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Introduction

This treatise is about quaternionic electrodynamics, which is a description of
the electromagnetic phenomena using quaternions. The history of quaternionic
electrodynamics goes back to the time of Sir William Rowan Hamilton (1805-
1865), Peter Guthrie Tait (1831-1901) and James Clerk Maxwell (1831-1879).

When I first began this project, my objective was to learn as much about the
roots of modern electromagnetism as possible, to make a solid basis for possible
further experimental studies on the subject.

I started out reading the first edition of Maxwell’s Treatise on electric-

ity and magnetism, in which Maxwell shows how to write down the general
equations of electrodynamics using scalars and quaternion vectors. Investigat-
ing this quaternion formulation, I found that using the idea of a scalar field
instead of a gauge condition, you could write the electrodynamic equations in
full quaternion notation.

While searching the literature for quaternionic models of electrodynamics I
found that other models used biquaternions1, and I did not find any new work,
after Maxwell and Tait, which used normal quaternions.

To investigate physical reality, I looked at the differences between Maxwell’s
equation and the quaternion model, focusing on finding published experiments
which could indicate if the predictions from the quaternion model are true.

1Biquaternions is quaternion where the four components are complex numbers.
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Chapter 1

Hamilton’s quaternions

1.1 The quaternion bridge

Our journey starts Monday morning on the 16. October 1843 near Broome
Bridge1 close to Dublin. Sir William Rowan Hamilton and Lady Hamilton is on
the way to Dublin, where Sir Hamilton is to lead a meeting in the Royal Irish
Academy. While walking along the royal canal Sir Hamilton is worrying about
a mathematical problem that he has been working on for some time.

The problem occupying Sir Hamilton’s mind is, if it is possible to find an
algebra of triplets; back in 1835 he had been helping with the foundation for
the algebra of couples now known as complex numbers.

How to find a algebra of triplets is an important question in the academic
society at the time, and for Hamilton the pressure is not only professional but
also private, as it can be seen in a letter from Hamilton to his son Archbald
Henry Hamilton.[2]

Every morning in the early part of the above-cited month [Oct.
1843] on my coming down to breakfast, your brother William Ed-
win and yourself used to ask me, ‘Well, Papa, can you multiply
triplets¿Whereto I was always obliged to reply, with a sad shake of
the head, ‘No, I can only add and subtract them.‘2

The problem Sir Hamilton is considering while walking to Dublin, where that
the terms ij and ji appear when multiplying two triplets in the form x+ iy+jz,
as he approaches Broome bridge he tries to let ij be equal to k, and he realizes
that he has got an algebra of quartets. He quickly writes down the ideas in his
pocket book and then he takes a knife and carves the relation

i2 = j2 = k2 = ijk = −1 (1.1)

into a stone on the bridge. Within an hour he has asked for leave from the
Royal Irish Academy meeting, in exchange for a promise that he will prepare a
presentation on this new algebra of quartets for the next meeting a month later,
and the same evening he writes a basic analysis in his notebook.[3] The story

1Hamilton refers to this bridge as Brougham Bridge, but according to Graves the real name
is Broome Bridge

2Thanks to http://quaternions.com/ for making me aware of this letter.
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CHAPTER 1. HAMILTON’S QUATERNIONS 6

about the discovery is later revealed in letters to his son Archbald [2] and to his
friend Peter G. Tait [4].

The solution Hamilton has discovered is 4 dimensional. By letting the el-
ements i, j, k follow the relation i2 = j2 = k2 = ijk = −1 one can write a
quaternion as

q = q + iqx + jqy + kqz (1.2)

Where q are called a quaternion, q is named the scalar part and iqx+jqy+kqz

is called the vector part and q, qx, qy, qz are all real numbers.
In this treatise quaternions are written in bold, and the vector part is written

~q so that quaternions may be written like q = q + ~q and we can define the
conjugated to this quaternion as q∗ = q − ~q.

Given another quaternion p = p + ~p one can show that in this notation the
product of two quaternions is:

qp = (qp − ~q · ~p) + (q~p + p~q + ~q × ~p) (1.3)

It should be noted that the quaternion product doesn’t commutate because
pq − qp = 2~q × ~p but we do have the following product rule for conjugation:
(qp)

∗
= p∗q∗

On the 17 October Hamilton wrote a letter to John T. Graves[5] about how
he had discovered the quaternions. Hamilton where looking for the algebra of
triplets so in this letter he discarded the scalar part of the quaternions, and
call the resulting vector part for pure quaternion. While making a product of
two pure quaternions he writes down the formulas for what we today call the
dot and cross product of vectors and in a way laying the foundation for vector
calculus. Differential operators for quaternions appeared for the first time in a
note appended to an article on a quaternion formulation of Pascal’s theorem[6],
here he defines the differential operator

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1.4)

and find the following product with a pure quaternion (it + ju + kv).

−(
∂t

∂x
+

∂u

∂y
+

∂v

∂z
) + i(

∂v

∂y
− ∂u

∂z
) + j(

∂t

∂z
− ∂v

∂x
) + k(

∂u

∂x
− ∂t

∂y
) (1.5)

which contain the divergent and curl differential operator which latter make it
possible for Maxwell to formulate his theory of electrodynamics on a compact
and elegant form.

1.2 Quaternions and physics

In the preface to the second edition of ‘An elementary treatise on quaternions’[7]
Tait writes:

Sir W. Hamilton, when I saw him but a few days before his death,
urged me to prepare my work as soon as possible, his being almost
ready for publication. He then expressed, more strongly perhaps
than he had ever done before, his profound conviction of the im-
portance of quaternions to the progress of physical science; and his
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desire that a really elementary treatise on the subject should soon
be published.3

To understand Hamilton’s standpoint, we will take a look on how quaternion
algebra can be used in physics.

In the first example, let us look at the electrostatic force from a charge n on
another charge m.

~Fmn = −qnqm(~rn − ~rm)

|~rn − ~rm|3 (1.6)

Let Fmn be a pure quaternion where the vector part is ~Fmn,then we have
that:

F∗
mn = −~Fmn = +

qmqn(~rn − ~rm)

|~rn − ~rm|3 = −qnqm(~rm − ~rn)

|~rm − ~rn|3
= ~Fnm = Fnm (1.7)

If we know the force on m from n we can find the reaction forces from m on
n by simple conjugating.

Another interesting thing is to look at the operator d
dt

, if we expand it in
partials we get:

d

dt
=

∂

∂t
+

∂x

∂t

∂

∂x
+

∂y

∂t

∂

∂y
+

∂z

∂t

∂

∂z
(1.8)

=
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
(1.9)

With the use of quaternions we can elegantly introduce space orientation
into the expression d

dt
, and express the four parts in one algebraic unit:

d

dt
=

∂

∂t
+ ivx

∂

∂x
+ jvy

∂

∂y
+ kvz

∂

∂z
(1.10)

If we take vx = vy = vz = c as it is normally assumed with electromagnetic
fields, then we can define a quaternionic nabla:

∇ =
1

c

d

dt
=

1

c

∂

∂t
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
=

1

c

∂

∂t
+ ~∇ (1.11)

Because quaternions do not commutate, there is a difference if we use ∇ on
the right or the left side. So lets define the right and left operator.

∇q = (
1

c

∂q

∂t
− ~∇ · ~q) + (

1

c

∂~q

∂t
+ ~∇q + ~∇× ~q) (1.12)

q∇ = (
1

c

∂q

∂t
− ~∇ · ~q) + (

1

c

∂~q

∂t
+ ~∇q − ~∇× ~q) (1.13)

The symmetric and antisymmetric product is also very useful, when doing
quaternion algebra they are defined by.

{q,p} =
1

2
(qp + pq) (1.14)

[q,p] =
1

2
(qp − pq) (1.15)

3Tait was waiting for Hamilton to publish his textbook first



CHAPTER 1. HAMILTON’S QUATERNIONS 8

1.3 Hamilton and electromagnetism

Hamilton tried to formulate the law of electromagnetism as quaternions.
At a meeting in the British Association which took place in June 1845 in

Cambridge he stated the following [8]:

That he wished to have placed on the records the following con-
jecture as to a future application of Quaternions:-‘Is there not an
analogy between the fundamental pair of equations ij=k ji=-k, and
the facts of opposite currents of electricity corresponding to opposite
rotations? ’

and in a letter from H. Lloyd to Hamilton we find[9]:

I hope you will not lose sight of the point you mentioned to me
last night of meeting. If you can show grounds for the existence
of a second system of forces in electrical propagation (varying as
the cosine of inclination while the former vary as the sine) you will
have attained one of the most important of the desiderata of modern
physics.

and in another place Graves writes some important letters to Dr. Lloyd in
1854[10]

They set forth what he calls a conjecture suggested by Quater-
nions which might prove ‘a physical discovery respecting the mu-
tual action of two elements of the same, or two different (electro-
magnetic) currents, considered as exerting (in addition to Ampère’s
attractive or repulsive force) a certain directive force, or as produc-
ing a system of two contrary couples.’ He afterwards saw reason to
doubt of the physical applicability of what he had called provisionally
his electro-magnetic Quaternions; but Lloyd continued to assign to it
a high possible value in relation to the theory of Electro-magnetism.
Dr. Lloyd’s words are – ‘May 31st. – I am greatly interested with your
electro-dynamic Quaternion. It seems to me to promise (not a new
physical discovery, but what is yet more interesting) a theoretical
explanation of the fundamental facts of electro-magnetism.. . . The
similarity (or agreement) to these [Biot’s laws, representing the ac-
tion of an infinitely small magnet upon a magnetic particle] of the
laws which govern you vectors, give, I think, ground for hope that
you will be able, through it, to explain the true physical relation be-
tween the electric current and the magnet. And if so, the discovery
will indeed be a great one’

Graves does not print the letter to Dr. Lloyd though he prints a similar
letter sent on 25 May 1854 to Augustus De Morgan[11], which is also included
in Appendix A on page 54. In this letter Hamilton writes about his experiment
with formulating Ampère’s force law on quaternion form. At Hamilton’s time
electrodynamics where described by Ampère’s force law.1.17

This law expresses the force from one infinitesimal conductor element ds
upon another ds′ and it is given on the form:

f ∼ −ii′dsds′
2√
r

∂2√r

∂s∂s′
(1.16)
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Where i and i′ is the current through ds and ds′ respectively and r is the length
of the vector between the two elements.

Hamilton tries to find a quaternion such that the scalar part would express
Ampère’s force law, and after some investigation he derives what he names the
“Electro-magnetic Quaternion”.

Q = −1

2

(

dρdρ′

∆ρ2
+ 3V

dρ

∆ρ
V

dρ′

∆ρ

)

. (1.17)

Here dρ and dρ′ are vectors representing the two current elements and ∆ρ =
ρ′ − ρ where ρ′ and ρ are vectors to the beginning of the elements.

x

y

z

dρ

dρ′

ρ

ρ′

∆ρ

Figure 1.1: Hamilton’s notation for Ampère’s force law

Hamilton then considered what the vector part of Q would express and he
ends the letter very optimistic about the electro-magnetic quaternion.

A few days later, on the 27 May[12] (See Appendix A) he writes another
letter to A. De Morgan where he feels less optimistic about Q, not seeing that
it should have any physical value. The argument he provides is that if one takes
any vector and add it to the quaternion Q then the scalar part would still equal
Ampère’s force law.

That Hamilton didn’t lose all hope for a quaternionic electrodynamic can
be seen in the first edition of ‘elements of quaternions’ where his son William
Edwin Hamilton writes:

Shortly before my father’s death, I had several conversations with
him on the subject of the ‘Elements.’ In these he spoke of anticipated
applications of Quaternions to Electricity, and to all questions in
which the idea of Polarity is involved - applications which he never
in his own lifetime expected to be able fully to develop. . . 4

Hamilton planned to devote his last chapter in his book to the application of
quaternions in physics, but unfortunately Hamilton died before he finished his
book, so we will never know if the book which was published after his death,
contain all Hamilton’s ideas on quaternion application in electrodynamics.

Another place which mentions Hamilton’s work on quaternionic electrody-
namics are in the article ‘On the nabla of Quaternions’[13] by Shunkichi Kimura:

4Thanks to http://www.hypercomplex.com/education/intro tutorial/nabla.html for
guiding me to this quotation.
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Thus it is seen that nablas in their extended form have direct
physical application, not to mention the ‘electrodynamic quaternion’
of Hamilton.

The question posted here is, if this electrodynamic quaternion is the same as
Hamilton’s electromagnetic quaternion ? If the answer is yes, then why does
Kimura thinks that it has physical meaning when Hamilton himself does not
? On the other hand if this where two different quaternions, then it should be
possible to find some sources, unfortunately Kimura does not give a reference
for the electrodynamic quaternions of Hamilton, and I have not had any luck in
finding anything about it.

What Hamilton might have done to find this electrodynamic quaternion, is
instead of expressing the Ampère’s force law in the scalar part and then examine
the vector part, he might have expressed Ampère’s force law as the vector part
and then examined the scalar part, because Ampère’s force law is already in
agreement with Newton’s law of action and reaction, which Hamilton knew
where equivalent with quaternionic conjugation.

I think that it is possible that Hamilton developed his ideas for quaternionic
electrodynamic between 1854 and his death in 1865 which the citations from his
son and Shunkichi Kimura also seems to hint at, but I have not had any luck
in finding any sources on quaternionic electrodynamics from Hamilton’s hand
after the 1854 letters.
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Chapter 2

Maxwell’s equations

This chapter is about Maxwell and his contribution to electromagnetism and his
relationship to quaternions. Extensive biographical works have been made on
Maxwell and his works on electromagnetism, so this treatise will only contain a
summary of this, it will contain more details on his relationship to quaternions.

2.1 Maxwell’s education

James Clerk Maxwell was born in Edinburgh, Scotland 1831. His mother was
in charge of his early education until she died of illness in 1839, when he where
eight years old. After an unsuccessful experiment with a tutor at home, He
was sent to school at Edinburgh academy in November 1841. It was here that
Maxwell formed a friendship with Peter Guthrie Tait, and it was also in this
period where he made his first scientific paper on a method for drawing oval
curves[1].

In 1847 he began three years of study at the university of Edinburgh. Maxwell’s
friend Peter Guthrie Bait describes the time in the following passage[2].

The winter of 1847 found us together in the classes of Forbes and
Welland, where he highly distinguished himself. With the former he
was a particular favorite, lingered here behind most of his former
associates, having spent three years at the University of Edinburgh,
working (without any assistance or supervision) with physical and
chemical apparatus, and devouring all sorts of scientific works in the
library*. During this period he wrote two valuable papers, which are
published in our Transactions, on “The Theory of Rolling Curves”
and “On the Equilibrium of Elastic Solids”

The footnote says.

* From the University Library lists for this period it appears that
Maxwell perused at home Fourier’s ThéBrie be la Chaleur, Monge’s
Géométrie Descriptive, Newton’s optics, Willis’s Principles of Mech-
anism, Cauchy’s Calcul Différentiel, Taylor’s Scientific Memoirs, and
many other works of a high order. Unfortunately no record is kept
of books consulted in the reading-room.

12



CHAPTER 2. MAXWELL’S EQUATIONS 13

The footnote in Tait’s writing tells us that Maxwell at an early age privately
had studied the works of the scientific giants before him.

In 1850 Maxwell went to Cambridge university first staying at Peterhouse
and later moving on to Trinity College, graduating with a degree of second
wrangler in January 1854.

2.2 Papers on electromagnetism

Maxwell’s primary work on electromagnetism was published in 3 articles and
2 books. Unfortunately, Maxwell died in the early age of 48 years, just be-
fore finishing hes work on the second edition of his book, named ‘a treatise on
electricity and magnetism’.

2.2.1 On Faraday’s lines of force

Maxwell first publication on electrodynamics was the article ‘On Faraday’s Lines
of Force’ [3] In this article he studies the electromagnetic phenomena with the
help of physical analogies, as a reason for this choice of research he writes:

The first process therefore in the effectual study of the science,
must be one of simplification and reduction of the results of previ-
ous investigation to a form in which the mind can grasp them. The
results of this simplification may take the form of a purely math-
ematical formula or of a physical hypothesis. In the first case we
entirely lose sight of the phenomena to be explained; and though we
may trace out the consequences of given laws, we can never obtain
more extended views of the connexion’s of the subject. If, on the
other hand, we adopt a physical hypothesis, we see the phenomena
only though a medium, and are liable to that blindness to facts and
rashness in assumption which a partial explanation encourages. We
must therefore discover some method of investigation which allows
the mind at every step to lay hold of a clear physical conception,
without being committed to any theory founded on the physical sci-
ence from which that conception is borrowed, so that it is neither
drawn aside from the subject in pursuit of analytical subtleties, nor
carried beyond the truth by a favorite hypothesis.

In order to obtain physical ideas without adopting a physical
theory we must make ourselves familiar with the existence of physical
analogies.

He then explores the analogy between the electromagnetic phenomena and
the motion of an incompressible fluid.

2.2.2 On physical lines of force

On the motivation and object for the paper ‘On physical lines of force’ first
published in 1861 and 1862, Maxwell writes:[4]

We are dissatisfied with the explanation founded on the hypoth-
esis of attractive and repellent forces directed towards the magnetic
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poles, even though we may have satisfied ourselves that the phe-
nomenon is in strict accordance with that hypothesis, and we can-
not help thinking that in every place where we find these lines of
force, some physical state or action must exist in sufficient energy
to produce the actual phenomena.

My object in this paper is to clear the way for speculation in this
direction, by investigating the mechanical results of certain states
of tension and motion in a medium, and comparing these with the
observed phenomena of magnetism and electricity. By pointing out
the mechanical consequences of such hypotheses, I hope to be of
some use to those who consider the phenomena as due to the action
of a medium, but are in doubt as to the relation of this hypothesis
to the experimental laws already established, which have generally
been expressed in the language of other hypotheses.

The medium that Maxwell investigates can be summarized with the following
characteristics:

1. Electromagnetic phenomena are due to motion or pressure in a medium.

2. The magnetic field is due to unequal pressure in the medium and the line
of force represent the direction of the least pressure.

3. The difference in pressure is generated by vortices or eddies, which have
their axes of rotation aligned with the lines of force.

4. The vortices are separated from each other by a layer of round particles.

5. These particles are in rolling contact with the vortices they separate and
motion of the particles represented electric current.

6. Electric current through the medium makes the vortices around the cur-
rent move in the same direction, while vortices further from the current
will move in opposite direction.

7. When an electric current or a magnet is moved, the velocity of rotation
of the vortices are changed by the motion, this creates an electromotive
force if a conductor is present.

8. When a conductor is moved in a magnetic field, the vortices in and around
it are moved and change form, this also creates a electromotive force in
the conductor.

Maxwell was well aware that this model was not necessarily realistic, but
he suggested it as a model which was mechanically conceivable and easy to
investigate.

2.2.3 A dynamical theory of the electromagnetic field

The dynamical theory known as Maxwell’s equation’s was published in a paper
in 1864 [5]. In this paper, Maxwell still tries to move away from a action as a
distance theory and over to a motion through a medium theory, but without
trying to build a model, like in the previous paper. Instead he presents a set of
dynamical equation to describe the motion through the aether.
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In an abstract of the paper, read before the Royal Society, Maxwell describes
these equations in the following way[6]:

The next part of the paper is devoted to the mathematical ex-
pression of the electromagnetic quantities referred to each point in
the field, and to the establishment of the general equations of the
electromagnetic field, which express the relations among these quan-
tities.

The quantities which enter into these equations are - Electric
currents by conduction, electric displacements, and Total Currents;
Magnetic forces, Electromotive forces, and Electromagnetic Momenta.
Each of these quantities being a directed quantity, has three com-
ponents; and besides these we have two others, the Free Electricity
and the Electric Potential, making twenty quantities in all.

There are twenty equations between these quantities, namely
Equations of Total Currents, of Magnetic Force, of Electric Cur-
rents, of Electromotive Force, of Electric Elasticity, and of Electric
Resistance, making six sets of three equations, together with one
equation of Free Electricity, and another of Electric Continuity.

These twenty equations, are summarized in the following table, with Maxwell’s
original notation to the left, modern coordinate notation in the middle and
vectors to the right. 1

p′ = p +
df

dt

q′ = q +
dg

dt

r′ = r +
dh

dt































→

Jx = jx +
∂Dx

∂t

Jy = jy +
∂Dy

∂t

Jz = jz +
∂Dz

∂t































→ ~J = ~ +
∂ ~D

∂t
(2.1)

µα =
dH

dy
− dG

dz

µβ =
dF

dz
− dH

dx

µγ =
dG

dx
− dF

dy































→

µHx =
∂Az

∂y
− ∂Ay

∂z

µHy =
∂Ax

∂z
− ∂Ay

∂x

µHz =
∂Ay

∂x
− ∂Ax

∂y































→ µ ~H = ~∇× ~A (2.2)

dγ

dy
− dβ

dz
= 4πp′

dα

dz
− dγ

dx
= 4πq′

dβ

dx
− dα

dy
= 4πr′































→

∂Hz

∂y
− ∂Hy

∂z
= 4πJx

∂Hx

∂z
− ∂Hy

∂x
= 4πJy

∂Hy

∂x
− ∂Hx

∂y
= 4πJz































→ ~∇× ~H = 4π ~J (2.3)

1The idea for the table is borrowed from [7]



CHAPTER 2. MAXWELL’S EQUATIONS 16

P = µ

(

γ
dy

dt
− β

dz

dt

)

− dF

dt
− dΨ

dx

Q = µ

(

α
dz

dt
− γ

dx

dt

)

− dG

dt
− dΨ

dy

R = µ

(

β
dx

dt
− α

dy

dt

)

− dH

dt
− dΨ

dz



































→

Ex = µ(Hzvy − Hyvz) −
∂Ax

∂t
− ∂φ

∂x

Ey = µ(Hxvz − Hzvx) − ∂Ay

∂t
− ∂φ

∂y

Ez = µ(Hyvx − Hxvy) − ∂Az

∂t
− ∂φ

∂z































→ ~E = µ(~v × ~H) − ∂ ~A

∂t
− ~∇φ

P = kf

Q = kg

R = kh































→

εEx = Dx

εEy = Dy

εEz = Dz































→ ε ~E = ~D (2.4)

P = −ζp

Q = −ζq

R = −ζr































→

σEx = jx

σEy = jy

σEz = jz































→ σ ~E = ~ (2.5)

e +
df

dx
+

dg

dy
+

dh

dz
= 0 → ρ +

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
= 0 → ρ + ~∇ · ~D = 0 (2.6)

de

dt
+

dp

dx
+

dq

dy
+

dr

dz
= 0 → ∂ρ

∂t
+

∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
= 0 → ∂ρ

∂t
+ ~∇ ·~ = 0 (2.7)

Here we should note that there is an error in the equations in this paper and
the privies paper. By using that the divergent on the rotation is zero on (2.3)
we can write;

0 = ~∇· ( 1

4π
~∇× ~H) = ~∇· ~J = ~∇· (~+

∂ ~D

∂t
) = ~∇· +

∂(~∇ · ~D)

∂t
= ~∇· − ∂ρ

∂t
(2.8)

where the last terms are in conflict with (2.7). This error where corrected by
changing sign on the charge density ρ in equation (2.6).

2.3 Maxwell’s treatise on electricity and mag-

netism

Maxwell’s most prominent work on electromagnetism is his book “A treatise on
electricity and Magnetism”2 published in 1873. This work is in two volumes, and

2In the following I referrer to it as ‘the treatise’
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it discusses a lot of the mathematical and physical aspects of electromagnetism
known at the time. While most of the calculation in the treatise is done in or-
dinary Cartesian coordinates, Maxwell shows how to write his general equation
for electrodynamics using Hamilton’s quaternions. The following is Maxwell’s
quaternion equation adopted to the notation used in this treatise:[8]

~E = V ~v ~B − ∂ ~Ae

∂t
− ~∇φe

~B = V ~∇ ~Ae

~F = V ~Je
~B − ρe

~∇φe − ρm
~∇φm

~B = µ ~H

4π ~Je = V ~∇ ~H ~je = σ ~E

~D = 1
4π

k ~E ~Je = ~je + ∂ ~D
∂t

~B = ~H + 4π ~M ρe = S~∇ ~D

ρm = S~∇ ~M ~H = −~∇φm

As can be seen, the quaternions that Maxwell uses are not full quaternions,
only pure quaternions and scalars, as this is how quaternions were normally
used at his time.

Maxwell died in 1879 while he was still working on the second edition of the
treatise. The second edition was published in 1881 with W. D. Niven as editor,
the first nine chapters were replaced with Maxwell’s rewriting, and the last part
was a reprint of the first edition. Unfortunately, only a few of the first nine
chapters, are chapters particularly suited for quaternion treatment, so we only
know little about what Maxwell had in mind concerning quaternion treatment
in the second edition.

2.4 Scientific letters

A good source for Maxwell’s scientific letters are P. M. Herman 3 volume
collection[9][10][11], in which he also describes the history of the letters: After
Maxwell’s death in 1879, Professor George Gabriel Stokes and Professor George
Edward Paget were chosen by Maxwell’s will, to go through his personal pa-
pers and decide what should be destroyed, and what should be published, a job
which Stokes was asked to do. Stokes, who was very busy at the time, dele-
gated the task to William Garnett, who had worked with Maxwell at Cavendish
Laboratory. Then Garnett teamed up with Maxwell’s life long friend, Profes-
sor Lewis Campbell, and in 1882 they published the book ‘Life of Maxwell’.
The biography focused on Maxwell as a person and his philosophy, so it is not
a good source for his scientific correspondences. After Garnett and Campbell
had finished their work, the letters were returned to the owners and Maxwell’s
papers were returned to Mrs. Maxwell in Cambridge, after which they were
presumably moved to Maxwell’s house in Glenlair, where they were lost when
Glenlair later burnt to the ground. This may be the reason that there is a
gab in Maxwell’s scientific correspondence with Tait, Stokes and Lord Kelvin.
Unfortunately, it is with them, that Maxwell would have discussed his ideas for
further quaternion formulation for his electrodynamic theory.
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2.4.1 Quaternions

The first available letter, where Maxwell write about quaternions, is a letter to
Tait from 1865[12] where he asks:

Does any one write quaternions but Sir. W. Hamilton & you?

Tait had had an active correspondence with Hamilton regarding quaternions
since 1858, and Tait was the one Maxwell turned to, when he needed advice on
quaternions.

The next question about quaternion is in 1867 were he asks, if Tait’s book
on quaternions had been published [13], in the same letter he also asks.

Is there any virtue in turning ∆ round 30◦ ?

Here Maxwell is referring to the fact that Hamilton used △ as the Nabla operator
while Tait used ∇. It is not known, if Maxwell had already discovered the right
side form of nabla and is trying to give Tait a hint, or if he is just wondering
about Tait’s change of notation.

2.4.2 First edition

When Maxwell start hes work on the first edition of the treatise, the frequency
of questions concerning quaternions began to increase.

In a letter from 1870[14], Maxwell asks Tait about the ∇ operator:

Dear Tait

∇ = i
d

dx
+ j

d

dy
+ k

d

dz
.

What do you call this? Atled?3 I want to get a name or names for
the result of it on scalar or vector functions of the vector of a point.

Then he suggests the name slope for ~∇ on a scalar function, for the scalar
part of ~∇ on a vector function he suggests the name Convergence and for the
vector part he discusses several options; twist, turn, version, twirl and curl. For
the result of ~∇2 he suggests the name concentration. He asks Tait if these names
are inconsistent with any terms in the domain of quaternions.

A week later, Maxwell writes to Tait again[15], returning a borrowed letter
from Tait’s friend William Robertson Smith. In this letter, Smith suggests the
that symbol ∇ is called Nabla, as the Assyrian harp with the same shape. The
name Nabla becomes a source of amusement for Maxwell and Tait, in their
further correspondence they use words like Nablody, Nabladist and nabble.

Apparently Tait had forgotten to comment on the names for the results for
∇ because Maxwell writes:

The names which I sent you were not for ∇ but the results of ∇.
I shall send you presently what I have written, which though it is in
the form of a chapter of my book is not to be put in but to assist in
leavening the rest.

3Atled is delta spelled backwards
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The reprint[10, p.570] of the chapter Maxwell talks about, is titled ‘Manuscript
on the application of quaternions to electromagnetism’. In this manuscript
Maxwell shows that he has finished most of the quaternion notions that he
used in the first edition of the treatise.

In October 1872 Maxwell write to Lewis Campbell:

I am getting converted to Quaternions, and have put some in
my book, in a heretical form, however, for as the Greek alphabet
was used up, I have used German capitals from A to I to stand for
Vectors, and, of course, ∇ occurs continually. This letter is called
‘Nabla’, and the investigation a Nablody.

2.4.3 Second edition

When Maxwell began writing on the second edition, again we see an increase in
the frequency of letter to Tait with questions on quaternions.

In June 1878 Maxwell ask [16]:

What is the correct statement as to the right handed system of
unit vector adopted in Hamilton’s & in Tait’s Quaternions?.

Also any other remarks on Electricity & Magnetism which is
being revised for 2nd edition.

In September 1878 he asks [17].

May one plough with an ox & an ass together? The like of you
may write everything and prove everything in pure 4nions but in the
transition period the bilingual method may help to introduce and
explain the more perfect system.

But even when when that which is perfect is come, that which
builds on 3 axes will be useful for purposes of calculations by Cassios
of the future.

Now in a bilingual treatise it is troublesome, to say the least, to
find that the square of AB is always positive in Cartesian and always
negative in 4nions and that when the thing is mentioned incidentally
you do not know which language is being spoken.

Here Maxwell raises a critical question, for quaternion expression is not
alway the easies to comprehend, or the most simple to write down, and it might
be best to make a bilingual notation even though this isn’t without problems
either.

Later in the same month he writes on a postcard to Tait[18].

What is the best expression in 4nions for a Stress?

Here Maxwell poses question about a quaternion expression for stress, a
subject much later, in the treatise than the nine chapters which were replaced
in the second edition, indicating that he might have been working on rewrites
of those chapters as well.

Finally, in Maxwell’s last known letter to Tait, there are hints that Maxwell
knew about both the left from and the right form of the nabla operator even
though there is no evidence that he didn’t use the latter in written form.
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In this cryptical letter[19]4, dated 28 august 1879 and titled ‘Headstone in
search of a new sensation’5, Maxwell pretends to be Tait writing a diary entry.

The section which seems to indicate that Maxwell knows of the right side
form of Nabla, is the following:

Might not I, too, under the invocation of the holy ALBAN 6 be-
come inspired with some germinating idea, some age-making notion
by which I might burst the shell of circumstance and hatch myself
something for which we have not even a name, freed for ever from
the sickening round of possible activities and exulting in life every
action of which would be a practical refutation of the arithmetic of
this present world.

Hastily turning the page on which I had recorded these medita-
tions, I noticed just opposite the name of the saint another name
which I did not recollect having written. Here it is - ALBAN .

Here then was the indication, impressed by the saint himself, of
the way out of all my troubles. But what could the symbol mean?

In the next chapter, we will see that both forms of Nabla is necessary to write
the quaternionic form of Maxwell’s equations. So, in that sense the right side
form of Nable is the solution to all the trouble. This is another indication that
Maxwell was working on parts of the books far beyond the nine chapters replaced
in the second edition, because that form is most interesting when working with
the general equations for electromagnetism in the last part of the treatise.

4The letter is included in appendix B on page 60
5Here Maxwell referrer to Tait’s pseudonym ‘Guthrie Headstone’
6Alban is Nabla (∇) spelled backwards
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Chapter 3

Quaternion equations

This chapter is about extending Maxwell’s equations to their full quaternion
form.

3.1 Quaternions in Maxwell’s model

When you looks at Maxwell’s description of electromagnetism. you notice that
the electric scalar potential φe together with the electric vector potential ~Ae, can
form a single quaternion Ae = φe + ~Ae and that the electric charge density ρe

together with the electric current density ~e, also forms a quaternion je = ρe +~e

and the relation between these two quaternions can be written as

Ae(t, ~r) =
1

4π

∫

V

je(t − |~rs − ~r|/c, ~rs)

|~rs − ~r| d~rs (3.1)

3.2 Quaternion fields

In Maxwell’s model the field is pure vector parts ~E and ~B, but in the quaternion
model we would like to make them full quaternions.

We will start our extension with Maxwell’s expression for the fields:

~E = −~∇φe −
1

c

∂ ~Ae

∂t

~B = ~∇× ~Ae

(3.2)

Then we add a simple and very used extension for magnetic monopoles. This
looks like:

~E = −~∇× ~Am − ~∇φe −
1

c

∂ ~Ae

∂t

~B = ~∇× ~Ae − ~∇φm − 1

c

∂ ~Am

∂t

(3.3)

Where φm is the scalar potential and ~Am is the vector potential due to
magnetic currents. Just like their electric counterparts they might be expressed
in a quaternion Am = φm + ~Am. To get to Maxwell’s equation from the field

23



CHAPTER 3. QUATERNION EQUATIONS 24

expression, you have to chose a gauge condition. One of the most used gauge
conditions is the Lorenz’s gauge:

1

c

∂φe

∂t
+ ~∇ · ~Ae = 0 (3.4)

But using this gauge condition would effectively prevent us from using the
equations to investigate systems where the condition is not true. Instead of using
a gauge condition we will use an idea from an article by Koen van Vlaenderen
[1] and define scalar field components as an extension of Lorenz’s gauge:

E = −1

c

∂φe

∂t
− ~∇ · ~Ae

B = −1

c

∂φm

∂t
− ~∇ · ~Am

(3.5)

Defining the scalar field allow for simpler symbolic manipulation compared
to not choosing a gauge condition, while it does not impose the limitations that
choosing a gauge condition does.

Having defined a scalar field, it is now possible to express (3.3) and (3.5)
using only quaternions:

E =
1

2
({∇∗,A∗

e} − {∇,Ae} − {∇∗,Ae} − {∇,A∗
e}

− [∇∗,A∗
m] + [∇,Am] + [∇∗,Am] + [∇,A∗

m]) (3.6)

B =
1

2
({∇∗,A∗

m} − {∇,Am} − {∇∗,Am} − {∇,A∗
m}

+ [∇∗,A∗
e] − [∇,Ae] − [∇∗,Ae] − [∇,A∗

e]) (3.7)

It is worth noticing that to express the fields as a quaternion we need to use
every combination of ∇, Am, Ae and conjugation.

In similar way, you can write the quaternion expression for the currents,
which is the quaternion equivalent to Maxwell’s equations:

je =
1

2
(−{∇∗,E∗} − {∇,E} − {∇∗,E} + {∇,E∗}

+ [∇∗,B∗] + [∇,B] − [∇∗,B] + [∇,B∗]) (3.8)

jm =
1

2
({∇∗,B∗} + {∇,B} − {∇∗,B} + {∇,B∗}

+ [∇∗,E∗] + [∇,E] + [∇∗,E] − [∇,E∗]) (3.9)

Reduced to scalar and vector parts it can be written in a simpler form:
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ρe = ~∇ · ~E − 1

c

∂E

∂t
(3.10)

~e = ~∇× ~B − 1

c

∂ ~E

∂t
+ ~∇E (3.11)

ρm = −~∇ · ~B +
1

c

∂B

∂t
(3.12)

~m = −~∇× ~E − 1

c

∂ ~B

∂t
+ ~∇B (3.13)

Notice that in the expression for charge, the extended Gauss’s laws, now
include a time derived of the scalar fields. And that the generalized Faraday’s
and Ampere’s law, now include a gradient of the scalar fields.

While the physical understanding of magnetic monopoles is quite common,
it is not the case with the understanding of the scalar fields. If we compare the
scaler field to the electric vector field which express the amount of work done
on a unit charge moved a distance δw = q ~Eδx or force per unit charge, then it
becomes apparent that the electric scalar field express the amount of work done
on a unit charge doing a interval of time δw = qEδt or effect per unit charge.

This means that the presence of a scaler field indicates energy flowing in
or out of the electromagnetic system. The scalar field has been suggested as a
model for electrodynamic interaction with the gravitation field [2] and as a model
for interaction with heat[3], while those interactions properly can contribute to
the scaler field, I don’t consider it wise to consider it due to only one of the
models, but would rather view them as contributing to the scalar field, like the
Hamilton operator in quantum mechanics in which the actual terms depend on
the physical systems being modeled. The question about which type of outside
systems contribute to this energy flow will not be treated in this treatise, but it
is a subject for further research.

3.3 Wave equations

As a result of the scalar fields we get terms for longitudinal weaves in the vector
wave equations;

~∇~∇ · ~E − ~∇× ~∇× ~E − 1

c2

∂2 ~E

∂t2
=

1

c

∂~e

∂t
+ ~∇ρe + ~∇× ~m

~∇~∇ · ~B − ~∇× ~∇× ~B − 1

c2

∂2 ~B

∂t2
=

1

c

∂~m

∂t
− ~∇ρm − ~∇× ~e

(3.14)

and we get scalar wave equations:

~∇2E − 1

c2

∂2E

∂t2
= ~∇ · ~e +

1

c

∂ρe

∂t

~∇2B − 1

c2

∂2B

∂t2
= ~∇ · ~m − 1

c

∂ρm

∂t

(3.15)

Compared to Maxwell’s equations the electric vector wave equation includes
the extra terms ~∇~∇· ~E, ~∇ρe and ~∇×~m. The first term ~∇~∇· ~E makes it possible
for this equation to describe longitudinal waves. The second term ~∇ρe is very
interesting because it tells us that an electro static system also is a source of
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electric radiation and the 3th term shows that the same is a curved magnetic
monopole current. The new terms in the magnetic wave equation are ~∇~∇ · ~B,
1
c

∂~m

∂t
and ~∇ρm which is a longitudinal wave term and two terms which are

magnetic counterparts to the electric terms in the electric case.
On the right of the scalar wave equations (3.15) we have the electric and the

magnetic charge continuity equation which functions as the source term for the
scalar wave terms on the left side. This tell us that a scalar wave may interfere
with charge continuity by generating or annihilating charge 1

c
∂ρ
∂t

or generate

divergence or convergence of currents ~∇ · ~.
With this wave equations, an interesting interpretation for electromagnetism

is possible, if one adopts Maxwell’s analogy that electromagnetism is due to
motion in a medium. In the late 19th century it was discovered that vibration
in a medium can cause attraction and repulsion [4][5]. If the field intensity is
inversely proportional to the density of the medium, then the force between
charge might be explained by such vibration. 1

3.4 Quaternion power-force

In quaternionic electrodynamics, the power and the force becomes one quater-
nion, called the quaternion force F.

You can write the electric part as the quaternion expression;

Fe =
1

2
({je,E} − {j∗e,E} − {je,E∗} − {j∗e,E∗}

+ [je,B] − [j∗e ,B] − [je,B
∗] − [j∗e ,B

∗]) (3.16)

and the magnetic part as:

Fm =
1

2
({jm,B} − {j∗m,B} + {jm,B∗} + {j∗m,B∗}

− [jm,E] + [j∗m,E] − [jm,E∗] − [j∗m,E∗]) (3.17)

Or expressed as scalar and vector components:

Fe = −ρeE − ~e · ~E + ρe
~E + ~eE + ~e × ~B (3.18)

Fm = ρmB − ~m · ~B − ρm
~B + ~mB − ~m × ~E (3.19)

The scalar part of the total quaternion force becomes:

F = Fe + Fm = −ρeE − ~e · ~E + ρmB − ~m · ~B

=
1

2

1

c

∂(E2 + ~E2 + B2 + ~B2)

∂t
− ~∇ · (B ~B + ~B × ~E + E ~E) (3.20)

Here we get new term in the time derived of the scalar E2 and B2 and we
also notice that the Poynting energy flow ~B × ~E now got company by extra

1Such views of electromagnetism have before been held by researches such as John Keely[6],
and Mel Winfield[7].
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scalar-electric E ~E and scalar-magnetic B ~B energy flows in the direction of the
electrical and magnetic fields.

Deriving the vector part of the quaternion force we get:

~F = ~Fe + ~Fm = ρe
~E + ~eE + ~e × ~B − ρm

~B + ~mB − ~m × ~E

= −1

c

∂(E ~E + ~E × ~B + B ~B)

∂t
+ ~E(~∇ · ~E) + ~B(~∇ · ~B) +

1

2
~∇(E2 + B2)

+ ~∇× (E ~B − B ~E) + (~∇× ~E) × ~E + (~∇× ~B) × ~B (3.21)

Here we get lot of new interesting terms due to scalar fields and the magnetic
monopoles.
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Chapter 4

Longitudinal force

In this chapter we will study the forces which act between current elements in a
circuit. To compare the different models we will consider two currents elements
with the electrical current densities ~1 and ~2 and let ~r be the vector from the
location of ~1 to ~2.

4.1 Ampère’s force law

Before Maxwell’s equations, electrodynamics were formulated by Ampère’s force
law which has already been mentioned in (1.17). When Ampère heard about
H.C. Ørsted’s discovery of the action a current exercises on a magnet he inves-
tigated whether two electric currents also exercise an action upon each other.
After performing experiments with steady current and closed circuits. Ampère
summarized his experimental observations in four laws.

1. The effect of a current is reversed when the direction of the current is
reversed.

2. The effect of a current flowing in a circuit twisted into small sinuousities
are the same as if the circuit were smoothed out.

3. The force exerted by a closed circuit on an element of another circuit is
at right angles to the latter.

4. The force between two elements of circuits are unaffected when all linear
dimensions are increased proportionally, the current-strengths remaining
unaltered.

Together with the assumptions that the force should act along the line con-
necting the two conductor elements and that the force should follow Newton’s 3.
law that the reaction force is equal and opposite the action force. Ampère’s for-
mulated a force law, which in addition to describing a force between conductor
elements running beside each other, also included longitudinal forces between
conductor elements on the same line. Ampère force law can be written as

d2 ~f12 ∼ − ~r

|~r|3 (~1 · ~2 −
3

2|~r|2 (~r · ~1)(~r · ~2)). (4.1)
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Here it is easy to see that the force acts along ~r, and that if one makes the
transformation ~1 → ~2, ~2 → ~1 and ~r → −~r we get a force which is opposite
and equal in size such that Newton’s 3. law is satisfied.

A weakness in Ampère’s argument is that his 3. law was based on experi-
ments with closed circuits and therefore the current elements could have a force
component breaking his law, if it disappears when integrating all the elements
in the circuit. Another weakness is naturally his two assumptions which he uses
without experimental validation.

4.2 Grassmann’s force

In Maxwell’s equations we find that the force on the current elements comes
from the term ~1 × ~B2 which can be written as

d2 ~f12 ∼ − 1

|~r|3~1 × (~r × ~2) = − 1

|~r|3 (~r(~1 · ~2) − ~2(~r · ~1)) (4.2)

this term was first suggested by Grassmann in 1845. This force doesn’t satisfy
Newton’s 3. Law because ~2(~r · ~1) 6= ~1(~r · ~2), furthermore ~2(~r · ~1) doesn’t
follow ~r and therefore Maxwell’s equations break with both of Ampère’s original
assumptions.

It is interesting to note that in his treatise Maxwell makes a detailed analysis
of the force between two current elements[1, p.147] in which he concludes that
Ampère’s force law properly is the correct one, but then when he lists his general
electromagnetic equations[1, p.239] they are in agreement with Grassmann’s
formula.

4.3 Tait’s quaternion forces

In 1860 Tait had published[2] a quaternion investigation of Ampère’s law in
which he follows Ampere’s assumptions that the force between two current el-
ements follows the line between them, in this paper he promises to make an-
other one in which he investigates Ampère’s experimental data, without the
assumptions. When Maxwell in 1873 published his treatise on electricity and
magnetism, where he investigated the same question, Tait remember his old
promise and publishes[3] hes own investigation, which is somewhat different
from Maxwell’s. Tait obviously makes his investigation using quaternions, and
by studying which type of terms disappears when you integrate over a close cir-
cuit, he finds that the force between the two conductor elements can be expressed
simply as the vector part of the quaternion product ~1~r~2

1. It is interesting is
that the vector part of this quaternion product between the 3 vectors is exactly
the same as we get from the quaternion model.

4.4 The quaternion formula

In the quaternion model we have an additional term ~1E2 compared to Grass-
mann’s formula and it expands to −~1~∇ · ~A2 in this situation. Then the force

1This force is often called the Whittaker’s formula because he gives a non-quaternionic
expression for it in [4]
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becomes:

d2 ~f12 ∼ − 1

|~r|3 (~1 × (~r × ~2) − ~1(~r · ~2))

= − 1

|~r|3 (~r(~1 · ~2) − ~2(~r · ~1) − ~1(~r · ~2)) (4.3)

Here it is easy to see that the law of action and reaction is restored. We also
have that the last two parts of the force which are not along ~r disappear when
integrated over in a close circuit.

If Tait had extended the vectors to be full quaternions, he would have been
on his way to discover the full quaternion model.

If you set j1 = ρ1 + ~1 and j2 = ρ2 + ~2 you get

j1~rj2 = −ρ1(~r · ~2) − (~1 · ~r)ρ2 − j1 · (~r ×~j2)

+ ρ1~rρ2 + ~1 × (~r × ~2) − ~1(~r · ~2) + ρ1(~r × ~2) + (~1 × ~r)ρ2 (4.4)

The last line is the vector part and proportional to the force, here can we see
that ρ1~rρ2 is proportional to the electrostatic force and ~1 × (~r ×~2)−~1(~r ·~2)
is the electrodynamic force, the last two terms are the asymmetric part of the
quaternion. This is the part we remove by using the symmetric product in the
quaternion model.

If Tait had thought of extending his expression, he could have found a
quaternion expression which would express both electrostatic and electrody-
namic forces.

Then the next step towards the quaternion model, would be to notice that
~∇ 1

|~r| = − ~r
|~r|3 and then extend ~∇ to ∇.

The problem which seems to stop Tait from expanding his formula beyond
current elements, was primary, that they worked mainly with scalar and vector
parts, at the time, and rarely with full quaternions, and secondary, that without
being aware of the difference on right and left nabla, he would not have been able
to write a full quaternion expression which would give the correct expression of
the force.

Ampère Grassmann Tait

Figure 4.1: Force between parallel conductor elements
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4.5 Auguste-Arthur de la Rive

In 1822 the Swiss scientist Auguste-Arthur de la Rive invited Ampère to come
to Geneva and do an experiment, which De la Rive had designed to explicitly
demonstrate the longitudinal force. The experiment is known as the hairpin
experiment and consists of two pools of mercury arranged next to each other,
with an isolating barrier in between. Then an insulated copper wire in the shape
of an hairpin is placed with a leg in each pool. When current is supplied to the
pool from a battery, then the wire would move along the barrier. See figure 4.2.

Figure 4.2: Hairpin experiment

4.6 Peter Guthrie Tait

In 1861 the hairpin experiment was repeated by Maxwell’s friend Peter Guthrie
Tait[5]. First he confirmed Ampere’s and De la Rive’s results, but then he
replaced the copper wire with a mercury filled glass tube to get rid of the
possibility that the effect could be due to thermo-electric or other effects between
the two different conductors. After this modification to the experiment he was
still able to observe the same effect.

4.7 Peter Graneau

In 1981 a modern version of the hairpin experiment was performed by Peter
Graneau at MIT[6]. Here the hairpin conductor floated on two channels of
liquid mercury and would move to the end of the channels when a current of
200 A was applied. In his paper a new effect was noticed and reported for
the first time. When the conductor was blocked from moving, jets were seen
emerging at the ends of the conductor, at 500 A the effect became unmistakable,
and at 1000 A the were a danger of the mercury spilling out of the channel. 2

A demonstration specially designed to show this jet effect, is the Liquid
Mercury Fountain experiment [7], where one electrode is inserted through the
bottom of a cup filled with liquid mercury, and a ring electrode is partly sub-
merged in the mercury at the top. When a current between 500 and 1000 A is

2A good book for further information on Ampère’s force law, are Peter and Neal Graneau’s
‘Newtonian Electrodynamics’ [7].
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made to flow through the arrangement, a fountain is observed rising from the
cup. See figure 4.3.

Rod electrode

Ring electrode

Hg

Mercury flow

Current flow

Figure 4.3: Mercury fountain

One of the barriers to reproduce the experiments about are their use of very
high currents, but new experiments remove this barrier and bring a reproduction
of the experiments within the reach of every serious student.

4.8 Remi Saumont

In 1992 Remi Saumont published an experiment [8] where the conductor from
Ampère’s and De la Rive’s experiment is turned vertically, and placed on a high
precision weight scale, so that the longitudinal force on the conductor could be
precisely measured. Different setups made it possible to measure the force both
as a push and a pull. The currents used in the experiments were 4 A to 12
A for a duration of around 1 s. The conclusion of this experiment was also a
verification of a longitudinal force. See figure 4.4.

4.9 Thomas Phipps jr.

In 1995 Thomas Phipps jr. published an article [9] where he shows how you can
verify the existence of a longitudinal force with simple equipment.

In his experiment, he used a turning fork and connected a pair of conductors
in such a way that an oscillating longitudinal force would result in a driving force
on the turning fork. The two conductors were attached to each leg of the turning
fork with a gab of around 1 mm. This gab was then connected with a piece of
plastic straw holding a drop of mercury. The oscillation of the turning fork was
detected using a laser, a photo diode, an amplifier, and a razor-blade attached
to the top leg of the fork. See figure 4.5.
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Figure 4.4: Saumont’s experiment

Mercury

Tungsten

Copper tube

Turning fork

Razor blade

Connected to AC circuit

Figure 4.5: Phipps experiment

4.10 Roundup

As has been seen, fundamental uncertainties in Ampère’s original experiments
lead to certain freedoms when formulating the force law between two current
elements. Later experiments explicitly show the existence of a longitudinal force,
this shows that Grassmann’s formula and Maxwell’s equation can’t provide a
complete description of the forces. A more detailed theoretical investigation can
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be found in [1],[4] and [10] and a further experimental overview can be found in
[7] and [11].
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Chapter 5

Magnetic monopoles

When making the quaternion model for electromagnetism, magnetic monopoles
were included in the equations. In this chapter we are going to study experi-
mental research on magnetic monopoles and magnetic currents.

With Ampère’s hypothesis from 1820 that magnets owe their properties to
closed currents in the mass [1, p.7], the concept of magnetic charges started to
take a secondary place in the models for electromagnetism, even though Maxwell
included the magnetic potential and charge density in his original equations, the
subject began to receive less attention in mainstream physics. That might be
why most research on magnetic currents and monopoles are from researchers
who are considered controversial in mainstream physics.

5.1 Magnetosphotophoresis

Magnetosphotophoresis was first observed by the Austrian physicist Felix Ehren-
haft around 1910. In an article[2] he published in 1941 together with Leo Bar-
rnet, they describe this phenomenon in the following way.

One of us (F.E.) However has shown that, submicroscopic par-
ticles irradiated by light do move in a homogeneous magnetic field,
some toward the North and some toward the South Magnetrode, that
they reverse their direction if the direction of the field is reversed,
etc. These particles thus actually behave like single magnetic poles
(magnetic charges, magnetic ions). On them are a preponderance of
North or South magnetism and their movement in a homogeneous
magnetic field constitutes a magnetic current.

In 1944 V.D. Hopper[3] reports that he had failed to reproduce Ehrenhaft’s
experiment using a permanent magnet and he also suggests, without verification
that Ehrenhaft’s result may be due to some stray electrical fields.

The stray fields hypothesis was rejected in 1947 by B. G. Kane [4], he writes;

It cannot be due to the presence of electrostatic fields since the
experiments have been performed with the pole pieces shielded by a
fine wire cage and the whole apparatus grounded.

and then he continues with an important observation:
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The explanation may be found by examining the conditions un-
der which the particles jump in the dark. Some fine metal powder
such as iron, nickel, cobalt, tungsten, chromium, etc, is placed on
the lower pole piece B of a strong electromagnet. When the field
is suddenly reversed, a number of these particles jump to the upper
pole piece A.

From this observation he comes to the following conclusion:

The obvious explanation seems to be that a current is induced
in a particle by the rapidly changing magnetic field. If this induced
current is more than 90 degrees out of phase with the current in the
electromagnet, the particle will be repelled by the lower pole.

and then he verifies his conclusion in the following way:

This interpretation of the phenomenon was checked in two ways.
First, when a weak field is used, the particles jump a short distance
and fall back to the lower pole face; if they were true single poles,
they should continue to rise to the upper pole face. Secondly, the
magnetic field was gradually reduced to zero before reversing it and
gradually increased after reversal. As a result, no particles were
observes to jump.

This might at first seem like a good explanation, but one could ask why
good conductors like gold, silver and copper are missing from his list of mate-
rials, which is mostly ferromagnetic? One would think that good conductors
should be primary candidates if the effect is caused by an induced current while
ferromagnetic materials would indicate a magnetic phenomenon.

Another objection is that Ehrenhaft used a very homogeneous magnetic field
and he reported that the free floating particles got a north or south magnetic
charge with equal possibility as far as he could tell. But if the effect should
be due to induced current from the magnetic switching, then one would expect
that all the particles in an area would get similar polarization.

There could naturally be a problem with the last argument if the particle was
not perfectly spherical, but an investigation of this problem was provided in 1988
by V.F. Mikhailov [5]. In an experiment, where he provide the ferromagnetic
particles with a liquid shell which would not be able to contain any stable non-
uniformity. He is still able to reproduce the magnetic charge effect and also
determine the distribution of the magnetic charge.

The magnetic charge distribution has a peek at 2.5+1.6
−1.3 × 10−8gauss cm2

which is close to the 3.29 × 10−8gauss cm2 which is the value calculated by
Dirac for the magnetic elementary charge. He then finishes the article with the
conclusion:

Further work is necessary to exclude the possibility of system-
atic errors but from the above numerical result we conclude that
the observed effect would be consistent with the presence of Dirac
monopoles within the droplet, possibly held as bound states with
the magnetic moment of the ferromagnetic particle.

In 1995 V. F. Mikhailov published another article in which he measured the
magnitude of the magnetic elementary charge. By observing how particles that
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had both an electric and a magnetic charge moved in space having a magnetic
and a electric field orthogonal to each other, he was able to determine the
magnitude of the magnetic elementary charge to 3.27 ± 0.16 × 10−8gauss cm2

and in this paper he concludes.

The magnitude of the magnetic charge by Dirac theoretically is
obtained experimentally.

As fare as I know Mikhailov result still need to be verified by other researches.
A possible explanation that seems to fit all the experiments on magnetospho-

tophoresis, is that a rapid shifting magnetic field splits up the flow of magnetic
monopoles and allow single monopoles to get trapped in the ferromagnetic parti-
cles where the light beam is necessary to keep them from escaping. This would
explain why the effect don’t show up when using a permanent or in a slow
varying magnetic field and why it don’t show up without a light beam.

5.2 Magnetic current

If magnetic monopoles really exist, then one might consider if the electromag-
netic phenomenon is a consequence of interaction between magnetic monopoles.
A researcher who advocated this view, was Edward Leedskalnin (1887-1951).

Edward was not educated as a scientist, and many of his views and explana-
tions are based upon hes own experiments, were far from accepted scientific ones.
What make Edward Leedskalnin’s story interesting, is that while his views, were
not those of our times scientist, he did seem to show superior understanding of
the nature of gravity.

In the years 1920-1940 he single handedly built what are called the coral
castle from 1,100 tons of coral rock in Homestead, Florida. The entrance is
through a gate made of a 9 tons block of rock, so perfectly balanced that a child
can open it with a finger.

Hes own words about how he was able to build his castle is:

I have discovered the secrets of the pyramids, and have found
out how the Egyptians and the ancient builders in Peru, Yucatan,
and Asia, with only primitive tools, raised and set in place blocks of
stone weighing many tons!

Edward never did reveal his secret directly, and most of hes work on the
castle, he did at night by the light of a lantern. It has been told that, some
teenagers once sneaked up on him one night and returned home with stories,
about rocks floating in the air, like helium balloons.

Edward’s view on electromagnetism is known from a little booklet he pub-
lished in 1945, called ‘Magnetic current’ [12]. The primary content of this
booklet is a description of experiments with magnets and simple circuits.

According to Edward, electric current is an effect generated by magnetic
monopoles flowing against each other in a spinning fashion. North pole monopoles
from electric positive to electric negative, and south pole monopoles the other
way, always flowing against each other and never alone.

Edward argued that magnetic monopoles are much smaller than the particles
of sunlight, by the simple fact that sunlight cannot penetrate things like wood,
rock and iron, but the magnetic force can penetrate everything.
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Edward’s view may be summarized by the following quote:

The real magnet is the substance that is circulating in the metal.
Each particle in the substance is an individual magnet by itself, and
both North and South Pole individual magnets. They are so small
that they can pass through anything. In fact they can pass through
metal easier than through the air. They are in constant motion,
they are running one kind of magnets against the other kind, and if
guided in the right channels they possess perpetual power.

One might say that Edward’s view is the reverse version of Ampère’s hy-
pothesis.
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Chapter 6

Scalar effects

This chapter is about effects caused by the scalar electric field E and scalar
magnetic field B. The study of scalar fields have in the past been difficult for a
number of reasons.

• There is no commonly known way to measure the scalar fields directly.

• The effects are not described in the normally teached model of electro-
magnetism.

• The scalar effect seems to contradict some generally teached laws of physics,
this has made it very difficult for researchers on this subject to get their
findings published in the top peer reviewed journals.

6.1 Tesla’s discovery

In 1892 Nikola Tesla published an article [1] where he describes the discovery of
what he called “electrical sound waves”. The event leading up to the discovery,
is described in detail in the book Lost Science by Gerry Vassilatos[2], here it
should be noted that he is basing some of his material on interviews with persons
who knew Tesla, and that there is no written documentation:

Tesla was studying the phenomena that instantaneous application of current
from his polyphase system often caused exploding effects. To be able to study
this effect, he built a test system consisting of a high voltage dynamo and a
capacitor bank. Then he configured it in such way that all the possible current
alternations were eliminated, so that this test system would supply a single
pulse of high current and high voltage, which would instantaneously vaporize a
short and thin piece of wire.

When he made the first wire explosion, he felt a powerful sensation of a
stinging pressure waves. At first he thought that the irritation was caused by
small particles from the explosion but he could find no wounds or other evidence
of that. Then he placed a large glass plate between himself and the exploding
wire and he could still feel the stinging sensation. This made him exclude the
possibility that the sensation where caused by a mechanical pressure waves and
directed him on to believe that the effect was electrical.

He then exchanged the short and thin wire a for longer one, so that the wires
did not explode, but still the powerful stinging sensation remained.
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He then changed his test system again, and made it automatic, so that he
could walk around in his lab while he made his experiments. He observed that
the stinging effect could be sensed 10 feet away.

He realized that this effect was a rare electrical effect caused by very short
current impulses. Painfully studying the discharge on very close range, he noted
that the bright blue-white color of the discharge spark which stood strait out
from the wire, seemed to indicate a voltage of 250,000 volt, while the test system
only supplied 50,000 volt.

Tesla tried to change the number of impulses per second and he found that
the manifestation of the effect changed with frequency. With some frequencies
there was heat, with some there was light, and with some, it felt like a cold breeze
and the painful stinging effect seemed to go away over a sudden threshold.

The phenomena that Tesla found are incredible and it is no wonder that al-
most no one could understand his inventions and discoveries at his time, lacking
a mathematical model to guide them in this new territory of phenomena.

6.2 Tesla’s article

We will take Tesla’s own description from his 1892 article, and step by step
show how this can be explained with quaternion electrodynamics.

These waves are propagated at right angles from the charged
surfaces when their charges are alternated, and dissipation occurs,
even if the surfaces are covered with thick and excellent insulation.

This can be explained with the E ~E term in the flow of energy (3.20). While

the ~E field is always at a right angle from the charged surface and charge
alternation 1

c
∂ρe

∂t
is the source terms for the electric scalar wave (3.15). The E ~E

term also explains the voltage scaling effect that Tesla observed, such that a 50
kV discharge could look like a 250 kV discharge.

In the article, Tesla has the following description.

These waves are especially conspicuous when the discharges of a
powerful battery are directed through a short and thick metal bar,
the number of discharges per second being very small.

A powerful battery and with discharge through a short and thick metal bar,
this a good way to optimize the term 1

c
∂ρe

∂t
and thereby the oscillations of the

scalar field and the flow of energy E ~E.

The experimenter may feel the impact of the air at distances of
six feet or more from the bar, especially if he takes the precaution
to sprinkle the face or hands with ether.

and later in the article:

These waves cannot be entirely stopped by the interposition of
an insulated metal plate.

A normal insulation is meant to stop the electric current and not the electric
field, and it would not be able to stop this scalar-electric radiation. The best
insulator for this scalar-electric radiation would properly be a strong dielectric
material.
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Most of the striking phenomena of mechanical displacement, sound,
heat and light which have been observed.

Tesla only gives a few examples on the types of mechanical displacement he
has been observing, but in a video[3] on the reproduction of Tesla’s experiments
some of the effects can be seen. The most remarkably experiment in this video,
is when they show how a strip of copper is clearly attracted to a light blob,
lighted with current impulses.

6.3 Current impulses and divergences

When you look at the experiments which show evidence of scalar effects, then
two characteristics seem to emerge. Those experiments seem to include either
impulse currents, divergences of current density, or both. Impulse currents
are very short pulses of unidirectional current. It seems to be very important
for obtaining a scalar effect, that the pulses are not alternating, but is only
unidirectional.

A possible reason why a scalar effect is observed when impulse currents are
used, might be that the decay time for an excitation of the scaler field might be
very sort. By using short pulses more of the energy might be channeled through
the terms governed by the scalar field as illustrated in figure (6.1).

t0 t1 t2

~E2 - short pulse

~E2 - long pulse

E2 - scalar pulse

Figure 6.1: Scalar effect from impulse current

Here the first part of the pulse from t0 to t1 is where E2 is increasing and
energy is flowing into the system, the interval from t1 to t2 is where E2 is de-
creasing and energy flows out of the system. The scaler effect is most dominant
when the current impulse is shorter than t1.

While there are divergences in the current density in current impulses, they
can also be created when the current runs through conductors which expand or
contract. This is another characteristic which is repeatedly observed in experi-
ments with scaler fields.
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6.4 Transmission through a single wire

In the energy power theorem (3.20) there is a flow of energy in the form of the

E ~E term. Which indicates that it might be possible to set up a flow of energy
along an electric field ~E if you can generate a scalar field E. This would make
it possible to transmit energy through a single wire.

6.4.1 Tesla’s transmission line

In [4] Tesla writes:

In the course of development of my induction motors it became
desirable to operate them at high speeds and for this purpose I
constructed alternators of relatively high frequencies. The striking
behavior of the currents soon captivated my attention and in 1889 I
started a systematic investigation of their properties and possibilities
of practical application. The first gratifying result of my efforts in
this direction was the transmission of electrical energy thru one wire
without return, of which I gave demonstrations in my lectures and
addresses before several scientific bodies here and abroad in 1891
and 1892.

In order to understand Tesla’s system, take a look at figure (6.2).

G

L

G

L

G

L

E

Figure 6.2: Tesla’s transmission line

The first part shows a resonance circuit with a capacitor and two coils. The
first coil is connected to a generator through a secondary coil and the other
is connected to a load in the same way. When the generator is running the
load draws energy, this is ordinary transformer theory. In the middle part,
the capacitor has been split up and the energy is transmitted along a single
line. In the last part, the terminals have been replaced with metal spheres and
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the line has been replaced with the earth. This is essentially Tesla’s plan for
transmitting energy to the entire earth. The use of impulse current, and the
divergences at the terminal, would ensure a scalar scaling effect and a flow of
energy along the line, and due to the scaling effect the generator was called
a magnifying transmitter. Tesla seems to describe this effect in the following
quote where he compares his system to pumping a bag of rubber[4]:

This is a crude but correct representation of my wireless sys-
tem in which, however, I resort to various refinements. Thus, for
instance, the pump is made part of a resonant system of great iner-
tia, enormously magnifying the force of the imprest impulses. The
receiving devices are similarly conditioned and in this manner the
amount of energy collected in them vastly increased.

6.4.2 Goubau’s transmission line

In 1950 Georg Goubau published an article[5] where he describes another type of
single wire transmission line. He describes a conductor with the surface modified
in a saw tooth shaped pattern, which gives a divergence in the current density
along the line. To launch and receive the wave Goubau is using a horn shaped
conductor in each end. To keep the wave within the wave guide, it is coated
with a dielectric material. Here the horn is a current density divergence which
helps create the scalar field and a flow of energy along the conductor while the
dielectric coating helps prevent the flow from escaping.

Modified conductorDielectric coating

Figure 6.3: Goubau’s transmission line
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6.5 Scalar devices

6.5.1 Bedini’s device

This scalar field device is attributed to researcher John Bedini.
It consists of 2 bar magnets which are glued with the north poles against each

other and with 50 turns of wire around it. When impulse current is supplied to
the coil, narrow beams are reported to extend a few inches from the magnets.
(see figure 6.4) To verify the effect of the beam it is suggested that you buy two
identical music cds, and after verifying that they sound the same, place one in
the radiation for 2 minutes, and then compare them again.

S

N

N

S

Figure 6.4: Bedini’s scalar device

6.5.2 Fluxite device

An example of how it might be possible to make a scalar magnetic field B, might
seen in [6]. Described in this document is a Tesla coil coiled around a cone with
an iron tip (figure 6.5) and then a pulsing current is applied to the Tesla coil.
The idea here is that this would give reason to a pulsing magnetic field with a
divergence which would create a magnetic scalar field at the iron tip. 1

In the fluxite non-patent, eight of these Tesla cones are mounted on a bar
magnet, and used to magnify its magnetic field. A donut shaped copper coil
is then used to gather electricity from the arrangement, and when the pulsing
of the Tesla coils to tuned to the resonance frequency of the bar magnet, then
more electricity is generated by the gathering coil than is used to drive the Tesla
coils. See figure 6.6.

6.6 Quantum effects

While much research is still needed on scalar fields, I will use a little space to
mention the possibility that the quantum effect might be due to scalar fields.

1It should be noted that the explanation from the non-patent differers from the explanation
presented here.
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Iron tip

Wire

Current direction

Figure 6.5: Tesla coil cone

NS

Tesla coil cones

Magnet Gathering coil

Figure 6.6: Fluxite sketch

Let us take the Heisenberg uncertainty principle, which in one form states the
uncertainty in energy times the uncertainty in time is grater or equal than ~

2 .
Here it is important to remember that most quantum mechanical interaction
observed in the laboratory has been almost exclusively in electromagnetic sys-
tems, so therefore it might be the case that the uncertainty in energy is due
to an excitation of a scalar oscillation, and that the time for the energy in this
scalar oscillation to return to the non-scaler system is grater than ~

2∆E
. If this is

what happens, it could help restore energy conservation back in the description
of quantum effects. This would also give a better understanding of the quantum
mechanical tunnel effect and give researchers a way to control it.
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Chapter 7

Closing

7.1 Considerations

In the following, I will write about considerations and open questions that I
have encountered while researching this treatise.

A man named George Box once said ‘All models are wrong but some models
are useful’ just as Maxwell’s equations, quaternionic electrodynamic is just a
model, and while it might be useful, it also has limitations.

Every model has advantages and limitations, and in every discipline one of
the things which separates the experts from the rest, is a deep knowledge about
the advantages and limitations of the model in use. In the following section, we
will take a closer look at some of the limitations of the quaternion model.

7.1.1 Faraday’s law

Lets take a closer look at the electromotive force in Maxwell’s system. From
integrating

~∇× ~E = −1

c

∂ ~B

∂t
(7.1)

over a surface we get

~ǫ =

∮

S

~E · d~l = −1

c

∫

S

∂ ~B(t)

∂t
· d~s (7.2)

But the law of electromotive force, discovered experimentally by Faraday
where

~ǫ = −1

c

d

dt

∫

S(t)

~B(t) · d~s (7.3)

When we integrate over the surface which changes with time, then we have

d

dt

∫

S(t)

~B(t) · d~s 6=
∫

S(t)

∂ ~B(t)

∂t
· d~s. (7.4)

So, one limitation of Maxwell’s equations are that we should be very care-
ful when using them on problems where we have paths, surfaces and volumes
changing with time.
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7.1.2 Galileo invariance

A way to solve some of the problem between Maxwell’s equations and Faraday’s
law was suggested by Heinrich Rudolf Hertz. Hertz suggestion was to replace
the partial time derivatives with the total time derivatives:

ρe = ~∇ · ~E (7.5)

~Je = ~∇× ~B − 1

c

d ~E

dt
(7.6)

0 = −~∇ · ~B (7.7)

0 = −~∇× ~E − 1

c

d ~B

dt
(7.8)

By the expansion d
dt

= ∂
∂t

+ (~v · ~∇) we get

ρe = ~∇ · ~E (7.9)

~Je = ~∇× ~B − 1

c

∂ ~E

∂t
− 1

c
(~v · ~∇) ~E (7.10)

0 = −~∇ · ~B (7.11)

0 = −~∇× ~E −−1

c

∂ ~B

∂t
− 1

c
(~v · ~∇) ~B (7.12)

This not only solves some of the problems with Faraday’s law but also make
the equations Galileo invariant.

Hertz interpreted ~v as the absolute velocity of aether elements.
Using Hertz suggestion on the full quaternion model, gives us the following

equations:

ρe = ~∇ · ~E − 1

c

∂E

∂t
− 1

c
(~v · ~∇)E (7.13)

~Je = ~∇× ~B − 1

c

∂ ~E

∂t
− 1

c
(~v · ~∇) ~E + ~∇E (7.14)

ρm = −~∇ · ~B +
1

c

∂B

∂t
+

1

c
(~v · ~∇)B (7.15)

~Jm = −~∇× ~E − 1

c

∂ ~B

∂t
− 1

c
(~v · ~∇) ~B + ~∇B (7.16)

If this equation has any relevance to actual physics, is open for further
research.

7.1.3 Speed of light

When deriving Maxwell’s equations we assume that the speed of light c for the
vacuum, does not change with position ~r and time t. Both Maxwell’s equations
and the quaternion model can be derived directly from the expression for the
retarded potential[2]

Ae(t, ~r) =
1

4π

∫

V

je(t − |~rs − ~r|/c, ~rs)

|~rs − ~r| d~rs (7.17)
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But if c is not constant over the space between ~rs and ~r, then the expression
is not valid and the model might have to be changed.

In 1929 Tesla said[3]:

The velocity of any sound wave depends on a certain ratio be-
tween elasticity and density, and for this ether or universal gas the
ratio is 800,000,000,000 times greater than for air.

Tesla held the opinion that electromagnetic radiation were longitudinal (sound)
waves through the aether. What is interesting in this connection, is that if you
combine Tesla’s opinion with the hypothesis that electromagnetic fields lower
the density of the medium, then it might be possible to measure changes in the
speed of light in regions with strong electric or magnetic fields.

7.1.4 Materials properties

In this treatise the electromagnetic models have been studied without consider-
ing material dependent factors like permittivity and permeability. There might
be similar factors related to the electric and magnetic scaler fields, if this is so,
then determining those factors for all types of materials will be a big task for
future researchers.

7.2 Conclusion

In this treatise the primary conclusions are:

• Maxwell’s equations can be extended to full quaternion fields.

• These extended equations can be written as two quaternion equations.

• That the quaternion model predicts a longitudinal force between current
elements, which might explain the longitudinal force observed in many
experiments since the time of Ampère.

While taking into account that independent experimental verification is
needed, the secondary conclusions are:

• Experimental research seems to indicate that magnetic monopoles do exist,
and that the magnetic elementary charge is close to Dirac’s prediction.

• Effects indicating scalar fields have been observed since Tesla’s discovery
around 1890.
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Appendix A

Hamilton letters

The following is letters from W.R. Hamilton to A. De Morgan on the electro-
magnetic quaternion. Taken from the 1975 reprint of R. P. Graves, Life of Sir
William Rowan Hamilton.

A.1 Letter to Augustus De Morgan, 25 May

1854

‘Observatory, May 25, 1854.

‘Your note has been received, and some things in it shall perhaps be noticed
more fully hereafter. Meanwhile, I am in mood to tell you of something new,
before my first interest in it shall have evaporated, and my mind turned to other
matters. I must bring in quaternions (Hamlet won’t let himself be left out),
but shall assume little more than a quaternion

Q = ω + ρ = SQ + V Q = scalar plus vector,

where the scalar ω, or SQ, is a positive or negative number, while the vector ρ,
or V Q, is by me usually constructed as a directed right line in tridimensional
space. You will also allow me to assume that, in a certain definite sense, the
product or quotient of two vectors is generally a quaternion, and will allow me
to difference and differentiate.

‘Well, I sought this morning to translate into my own notation the law of
attractive or repulsive action (say f), of one element ds of a current on another
element ds′ of the same or another current, which was discovered by Ampère,
and by him under the form (Théorie des Phénomènes Électrodynamiques, p.
217, &c.).

(f =) − 2ii′dd′
√

r√
r

, or − 2ii′r−
1

2 dd′.r
1

2 ; (A.1)

the respective intensities of the elements being i, i′, and their rectilinear distance
r.

‘I took ρ, ρ′ for the vectors of the beginnings of the elements (drawn from an
arbitrary origin), and therefore naturally denoted the directed elements them-
selves by dρ, dρ′; while ∆ρ = ρ′ − ρ expressed the directed line from first to
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second; so that, on my principles,

dρ2 = −ds2, dρ′2 = −ds′2, ∆ρ2 = −r2.

I was to pick out the part involving dρ and dρ′ each in the 1st dimension, from

the development of {−(∆ρ + d∆ρ)
2}

1

4 ; and then (treating the intensities of the

currents as each =1) was to multiply the part so found by −2(−∆ρ2)
− 1

4 , in
order to get the required translation of Ampère’s law. Or I was to select, by the
condition mentioned, the proper part of the expansion of

−2

(

1 + 2S
d∆ρ

∆ρ
+

d∆ρ2

∆ρ2

)+ 1

4

;

or the proper portion of this part thereof,

−d∆ρ2

2∆ρ2
+

3

4

(

S
d∆ρ

∆ρ

)2

;

or of

− (dρ′ − dρ)
2

2∆ρ2
+

3

4

(

S
dρ′

∆ρ
− S

dρ

∆ρ

)2

.

This part, or selection portion, is

f =
S.dρdρ′

∆ρ2
− 3

2
S

dρ

∆ρ
S

dρ′

∆ρ
; (A.2)

which accordingly I found to agree, through spherical trigonometry, with a per-
haps better known formula of Ampère (quoted by De la Rive, and investigated
by Murphy, &c.),

r−2dsds′(sin θ sin θ′ cosω − 1

2
cos θ cos θ′),

when θ, θ′ are the angles made by the elements with their connecting line r, and
w is the dihedral angle with that line for edge. So far, all is mere practice in my
calculus; and you may say the same of these transformations of the expression
(A.2),

f = −1

2
S

(

dρ

∆ρ

dρ′

∆ρ
+ V

dρ

∆ρ
V

dρ′

∆ρ

)

, (A.3)

f = −1

2
S

(

dρdρ′

∆ρ2
+ 3V

dρ

∆ρ
V

dρ′

∆ρ

)

, (A.4)

But you must know that I have been for more than ten years haunted with
visions, or amused by notions, of some future application of the Calculus of
Quaternions to Nature, as furnishing a Calculus of Polarities. (See my printed
letter of Oct. 17th, 1843, to J. T. G., Philosophical Magazine, Supplement
to December number for 1844, p.490). More definitely, I have often stated,
to Lloyd and others in conversation, my expectation that it would be found
possible to express two connected but diverse physical laws by means of one
common quaternion; and Faraday may possibly remember my chat with him at
Cambridge, in 1845, upon the subject of the analogy of the products of ijk, to
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the laws of electrical currents (ij = +k, ji = −k, corresponding to phenomena
of electricity (see British Association Report, for 1845).

‘Knowing this little bit of my own history, you will not be surprised that I
sought to realize my old expectation to-day, after having translated Ampère’s
law into the notations of the Calculus of Quaternions. Having expressed his
attractive force between two elements, as the scalar part of a quaternion,

f = SQ, (A.5)

where Q may have either of the two forms given by (A.3) and (A.4) – and indeed
others also, which I thought less proper for my purpose – my old conjecture led
me to surmise that there might be some directive force, φ, perhaps an axis of a
couple, perhaps a magnetic element, or what else deponent sayeth not, which
should be expressed as the vector part of the same quaternion, Q; in such a way
that.

φ = V Q. (A.6)

The form which (A.3) would give for Q was at first tried; but I found that it had,
what appeared to me to be inconsistent with the law of action and re-action,
the property of not charging to its own conjugate quaternion, KQ, when ρ and
ρ′ were interchanged. From this fault the quaternion suggested by the formula
(A.4) is free; and accordingly I assumed

Q = −1

2

(

dρdρ′

∆ρ2
+ 3V

dρ

∆ρ
V

dρ′

∆ρ

)

; (A.7)

and proceeded to try, as a mathematical experiment, whether my old conjecture,
expressed by the recent equation (A.6), might not lead me to the re-discovery
of some known law of nature, or at least to some result identifiable with such a
law.

‘I soon found, by combining (A.6) and (A.7), according to the rules of my
calculus, the expression

φ =
1

2
(3νS.νλλ′ − ν2V.λλ′); (A.8)

after having written, for conciseness,

λ = dρ, λ′ = dρ′, ν = ∆ρ−1, (A.9)

making also
V.λλ′ = µ, (A.10)

we have this somewhat shortened expression,

φ =
1

2
(3νS.νµ − ν2µ); (A.11)

or (by the rules of this calculus),

φ = ν(S +
1

2
V ).µν. (A.12)

Up to this stage, I assure you that no recollection of anything about terrestrial
magnetism (respecting which I know very little) had in any degree consciously
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influenced my transformations. So mush had those things been out of my head
that I was obliged to ask my son Archy whether in fact the Dip was greater
than the Latitude, or the Latitude than the Dip. But Having seen that equation
(A.12) gave

V

S
.ν−1φ =

1

2

V

S
.µν, (A.13)

I perceived that (by The principles of my Lectures)

tan µν = 2 tan νφ; (A.14)

and this not only suggested things about dip, &c., though very vaguely remem-
bered, but led me to see that, for a first approximation, I was to assimilate the
joining line ν−1 = ∆ρ, to the vertical; and to compare the line µ, perpendicular
to the elements of the current, to the magnetic axis of the earth; and finally
to consider my conjectured line of directive force, φ, as being physical repre-
sented by the dipping needle. At least it is so in direction, even when plane
is taken into account; but I thought it very likely (such was my faith in the
quaternions), that the formula (A.12) for φ would be found to represent also
the intensity of terrestrial magnetism; to the same order of approximation, I
mean, as the formula,

tan(dip) = 2 tan(mag. lat.).

By Taking the tensor of φ, using (A.11) rather than (A.12), I inferred this
magnetic intensity1 to be proportional to

√

1 + 3 sin l2;

because the formula (A.11) gives (on my hypothesis, intensity =)

Tφ =
1

2
Tν2Tµ{1 + 3(SU.νµ)

2}
1

2 . (A.15)

(I use here the symbols T and U to which I am accustomed).
‘ (Recapitulation. – f = SQ = Ampère’s attractive force between the

elements dρ, dρ′, of a current, with intensities each = 1, and separated by the
interval ∆ρ; φ = V Q = ν(S + 1

2V )µν, when ν = ∆ρ−1, µ = V.dρdρ′; and φ =
a (new?) sort of directive force, which seems to be nearly represented by the
dipping needle, if ν be treated as the vertical at the place, and ν as the magnetic
axis of the earth).

‘When I had got so far I conjured my son Archy, after his returning from our
parish church – (I am ashamed to say that I had got caught in this investigation
early, and did not observe the hours, till it was too late for me to shave and
walk) – to hunt out all the books in this house bearing any relation to terrestrial
magnetism, and to search among them whether any law of intensity, of the form

const ×
√

1 + 3(sin.mag.lat)2, (A.16)

was recognized. He had to perform duties of hospitality to a party from this
neighborhood, and could not immediately find any information for me of the

1It was partly through a foresight of some such use as this that I ventured to introduce
the word “Tensor,” in my writings.
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kind required. I went roaming about the house; hunted out Biot’s Physique,
3rd vol.; Turner’s Chemistry; Kane’s; a book of Hassenfratz; and several others,
without being able to find anything bearing on the point. At last I lit on
Christie’s Report on the Magnetism of the Earth, embodied in the Report of the
B. A. for 1833, in which, at page 121, I found the formulœ,

tan δ = 2 tanλ,

I =
m

2

√

3 sin2 λ + 1;

deduced, it is true, from “the hypothesis of two magnetic poles not far removed
from the centre of the earth,” and very far inferior in accuracy to what is given
by the Gaussian constants; but yet having a encouraging analogy to my own the-
oretical results, especially as my investigation (it must always be remembered)
relates only to two linear elements.

‘On the whole, I think that it is not without some just cause that I propose
to call the quaternion

Q = −1

2
(
dρdρ′

∆ρ2
+ 3V

dρ

∆ρ
V

dρ′

∆ρ
),

the “Electro-Magnetic Quaternion,” of, or resulting from, the two linear
elements, dρ and dρ′, separated by the interval ∆ρ.

‘You see that the notion of “current” is quite eliminated here, though the
mere word has been retained. The dρ and dρ′ may be directed tensions or
elementary axes of rotation, or anything else which answers to a directed and
linear element in space. I must confess that I am strongly tempted to believe,
that a differential action, represented by the vector φ of my quaternion Q,
exists in nature; but if experiments shall overthrow this opinion, it will still
have been proven that my Calculus furnishes an organ of expression, adapted
to very complex phenomena.”

A.2 Letter to Augustus De Morgan, 27 May

1854

‘Observatory, May 27, 1854.

‘Though I let a letter go off this morning, after causing a copy to be kept,
which letter had been written two days ago, I feel much less sanguine than
when writing it, about its having any physical value at present; even if, with
modifications to be indicated by facts, it shall ever come to have any.

‘The scalar, SQ, of the quaternion

Q = −1

2

(

dρdρ′

∆ρ2
+ 3V

dρ

∆ρ
V

dρ′

∆ρ

)

, (A.17)

undoubtedly represent Ampère’s law of the attractive or repulsive action
between two linear and directed distance ∆ρ. That is a mere mathematical fact
of calculation. But you know that any vector, whatever, suppose κ, may be
added to a quaternion Q, without changing its scalar part:

S(Q + κ) = SQ, if Sκ = 0. (A.18)
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My choice of the form (A.17) must therefore be admitted to be eminently con-
jectural, even if the principle to which I still cling, that some quaternion form
Q, of a simple kind, exists, which by its scalar part SQ expresses one mode
of physical action, and by its vector part V Q expresses another connected and
connate mode of force or influence in nature.

‘On the whole, without having perceived any mathematical error in what I
lately wrote, I withdraw the epithet “Electro-Magnetic,” as assuming too mush,
on the physical side, for my recent quaternion Q. But though I cannot hope
that your own avocations, and researches, have allowed you as yet to catch much
more than the spirit of my calculus (what a splendid quaternionist you would
become, if you ever really set about it!), I think that this one short expression
of mine for Q contains at once, by its scalar part the Ampèrian function

f = r−2dsds′(sin θ sin θ′ cosω − 1

2
cos θ cos θ′),

and by its vector part the three other laws: – 1st, of a certain resultant axis φ
being in the same plane with the connecting line ∆ρ and the common perpen-
dicular to the elements dρ, dρ′; 2ed, of the tangent of a certain dip (δ) being
twice the tangent of a certain latitude (λ); and 3rd, of the intensity varying as√

1 + 3 sinλ2 when the elements are otherwise given.
‘The analogy to magnetism is perhaps very vague – indeed I suspect it to be

so; but if one small quaternion can mean so much, may not something be hoped
from some future shake of Lord Burleigh’s head? (Vide Sheridan’s Critic).

‘I have, however, the common sense (sometimes) to admit that no ingenuity
of speculation can dispense with an appeal to facts. And what I am at present
extremely curios to know is whether facts are decidedly against what seems
to me a natural supposition, that two rectangular and rectilinear (and non-
intersecting) conducting wires, though not attracting nor repelling each other,
may have some tendency to assume parallel positions:2 or may be the occasion
of some other directive force arising, before attraction or repulsion begins.
Oersted’s discovery (I have met Oersted, and he has given me some very pretty
and rather poetical German papers) seems to be almost a proof that this is so;
but my wish is to eliminate, if possible, magnetism, at first, as an eminently
complex phenomenon.’

‘Observatory, June 1, 1854.

‘P.S. – This morning’s post brings me a letter from Lloyd, influenced no
doubt by our old friendship, but containing a far greater degree of encourage-
ment than I had expected to receive, as to what I had called the “Electro-
Magnetic Quaternion.”

‘Hope to write soon on something else.’

2I have since seen this rotatory tendency does follow from Ampère’s attraction, though not
for the elements at the very extremities of the common perpendicular; and on expressing and
integrating the moments of rotation have got results which I have the satisfaction of finding
to be coincident with his (see especially his page 86). In short, this little speculation, which
as such I abandon for the present, has led me to learn more of precise nature of his beautiful
theory, in what may be called a few hours, than I had done in my life before.



Appendix B

Maxwell letters

The following is letters from J. C. Maxwell. Taken from The scientific letters
and papers of James Clerk Maxwell edited by P. M. Harman.

B.1 Letter to Peter Guthrie Tait, 28 August

1879

[Glenlair]

Headstone in search of a new sensation

While meditating as is my wont on a Saturday afternoon on the enjoyments and
employments which might serve to occupy one or two of the aeonian ætherial
phases of existence to which I am looking forward, I began to be painfully
conscious of the essentially finite variety of sensations which can be elicited by
the combined action of a finite number of nerves, whether these nerves are of
protoplasmic or eschatoplasmic structure. When all the changes have been rung
in the triple bob major of experience, must the same chime be repeated with
intolerable iteration through the dreary eternities of paradoxical existence?

The horror of a somewhat similar consideration had as I well know driven
the late J. S. Mill to the very verge of despair till he discovered a remedy for
his woes in the perusal of Wordsworths Poems.

But it was not to Wordsworth that my mind now turned, but to the no-
ble Viscount the founder of the inductive philosophy and to the Roman city
whence he was proud to draw his title, consecrated as it is to the memory of
the Protomartyr of Britain.

Might not I, too, under the invocation of the holy ALBAN become inspired
with some germinating idea, some age-making notion by which I might burst the
shell of circumstance and hatch myself something for which we have not even a
name, freed for ever from the sickening round of possible activities and exulting
in life every action of which would be a practical refutation of the arithmetic of
this present world.

Hastily turning the page on which I had recorded these meditations, I noticed
just opposite the name of the saint another name which I did not recollect having
written. Here it is - ALBAN .
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Here then was the indication, impressed by the saint himself, of the way out
of all my troubles. But what could the symbol mean? I had heard that the
harp from which Heman or Ethan drew those modulations from the plaintive
to the triumphant which modern musée with its fetters of tonality may ignore
but can never equal - I had heard that this harp be found, nor yet the lordly
music which has not been able to come down through the illimitable years.

Here I was interrupted by a visitor from Dresden who had come all the
way with his Erkenntniß Theorie under his arm showing that space must have
3 dimensions and that theres not a villain living in all Denmark but he’s an
arrant knave. Peruse his last epistle and see whether he could be transformed
from a blower of his own trumpet into a Nabladist.

I have been so seedy that I could not read anything however profound with-
out going to sleep over it.
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