
5. Higher Chow Groups and Beilinson’s Conjectures

5.1. Bloch’s formula. One interesting application of Quillen’s techniques involv-
ing the Q construction is the following theorem of Quillen, extending work of Bloch.
This gives another hint of the close connection of algebraic K-theory and algebraic
cycles.

Theorem 5.1. Let X be a smooth algebraic variety over a field. For any i ≥ 0, let
Ki denote the sheaf on X (for the Zariski topology) sending an open subset U ⊂ X
to Ki(U). Then there is a natural spectral sequence

Ep,q
2 (X) = Hp(X,Kq) ⇒ Kp+q(X).

Moreover, there is a natural isomorphism (Bloch’s formula)

CHq(X) ' Hq(X,Kq)

relating the Chow group of codimension q cycles on X and the Zariski cohomology
of the sheaf Kq.

In particular, for q = 1, Bloch’s formula becomes the familiar isomorphism
relating the Chow group of divisors on a smooth variety to H1(X,O∗X).

Proof. Quillen’s techniques apply to K ′
∗(X) = π∗+1(BQM(X)), the K-theory of

coherent OX -modules. When X is smooth, Quillen verifies that the natural map
K∗(X) → K ′

∗(X) is an isomorphism.
The key result needed for the existence of a spectral sequence is Quillen’s local-

ization theorem for a not necessarily smooth scheme X: if Y ⊂ X is closed with
Zariski open complement U = X − Y , then there is a natural long exact sequence

· · · → K ′
q+1(U) → K ′

q(Y ) → K ′
q(X) → K ′

q(U) → · · · .

Applying this localization sequence (slightly generalized) to the filtration of the
category M(X) of coherent OX -modules

M(X) = M0(X) ⊃M1(X) ⊃M2(X) ⊃ · · ·
where Mp(X) denotes the subcategory of those coherent sheaves whose support
has codimension ≥ p, Quillen obtains long exact sequences

· · ·Ki(Mp+1) → Ki(Mp(X)) →
∐

x∈Xp

Ki(k(x)) → Ki−1(Mp+1) → · · ·

Here, Xp denotes the set of points of X of codimension p.
These exact sequences (for varying p) determine an exact couple and thus a

spectral sequence

Ep,q
1 =

∐
x∈Xp

K−p−q(k(x)) ⇒ K ′
−p−q(X).

Following Gersten, Quillen considers the sequences

gersten (5.1.1) 0 → Kq →
∐

x∈X0

Kq(k(x)) →
∐

x∈X1

Kq−1(k(x)) → · · ·

where the differential in this sequence is d1 of the above spectral sequence, given
as the composition∐

x∈Xp

Ki(k(x)) → Ki−1(Mp+1) →
∐

x∈Xp+1

Ki−1(k(x)).
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Gersten conjectured that this sequence should be exact if X is the spectrum of a
regular local ring; Quillen proved this for local rings of the form OX,x where X is
a smooth variety.

We now consider the sequences (5.1.1) for varying open subsets U ⊂ X in place
of X, thereby getting an exact sequence of sheaves on X

Gersten (5.1.2) 0 → Kq →
∐

x∈X0

ix∗Kq(k(x)) →
∐

x∈X1

ix∗Kq−1(k(x)) → · · ·

Since the sheaves ix∗Kq(k(x)) are flasque, we conclude that the p-th cohomology
of the sequence (5.1.2) equals Hp(X,Kq) which is the E2-term of our spectral
sequence.

Finally, Quillen verifies that the cokernel of∐
x∈Xq−1

K1(k(x)) →
∐

x∈Xq

K0(k(x))

is canonically isomorphic to CHq(X) provided that X is smooth. �

5.2. Derived categories. In order to formulate motivic cohomology, we need to
introduce the language of derived categories. Let A be an abelian category (e.g., the
category of modules over a fixed ring) and consider the category of chain complexes
CH•(A). We shall index our chain complexes so that the differential has degree +1.
We assume that A has enough injectives and projectives, so that we can construct
the usual derived functors of left exact and right exact functors from A to another
abelian category B. For example, if F : A → B is right exact, then we define
LiF (A) to be the i-th homology of the chain complex F (P•) obtained by applying
F to a projective resolution P• → A of A; similarly, if G : A → B is left exact, then
RjG(A) = Hj(I•) where A → I• is an injective resolution of A.

The usual verification that these derived functors are well defined up to canonical
isomorphism actually proves a bit more. Namely, rather take the homology of the
complexes F (P•), G(I•), we consider these complexes themselves and observe that
they are independent up to quasi-isomorphism of the choice of resolutions. Recall,
that a map C• → D• is a quasi-isomorphism if it induces an isomorphism on
homology; only in special cases is a complex C• quasi-isomorphic to its homology
H•(C•) viewed as a complex with trivial differential.

We define the derived category D(A) of A as the category obtained from the
category of CH•(A) of chain complexes of A by inverting quasi-isomorphisms. Of
course, some care must be taken to insure that such a localization of CH•(A) is
well defined. Let Hot(CH•(A)) denote the homotopy category of chain complexes
of A: maps from the chain complex C• to the chain complex D• in H(CH•(A))
are chain homotopy equivalence classes of chain maps. Since chain homotopic maps
induce the same map on homology, we see that D(A) can also be defined as the
category obtained from Hot(CH•(A)) by inverting quasi-isomorphisms.

The derived category D(A) of the abelian category CH•(A) is a triangulated
category. Namely, we have a shift operator (−)[n] defined by

(A•[n])j ≡ An+j .

This indexing is very confusing (as would be any other); we can view A•[n] as A•

shifted “down” or “to the left”. We also have distinguished triangles

A• → B• → C• → A•[1]
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defined to be those “triangles” quasi-isomorphic to short exact sequences 0 → A• →
B• → C• → 0 of chain complexes.

This notation enables us to express Ext-groups quite neatly as

ExtiA(A,B) = Hi(HomA(P•, B) = HomD(A)(A[−i], B)

= HomD(A)(A,B[i]) = Hi(HomA(A,P •)).

5.3. Bloch’s Higher Chow Groups. From our point of view, motivic cohomol-
ogy should be a “cohomology theory” which bears a relationship to K∗(X) anal-
ogous to the role Chow groups CH∗(X) bear to K0(X) (and analogous to the
relationship of H∗

sing(T ) to K∗
top(T )). In particular, motivic cohomology will be

doubly indexed.
We now discuss a relatively naive construction by Spencer Bloch of “higher Chow

groups” which satisfies this criterion. We shall then consider a more sophisticated
version of motivic cohomology due to Suslin and Voevodsky.

We work over a field k and define ∆n to be Spec k[x0, . . . , xn]/(
∑

i xi − 1), the
algebraic n-simplex. As in topology, we have face maps ∂i : ∆n−1 → ∆n (sending
the coordinate function xi ∈ k[∆n] to 0) and degeneracy maps σj : ∆n+1 →
∆n (sending the coordinate function xj ∈ k[∆n] to xj + xj+1 ∈ k[∆n+1]). More
generally, a composition of face maps determines a face F ' ∆i → ∆n. Of course,
∆n ' An.

Bloch’s idea is to construct a chain complex for each q which in degree n would
be the codimension q-cycles on X × ∆n. In particular, the 0-th homology of this
chain complex should be the usual Chow group CHq(X) of codimension q cycles
on X modulo rational equivalence. This can not be done in a completely straight-
forward manner, since one has no good way in general to restrict a general cycle on
X ×∆[n] via a face map ∂i to X ×∆n−1. Thus, Bloch only considers codimension
q cycles on X×∆n which restrict properly to all faces (i.e., to codimension q cycles
on X × F ).

Definition 5.2. Let X be a variety over a field k. For each p ≥ 0, we define a
complex zp(X, ∗) which in degree n is the free abelian group on the integral closed
subvarieties Z ⊂ X ×∆n with the property that for every face F ⊂ ∆n

dimk(Z ∩ (X × F ) ≤ dimk(F ) + p.

The differential of zp(X, ∗) is the alternating sum of the maps induced by restricting
cycles to codimension 1 faces. Define the higher Chow homology groups by

CHp(X, n) = Hn(zp(X, ∗)), n, p ≥ 0.

If X is locally equi-dimensional over k (e.g., X is smooth), let zq(X, n) be the free
abelian group on the integral closed subvarieties Z ⊂ X × ∆n with the property
that for every face F ⊂ ∆n

codimX×F (Z ∩ (X × F )) ≥ q.

Define the higher Chow cohomology groups by

CHq(X, n) = Hn(zq(X, ∗), n, q ≥ 0,

where the differential of zq(X, ∗) is defined exactly as for zp(X, ∗).

Bloch, with the aid of Marc Levine, has proved many remarkable properties of
these higher Chow groups.
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Theorem 5.3. Let X be a quasi-projective variety over a field. Bloch’s higher
Chow groups satisfy the following properties:

• CHp(−, ∗) is covariantly functorial with respect to proper maps.
• CHq(−, ∗) is contravariantly functorial on Smk, the category of smooth

quasi-projective varieties over k.
• CHp(X, 0) = CHp(X), the Chow group of p-cycles modulo rational equiva-

lence.
• (Homotopy invariance) π∗ : CHp(X, ∗) ∼→ CHp+1(X × A1).
• (Localization) Let i : Y → X be a closed subvariety with j : U = X−Y ⊂ X

the complement of Y . Then there is a distinguished triangle

zp(Y, ∗) i∗→ zp(X, ∗) j∗→ zp(U, ∗) → zp(Y, ∗)[1]

• (Projective bundle formula) Let E be a rank n vector bundle over X. Then
CH∗(P(E)∗) is a free CH∗(X, ∗)-module on generators 1, ζ, . . . , ζn−1 ∈
CH1(P(E), 0).

• For X smooth, Ki(X) ⊗ Q ' ⊕qCHq(X, i) ⊗ Q for any i ≥ 0. Moreover,
for any q ≥ 0,

(Ki(X)⊗Q)(q) ' CHq(X, i)⊗Q.

• If F is a field, the KM
n (F ) ' CHn(SpecF, n).

The most difficult of these properties, and perhaps the most important, is local-
ization. The proof requires a very subtle technique of moving cycles. Observe that
zp(X, ∗) → zp(U, ∗) is not surjective because the conditions of proper intersection
on an element of zp(U, n) (i.e, a cycle on U ×∆n) might not continue to hold for
the closure of that cycle in X ×∆n.

5.4. Sheaves and Grothendieck topolologies. The motivic cohomology groups
of Suslin-Voevodsky are sheaf cohomology groups, and this formulation in terms of
sheaves for a suitable topology provides much more flexibility. Moreover, this fits
the spirt of the Beilinson conjectures which have motivated many of the develop-
ments which relate K-theory to algebraic cycles.

Before discussing Beilinson’s conjectures, let us briefly consider Grothendieck’s
approach to sheaf theory and introduce both the etale and Nisnevich topologies.

Grothendieck had the insight to realize that one could formulate sheaves and
sheaf cohomology in a setting more general than that of topological spaces. What
is essential in sheaf theory is the notion of a covering, but such a covering need not
consist of open subsets.

Definition 5.4. A (Grothendieck) site is the data of a category C/X of schemes
over a given scheme X which is closed under fiber products and a distinguished class
of morphisms (e.g., Zariski open embeddings; or etale morphisms) closed under
composition, base change and including all isomorphisms. A covering of an object
Y ∈ C/X for this site is a family of distinguished morphisms {gi : Ui → Y } with
the property that Y = ∪igi(Ui).

The data of the site C/X together with its associated family of coverings is called
a Grothendieck topology on X.

Example 5.5. Recall that a map f : U → X of schemes is said to be etale if it
is flat, unramified, and locally of finite type. Thus, open immersions and covering
space maps are examples of etale morphisms. If f : U → X is etale, then for each
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point u ∈ U there exist affine open neighborhoods SpecA ⊂ U of u and SpecR ⊂ X
of f(u) so that A is isomorphic to (R[t]/g(t))h for some monic polynomial g(t) and
some h so that g′(t) ∈ (R[t]/g(t))h is invertible.

The (small) etale site Xet has objects which are etale morphisms Y → X and
coverings {Ui → Y } consist of families of etale maps the union of whose images
equals Y . The big etale site XET has objects Y → X which are locally of finite
type over X and coverings {Ui → Y } defined as for Xet consisting of families of
etale maps the union of whose images equals Y . If k is a field, we shall also consider
the site (Sm/k)et which is the full subcategory of (Spec k)ET consisting of smooth,
quasi-projective varieties Y over k.

An instructive example is that of X = SpecF for some field F . Then an etale
map Y → X with Y connected is of the form SpecE → SpecF , where E/F is a
finite separable field extension.

Definition 5.6. A presheaf sets (respectively, groups, abelian groups, rings, etc)
on a site C/X is a contravariant functor from C/X to (sets) (resp., to groups,
abelian groups, rings, etc). A presheaf P : (C/X)op → (sets) is said to be a sheaf
if for every covering {Ui → Y } in C/X the following sequence is exact:

P (Y ) →
∏

i

P (Ui)
→→

∏
i,j

P (Ui ×X Uj).

(Similarly, for presheaves of groups, abelian presheaves, etc.) In other words, if
for every Y , the data of a section s ∈ P (Y ) is equivalent to the data of sections
si ∈ P (Ui) which are compatible in the sense that the restrictions of si, sj to
Ui ×X Uj are equal.

The category of abelian sheaves on a Grothendieck site C/X is an abelian cat-
egory with enough injectives, so that we can define sheaf cohomology in the usual
way. If F : C/X)op → (Ab) is an abelian sheaf, then we define

Hi(XC/X , F ) = RiΓ(X, F ).

Etale cohomology has various important properties. We mention two in the
following theorem.

Theorem 5.7. Let X be a quasi-projective, complex variety. Then the etale coho-
mology of X with coefficients in (constant) sheaf Z/n, H∗(Xet, Z/n), is naturally
isomorphic to the singular cohomology of Xan,

H∗(Xet, Z/n) ' H∗
sing(X

an, Z/n).

Let X = Speck, the spectrum of a field. Then an abelian sheaf on X for the etale
topology is in natural 1-1 correspondence with a (continuous) Galois module for the
Galois group Gal(k/k). Moreover, the etale cohomology of X with coefficients in
such a sheaf F is equivalent to the Galois cohomology of the associated Galois
module,

H∗(ket, F ) ' H∗(Gal(F/F ), F (k)).

From the point of view of sheaf theory, the essence of a continuous map g : S → T
of topological spaces is a mapping from the category of open subsets of T to the open
subsets of S. We shall consider a map of sites g : C/X → D/Y to a functor from
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C/Y to cC/X which takes distinguished morphisms to distinguished morphisms.
For example, one of Beilinson’s conjectures involves the map of sites

π : Xet → XZar, (U ⊂ X) 7→ U → X.

Such a map of sites induces a map on sheaf cohomology: if F : (D/Y )op → (Ab) is
an abelian sheaf on C/Y , then we obtain a map

H∗(YD/Y , F ) → H∗(XC/X , g∗F ).

5.5. Beilinson’s Conjectures. We give below a list of conjectures due to Beilin-
son which relate motivic cohomology and K-theory. Bloch’s higher Chow groups
go some way toward providing a theory which satisfies these conjectures. Namely,
Beilinson conjectures the existence of complexes of sheaves ΓZar(r) whose cohomol-
ogy (in the Zariski topology) Hp(X, ΓZar(r)) one could call “motivic cohomology”.
If we set

Hp(X, ΓZar(r)) = CHr(X, 2r − p),

then many of the cohomological conjectures Beilinson makes for his conjectured
complexes are satisfied by Bloch’s higher Chow groups CH•(X, ∗).

Conjecture 5.8. Let X be a smooth variety over a field k. Then there should exist
complexes of sheaves ΓZar(r) of abelian groups on X with the Zariski topology, well
defined in D(AbSh(XZar)), functorial in X, and equipped with a graded product,
which satisfy the following properties:

(1) ΓZar(1) = Z; ΓZar(1) ' Gm[−1].
(2) H2n(X, Γzar(n)) = An(X).
(3) Hi(Spec k,ΓZar(i)) = KM

i k, Milnor K-theory.
(4) (Motivic spectral sequence) There is a spectral sequence of the form

Ep,q
2 = Hp−q(X, ΓZar(q)) ⇒ K−p−q(X)

which degenerates after tensoring with Q. Moreover, for each prime `, there
is a mod-` version of this spectral sequence

Ep,q
2 = Hp−q(X, ΓZar(q)⊗L Z/`) ⇒ K−p−q(X, Z/`)

(5) grr
γ(Kj(X)⊗Q ' H2r−i(XZar,ΓZar(r))Q.

(6) (Beilinson-Lichtenbaum Conjecture) ΓZar ⊗L Z/` ' τ≤rRπ∗(µ⊗` r) in the
derived category D(AbSh(XZar)) provided that ` is invertible in OX , where
π : Xet → XZar is the change of topology morphism.

(7) (Vanishing Conjecture) ΓZar(r) is acyclic outside [1, r] for r ≥ 1.

These conjectures require considerable explanation, of course. Essentially, Beilin-
son conjectures that algebraic K-theory can be computed using a spectral sequence
of Atiyah-Hirzebruch type (4) using “motivic complexes” ΓZar(r) whose cohomol-
ogy plays the role of singular cohomology in the Atiyah-Hirzebruch spectral se-
quence for topological K-theory. I have indexed the spectral sequence as Beilinson
suggests, but we could equally index it in the Atiyah-Hirzebruch way and write (by
simply re-indexing)

Ep,q
2 = Hp(X,ΓZar(−q/2)) ⇒ K−p−q(X).

where ΓZar(−q/2) = 0 if −q is not an even non-positive integer and ΓZar(−q/2) =
ΓZar(i) is −q = 2i ≥ 0.
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(1) and (2) just “normalize” our complexes, assuring us that they extend usual
Chow groups and what is known in codimensions 0 and 1. Note that (1) and (2)
are compatible in the sense that

H2(X, ΓZar(1)) = H2(X,O∗X [−1]) = H1(X,O∗X) = Pic(X).

(3) asserts that for a field k, the n-th cohomology of ΓZar(n) – the part of highest
weight with respect to the action of Adams operations – should be Milnor K-
theory. This has been verified for Bloch’s higher Chow groups by Suslin-Nesternko
and Totaro.

The (integral) spectral sequence of (4) has been established thanks to the work
of many authors. This spectral sequence “collapses” at the E2-level when tensored
with Q, so that E2 ⊗Q = E∞ ⊗Q. (5) asserts that this collapsing can be verified
by using Adams operations, interpreted using the γ-filtration.

The vanishing conjecture of (7) is the most problematic, and there is no consensus
on whether it is likely to be valid. However, (6) incorporates the mod-` version of
the vanishing conjecture.

(6) asserts that if we consider the complexes ΓZar(r) modulo ` (in the sense
of the derived category), then the result has cohomology closely related to etale
cohomology with µ⊗r

` coefficients, where µ` is the etale sheaf of `-th roots of unity
(isomorphic to Z/` if all `-th roots of unity are in k. If the terms in the mod-
` spectral sequence were simply etale cohomology, then we would get etale K-
theory which would violate the vanishing conjectured in (7) (and which would imply
periodicity in low degrees which we know to be false). So Beilinson conjectures
that the terms modulo ` should be the cohomology of complexes which involve a
truncation.

More precisely, Rπ∗F is a complex of sheaves for the Zariski topology (given by
applying π∗ to an injective resolution F → I•) with the property that H∗

Zar(X,Rπ∗F ) =
H∗

et(X, F ). Now, the n-th truncation of Rπ∗F , τ≤nRπ∗F , is the truncation of this
complex of sheaves in such a way that its cohomology sheaves are the same as
those of Rπ∗F in degrees ≤ n and are 0 in degrees greater than n. (We do this by
retaining coboundaries in degree n + 1 and setting all higher degrees equal to 0.)

If X = Speck, then Hp(Speck, τ≤nRπ∗µ
⊗n
` ) equals Hp

et(Speck, µ⊗n
` ) for p ≤

n and is 0 otherwise. For a positive dimensional variety, this truncation has a
somewhat mystifying effect on cohomology.

It is worth emphasizing that one of the most important aspects of Beilinson’s
conjectures is its explicit nature: Beilinson conjectures precise values for algebraic
K-groups, rather than the conjectures which preceded Beilinson which required the
degree to be large or certain torsion to be ignored. Such a precise conjecture should
be much more amenable to proof.

Now, the Suslin-Voevodsky motivic complexes Z(n) are complexes of sheaves
for the Nisnevich topology, a Grothendieck topology with finer than the Zariski
topology but less fine than the etale topology.

Definition 5.9. A Nisnevich covering {Ui → X} of a scheme X is an etale covering
with the property that every for every point x ∈ X there exists some ux ∈ Ui

mapping to x inducing an isomorphism k(x) → k(ux) of residue fields.
We define (Sm/k)Nis to be the Grothendieck site whose objects are smooth

quasi-projective varieties over a field k and whose distinguished class of morphisms
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consists of etale morphisms g : U → X with the property that for every point
x = g(u) there exists some point ux ∈ U with k(x) ' k(ux).

The Nisnevich topology is particularly useful for the study of blow-ups a smooth
variety along a smooth subvariety. Although many of the proofs of Suslin-Voevodsky
require use of this topology rather than the Zariski topology, there are various the-
orems to the effect that cohomology with respect to the Nisnevich topology agrees
with that with respect to the Zariski topology for special types of coefficient sheaves.

It is instructive to observe that the “localization” of a scheme X at a point x ∈ X
is the spectrum of the local ring OX,x if we consider the Zariski topology, is the
spectrum of the henselization of OX,x if we consider the Nisnevich topology, and is
the the spectrum the strict henselization of OX,x if we consider the etale topology.
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