tetrad gamma matrices
γ̄0 and the spatial components γ̄α (α = 1, 2, 3) have opposite Hermiticities,
the precise assignment depending upon the space-time signature. In the
signature (3) assumed here, we can represent the γ̄a for example by the
standard 4× 4 matrices

γ̄0 =
(

0 −σ0

−σ0 0

)
, γ̄α =

(
0 σα
−σα 0

)
, γ5 ≡ iγ̄0γ̄1γ̄2γ̄3 =

(
σ0 0
0 −σ0

)
,

(18)
defined in terms of the generalized 2× 2 Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(19)
The chiral representation (18), in which γ5 is diagonal, is obtained from
the Dirac representation by interchanging γ̄0 and γ5. We recall that the σi
are all Hermitian, when squared all yield the unit matrix, σ2

i (/Σ ) = 1, and
that the spatial components σα obey the commutation law σασβ − σβσα =
2iεαβγσγ , guaranteeing the Clifford algebra (2). As a consequence, γ̄0 is
Hermitian, while the γ̄α are anti-Hermitian. (The opposite signature (4) is
obtained by transforming the gamma matrices to γ̄′a = ±iγ̄a, which reverses
the Hermiticities.)

This difference in Hermiticity between γ̄0 and γ̄α renders the analysis
intractable, a priori, due to the presence of the second term −Γ l

jkγl in the
covariant derivative (11), which has the effect of mixing the components γk
and γl in the definition of ∇jγk. One way of dealing with this problem
is to Euclideanize the metrics ηab and gij via Wick rotation of the time
coordinate x0 ≡ t,

t→ ±it , (20)

so that
γ0 → ∓iγ0 , g00 → −g00 , A0 → ∓iA0 . (21)

(The Euclidean formalism is used in Ref. [6].) Now all the gamma matrices
have the same Hermiticity in either metric signature.

Suppose first that the γi are all Hermitian. Then, to maintain the Her-
miticity of Eq. (10), due to the fact that ∇jγk is Hermitian, being linear in
the γi (note that the covariant derivative is only Hermitian in general if all
the γi are Hermitian), we have to write the last two terms in Eq. (10) as

∆jk = γkΓj + (H.c.) = γkΓj + Γ †j γ
†
k = γkΓj + Γ †j γk . (22)
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Alternatively, suppose that all the γi are anti-Hermitian. Then, analogously,
to maintain the anti-Hermiticity of Eq. (10), we have to write ∆jk as

∆jk = γkΓj − (H.c.) = γkΓj − Γ †j γ
†
k = γkΓj + Γ †j γk , (23)

which coincides with Eq. (22). Thus, Eq. (14) is independent of metric
signature.

Premultiplication of Eq. (10) by γk now yields the equation

4Γj = −γkΓ †j γ
k − γk∂jγk − Γ k

jlγkγ
l . (24)

Eqs. (10), (13) and (24) imply that an arbitrary anti-Hermitian function
times the unit matrix can be added to Γi without invalidating the solution,
which we write as

Γ ′i = Γi + iCi1 , (25)

where Ci is real, thus preserving the anti-Hermiticity of Γi. Comparison
with Eq. (1) shows that we can in fact identify Ci with eAi in an external
field Ai. In Appendix A, we prove that the first term on the right-hand side
of Eq. (24) vanishes identically, so that, after substitution from Eqs. (7) and
(8), we have

Γj = −1
4γk

(
∂jγ

k + Γ k
jlγ

l
)

= −1
4ωabj s̄

ab , (26)

thus verifying Eqs. (9) and (13), the anti-Hermiticity of Γj following from
that of s̄ab. Finally, the Lorentzian space-time can be reinstated by reversing
the transformations (20), (21) to yield Eq. (1).

3. Electromagnetism

In Minkowski space-time, the electromagnetic gauge contribution to the
Dirac equation for a charged spinor has to be added as the separate entity
eγkAk in Eq. (1). It is therefore of much interest that by going to a curved
space-time we find a way of incorporating this term automatically into the
geometrical connection Γi, for an arbitrary background four-vector poten-
tial Ai. That is, by changing the definition of Γi, we can rewrite Eq. (1)
as [

iγk
(
∂k − Γ ′k

)
−m

]
ψ = 0 , Γ ′k = Γk + ieAk . (27)

Therefore, the gauge symmetry of the Dirac equation, enunciated by Weyl
[7] in Minkowski space-time (see p. 331 of Ref. [7]), can be geometrized in
curved space-time to invariance under the simultaneous transformations

∂k → ∂k − iΓ
′′
k , ψ

(
xi
)
→ ψ′

(
xi
)

= ei
R

Γ
′′
k dx

k
ψ
(
xi
)
, (28)
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where Γ
′′
k = eAk1, implying that Γ

′′†
k = Γ

′′
k and hence invariance of the

probability current, Eq. (61) below1.
It is also interesting, however, to analyze the result obtained by the

Kaluza–Klein mechanism [8,9] applied to the five-dimensional, curved-space
Dirac equation, discussed by Klein [9]. Firstly, we recall that the modified
Klein–Gordon equation obtained by squaring the operator in Eq. (1) takes
the form, found by Schrödinger [10],(

1√
−g

D′k

(√
−ggklD′l

)
− 1

4R−
1
2 ieFijs

ij +m2

)
ψ = 0 , (29)

where D′k = ∂k − Γ ′k , (30)

R is the Ricci scalar and Fjk ≡ ∂jAk − ∂kAj is the electromagnetic field
tensor, in the Lorentz gauge ∂k(

√
−gAk)/

√
−g = 0, for example.

Eq. (29) contains the interaction term 1
2 ieFijs

ij , which survives in the
Minkowski-space limit Γi = 0, R = 0, originally discovered by Dirac [11],
and is essential for agreement with experiment. The curved-space Eq. (1) in
the uncharged case e = 0 has also been discussed by Dirac [12].

The presence of the term 1
2 ieFijs

ij ≡ e(σ · B − iγ0γ · E) reflects the
fact that the electron possesses an intrinsic quantized angular momentum.
This idea was first conjectured by Compton [13] to explain a number of
experimental results in ferromagnetic materials, especially the phenomenon
of diamagnetism, and also some X-ray crystallographic experiments [14,15],
the rotation of the plane of polarization by optically active substances [16]
and the helical motion revealed by particle tracks in the cloud-chamber
observations by Wilson.

Subsequently, Uhlenbeck and Goudsmit [17,18] showed that the hypoth-
esis of quantized intrinsic electronic spin results in an improved explanation
of the fine structure of the alkali spectra, particularly in the X-ray levels, if
this intrinsic spin is quantized in odd multiples of ~/2. It also explains the
anomalous Zeeman effect if the ratio of the magnetic moment of the electron
to its angular momentum is twice as large for the intrinsic as for the orbital,
that is the gyromagnetic ratio is g = 2, so that

µ =
e~

2mc
, (31)

as discussed by Heisenberg and Jordan [19].
1 From the definition (9), the Γk, which are trace-free, are complex or real according
as the s̄ab are complex or real, since ωabj is real. Thus, the complexity of the Γk is
representation-dependent, and the Γk are only real in a Majorana representation, for
which the γ̄a are all imaginary (or, if the spinor is massless, all real), implying that
the s̄ab are all real. In this case, Γ

′′
k = ImΓ ′k = eAk1.
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Starting instead from the five-dimensional Dirac equation for a massless,
uncharged spinor ψ̂,

iγ̂KD̂Kψ̂ = 0 , (32)
where K = 0, 1, 2, 3, 4 and

D̂K = ∂̂K − Γ̂K , (33)

the reduction to four dimensions is accomplished via the ansatz [9]

ĝij =gij + β2AiAj ĝ44 , ĝij =gij ,
ĝi4
ĝ44

=βAi , ĝi4 =−βAi , |ĝ44|=α4 ,

(34)
in which α4β

2 = 2κ2 and κ2 ≡ 8πGN is the four-dimensional gravitational
coupling, GN ≡M−2

P being the Newton constant and MP the Planck mass.
This procedure does not lead precisely to Eq. (1), however. As discussed

in some detail in Ref. [9], the equations generally become rather complicated
— when Eqs. (34) are substituted into the definition for Γ̂i, we obtain terms
non-linear in Ai, due for example to the fact that γ̂i ≡ ĝij γ̂

j yields the
term (gij + β2AiAj ĝ44)γj . Even in the approximation analyzed in Ref. [9],
retaining only terms linear in Ai, there is a difference from Eq. (1). The
gauge term in the electromagnetic vector potential eγkAk can be obtained
by allowing the wave function to depend upon the additional coordinate x4

through the periodic phase factor

ψ̂
(
xk
)

= ψ
(
xk
)

exp
(
2πix4/l4

)
, (35)

where the constant l4 ≡ hc
√
α4β/e defines the periodicity. The interaction

term Fijs
ij now occurs not only in the Klein–Gordon equation, obtained

by squaring the Dirac operator, but also in the Dirac equation itself, which
reads [9] [

iγk(Dk − ieAk)− 1
2 il0Fijs

ij −m+ . . .
]
ψ = 0 , (36)

where l0 =
√
α4β/4.

The extra term −1
2 il0Fijs

ij in Eq. (36) is the so-called ‘anomalous’ inter-
action discussed by Pauli [20, 21], who emphasized (see p. 233 of Ref. [20])
that the requirements of relativistic invariance, gauge invariance and corre-
spondence do not determine the Dirac equation uniquely in the Minkowski-
space limit, allowing this additional possibility, derivable from theLagrangian

δL = −1
2 i
√
−gψ̃l0Fijsijψ , (37)

where ψ̃ = ψ†γ0. Pauli [20] also emphasized, however, that the Dirac the-
ory [11] already explains the values of the intrinsic spin and resulting mag-
netic moment (31) of the electron without need of modification, making the
anomalous term superfluous.
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Regarding the question of the electromagnetic interaction energy, the
anomalous contribution can be understood directly, for the addition of ex-
pression (37) to the uncharged Lagrangian density L implies a change in the
spinor Hamiltonian density, defined (see Schweber [22], for example) as

H ≡ ∂L
∂(∂0ψ)

∂0ψ − L =
√
−g
[
iψ̃γα∂αψ +

(
m+ 1

2 il0Fijs
ij
)
ψ̃ψ
]
, (38)

by the increment
δH = 1

2 il0
√
−gψ̃Fijsijψ . (39)

In other words, the effective mass of the spinor is

m′eff = m+ 1
2 il0Fijs

ij = m+ µanomalous ·B − il0γ0γ ·E , (40)

where the electric and magnetic three-vector fields are defined by2

Eα = −F0α and Bα = 1
2ε
αβγFβγ , (41)

respectively, while the spatial components of the spin operator can be writ-
ten as

sαβ = −iεαβγσγ , (42)

which follows from the commutator of the Pauli matrices σα.
Ignoring the electric field, Eq. (40) shows how the effective mass of an

uncharged fermion is increased by the amount µanomalous ·B in an external
magnetic field B, where the anomalous magnetic moment is defined by

µanomalous = l0σ . (43)

The Lagrangian of the original Dirac theory [11], on the other hand,
does not contain a magnetic-moment term per se. Due to the quantum-
theoretical nature of the wave equation (1) for ψ, this term appears explic-
itly only upon squaring the Dirac operator. (The reason for this is that
the quantum-mechanical operator replacement −i~∂k for the momentum pk
does not commute with the gauge vector potential Ak.) The effective mass-
squared in the resulting Klein–Gordon equation is [11]

m2
eff = m2 − 1

2 ieFijs
ij ≈ m2 − eσαBα . (44)

2 The three-vector field identifications (41) are obtained from the identity ∗F ij;j ≡ 0,
where ∗F ij ≡ εijklFkl is the dual field tensor and εijkl = δijkl/

√
−g. The

`
α

´
compo-

nent can be written in curved space-time as εαβγ(
√
h∂βF0γ)− 1

2
∂0(εαβγ

√
hFβγ) = 0,

or in three-vector notation as curlE + ∂0(
√
hB)/

√
h = 0, where εαβγ = δαβγ/

√
h,

h = dethαβ = −g/g00 and hαβ ≡ −gαβ + g0αg0β/g00 is the physical three-metric.
The scalar and three-vector potentials are defined as ϕ = −A0, (A)α = Aα, so that
E = −∇ϕ− ∂0A and B = curl A.
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In the non-relativistic limit |eσαBα| � m2, Eq. (44) implies a change in the
effective mass of the electron to the level

meff ≈ m−
eσαB

α

2m
, (45)

enabling us to identify the intrinsic magnetic moment of the electron with
expression (31).

To recapitulate, the mass parameter m of the uncharged theory appears
on the same footing in the Dirac Eq. (1) and the Klein–Gordon Eq. (29). It
is only the intrinsic magnetic-moment term which is present in Eq. (29), yet
absent in Eq. (1), this difference being due solely to the operator nature of the
equation, independently, in particular, of any specific solution for the wave
function ψ. Note also that the gamma matrices γi occur linearly in Eq. (1),
which is thus representation-dependent, but quadratically in Eq. (29), where
they combine to form the metric gij . In this sense, it therefore seems that we
need Eq. (29) to give complete expression to the ideas of general relativistic
covariance and the interaction with an external electromagnetic field.

If the wave equation for an electrically charged spinor also includes the
‘anomalous’ term, then in Minkowski space-time, from Eq. (36) we have[

iγk(∂k − ieAk)−m′eff

]
ψ = 0 , (46)

where m′eff = m+ 1
2 il0Fijs

ij . (47)

To obtain the net magnetic moment, it is necessary to square the operator
of Eq. (46), which yields[

∂ ′k∂
′k +m2

eff − 1
2 l0γ

k∂k
(
Fijs

ij
)]
ψ = 0 , (48)

where
∂ ′k = ∂k − ieAk (49)

and

m2
eff =m

′ 2
eff− 1

2 ieFijs
ij = m2−1

2 ie

(
1−

√
1
α

m

MP

)
Fijs

ij−1
4 l

2
0

(
Fijs

ij
)2
. (50)

In deriving Eq. (48), we have used the fact that γiγj = gij + sij and have
introduced the fine structure constant

α =
e2

4π~cε0
=
e2

4π
, (51)

in units such that c = ~ = ε0 = 1, where ε0 is the permittivity of free space.
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From Eq. (50), we see, ignoring the term quadratic in Fijs
ij , that the

anomalous electromagnetic interaction produces a correction to the intrinsic
magnetic moment of the electron by the factor (1 + δ), where

δ = −
√

1
α

m

MP
≈ −4.90× 10−22 . (52)

Quantum electrodynamics, on the other hand, yields a magnetic-mo-
ment anomaly given, to within ∼ 0.2%, by the one-loop term calculated by
Schwinger [23],

δQED

∣∣∣
one−loop

=
α

2π
≈ 1.16× 10−3 , (53)

the expansion to four loops agreeing with experiment to approximately one
part in 109 (see Ref. [22] and Amsler et al. [24]).

The result (52), of gravitational origin and thus smaller by a factor
∼ −4.2×10−19, is beyond the reach of current technology, and consequently
not susceptible to experimental test. It is nevertheless of interest that the
initially five-dimensional Kaluza–Klein theory differs in its predictions from
the four-dimensional theory by the presence of this additional anomalous
term.

Essentially the same reasoning applies to the other fermionic elementary
particles obeying the Dirac equation, both leptons (the µ and τ) and quarks.
The precise numerical values can be obtained from Ref. [24].

4. The construction of the charge-conjugate spinor

The Hermitian conjugate of Eq. (1) for the wave function ψ of a massive,
electrically charged spinor in the curved space-time with Lorentzian signa-
ture (3) is [

i
(
∂kψ

† − ψ†Γ †k
)
− eAkψ†

] (
γk
)†

+mψ† = 0 , (54)

assuming that m and Ak are both real. In order to obtain the Hermi-
tian adjoint ψ̃, we have to postmultiply the conjugate wave function ψ† by
a quantity that reduces to γ̄0 in the Minkowski-space limit

tia = δia , (55)

for which we require the flat-space, Hermitian-adjoint wave function

ψ̃ = ψ†γ̄0 . (56)

The probability current is then

jk = ψ̃γkψ , (57)
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which is conserved upon application of the Dirac equation for ψ, yielding

∂kj
k = 0 . (58)

The zero component of jk is the probability density which is positive semi-
definite,

ρ̄ ≡ j̄0 = ψ̃γ̄0ψ = ψ†ψ ≥ 0 . (59)

In curved space-time a problem arises, because the corresponding matrix
quantity γ0 is generally coordinate dependent, and therefore, in particular,
the first term in Eq. (54), upon postmultiplication by γ0, would yield(

∂kψ
†
)
γ0 = ∂k

(
ψ†γ0

)
− ψ†∂kγ0 . (60)

The presence of the second term on the right-hand side of Eq. (60) means
that the quantity ψ†γ0 will not exactly obey the Dirac equation, and to
resolve this difficulty Bargmann [25] argued that one should define the Her-
mitian adjoint ψ̃ by Eq. (56), even when γ̄0 6= γ0. The resulting probability
current

jk = ψ†γ̄0γkψ (61)

is conserved in the sense [25] (see Eq. (41) of Ref. [25])

∇kjk = 0 , (62)

which follows by construction of the sum [ ψ̃ × Eq. (1) + Eq. (69) × ψ ],
remembering Eqs. (10) and (13).

This formalism was discussed further by Parker [26,27], who pointed out
that the probability density could be made positive semi-definite at each
point by choosing a locally inertial coordinate system in which γk(xl) =
γ̄k, so that ρ = ρ̄, given by Eq. (59). (He also applied the formulae to
calculate the gravitational energy change for the hydrogen atom, obtaining
the result that a shift in the lowest energy levels (non-relativistic 1S, 2S and
2P and relativistic 1S1/2, 2S1/2 and 2P1/2) comparable to the theoretical
and experimental value of 4.4× 10−6 eV for the Lamb shift would require a
characteristic space-time curvature of . 10−3 cm.)

To proceed, let us postmultiply Eq. (54) by γ̄0, remembering that(
γ̄0
)† = γ̄0 , (γ̄α)† = −γ̄α and γ̄0γ̄α = −γ̄αγ̄0 , (63)

and consequently that(
γk
)†
γ̄0 ≡ tka (γ̄a)† γ̄0 = γ̄0γk . (64)
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The second term in Eq. (54), times γ̄0, can now be written as

−iψ†Γ †k
(
γk
)†
γ̄0 = −iψ̃Γ

′′′†
k γk , (65)

in which we have inserted a factor of
(
γ̄0
)2 ≡ 1 after ψ† and introduced the

transformed spinorial affine connection Γ
′′′
k , defined by

Γ
′′′
k = γ̄0Γkγ̄0 . (66)

From Eq. (54) times γ̄0, Eq. (64) and Eq. (66), we now obtain the equa-
tion for the Hermitian adjoint (56),[

i
(
∂kψ̃ − ψ̃Γ

′′′†
k

)
− eAkψ̃

]
γk +mψ̃ = 0 . (67)

The quantity Γ
′′′†
k occurring in the second term in Eq. (67) can be expanded,

from the definition (9) of Γk and the Hermiticity and commutivity relations
(63), as

Γ
′′′†
k = −1

4ωabkγ̄
0
(
s̄ab
)†
γ̄0 = −1

2ω0αkγ̄
0s̄0αγ̄0 + 1

4ωαβkγ̄
0s̄αβ γ̄0

= 1
2ω0αks̄

0α + 1
4ωαβks̄

αβ

= −Γk , (68)

enabling us to rewrite Eq. (67) as[
i
(
∂kψ̃ + ψ̃Γk

)
− eAkψ̃

]
γk +mψ̃ = 0 . (69)

Following Ref. [22], we take the transpose (T) of Eq. (69) and make the
substitution (

γk
)T

= −C−1γkC , (70)

where C is the charge-conjugation operator discussed by Kramers [28] and
in Ref. [21]. The existence and constancy of C can be verified by writing γi
in terms of the γ̄a, since the tetrads tia are invariant under the transposition
operator. This implies the equation

(γ̄a)T = −C−1γ̄aC , (71)

(assuming that tia 6= 0), to which there are solutions for C in all represen-
tations3 of γ̄a. Thus,

C−1γkC
[
i
(
∂kψ̃

T + ΓT
k ψ̃

T
)
− eAkψ̃T

]
−mψ̃T = 0 , (72)

3 In the chiral representation (18), we find that C = i
`−σ2 0
0 σ2

´
.
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premultiplication of which by C yields the equation[
iγk
(
∂k + CΓT

k C
−1 + ieAk

)
−m

]
ψc = 0 (73)

for the charge-conjugate wave function

ψc = Cψ̃T . (74)

The operator for the second term in Eq. (73) is

iγkCΓT
k C
−1 =

1
8
iγkωabkC

[
(γ̄a)T

(
γ̄b
)T
−
(
γ̄b
)T

(γ̄a)T

]
C−1 = −γkΓk ,

(75)
and therefore Eq. (73) reads[

iγk (∂k − Γk + ieAk)−m
]
ψc = 0 . (76)

Eq. (76) is obtained from Eq. (1) for ψ by the charge reversal

e→ −e , (77)

the two equations coinciding when e = 0, which thus proves the existence
of uncharged Majorana fermions in an arbitrary, four-dimensional curved
space-time.

Let us now study the Majorana representation in which the γ̄a are all
imaginary, so that

(γ̄a)∗ = −γ̄a . (78)

Taking the complex conjugate of Eq. (1), we have[
−i
(
γk
)∗

(∂k − Γ ∗k + ieAk)−m
]
ψ∗ = 0 . (79)

The reality of the space-time and tangent-space metrics gij and ηab implies
that the tetrad components and hence, from Eq. (8), the spin connection,
are also real, as is the spin operator,(

tia
)∗ = tia , ω∗abk = ωabk and (s̄ab)

∗ = s̄ab . (80)

Consequently, the γi reverse sign under complex conjugation, while the
spinorial affine connection (9) is invariant,

(γi)
∗ = −γi , Γ ∗i = Γi . (81)
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Substitution of the relationships (81) into Eq. (79) yields[
iγk (∂k − Γk + ieAk)−m

]
ψ∗ = 0 , (82)

which is precisely Eq. (76).
This is the special representation originally discovered and investigated

by Majorana [29] in the Minkowski-space limit Γi = 0, with a view to elu-
cidating the nature of the particle–anti-particle symmetry, for which the
charge conjugate spinor (74) is defined by

ψc ≡ Cψ̃T = ψ∗ . (83)

The wave function of the anti-particle is simply the complex conjugate of
that of the particle, as discussed further by Racah [30].

For a massless, uncharged particle, Eq. (83) implies that the wave func-
tion is real,

ψ∗ = ψ , (84)

and in this case a Majorana representation is possible in which the γk are
all imaginary or alternatively all real.

5. Discussion

In combination with the operators of time reversal T and parity, or spa-
tial reflection, P, the charge-conjugation operator C gives rise to the theorem
expressing conservation of the product TCP for a local theory defined by
a Hermitian Lagrangian that is invariant under proper Lorentzian transfor-
mations and obeys the spin-statistics theorem (see Ref. [22] and references
therein).

Previously [31], we have explored the application of this theorem to the
superstring theory, initially formulated in a curved-space background, and
it is therefore interesting to extend the foregoing analysis to arbitrary di-
mensionalities. See also Ref. [32] for quantum-theoretical aspects of TP, and
hence TCP, in curved space-time.

Let us, then, consider the expanding Friedmann Universe, after reduction
to four dimensions, the line element for which is

ds2 = dt2 − a2(t)dx2 , (85)

where t is the comoving time coordinate and a(t) is the radius function of the
three-space dx2, and assume the heterotic superstring theory of Gross et al.
[33–35]. A prime concern of Ref. [31] was to establish the interrelationship
between non-invariance of the metric (85) under T, defined by

t→ −t , (86)
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due to general relativity, and non-invariance of the superstring under P, due
to the asymmetric construction of the string world-sheet, which contains
only right-moving Majorana fermions, whilst maintaining conservation of
the product TP. The link between T and P results from the fact that far
from the Planck era, the cosmological time coordinate t can also be identified
with the world-sheet time coordinate τ .

When the space-time is generalized from the four-dimensional metric gij
to a D-dimensional metric ĝAB, the analysis becomes modified in two re-
spects. Analogously to Eq. (1), we start from the D-dimensional Dirac
equation for the wave function ψ̂,[

iγ̂K
(
∂̂K − Γ̂K − ieÂK

)
−m

]
ψ̂ = 0 . (87)

To derive the formula for Γ̂I , we assume the gamma matrices γ̂I to be
covariantly constant, and as in Eq. (10) write

∇̂′J γ̂K ≡ ∇̂J γ̂K + γ̂K Γ̂J + Γ̂ †J γ̂
K = 0 . (88)

In place of Eq. (24), premultiplication of Eq. (88) by γ̂K yields

DΓ̂J = −γ̂K Γ̂ †J γ̂
K − γ̂K ∂̂J γ̂K − Γ̂K

JLγ̂K γ̂
L , (89)

resulting in the solution analogous to (25),

Γ̂ ′J = Γ̂J + iĈJ 1̂ , (90)

where
Γ̂J = −1

4
ω̂ABJ ˆ̄sAB , (91)

since γ̂K Γ̂J γ̂K = (D − 4)Γ̂J (see Appendix A ).
Thus, we note, firstly, that Eq. (91) generalizes Eqs. (9) or (26), with

the same numerical coefficient −1/4 on the right-hand side.
Secondly, concerning the charge-conjugate wave function, defined by

ψ̂c = Ĉ
ˆ̃
ψT , (92)

the derivation proceeds exactly as in Section 4 for the four-dimensional
spinor ψc. In particular, Eq. (70) for the transformation taking γk to

(
γk
)T

is replaced by (
γ̂K
)T

= −Ĉ−1γ̂KĈ , (93)

which, as previously, implies the corresponding equation relating the gamma
matrices ˆ̄γA and

(
ˆ̄γA
)T in the D-bein frame,
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(
ˆ̄γA
)T

= −Ĉ−1 ˆ̄γAĈ , (94)

where
ˆ̄γA ˆ̄γB + ˆ̄γB ˆ̄γA = 2η̂AB . (95)

Eq. (94) has the important consequence that the existence of the charge-
conjugate spinor ψ̂c — and hence, taking the zero-charge limit, of Majorana
spinors ψ̂M — depends solely upon the existence of the matrix Ĉ in the
D-dimensional Minkowski space-time.The condition that this imposes upon
the values of D has been analyzed in detail by van Nieuwenhuizen [36],
Chapline and Slansky [37] and Wetterich [38], who found that Majorana
spinors, for which ψ̂c = ψ̂, assuming a real representation, exist only in
dimensionalities

D = 0, 1, 2, 3, 4 mod 8 . (96)

This result can be traced back to the fundamental geometrical fact that
the metric ĝIJ is both real and symmetric, as a consequence of which the
Clifford algebra is equivalently stated in terms of the Dirac matrices γ̂I , their
complex conjugates γ̂∗I and their transposes γ̂T

I , viz

{γ̂I , γ̂J} = {γ̂∗I , γ̂∗J} =
{
γ̂T
I , γ̂

T
J

}
= 2ĝIJ . (97)

Pauli [21, 39, 40] and Kramers [28] then showed that there must exist non-
singular matrices B̂ and Ĉ, that are unitary to preserve the property of
Hermiticity, the first relating γ̂I and γ̂∗I , which we write, using Schur’s lemma
[41], the representation of the γ̂I being of minimal dimension 2D/2, as [38]

γ̂∗I = ±B̂γ̂IB̂−1 , (98)

and where the charge-conjugation operator Ĉ is defined by Eq. (93). Note
that Eq. (93) is invariant under the change of metric signature from (3) to
(4), which implies that

γ̂I → ±iγ̂I , (99)

while Eq. (98) reverses sign. The minus sign in Eq. (98) is chosen to yield an
imaginary γ̂I when B̂ ∝ 1̂, allowing massless or massive Majorana spinors,
while the plus sign would yield a real γ̂I , when B̂ ∝ 1̂, allowing only massless
Majorana spinors.

Analogously to Eqs. (93) and (94), Eq. (98) implies the corresponding
relationship between the D-bein components ˆ̄γA and ˆ̄γ∗A, namely

ˆ̄γ∗A = ±B̂ ˆ̄γAB̂−1 . (100)
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Eq. (96) follows from the requirement that the transformation properties
of B̂ and Ĉ are completely consistent with one another, and is therefore
equally valid in curved space-time. In fact B̂ is set equal to unity, so that the
wave function does indeed reduce to theD-dimensional analogue of Eq. (84),

ψ̂∗ ≡ B̂ψ̂ = ψ̂ (101)

(see Refs. [36–38]).
Also, Weyl spinors exist in all even dimensionalities D, for which the

(D + 1)-th gamma-matrix product

ˆ̄γD+1 = (−1)(D−2)/4 ˆ̄γ0 ˆ̄γ1 . . . ˆ̄γ(D−1) (102)

can be so defined in the D-bein frame that

ˆ̄γ2
D+1 = 1 , (103)

enabling us to construct the projection operators (1 ± ˆ̄γD+1)/2, and hence
the left- and right-handed Weyl spinors

ψ̂± = 1
2

(
1± ˆ̄γD+1

)
ψ̂ . (104)

Setting B̂ = 1, so that the γ̂I are purely imaginary or purely real and ψ̂
is real, the even dimensionalities (96) are

D = 0, 2, 4, mod 8 . (105)

If these Majorana spinors are also to satisfy the Weyl condition, however,
the eigenvalues of ˆ̄γD+1 have to be real, which means from Eq. (102) that

ˆ̄γD+1 = ±1 , D = 2 mod 4 . (106)

Consequently, Majorana–Weyl spinors exist for the subset of the di-
mensionalities (96) discovered earlier in D-dimensional Minkowski space by
Gliozzi et al. [42], that is

D = 2 mod 8 , (107)

for which values it is possible to find an imaginary, chiral Majorana repre-
sentation of the Dirac matrices.

The paper was written at the University of Cambridge, Cambridge, England.
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Appendix A

The evaluation of the terms γkΓjγk and γ̂K Γ̂J γ̂K

The derivation of formula (26) for the spinorial affine connection,

Γj = −1
4ωabj s̄

ab , (A.1)

presupposes the vanishing of the first term on the right-hand side of Eq. (24),
which, since Eq. (A.1) implies the anti-Hermiticity of Γj , can be written,
using the orthogonality (5) of the tetrads, as

Xj ≡ γkΓjγk ≡ γ̄aΓj γ̄a = 0 . (A.2)

We now prove Eq. (A.2) by induction, starting from the solution Eq. (A.1),
substitution of which into Xj yields

Xj = −1
4ωabj γ̄cs̄

abγ̄c . (A.3)

In fact it is easy to see that each contribution on the right-hand side
of expression (A.3) vanishes separately for all a, b 6= a, due to the anti-
symmetry of the spin connection in the tetrad indices, ωabj = −ωbaj , and
the properties of the gamma-matrix bilinears γ̄aγ̄b. Thus,

Xj

∣∣∣
a,b6=a

≡ −1
4ωabj γ̄cγ̄

aγ̄bγ̄c/Σa,b

= −1
4ωabj

(
γ̄aγ̄

aγ̄bγ̄a + γ̄bγ̄
aγ̄bγ̄b + 2γ̄cγ̄aγ̄bγ̄c

)
/Σa,b,c 6=a,b

= −1
4ωabj

(
γ̄bγ̄a + γ̄bγ̄a + 2γ̄aγ̄b

)
/Σa,b = 0 . (A.4)

Therefore,
Xj ≡

∑
a,b 6=a

Xj

∣∣∣
a,b 6=a

= 0 . (A.5)

This completes the proof.
Analogously, when D 6= 4, starting from the assumption that

Γ̂J = −
(

1
Z

)
ω̂abJ ˆ̄s ab , (A.6)

we obtain the result

X̂J ≡ γ̂K Γ̂J γ̂K = (D − 4)Γ̂J , (A.7)

substitution of which into Eq. (89) yields Z = 4 and thus Eq. (91).
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