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Abstract— We propose a method for the automatic spotting
(temporal segmentation) of facial expressions in long videos
comprising of macro- and micro-expressions. The method
utilizes the strain impacted on the facial skin due to the non-
rigid motion caused during expressions. The strain magnitude
is calculated using the central difference method over the
robust and dense optical flow field observed in several regions
(chin, mouth, cheek, forehead) on each subject’s face. This new
approach is able to successfully detect and distinguish between
large expressions (macro) and rapid and localized expressions
(micro). Extensive testing was completed on a dataset containing
181 macro-expressions and 124 micro-expressions. The dataset
consists of 56 videos collected at USF, 6 videos from the Canal-9
political debates, and 3 low quality videos found on the internet.
A spotting accuracy of 85% was achieved for macro-expressions
and 74% of all micro-expressions were spotted.

I. INTRODUCTION

When analysing the facial dynamics of an individual,
many algorithms rely on the manual segmentation of ex-
pressions or other non-rigid facial movements. For example,
a large number of facial expression recognition algorithms
have been proposed that successfully identify several facial
expressions, but do not address the critical stage of initially
spotting them.

In this paper, we propose a unified method that auto-
matically spots expressions in long videos using spatio-
temporal strain. Since strain represents the deformation in-
curred during non-rigid motion, it directly corresponds to the
deformation of facial skin during an expression. This gives
it several main strengths: (i) since it is directly related to
the local gradient of motion, and not global motion, it is
robust to moderate amounts of head translations; (ii) strain
has been shown in [8] [12] to be robust to adverse lighting
conditions and heavy make-up, demonstrating its suitability
for real-world application.

In our previous work on automatic expression spotting
[11], we proposed two different algorithms for detecting
macro- and micro-expressions, based on thresholding the
strain magnitude calculated over the entire image frame;
however, due to a lack of face tracking, we had reported low
performance on videos containing subjects with large head
movements. The dataset used for micro-expressions was also
small – just 7. In this work, we significantly expand our study
and present an unified approach to detect both macro- and
micro- expressions. We show results on much larger datasets
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containing longer videos with 181 macro-expressions and
124 micro-expressions.

The proposed algorithm has four main steps: (i) facial
landmarks are located automatically and the face is spa-
tially segmented into regions; (ii) the strain magnitude is
calculated for each of these regions over time; (iii) a global
threshold is used on the strain magnitude to determine
macro-expressions, and removes them from the sequence;
(iv) a local thresholding method based on both the temporal
duration and localization of the strain magnitude is used to
spot micro-expressions over remainder of the sequence.

Throughout literature, algorithms that analyse facial ex-
pressions often begin after facial expression have been man-
ually segmented. Methods that do approach the problem
of automatically spotting macro-expressions typically fall
into three categories [10]. The first category consists of
techniques [9] that use a selective point-model representation
of the face, and then analyzes and segments based on the
inter-dynamics of these points over a video sequence. Poor
lighting and other adverse facial conditions often cause
problems for algorithms in this category, since they rely on
consistent and accurate detection of several key features. The
second category consists of more holistic approaches [2] that
model the face in its entirety, i.e., a dense representation of
all points on the face. The third category consists of methods
that combine both these approaches. Our approach fits in this
category, since we derive our model from the optical flow
fields covering the entire face, after initially locating the face
and extracting each eye coordinate.

Our approach has several advantages: (i) first, we have
not discovered any other methods that attempt to spot both
macro- and micro-expressions; (ii) we have restricted the
limitations of the first category to just the head and eyes,
for which there have been several successful head and eye
trackers developed [14] [3]; (iii) the reliability of optical
strain has been demonstrated in [8] and [12], even under
adverse illumination and heavy make-up; (iv) lastly, optical
strain can be quickly and accurately calculated from optical
flow fields, so in combination with specialized optical flow
hardware, it may be viable for real-time application.

II. EXPRESSIONS

Expressions typically convey the emotional state of the
individual, although they may be feigned, forced, or sup-
pressed. In general, there are two types of expressions:
i) macro-expressions, which usually occur over multiple
regions of the face and are easily observed, and ii) micro
expressions, which are rapid and occur in a small regions



of the face. In the following section, we further distinguish
these two types of expressions.

Fig. 1: Example expressions. Eyes masked for privacy con-
cerns. The first row contains the macro-expressions smile
and surprise. The second row are 3 frames containing an
example type 1 micro-expression (slightly raised left cheek).

A. Macro Expressions

Macro-expressions typically last 3/4th of a second to 2
seconds. There are 6 universal expressions: happy, sad, fear,
surprise, anger, and disgust. Spatially, macro-expressions can
occur over multiple or single regions of the face, depending
on the expressions. For instance, the surprise expressions
generally causes motion around the eyes, forehead, cheeks,
and mouth, whereas the expression for sadness typically
generates motion only near the mouth and cheek region.

B. Micro Expressions

In general, a micro-expressions is described as an involun-
tary pattern of the human body that is significant enough to
be observable, but is too brief to convey an emotion [5] [7].
Micro-expressions occurring on the face are rapid and are
often missed during casual observation, or even sometimes
extremely hard to observe. Lasting between1/25th to 1/5th
of a second [6], micro-expressions can be classified, based
on how an expression is modified, into three types [5]:

• Type 1. Simulated Expressions: When a micro-
expressions is not accompanied by a genuine expres-
sion.

• Type 2. Neutralized expressions: When a genuine ex-
pression is suppressed and the face remains neutral.

• Type 3. Masked Expressions: When a genuine expres-
sion is completely masked by a falsified expression.

Type 2 micro-expressions are not observable and type 3
micro-expressions may be completely eclipsed by a falsi-
fied expression. In this paper, we focus on type 1 micro-
expressions, i.e., micro-expressions that correspond to rapid,
but observable and non-suppressed motion on the face.

III. BACKGROUND

There are two main approaches for calculating optical
strain: (i) integrate the strain definition into the optical flow

equations, or (ii) derive strain directly from the flow vectors.
The first approach requires the calculation of high order
derivatives, hence is sensitive to image noise. The second
approach allows us to post-process the flow vectors before
calculating strain, possibly reducing the effects any errors
incurred during the optical flow estimation. We use the
second approach in this paper.

A. Optical Flow

Optical flow is a well-known motion estimation technique
that is based on the brightness conservation principle [1]. In
general, it assumes (i) constant intensity at each point over a
pair (sequence) of frames, and (ii) smooth pixel displacement
within a small image region. It is typically represented by
the following equation:

(∇I)T p + It = 0 (1)

where I(x, y, t) represents the temporal image intensity func-
tion at point x and y at time t, and ∇I represents the spatial
and temporal gradient. The horizontal and vertical motion
vectors are represented by p = [p = dx/dt, q = dy/dt]T .

Since large intervals over a single expression can often
cause failure in tracking (due to the smoothness constraint),
we implemented a vector linking (or stitching) process that
combines small, local pairs of small intervals (1-3 frames)
into larger pairs to expand over the entire sequence of frames.

B. Optical Strain

The projected 2-D displacement of any deformable object
can be expressed by a vector u = [u, v]T . If the motion is
small enough, then the corresponding finite strain tensor is
defined as:

ε =
1

2
[∇u + (∇u)T ], (2)

which can be expanded to the form:
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where (εxx,εyy) are normal strain components and (εxy ,εyx)
are shear strain components.

Since each of these strain components are a function of
displacement vectors (u,v) over a continuous space, each
strain component is approximated using the discrete optical
flow data (p,q):

p =
δx

δt

.
=

∆x

∆t
=

u

∆t
, u = p∆t, (4)

q =
δy

δt

.
=

∆y

∆t
=

v

∆t
, v = q∆t (5)

where ∆t is the change in time between two image frames.
Setting ∆t to a fixed interval length, we can estimate the
partial derivatives of (4) and (5):
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The second order derivatives are calculated using the
central difference method. Hence,

∂u

∂x
=
u(x+ ∆x)− u(x−∆x)

2∆x

.
=
p(x+ ∆x)− p(x−∆x)

2∆x
(8)
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.
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2∆y
(9)

where (∆x,∆y) ≈ 2-3 pixels.
Finally, each of these values corresponding to low and

large elastic moduli are summed to generate the strain
magnitude. Each value can also be normalized to 0-255 for
a visual representation (strain map). Figures 2 and 3 give
illustrations of the optical flow fields and normalized strain
values obtained during both a macro- and micro-expression.

(a) (b) (c)

Fig. 2: (a) Example smile expression. Eyes are masked for
privacy concerns. Column (b) contains the linked optical
flow fields (color denotes direction and the magnitude is
represented by the intensity [1]). Column (c) contains the
corresponding strain maps.

IV. ALGORITHM

A. Facial Landmark Detection and Alignment

To avoid error due to large head translations and to
increase the reliability of optical flow estimation, we use the

(a) (b) (c)

Fig. 3: (a) Example ”scorn” micro-expression, which occurs
when the corner of the lip is raised slightly. Column (b)
contains the linked optical flow fields (color denotes direction
and the magnitude is represented by the intensity [1]).
Column (c) contains the corresponding strain maps.

Viola-Jones face detector [14] to detect and crop out faces
from the whole frames (the final size of the cropped face
is the average size observed over all frames). This also has
additional benefit of speeding up the optical flow calculations
due to the smaller image frame. After the face images are
obtained, we perform the following steps:

• Locate eyes using the OpenCV Haar classifier [3].
• Calculate centroid of the eye locations.
• Construct the line joining the centroids of the two

detected eyes.
• Register all frames to starting frame by aligning each

pair of lines.
• Match top left skin pixel, for increased stability [4].
The first step uses the location of the eyes as an alignment

axis for removing large head rotations. Skin pixel alignment
is performed to remove the slight ”jittering” caused by the 2-
3 pixel difference in eye-tracking coordinates between each
frame.

B. Spatial Segmentation

After aligning each face image, we divide the face into
eight regions: forehead, left and right of eye, left and right
of cheek, left and right of mouth, and chin (see Fig. 4.b). The
eye regions of each image are masked due to the noise caused
from eye saccades and blinking. The nose and mouth regions
are also removed, since (i) the nose typically rigid and (ii)
opening of the mouth violates the smoothness assumption in
optical flow equations, leading to erroneous tracking results.
Fig. 4 shows the final segmentation template.

To align the mask for segmentation, we expanded or
contracted the generic mask given in Fig. 4(b) to align with
the respective boundary points for each eye (the left and
right halves on top of the bricked ’T’). The region of the
face image above the eyes contains the forehead region. For
the left and right halves of the face, we divided the remaining
distance from the bottom of the eyes to the bottom of the



face into two main halves (cheek region and mouth region).
For region between these halves we segment the chin region
starting at 3/4th of the remaining distance below the bottom
of the eyes, to the end of the face.

(a) (b)

(c) (d)

Fig. 4: Facial Segments. (a) Sample subject. (b) Each color
contains a different region of the face (forehead, left and
right of eye, left and right of cheek, left and right of mouth,
and chin). The ’bricked’ region represents the removed areas.
(c) Mask alignment is performed by fitting the top of the ’T’
bricked region to the rectangular boundaries of the detected
eyes. (d) Final segments.

C. Optical Strain, Thresholding, and Detection
For each region of the face given in Fig. 4, the magnitude

(the total sum of the strain) is calculated. The strain plots
obtained for each region are then subjected to thresholding in
order to spot expressions. The difference in selection criteria
for macro- and micro-expressions will now be discussed.

1) Macro-expression: Since macro-expressions can occur
over multiple regions of the face simultaneously, all strain
values contained in all regions are summed to generate an
overall strain magnitude. Next, a global threshold is chosen
using the following steps:

• Fit curve (2D) to the sequence of total strain magnitude
using least squares method.

• At each point, subtract this curve from the sequence.
• Fit a line (1D) to the result of previous step using least

squares method.
• Intersections of this line initially correspond to expres-

sion boundaries.
To remove accumulative error due to vector linking, a

2-dimensional curve is first fit to the sequence, and then
subtracted from it. Next, a line is fit to the resulting function.
Time points at which the strain magnitude rises above the
intersecting points are considered frames containing macro-
expressions, if the interval contains at least 10 frames (ap-
prox. 1/3 of a second in duration). Fig. 5 shows the result
of this procedure.

(a)

(b)

Fig. 5: Macro-expression thresholding. (a) Curve is fit to
sequence of strain magnitude over all frames using least
squares method. (b) This curve is subtracted from each point
in sequence, and then a global threshold (line) is calculated
again using least squares method.

2) Micro-expression: The thresholding technique used for
micro-expressions is more constrained than that of macro-
expressions. Because of their rapid and spatially localized
characteristics, a local thresholding technique is needed [7].
First, segments of the video containing macro-expressions
are removed using the algorithm in the previous section, in
order to minimize the effects of dominate motions. Next,
two additional criteria added: (i) the strain magnitude must
be significantly larger than the surrounding regions and (ii)
the duration of this increased strain can only be at most 1/5th
of a second. The first criteria ensures the spatial property of
micro-expressions in that they can only occur in one or two
regions of the face, while the second enforces the maximum
duration of a type 1 micro-expression given in the literature
[5].

First for each of the eight regions R, the average strain
(µ1, µ2, ..., µ8) is calculated, where

µR =
1

N

N∑
f=1

(SR
f ) (10)



where N is the total number of frames and SR
f is the strain

magnitude calculated at frame f and region R. Next, local
peaks are detected every n frames (n = 9 in our experiments,
or roughly 1/3 of a second). A micro-expression peak PR

f is
detected if

PR
f > 2µR (11)

and over all ±4 frames around the peak frame,

SR
f > α× PR

f (12)

and
SR
f > µR (13)

where α ∈ (0, 1). Note that (12) ensures that the threshold is
not set at the base of the peak, resulting in a missed micro-
expression, and (13) ensures the strain magnitude is large
enough. Optimal experimental results were obtained with
α = .35. Additionally, only one other region may have a peak
within the same interval of n frames. After it is determined
if the frames do / do not contain a micro-expression, all
n frames are removed from the sequence. Then µR is re-
calculated for all regions. Fig. 6 shows an example of a
detected micro-expression.

Fig. 6: Example spotted micro-expression at frame 800
(note: color is needed for this visualization). Each color
corresponds to the regions of the same color given in Fig.
4. A strain peak occurred in the region to the right of the
mouth, indicative of the scorn micro-expression.

V. EXPERIMENT

Experiments were performed on several datasets. We now
discuss each dataset, and then report the results of macro-
and micro-expression spotting.

A. Datasets

USF-HD: This database consists of 47 sequences and
contains 181 macro-expressions (smile, surprise, anger, sad)
and 100 micro-expressions. Videos were collected either by
a JVC-HD100 or a Panasonic AG-HMC40 camcorder at a
resolution of 720 x 1280 and frame-rate of 29.7 fps. The
length of each video is on average approximately 1 minute

in length (the longest is near 2 minutes and the shortest
20 seconds). Subjects were recorded under normal lighting
conditions and asked to perform both macro- and micro-
expressions. For micro-expressions, subjects were shown
some example videos containing micro-expressions prior to
being recorded. The subject was then asked to mimic them
in any order and to avoid out-of-plane head motion.

Canal-9: The Canal-9 database [13] contains 72 political
debates recorded by the Canal 9 local TV station and was
broadcast in Valais, Switzerland. The videos are recorded
in HD format. There are up to five participants in each
debate and were often asked yes / no questions on political
issues. Twenty four sequences containing a micro-expression
were selected (each around 6 seconds). Several angles and
rotations appear in the videos, however the clips chosen for
our experiments contain no change in pose over the sequence.

Found Video: This collection contains examples of micro-
expressions used by Ekman [5] that we obtained from the
internet. They include the English spy Kim Philby’s last
public interview and Alex Rodriguez’s interview with Katie
Couric where he denies taking drugs. Overall, this dataset
consists of 4 micro-expressions and each clip lasts about
two seconds.

There two things to note about the Found Video and Canal-
9 datasets: (i) ground-truthing was performed by two annota-
tors who have studied micro-expressions but are not formally
trained at spotting them, and (ii) the facial segmentation
process given in section IV (b) has to be assisted manually
in segments that contain large out-of-plane alignments. Our
goal is to make this an automated process in future work.

Training

For macro-expressions, training was not needed since
our threshold is calculated from the polynomials found
using least squares distance. For micro-expressions spotting,
training was needed to determine the threshold (α) given in
equation 12. Training was performed on 20% of the micro-
expressions in the USF-HD dataset to arrive at the final value
given in section IV.

B. Results

The results for both macro- and micro-expression spotting
can be found in Table I. Overall the results are positive for all
datasets, with peak results achieved on the USF-HD dataset,
where 154 (85%) macro-expressions in 35 sequences and 77
(80%) micro-expressions in 12 sequences were successfully
spotted. This is mainly attributed to the controlled environ-
ment in which subjects were recorded (even lighting, only
moderate head movement). Also, each sequence collected
in this dataset only contains expressions. Fig. 7 contains an
example of a spotted macro-expressions, and Fig. 8 contains
an example of spotted micro-expressions.

A total of 12 (50%) of genuine micro-expression were
found in the Canal-9 political debates, however at the ex-
pense of a higher false alarm rate (also 50%). The lower
micro-expression spotting accuracy in this dataset can be
mainly attributed to numerous head movements, and talking



Fig. 7: Example results for macro-expression spotting. Ex-
pression intervals are defined by the boundary intersection
points at threshold. Five expressions were accurately seg-
mented with one false alarm at interval (420,424).

Fig. 8: Example results for micro-expression spotting (note:
color is needed for this visualization). Hexagons indicate
spotted micro-expression, in the region corresponding to the
color given by the mask in Fig. 4. False positives appear at
the hexagons located at frames 73, 358. A missed spotting
occurs at frames 24 and 220. Strain magnitude values were
normalized for this illustration. Detection is shown only for
the first detected region.

which was often misclassified as a micro-expression. For the
Found Videos, three out of the four micro-expressions were
detected, at a 0% false alarm rate.

VI. CONCLUSIONS

In this paper, we proposed a method for the automatic
spotting of facial expressions videos comprised of numerous
facial expressions. The method relies on the magnitude of
the strain observed on the facial skin as a subject performs
an expression. This new approach is able to successfully
detect and distinguish between regular, universal macro-
expressions and rapid micro-expressions. An accuracy of
85% was achieved for spotting macro-expressions, and 74%

TABLE I: Expression spotting results

Dataset # Seq. # Macro / Micro TP Missed FP
USF-HD 44 181 (Macro) 154 27 7
USF-HD 12 96 (Micro) 77 19 36
Canal-9 6 24 (Micro) 12 12 18

Found Videos 3 4 (Micro) 3 1 0
Total (Mac) 44 181 85% 15% 4%
Total (Mic) 25 124 74% 26% 44%

of all micro-expressions were successfully spotted. Testing
was performed on a variety of videos including our own
collected data, Canal-9 political debates, and found videos.
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