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Preface

These lecture notes are intended to be used for master courses, where the students have
a limited prior knowledge of special topics in probability. Therefore, we have included
many of the preliminaries, such as convergence of random variables, probabilistic bounds,
coupling, martingales and branching processes. These notes are aimed to be self-contained,
and to give the readers an insight in the history of the field of random graphs.

The field of random graphs was started in 1959-1960 by Erdős and Rényi, see [121, 122,
123, 124]. At first, the study of random graphs was used to prove deterministic properties
of graphs. For example, if we can show that a random graph has with a positive probability
a certain property, then a graph must exist with this property. The method of proving
deterministic statements using probabilistic arguments is called the probabilistic method,
and goes back a long way. See among others the preface of a standard work in random
graphs by Bollobás [58], or the work devoted to it The Probabilistic Method [15]. Erdős
was one of the first to use this method, see e.g., [119], where it was shown that the Ramsey

number R(k) is at least 2k/2. The Ramsey number R(k) is the value n for which any graph
of size at least n is such that either itself or its complement contains a complete graph of
size at least k. Erdős in [119] shows that for n ≤ 2k/2, the fraction of graphs for which the
graph or its complement contains a complete graph of size k is bounded by 1/2, so that

there must be graphs of size n ≤ 2k/2 for which the graph nor its complement contains a
complete graph of size k.

The initial work by Erdős and Rényi on random graphs has incited a great amount of
work on the field. See the standard references on the subject [58] and [171] for the state
of the art. Particularly [122] is a highly impressive paper. In it, a rather complete picture
is given of the various phase transitions that occur on the Erdős-Rényi random graph. An
interesting quote appearing in [122, Page 2-3] is the following:

“It seems to us worthwhile to consider besides graphs also more complex struc-
tures from the same point of view, i.e. to investigate the laws governing their
evolution in a similar spirit. This may be interesting not only from a purely
mathematical point of view. In fact, the evolution of graphs can be seen as a
rather simplified model of the evolution of certain communication nets...”

This was an excellent prediction indeed! Later, interest in random graphs of a different
nature arose. Due to the increase of computer power, it has become possible to study so-
called real networks. Many of these networks turned out to share similar properties, such as
the fact that they are small worlds, and are scale-free, which means that they have degrees
obeying power laws. The Erdős-Rényi random graph does not obey these properties, and,
therefore, new graph models were invented. In fact, already in [122], Erdős and Rényi
remark that

“Of course, if one aims at describing such a real situation, one should re-
place the hypothesis of equiprobability of all connection by some more realistic
hypothesis.”

See [218] and [8] for two reviews of real networks and their properties to see what ‘more
realistic’ could mean. These other models are also partly covered in the classical works
[58] and [171], but up to today, there is no text treating random graphs and random graph
models for complex networks in a relatively elementary way. See [111] for the most recent
book on random graph, and, particularly, dynamical processes living on them. Durrett
covers part of the material in this book, and much more, but the intended audience is

iii



iv Preface

rather different. The goal of these notes is to provide a source for a ‘Random graphs’
course at master level.

We treat both results for the Erdős-Rényi random graph, as well as for random graph
models for complex networks. The aim is to give the simplest possible proofs for classical
results, such as the phase transition for the largest connected component in the Erdős-Rényi
random graph. Some proofs are more technical and difficult, and the sections containing
these proofs will be indicated with a star ∗. These sections can be omitted without losing
the logic in the results. We also give many exercises that help the reader to obtain a deeper
understanding of the material by working at their solutions.

These notes contain two main parts. In the first part consisting of Chapters 1–8, we
give complete and self-contained proofs for some of the main results on random graphs.
In the second part consisting of Chapters 9–11, we state further results giving many, but
not all, proofs. Chapter 12 discusses flows on random graphs. We sometimes add heuristic
arguments for the validity of the results and the logic behind the proof, without giving all
details.

These notes would not have been possible without the help of many people. I thank
Gerard Hooghiemstra for the encouragement to write these notes, and for using them at
Delft University of Technology almost simultaneously while I used these notes at Eindhoven
University of Technology in the spring of 2006 and again in the fall of 2008. Together
with Piet Van Mieghem, we entered the world of random graphs in 2001, and I have
tremendously enjoyed exploring this field together with you, as well as with Henri van den
Esker, Dmitri Znamenski, Mia Deijfen and Shankar Bhamidi. I particularly wish to thank
Gerard for many useful comments on these notes, solutions to exercises and suggestions
for improvements of the presentation of particularly Chapters 2–5.

I thank Christian Borgs, Jennifer Chayes, Gordon Slade and Joel Spencer for joint work
on random graphs which are like the Erdős-Rényi random graph, but do have geometry.
This work has deepened my understanding of the basic properties of random graphs, and
many of the proofs presented here have been inspired by our work in [65, 66, 67]. Special
thanks go to Gordon Slade, who has introduced me to the world of percolation, which is a
close neighbor of random graphs (see also [139]). It is peculiar to see that two communities
work on two so related topics with quite different methods and even terminology, while it
has taken such a long time to build bridges between the subjects.

Further I wish to thank Finbar Bogerd, Mia Deijfen, Michel Dekking, Henri van den
Esker, Markus Heydenreich, Martin van Jole, Willemien Kets, Xiaotin Yu for remarks,
corrections of typos and ideas that have improved the content and presentation of these
notes substantially. Wouter Kager has entirely read the February 2007 version of the notes,
giving many ideas for improvements of the arguments and of the methodology. I especially
wish to thank Dennis Timmers, Eefje van den Dungen and Joop van de Pol, who, as my
student assistants, have been a great help in the development of these notes, in making
figures, providing solutions to the exercises, typing up parts of proof from the literature,
checking the proofs and keeping the references up to date.

I have tried to give as many references to the literature as possible. However, the
number of papers on random graphs is currently exploding. In MathSciNet, see

http://www.ams.org/mathscinet/,

there are, on December 21, 2006, a total of 1,428 papers that contain the phrase ‘ran-
dom graphs’ in the review text, on September 29, 2008, this number increased to 1614,
and to 2346 on April 9, 2013. These are merely the papers on the topic in the math
community. What is special about random graph theory is that it is extremely mul-
tidisciplinary, and many papers are currently written in economics, biology, theoretical
physics and computer science, using random graph models. For example, in Scopus (see
http://www.scopus.com/scopus/home.url), again on December 21, 2006, there are 5,403
papers that contain the phrase ‘random graph’ in the title, abstract or keywords, on
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September 29, 2008, this has increased to 7,928 and on April 9, 2013 to 13,987. It can be
expected that these numbers will increase even faster in the coming period, rendering it
impossible to review most of the literature.
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Chapter 1

Introduction

In this first chapter, we give an introduction to random graphs and complex networks. The
advent of the computer age has incited an increasing interest in the fundamental properties
of real networks. Due to the increased computational power, large data sets can now easily
be stored and investigated, and this has had a profound impact in the empirical studies on
large networks. A striking conclusion from this empirical work is that many real networks
share fascinating features. Many are small worlds, in the sense that most vertices are
separated by relatively short chains of edges. From an efficiency point of view, this general
property could perhaps be expected. More surprisingly, many networks are scale free,
which means that their degrees are size independent, in the sense that the empirical degree
distribution is almost independent of the size of the graph, and the proportion of vertices
with degree k is close to proportional to k−τ for some τ > 1, i.e., many real networks
appear to have power-law degree sequences. These realisations have had fundamental
implications for scientific research on networks. This research is aimed to both understand
why many networks share these fascinating features, and also what the properties of these
networks are.

The study of complex networks plays an increasingly important role in science. Exam-
ples of such networks are electrical power grids and telephony networks, social relations,
the World-Wide Web and Internet, collaboration and citation networks of scientists, etc.
The structure of such networks affects their performance. For instance, the topology of
social networks affects the spread of information and disease (see e.g., [260]). The rapid
evolution in, and the success of, the Internet have incited fundamental research on the
topology of networks. See [27] and [268] for expository accounts of the discovery of net-
work properties by Barabási, Watts and co-authors. In [222], you can find some of the
original papers on network modeling, as well as on the empirical findings on them.

One main feature of complex networks is that they are large. As a result, their complete
description is utterly impossible, and researchers, both in the applications and in math-
ematics, have turned to their local description: how many vertices do they have, and by
which local rules are vertices connected to one another? These local rules are probabilistic,
which leads us to consider random graphs. The simplest imaginable random graph is the
Erdős-Rényi random graph, which arises by taking n vertices, and placing an edge between
any pair of distinct vertices with some fixed probability p. We give an introduction to the
classical Erdős-Rényi random graph and informally describe the scaling behavior when the
size of the graph is large in Section ??. As it turns out, the Erdős-Rényi random graph
is not a good model for a complex network, and in these notes, we shall also study exten-
sions that take the above two key features of real networks into account. These will be
introduced and discussed informally in Section 1.5.

1.1 Complex networks

Complex networks have received a tremendous amount of attention in the past decade.
In this section, we use the Internet as an example of a real network, and illustrate the
properties of real networks using the Internet as a key example. For an artist’s impression
of the Internet, see Figure 1.1.

Measurements have shown that many real networks share two fundamental properties.
The first fundamental network property is the fact that typical distances between vertices
are small. This is called the ‘small-world’ phenomenon (see [267]). For example, in Internet,
IP-packets cannot use more than a threshold of physical links, and if distances in the

1



2 Introduction

Figure 1.1: The Internet topology in 2001 taken from
http://www.fractalus.com/steve/stuff/ipmap/.

Internet would be larger than this threshold, e-mail service would simply break down.
Thus, the graph of the Internet has evolved in such a way that typical distances are
relatively small, even though the Internet is rather large. For example, as seen in Figure
1.2, the AS count, which is the number of Autonomous Systems (AS) which are traversed
by an e-mail data set, is most often bounded by 7. In Figure 1.3, the hopcount, which
is the number of routers traversed by an e-mail message between two uniformly chosen
routers, is depicted.

The second, maybe more surprising, fundamental property of many real networks is
that the number of vertices with degree k falls off as an inverse power of k. This is called
a ‘power-law degree sequence’, and resulting graphs often go under the name ‘scale-free
graphs’, which refers to the fact that the asymptotics of the degree sequence is independent
of its size. We refer to [8, 109, 218] and the references therein for an introduction to
complex networks and many examples where the above two properties hold. The second
fundamental property is visualized in Figure 1.4, where the degree distribution is plotted
on log-log scale. Thus, we see a plot of log k 7→ logNk, where Nk is the number of vertices
with degree k. When Nk is proportional to an inverse power of k, i.e., when, for some
normalizing constant cn and some exponent τ ,

Nk ∼ cnk−τ , (1.1.1)

then
logNk ∼ log cn − τ log k, (1.1.2)

so that the plot of log k 7→ logNk is close to a straight line. Here, and in the remainder
of this section, we write ∼ to denote an uncontrolled approximation. Also, the power
exponent τ can be estimated by the slope of the line, and, for the AS-data, this given as
estimate of τ ≈ 2.15− 2.20. Naturally, we must have that∑

k

Nk = n, (1.1.3)

so that it is reasonable to assume that τ > 1.
Interestingly, in the AS-count, various different data sets (which focus on different parts

of the Internet) show roughly the same picture for the AS-count. This shows that the
AS-count is somewhat robust, and it hints at the fact that the AS graph is relatively
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Figure 1.2: Number of AS traversed in hopcount data. Data courtesy of Hongsuda
Tangmunarunkit.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

0.00

0.04

0.08

0.12

Figure 1.3: Internet hopcount data. Data courtesy of H. Tangmunarunkit.
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Figure 1.4: Degree sequences AS domains on 11-97 and 12-98 on log-log scale [129]:
Power-law degrees with exponent ≈ 2.15− 2.20.
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5

dqdo|vlv ri wkh ghjuhh judsk prgho +vhf1 LLL,1 Wkh duw ri
prgholqj frqvlvwv lq sursrvlqj d prgho dv vlpsoh dqg sdu0
vlprqlrxv lq lwv sdudphwhuv dv srvvleoh wkdw pdwfkhv uhdolw|
dv forvh dv srvvleoh1 Wr �uvw rughu/ wkh sorwv lq Fkhq hw do1

^9` vwloo ghprqvwudwh d srzhu0olnh ehkdylru lq wkh ghjuhh glv0
wulexwlrq/ dowkrxjk qrw d shuihfw rqh1 Wkhuhiruh/ zh kdyh
frqvlghuhg khuh wkh prvw jhqhudo ghvfulswlrq ri srzhu0olnh
glvwulexwlrq ixqfwlrqv/ vshfl�hg lq +5,/ zklfk doorzv ghyl0
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Figure 1.5: Number of AS traversed in various data sets. Data courtesy of Piet Van
Mieghem.

homogenous. See also Figure 1.5. For example, the AS-count between AS’s in North-
America on the one hand, and between AS’s in Europe, are quite close to the one of the
entire AS. This implies that the dependence on geometry of the AS-count is rather weak,
even though one would expect geometry to play a role. As a result, most of the models for
the Internet, as well as for the AS graph, ignore geometry altogether.

The observation that many real networks have the above properties have incited a burst
of activity in network modeling. Most of the models use random graphs as a way to model
the uncertainty and the lack of regularity in real networks. In these notes, we survey some
of the proposals for network models. These models can be divided into two distinct types:
‘static’ models, where we model a graph of a given size as a time snap of a real network,
and ‘dynamic’ models, where we model the growth of the network. Static models aim to
describe real networks and their topology at a given time instant, and to share properties
with the networks under consideration. Dynamic models aim to explain how the networks
came to be as they are. Such explanations often focus on the growth of the network as
a way to explain the power law degree sequences by means of ‘preferential attachment’
growth rules, where added vertices and links are more likely to be attached to vertices that
already have large degrees.

When we would like to model a power-law relationship between the number of vertices
with degree k and k, the question is how to appropriately do so. In Chapters 6, 7 and 8,
we discuss a number of models which have been proposed for graphs with a given degree
sequence. For this, we let FX be the distribution function of an integer random variable
X, and we denote its probability mass function by {fk}∞k=1, so that

FX(x) = P(X ≤ x) =
∑
k≤x

fk. (1.1.4)

We wish to obtain a random graph model where Nk, the number of vertices with degree k,
is roughly equal to nfk, where we recall that n is the size of the network. For a power-law
relationship as in (1.1.1), we should have that

Nk ∼ nfk, (1.1.5)

so that
fk ∝ k−τ , (1.1.6)

where, to make f = {fk}∞k=1 a probability measure, we take τ > 1, and ∝ in (1.1.6)
denotes that the left-hand side is proportional to the right-hand side. Now, often (1.1.6)
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is too restrictive, and we wish to formulate a power-law relationship in a weaker sense. A
different formulation could be to require that

1− FX(x) =
∑
k>x

fk ∝ x1−τ , (1.1.7)

for some power-law exponent τ > 1. Indeed, (1.1.7) is strictly weaker than (1.1.6), as
indicated in the following exercise:

Exercise 1.1. Show that when (1.1.6) holds with equality, then (1.1.7) holds. Find an
example where (1.1.7) holds in the form that there exists a constant C such that

1− FX(x) = Cx1−τ (1 + o(1)), (1.1.8)

but that (1.1.6) fails.

An even weaker form of a power-law relation is to require that

1− FX(x) = LX(x)x1−τ , (1.1.9)

where the function x 7→ LX(x) is a so-called slowly varying function. Here, a function
x 7→ `(x) is called slowly varying when, for all constants c > 0,

lim
x→∞

`(cx)

`(x)
= 1. (1.1.10)

Exercise 1.2. Show that x 7→ log x and, for γ ∈ (0, 1), x 7→ e(log x)γ are slowly varying,

but that when γ = 1, x 7→ e(log x)γ is not slowly varying.

The above discussion on real networks has been illustrated by using the Internet as
a prime example. We close the discussion by giving references to the literature on the
empirical properties of the Internet:

1. Siganos, Faloutsos, Faloutsos and Faloutsos [247] take up where [129] have left, and
further study power laws arising in Internet.

2. In [174], Jin and Bestavros summarize various Internet measurements and study
how the small-world properties of the AS graph can be obtained from the degree
properties and a suitable way of connecting vertices.

3. In [276], Yook, Jeong and Barabási find that the Internet topology depends on
geometry, and find that the fractal dimension is equal to Df = 1.5. They continue to
propose a model for the Internet growth that predicts this behavior using preferential
attachment including geometry. We shall discuss this in more detail in Chapter 8.

4. A critical look at the proposed models for the Internet, and particularly the sugges-
tion of preferential attachment in Internet was given by Willinger, Govindan, Paxson
and Shenker in [273]. Preferential attachment models shall be described informally
in Section 1.1, and are investigated in more detail in Chapters 8 and 11. The
authors conclude that the Barabási-Albert model does not model the growth of the
AS graph appropriately, particularly since the degrees of the receiving vertices in the
AS graph is even larger than for the Barabási-Albert model. This might also explain
why the power-law exponent, which is around 2.2 for the AS-graph, is smaller than
the power-law exponent in the Barabási-Albert model, which is 3 (see Chapter 8 for
this result).
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5. An interesting topic of research receiving substantial attention is how the Internet
behaves under malicious attacks or random breakdown [91, 92]. The conclusion is
that the topology is critical for the vulnerability under intentional attacks. When
vertices with high degrees are taken out, then the connectivity properties of random
graph models for the Internet cease to have the necessary connectivity properties.

In the remainder of this section, we shall describe a number of other examples of real net-
works where the small-world phenomenon and the power-law degree sequence phenomenon
are observed:

1. ‘Six Degrees of Separation’ and social networks.

2. Kevin Bacon Game and the movie actor network.

3. Erdős numbers and collaboration networks.

4. The World-Wide Web.

In this section, we shall discuss some of the empirical findings in the above applications,
and discuss the key publications on their empirical properties. Needless to say, one could
easily write a whole book on each of these examples separately, so we cannot dive into the
details too much.

1.1.1 Six degrees of separation and social networks

In 1967, Stanley Milgram performed an interesting experiment. See

http://www.stanleymilgram.com/milgram.php

for more background on the psychologist Milgram, whose main topic of study was the
obedience of people, for which he used a very controversial ‘shock machine’.

In his experiment, Milgram sent 60 letters to various recruits in Wichita, Kansas, U.S.A.,
who were asked to forward the letter to the wife of a divinity student living at a specified
location in Cambridge, Massachusetts. The participants could only pass the letters (by
hand) to personal acquaintances who they thought might be able to reach the target, either
directly, or via a “friend of a friend”. While fifty people responded to the challenge, only
three letters (or roughly 5%) eventually reached their destination. In later experiments,
Milgram managed to increase the success rate to 35% and even 95%, by pretending that
the value of the package was high, and by adding more clues about the recipient, such as
his/her occupation. See [207, 263] for more details.

The main conclusion from the work of Milgram was that most people in the world are
connected by a chain of at most 6 “friends of friends”, and this phrase was dubbed “Six
Degrees of Separation”. The idea was first proposed in 1929 by the Hungarian writer
Frigyes Karinthy in a short story called ‘Chains’ [179], see also [222] where a translation
of the story is reproduced. Playwright John Guare popularized the phrase when he chose
it as the title for his 1990 play. In it, Ousa, one of the main characters says:

“Everybody on this planet is separated only by six other people. Six degrees of
separation. Between us and everybody else on this planet. The president of
the United states. A gondolier in Venice... It’s not just the big names. It’s
anyone. A native in the rain forest. (...) An Eskimo. I am bound to everyone
on this planet by a trail of six people. It is a profound thought.”.

The fact that any number of people can be reached by a chain of at most 6 intermediaries
is rather striking. It would imply that two people in as remote areas as Greenland and the
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Amazone could be linked by a sequence of at most 6 “friends of friends”. This makes the
phrase “It’s a small world!” very appropriate indeed! Another key reference in the small-
world work in social sciences is the paper by Pool and Kochen [237], which was written in
1958, and has been circulating around the social sciences ever since, before it was finally
published in 1978.

The idea of Milgram was taken up afresh in 2001, with the added possibilities of the
computer era. In 2001, Duncan Watts, a professor at Columbia University, recreated Mil-
gram’s experiment using an e-mail message as the“package” that needed to be delivered.
Surprisingly, after reviewing the data collected by 48,000 senders and 19 targets in 157
different countries, Watts found that again the average number of intermediaries was six.
Watts’ research, and the advent of the computer age, has opened up new areas of inquiry
related to six degrees of separation in diverse areas of network theory such as power grid
analysis, disease transmission, graph theory, corporate communication, and computer cir-
cuitry. See the web site

http://smallworld.columbia.edu/project.html

for more information on the Small-World Project conducted by Watts. See [267] for
a popular account of the small-world phenomenon. Related examples of the small-world
phenomenon can be found in [8] and [218].

To put the idea of a small-world into a network language, we define the vertices of the
social graph to be the inhabitants of the world (so that n ≈ 6 billion), and we draw an
edge between two people when they know each other. Needless to say, we should make it
more precise what it means to “know each other”. Possibilities here are various. We could
mean that the two people involved have shaken hands at some point, or that they know
each other on a first name basis.

One of the main difficulties of social networks is that they are notoriously hard to
measure. Indeed, questionaires can not be trusted easily, since people have a different idea
what a certain social relation is. Also, questionaires are quite physical, and they take time
to collect. As a result, researchers are quite interested in examples of social networks that
can be measured, for example due to the fact that they are electronic. Examples are e-mail
networks or social networks such as Hyves. Below, I shall give a number of references to
the literature for studies of social networks.

1. Amaral, Scala, Bartélémy and Stanley [16] calculated degree distributions of several
networks, among others a friendship network of 417 junior high school students and a
social network of friendships between Mormons in Provo, Utah. For these examples,
the degree distributions turn out to be closer to a normal distribution than to a
power law.

2. In [115], Ebel, Mielsch and Bornholdt investigate the topology of an e-mail network
of an e-mail server at the University of Kiel over a period of 112 days. The authors
conclude that the degree sequence obeys a power law, with an exponential cut-off
for degrees larger than 200. The estimated degree exponent is 1.81. The authors
note that since this data set is gathered at a server, the observed degree of the
external vertices is an underestimation of their true degree. When only the internal
vertices are taken into account, the estimate for the power-law exponent decreases
to 1.32. When taking into account that the network is in fact directed, the power-
law exponent of the in-degree is estimated at 1.49, while the out-degrees have an
exponent of 2.03. The reported errors in the estimation of the exponents are between
0.10 and 0.18.

3. There are many references to the social science literature on social networks in the
book by Watts [268], who now has a position in social sciences. In [221], Newman,
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Kevin Bacon Number # of actors
0 1
1 1902
2 160463
3 457231
4 111310
5 8168
6 810
7 81
8 14

Table 1.1: Kevin Bacon Numbers.

Watts and Strogatz survey various models for social networks that have appeared in
their papers. Many of the original references can also be found in the collection in
[222], along with an introduction explaining their relevance.

4. Liljeros, Edling, Amaral and Stanley [198] investigated sexual networks in Sweden,
where two people are connected when they have had a sexual relation in the previous
year, finding that the degree distributions of males and females obey power laws, with
estimated exponents of τfem ≈ 2.5 and τmal ≈ 2.3. When extending to the entire
lifetime of the Swedish population, the estimated exponents decrease to τfem ≈ 2.1
and τmal ≈ 1.6. The latter only holds in the range between 20 and 400 contacts, after
which it is truncated. Clearly, this has important implications for the transmittal of
sexual diseases.

1.1.2 Kevin Bacon Game and movie actor network

A second example of a large network in the movie actor network. In this example, the
vertices are movie actors, and two actors share an edge when they have played in the same
movie. This network has attracted some attention in connection to Kevin Bacon, who
appears to be reasonably central in this network. The Computer Science Department at
Virginia University has an interesting web site on this example, see The Oracle of Bacon
at Virginia web site on

http://www.cs.virginia.edu/oracle/.

See Table 1.1 for a table of the Kevin Bacon Numbers of all the actors in this network.
Thus, there is one actor at distance 0 from Kevin Bacon (namely, Kevin Bacon himself),
1902 actors have played in a movie starring Kevin Bacon, and 160463 actors have played
in a movie in which another movie star played who had played in a movie starring Kevin
Bacon. In total, the number of linkable actors is equal to 739980, and the Average Kevin
Bacon number is 2.954. In search for “Six Degrees of Separation”, one could say that most
pairs of actors are related by a chain of co-actors of length at most 6.

It turns out that Kevin Bacon is not the most central vertex in the graph. A more
central actor is Sean Connery. See See Table 1.2 for a table of the Sean Connery Numbers.
By computing the average of these numbers we see that the average Connery Number is
about 2.731, so that Connery a better center than Bacon. Mr. Bacon himself is the 1049th
best center out of nearly 800,000 movie actors, which makes Bacon a better center than
99% of the people who have ever appeared in a feature film.

On the web site http://www.cs.virginia.edu/oracle/, one can also try out one’s own
favorite actors to see what Bacon number they have, or what the distance is between them.

We now list further studies of the movie actor network.
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Sean Connery Number # of actors
0 1
1 2272
2 218560
3 380721
4 40263
5 3537
6 535
7 66
8 2

Table 1.2: Sean Connery Numbers

1. Watts and Strogatz [269] investigate the small-world nature of the movie-actor net-
work, finding that it has more clustering and shorter distances than a random graph
with equal edge density. Amaral et al. looked closer at the degree distribution to
conclude that the power-law in fact has an exponential cut-off.

2. Albert and Barabási [28] use the movie actor network as a prime example of a
network showing power-law degrees. The estimated power-law exponent is 2.3.

1.1.3 Erdős numbers and collaboration networks

A further example of a complex network that has drawn substantial attention is the
collaboration graph in mathematics. This is popularized under the name “Erdős number
project”. In this network, the vertices are mathematicians, and there is an edge between
two mathematicians when they have co-authored a paper. See

http://www.ams.org/msnmain/cgd/index.html

for more information. The Erdős number of a mathematician is how many papers that
mathematician is away from the legendary mathematician Paul Erdős, who was extremely
prolific with around 1500 papers and 509 collaborators. Of those that are connected by a
trail of collaborators to Erdős, the maximal Erdős number is claimed to be 15.

On the above web site, one can see how far one’s own professors are from Erdős. Also,
it is possible to see the distance between any two mathematicians.

The Erdős numbers has also attracted attention in the literature. In [98, 99], the authors
investigate the Erdős numbers of Nobel prize laureates, as well as Fields medal winners,
to come to the conclusion that Nobel prize laureates have Erdős numbers of at most 8 and
averaging 4-5, while Fields medal winners have Erdős numbers of at most 5 and averaging
3-4. See also

http://www.oakland.edu/enp

for more information on the web, where we also found the following summary of the collab-
oration graph. This summary dates back to July, 2004. An update is expected somewhere
in 2006.

In July, 2004, the collaboration graph consisted of about 1.9 million authored papers in
the Math Reviews database, by a total of about 401,000 different authors. Approximately
62.4% of these items are by a single author, 27.4% by two authors, 8.0% by three authors,
1.7% by four authors, 0.4% by five authors, and 0.1% by six or more authors. The largest
number of authors shown for a single item is in the 20s. Sometimes the author list includes
“et al.” so that in fact, the number of co-authors is not always precisely known.
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Erdős Number # of Mathematicians
0 1
1 504
2 6593
3 33605
4 83642
5 87760
6 40014
7 11591
8 3146
9 819
10 244
11 68
12 23
13 5

Table 1.3: Erdős Numbers

The fraction of items authored by just one person has steadily decreased over time,
starting out above 90% in the 1940s and currently standing at under 50%. The entire
graph has about 676,000 edges, so that the average number of collaborators per person is
3.36. In the collaboration graph, there is one large component consisting of about 268,000
vertices. Of the remaining 133,000 authors, 84,000 of them have written no joint papers,
and these authors correspond to isolated vertices. The average number of collaborators for
people who have collaborated is 4.25. The average number of collaborators for people in the
large component is 4.73. Finally, the average number of collaborators for people who have
collaborated but are not in the large component is 1.65. There are only 5 mathematicians
with degree at least 200, the largest degree is for Erdős, who has 509 co-authors. The
diameter of the largest connected component is 23.

The clustering coefficient of a graph is equal to the fraction of ordered triples of ver-
tices a, b, c in which edges ab and bc are present that have edge ac present. In other
words, the clustering coefficient describes how often are two neighbors of a vertex adjacent
to each other. The clustering coefficient of the collaboration graph of the first kind is
1308045/9125801 = 0.14. The high value of this figure, together with the fact that average
path lengths are small, indicates that this graph is a small world graph.

For the Erdős numbers, we refer to Table 1.3. The median Erdős number is 5, the mean
is 4.65, and the standard deviation is 1.21. We note that the Erdős number is finite if
and only if the corresponding mathematician is in the largest connected component of the
collaboration graph.

See Figure 1.6 for an artistic impression of the collaboration graph in mathematics taken
from

http://www.orgnet.com/Erdos.html

and Figure 1.7 for the degree sequence in the collaboration graph.
We close this section by listing interesting papers on collaboration graphs.

1. In [32], Batagelj and Mrvar use techniques for the analysis of large networks, such as
techniques to identify interesting subgroups and hierarchical clustering techniques,
to visualize further aspects of the Erdős collaboration graph.

2. Newman has studied several collaboration graphs in a sequence of papers that we
shall discuss now. In [217], he finds that several of these data bases are such that
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Figure 1.6: An artist impression of the collaboration graph in mathematics.
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Figure 1.7: The degree sequence in the collaboration graph.
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the degrees have power-laws with exponential cut-offs. The data bases are various
arXiv data bases in mathematics and theoretical physics, the MEDLINE data base
in medicine, and the ones in high-energy physics and theoretical computer science.
Also, the average distance between scientists is shown to be rather small, which is
a sign of the small-world nature of these networks. Finally, the average distance is
compared to logn/ log z, where n is the size of the collaboration graph and z is the
average degree. The fit shows that these are quite close. Further results are given
in [216].

3. In Barabási et al. [30], the evolution of scientific collaboration graphs is investigated.
The main conclusion is that scientists are more likely to write papers with other
scientists who have written many papers, i.e., there is a tendency to write papers
with others who have already written many. This preferential attachment is shown
to be a possible explanation for the existence of power laws in collaboration networks
(see Chapter 8).

1.1.4 The World-Wide Web

A final example of a complex network that has attracted enormous attention is the
World-Wide Web (WWW). The elements of the WWW are web pages, and there is a
directed connection between two web pages when the first links to the second. Thus, while
the WWW is virtual, the Internet is physical. With the world becoming ever more virtual,
and the WWW growing at tremendous speed, the study of properties of the WWW has
grown as well. It is of great practical importance to know what the structure of the WWW
is, for example, in order for search engines to be able to explore it. A notorious, but rather
interesting, problem is the Page-Rank problem, which is the problem to rank web pages
on related topics such that the most important pages come first. Page-Rank is claimed to
be the main reason of the success of Google, and the inventors of Page-Rank were also the
founders of Google (see [72] for the original reference).

In [9], the authors Albert, Jeong and Barabási study the degree distribution to find that
the in-degrees obey a power law with exponent τin ≈ 2.1 and the out-degrees obey a power
law with exponent τout ≈ 2.45, on the basis of several Web domains, such as nd.edu,
mit.edu and whitehouse.gov, respectively the Web domain of the home university of
Barabási at Notre Dame, the Web domain of MIT and of the White House. Further,
they investigated the distances between vertices in these domains, to find that distances
within domains grown linearly with the log of the size of the domains, with an estimated
dependence of d = 0.35 + 2.06 logn, where d is the average distance between elements in
the part of the WWW under consideration, and n is the size of the subset of the WWW.
Extrapolating this relation to the estimated size of the WWW at the time, n = 8 · 108,

Albert, Jeong and Barabási [9] concluded that the diameter of the WWW was 19 at the
time, which prompted the authors to the following quote:

“Fortunately, the surprisingly small diameter of the web means that all infor-
mation is just a few clicks away.”

In [195], it was first observed that the WWW also has power-law degree sequences. In
fact, the WWW is a directed graph, and in [195] it was shown that the in-degree follows a
power-law with power-law exponent quite close to 2. See also Figure 1.8.

The most substantial analysis of the WWW was performed by Broder et al. [74],
following up on earlier work in [195, 194] in which the authors divide the WWW into
several distinct parts. See Figure 1.9 for the details. The division is roughly into four
parts:

(a) The central core or Strongly Connected Component (SCC), consisting of those web
pages that can reach each other along the directed links (28% of the pages);
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Figure 1.8: The in-degree sequence in the WWW taken from [195].

(b) The IN part, consisting of pages that can reach the SCC, but cannot be reached
from it (21% of the pages);

(c) The OUT part, consisting of pages that can be reached from the SCC, but do not
link back into it (21% of the pages);

(d) The TENDRILS and other components, consisting of pages that can neither reach
the SCC, nor be reached from it (30% of the pages).

Broder et al. [74] also investigate the diameter of the WWW, finding that the SCC
has diameter at least 28, but the WWW as a whole has diameter at least 500. This is
partly due to the fact that the graph is directed. When the WWW is considered to be an
undirected graph, the average distance between vertices decreases to around 7. Further,
it was shown that both the in- and out-degrees in the WWW follow a power-law, with
power-law exponents estimated as τin ≈ 2.1, τout ≈ 2.5.

In [2], distances in the WWW are discussed even further. When considering the WWW
as a directed graph, it is seen that the distances between most pairs of vertices within the
SCC is quite small. See Figure 1.10 for a histogram of pairwise distances in the sample.
Distances between pairs of vertices in the SCC tend to be at most 7: Six Degrees of
Separation.

We close this section by discussing further literature on the WWW:

1. In [28], it is argued that new web pages are more likely to attach to web pages
that already have a high degree, giving a bias towards popular web pages. This is
proposed as an explanation for the occurrences of power laws. We shall expand this
explanation in Section 1.5, and make the discussion rigorous in Chapter 8.
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Figure 1.9: The WWW according to Broder et al [74].

2. In [194], models for the WWW are introduced, by adding vertices which copy the
links of older vertices in the graph. This is called an evolving copying model. In some
cases, depending on the precise copying rules, the model is shown to lead to power-
law degree sequences. The paper [190] is a nice survey of measurements, models and
methods for obtaining information on the WWW, by analyzing how Web crawling
works.

3. Barábasi, Albert and Jeong [29] investigate the scale-free nature of the WWW, and
propose a preferential attachment model for it. In the proposed model for the WWW
in [28, 29], older vertices tend to have the highest degrees. On the WWW this is
not necessarily the case, as Adamic and Huberman [3] demonstrate. For example,
Google is a late arrival on the WWW, but has yet managed to become one of the
most popular web sites. A possible fix for this problem is given in [48] through a
notion of fitness of vertices, which enhance or decrease their preferential power.

4. The works by Kleinberg [187, 188, 189] investigate the WWW and other networks
from a computer science point of view. In [187, 188], the problem is addressed how
hard it is to find short paths in small-world networks on the d-dimensional lattice,
finding that navigation sensitively depends upon how likely it is for large edges to
be present. Indeed, the delivery time of any local algorithm can be bounded below
by a positive power of the width of the box, except for one special value of the
parameters, in which case it is of the order of the square of the log of the width
of the box. Naturally, this has important implications for the WWW, even though
the WWW may depend less sensitively on geometry. In Milgram’s work discussed
in Section 1.1.1, on the one hand, it is striking that there exist short paths between
most pairs of individuals, but, on the other hand, it may be even more striking
that people actually succeed in finding them. In [187], the problem is addressed
how “authoritative sources” for the search on the WWW can be quantified. These
authoritative sources can be found in an algorithmic way by relating them to the
hubs in the network. Clearly, this problem is intimately connected to the Page-Rank
problem.
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Figure 1.10: Average distances in the Strongly Connected Component of the WWW taken
from [2].

1.2 Scale-free, small-world and highly-clustered random graph
processes

As described in Section 1.1, many real-world complex networks are large. They share
similar features, in the sense that they have a relatively low degree compared to the max-
imal degree n− 1 in a graph of size n, i.e., they are ‘sparse’. Further, many real networks
are ‘small worlds’, ‘scale free’ and ‘highly clustered’. These notions are empirical, and,
hence, inherently not very mathematically precise. In this section, we describe what it
means for a model of a real network to satisfy these properties.

Many of real-world networks as considered in Section 1.1, such as the World-Wide Web
and collaboration networks, grow in size as time proceeds. Therefore, it is reasonable to
consider graphs of growing size, and to define the notions of scale-free, small-world and
highly-clustered random graphs as a limiting statement when the size of the random graphs
tend to infinity. This naturally leads us to study graph sequences. In this section, we shall
denote a graph sequence by {Gn}∞n=1, where n denotes the size of the graph Gn, i.e., the
number of vertices in Gn.

Denote the proportion of vertices with degree k in Gn by P (n)

k , i.e.,

P (n)

k =
1

n

n∑
i=1

1{D(n)
i =k}, (1.2.1)

where D(n)

i denotes the degree of vertex i ∈ {1, . . . , n} in the graph Gn, and recall that

the degree sequence of Gn is given by {P (n)

k }
∞
k=0. We use capital letters in our notation to

indicate that we are dealing with random variables, due to the fact that Gn is a random
graph. Now we are ready to define what it means for a random graph process {Gn}∞n=1 to
be scale free.

We first call a random graph process {Gn}∞n=1 sparse when

lim
n→∞

P (n)

k = pk, (1.2.2)
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for some deterministic limiting probability distribution {pk}∞k=0. Since the limit pk in
(1.2.2) is deterministic, the convergence in (1.2.2) can be taken as convergence in probabil-
ity or in distribution. Also, since {pk}∞k=0 sums up to one, for large n, most of the vertices
have a bounded degree, which explains the phrase sparse random graphs.

We further call a random graph process {Gn}∞n=1 scale free with exponent τ when it is
sparse and when

lim
k→∞

log pk
log (1/k)

= τ (1.2.3)

exists. Thus, for a scale-free random graph process its degree sequence converges to a
limiting probability distribution as in (1.2.2), and the limiting distribution has asymptotic
power-law tails described in (1.2.3). This gives a precise mathematical meaning to a
random graph process being scale free. In some cases, the definition in (1.2.3) is a bit too
restrictive, particularly when the probability mass function k 7→ pk is not very smooth.
Instead, we can also replace it by

lim
k→∞

log [1− F (k)]

log (1/k)
= τ − 1, (1.2.4)

where F (x) =
∑
y≤x py denotes the distribution function corresponding to the probability

mass function {pk}∞k=0. In particular models below, we shall use the version that is most
appropriate in the setting under consideration. See Section 1.3 below for a more extensive
discussion of power laws.

We say that a graph process {Gn}∞n=1 is highly clustered when

lim
n→∞

CGn = CG∞ > 0. (1.2.5)

We finally define what it means for a graph process {Gn}∞n=1 to be a small world.
Intuitively, a small world should have distances that are much smaller than those in a
lattice or torus. When we consider the nearest-neighbor torus Tr,d, then, and when we
draw two uniform vertices at random, their distance will be of the order r. Denote the size
of the torus by n = (2r+ 1)d, then the typical distance between two uniform vertices is of

the order n1/d, so that it grows as a positive power of n.
Let Hn denote the distance between two uniformly chosen connected vertices, i.e., we

pick a pair of vertices uniformly at random from all pairs of connected vertices, and we
let Hn denote the graph distance between these two vertices. Here we use the term graph
distance between the vertices v1, v2 to denote the minimal number of edges in the graph
on a path connecting v1 and v2. Below, we shall be dealing with random graph processes
{Gn}∞n=1 for which Gn is not necessarily connected, which explains why we condition on
the two vertices being connected.

We shall call Hn the typical distance of Gn. Then, we say that a random graph process
{Gn}∞n=1 is a small world when there exists a constant K such that

lim
n→∞

P(Hn ≤ K logn) = 1. (1.2.6)

Note that, for a graph with a bounded degree dmax, the typical distance is at least (1 −
ε) logn/ log dmax with high probability, so that a random graph process with bounded
degree is a small world precisely when the order of the typical distance is optimal.

For a graph Gn, let diam(Gn) denote the diameter of Gn, i.e., the maximal graph
distance between any pair of connected vertices. Then, we could also have chosen to
replace Hn in (1.2.6) by diam(Gn). However, the diameter of a graph is a rather sensitive
object which can easily be changed by making small changes to a graph in such a way that
the scale-free nature and the typical distance Hn do not change. For example, by adding a
sequence of m vertices in a line, which are not connected to any other vertex, the diameter



1.3 Tales of tails 17

of the graph becomes at least m, whereas, if m is much smaller than n, Hn is not changed
very much. This explain why we have a preference to work with the typical distance Hn
rather than with the diameter diam(Gn).

In some models, we shall see that typical distances can be even much smaller than logn,
and this is sometimes called an ultra-small world. More precisely, we say that a random
graph process {Gn}∞n=1 is an ultra-small world when there exists a constant K such that

lim
n→∞

P(Hn ≤ K log log n) = 1. (1.2.7)

There are many models for which (1.2.7) is satisfied, but diam(Gn)/ logn converges in
probability to a positive limit. This once more explain our preference for the typical graph
distance Hn.

We have given precise mathematical definitions for the notions of random graphs being
highly clustered, small worlds and scale free. This has not been done in the literature
so far, and our definitions are based upon a summary of the relevant results proved for
random graph models. We believe it to be a good step forward to make the connection
between the theory of random graphs and the empirical findings on real-life networks.

1.3 Tales of tails

In this section, we discuss the occurrence of power laws. In Section 1.3.1, we discuss
the literature on this topic, which dates back to the twenties of the last century. In Section
1.3.2, we describe the new view points on power laws in real networks.

1.3.1 Old tales of tails

Mathematicians are always drawn to simple relations, believing that they explain the
rules that gave rise to them. Thus, finding such relations uncovers the hidden structure
behind the often chaotic appearance. A power-law relationship is such a simple relation.
We say that there is a power-law relationship between two variables when one is propor-
tional to a power of the other. Or, in more mathematical language, the variable k and the
characteristic f(k) are in a power-law relation when f(k) is proportional to a power of k,
that is, for some number τ ,

f(k) = Ck−τ . (1.3.1)

Power laws are intimately connected to so-called 80/20 rules. For example, when
studying the wealth in populations, already Pareto observed a huge variability [230]. Most
individuals do not earn so much, but there are these rare individuals that earn a substantial
part of the total income. Pareto’s principle was best known under the name ‘80/20 rule’,
indicating, for example, that 20 percent of the people earn 80 percent of the total income.
This law appears to be true much more generally. For example, 20 percent of the people
own 80 percent of the land, 20 percent of the employees earn 80 percent of the profit
of large companies, and maybe even 20 percent of the scientists write 80 percent of the
papers. In each of these cases, no typical size exists due to the high variability present,
which explains why these properties are called ‘scale-free’.

Intuitively, when a 80/20 rule holds, a power law must be hidden in the background!
Power laws play a crucial role in mathematics, as well as in many applications. Power laws
have a long history. Zipf [278] was one of the first to find one in the study of the frequencies
of occurrence of words in large pieces of text. He found that the relative frequency of words
is roughly inversely proportional to its rank in the frequency table of all words. Thus, the
most frequent word is about twice as frequent as the second most frequent word, and about
three times as frequent as the third most frequent word, etc. In short, with k the rank of
the word and f(k) the relative frequency of kth most frequent word, f(k) ∝ k−τ where τ
is close to 1. This is called Zipf’s law.
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Already in the twenties, several other examples of power laws were found. Lotka [200]
investigated papers that were referred to in the Chemical Abstracts in the period from
1901-1916, and found that the number of scientists appearing with 2 entries is close to
1/22 = 1/4 of the number of scientists with just one entry. The number of scientists
appearing with 3 entries is close to 1/32 = 1/9 times the number of scientists appearing
with 1 entry, etc. Again, with f(k) denoting the number of scientists appearing in k entries,
f(k) ∝ k−τ , where τ now is close to 2. This is dubbed Lotka’s Law. Recently, effort has
been put into explaining power-laws using ‘self-organization’. Per Bak, one of the central
figures in this area, called his book on the topic “How nature works” [24].

Power-law relations are one-step extensions of linear relations. Conveniently, even when
one does not understand the mathematical definition of a power law too well, one can still
observe them in a simple way: in a log-log plot, power laws are turned into straight lines!
Indeed, taking the log of the power-law relationship (1.3.1) yields

log f(k) = logC − τ log k, (1.3.2)

so that log f(k) is in a linear relationship with log k, with coefficient equal to −τ . Thus,
not only does this allow us to visually inspect whether f(k) is in a power-law relationship
to k, it also allows us to estimate the exponent τ ! Naturally, this is precisely what has
been done in order to obtain the power-law exponents in the examples in Section 1.1.
An interesting account of the history of power-laws can be found in [208], where possible
explanations why power laws arise so frequently are also discussed.

1.3.2 New tales of tails

In this section, we discuss the occurrence of power-law degree sequences in real networks.
We start by giving a heuristic explanation for the occurrence of power law degree sequences,
in the setting of exponentially growing graphs. This heuristic is based on some assumptions
that we formulate now.

We assume that

(1) the number of vertices V (t) is growing exponentially at some rate ρ > 0, i.e.,
V (t) ≈ eρt;

(2) the number N(t) of links into a vertex at some time t after its creation is N(t) ≈ eβt.
(Note that we then must have that β ≤ ρ, since the number of links into a vertex
must be bounded above by the number of vertices.) Thus, also the number of links
into a vertex grows exponentially with time.

We note that assumption (1) is equivalent to the assumption that

(1’) the lifetime T since its creation of a random vertex has law

P(T > t) = e−ρt, (1.3.3)

so that the density of the lifetime of a random vertex is equal to

fT (t) = ρe−ρt. (1.3.4)

Then, using the above assumptions, the number of links into a random vertex X equals

P(X > i) ≈ i−ρ/β , (1.3.5)
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since it is equal to

P(X > i) =

∫ ∞
0

fT (t)P(X > i|T = t)dt

=

∫ ∞
0

ρe−tρP(X > i|T = t)dt

= ρ

∫ ∞
0

e−tρ1{eβt>i}dt

∼ ρ

∫ ∞
(log i)/β

e−tρdt ∼ e−(log i)ρ/β ∼ i−ρ/β ,

where 1E denotes the indicator of the event E . Stretching the above heuristic a bit further
yields

P(X = i) = P(X > i− 1)− P(X > i) ∼ i−(ρ/β+1). (1.3.6)

This heuristic suggests a power law for the in-degrees of the graph, with power-law exponent
τ = ρ/β + 1 ≥ 2. Peculiarly, this heuristic does not only explain the occurrence of power
laws, but even of power laws with exponents that are at least 2.

The above heuristic only explains why the in-degree of a vertex has a power law. An
alternative reason why power laws occur so generally will be given in Chapter 8. Interest-
ingly, so far, also in this explanation only power laws that are at least 2 are obtained.

While power-law degree sequences are claimed to occur quite generally in real networks,
there are also some critical observations, particularly about he measurements that produce
power laws in Internet. In [196], it is argued that traceroute-measurements, by which the
Internet-topology is uncovered, could be partially responsible for the fact that power-law
degree sequences are observed in Internet. Indeed, it was shown that applying similar
methods as traceroute-measurements to certain subgraphs of the Erdős-Rényi random
graph exhibit power-law degree sequences. Clearly, the Erdős-Rényi random graph does
not have power-law degree sequences, so that this observation is an artefact of the way
the measurements are performed. The point is that in Internet measurements, subgraphs
are typically obtained by exploring the paths between sets of pairs of vertices. Indeed,
we obtain a subgraph of the Internet by only taking that part of the network that appear
along a path between the various starting points and destinations, and this is the way how
traceroute is used in Internet. Assuming that paths are all shortest-paths, i.e., there is
shortest-path routing, vertices with a high degree are far more likely to appear in one of the
shortest paths between our initial set of pairs of vertices. Therefore, such data sets tend
to overestimate the degrees in the complete network. This bias in traceroute data was
further studied in [1, 90], in which both for Erdős-Rényi random graphs and for random
regular graphs, it was shown that subgraphs appear to obey a power-law.

While the above criticism may be serious for the Internet, and possibly for the World-
Wide Web, where degree distributions are investigated using web-crawling, there are many
networks which are completely available that also show power-law degree sequences. When
the network is completely described, the observed power-laws can not be so easily dismissed.
However, one needs to be careful in using and analyzing data confirming power-law degree
sequences. Particularly, it could be that many estimates of the power-law degree exponent
τ are biased, and that the true values of τ are substantially larger. Possibly, this criticism
may give an argument why so often power laws are observed with exponents in the interval
(2, 3).

1.4 Notation

In these notes, we frequently make use of certain notation, and we strive to be as
consistent as possible. We shall denote events by calligraphic letters, such as A,B, C and
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E . We shall use 1E to denote the indicator function of the event E . We shall use capital
letters, such as X,Y, Z, U, V,W , to denote random variables. There are some exceptions,
for example, FX and MX denote the distribution function and moment generating function
of a random variable X, and we emphasize this by writing the subscript X explicitly. We
say that a sequence of events {En}∞n=0 occurs with high probability when limn→∞ P(En) = 1.
We often abbreviate this as whp. We call a sequence of random variables {Xi}ni=1 i.i.d.
when they are independent, and Xi has the same distribution as X1 for every i = 2, . . . , n.

We shall use special notion for certain random variables, and write X ∼ Be(p) when X
has a Bernoulli distribution with success probability p, i.e., P(X = 1) = 1−P(X = 0) = p.
We write X ∼ Bin(n, p) when the random variable X has a binomial distribution with
parameters n and p, and we write X ∼ Poi(λ) when X has a Poisson distribution with
parameter λ.

Furthermore, we write f(n) = o(g(n)) as n→∞ when g(n) > 0 and limn→∞ |f(n)|/g(n) =
0. We write f(n) = O(g(n)) as n → ∞ when g(n) > 0 and lim supn→∞ |f(n)|/g(n) < ∞.
Finally, we write f(n) = Θ(g(n)) as n→∞ if f(n) = O(g(n)) and g(n) = O(f(n)).

1.5 Random graph models for complex networks

In the previous sections, we have described properties of real networks. These networks
are quite large, and in most cases, it is utterly impossible to describe them explicitly. To
circumvent this problem, random graph models have been considered as network models.
These random graphs describe by which local and probabilistic rules vertices are connected
to one another. The use of probabilistic rules is to be able to describe the complexity of the
networks. In deterministic models, often too much structure is present, making the arising
networks unsuitable to describe real networks. This approach introduces randomness in
network theory, and leads us to consider random graphs as network models. However, it
does not tell us what these random graph models should look like.

The field of random graphs was established in the late fifties and early sixties of the
last century. While there were a few papers appearing around (and even before) that time,
one paper is generally considered to have founded the field [122]. The authors Erdős and
Rényi studied the simplest imaginable random graph, which is now named after them.
Their graph has n elements, and each pair of elements is independently connected with
a fixed probability. When we think of this graph as describing a social network, then
the elements denote the individuals, while two individuals are connected when they know
one another. The probability for elements to be connected is sometimes called the edge
probability. Let ERn(p) denote the resulting random graph. This random graph is named
after its inventors Erdős and Rényi who introduced a version of it in [122] in 1960. Note
that the precise model above is introduced by Gilbert in [135], and in [122] a model was
formulated with a fixed number of edges (rather than a binomial number of edges). It is
not hard to see that the two models are intimately related (see e.g., Section 4.6, where
the history is explained in a bit more detail). The Erdős-Rényi random graph was named
after Erdős and Rényi due to the deep and striking results proved in [122], which opened
up an entirely new field. Earlier papers investigating random graphs are [119], using the
probabilistic method to prove graph properties, and [255], where the model is introduced
as a model for neurons.

Despite the fact that ERn(p) is the simplest imaginable model of a random network,
it has a fascinating phase transition when p varies. Phase transitions are well known
in physics. The paradigm example is the solid-fluid transition of water, which occurs
when we move the temperature from below 0◦ to above 0◦. Similar phase transitions
occur in various real phenomena, such as magnetism or the conductance properties of
porous materials. Many models have been invented that describe and explain such phase
transitions, and we shall see some examples in these notes. As we will see, the Erdős-Rényi
random graph exhibits a phase transition in the size of the maximal component, as well as
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in the connectivity of the arising random graph.
The degree of a vertex, say vertex 1, in ERn(λ/n) has a binomial distribution with

parameter p. In Chapter 5, we will see that the proportion of vertices with degree k is also
close to P(Bin(n−1, λ/n) = k. It is well known that for n is large, the binomial distribution
with parameters n and p = λ/n is close to the Poisson distribution with parameter λ. More
precisely, we have that

P
(

Bin(n, λ/n) = k
)

= e−λ
λk

k!
+ o(1), k = 0, 1, . . . . (1.5.1)

The probability mass function fk = e−λ λ
k

k!
is the probability mass function of the Poisson

distribution with parameter λ. In fact, this result can be strengthened to saying that the
proportion of vertices with degree k converges in probability to the Poisson probability
mass function fk, i.e., ER(n, λ/n) is a sparse random graph process As above, Erdős-Rényi
random graphs are not scale free, whereas, as explained in Section 1.1, many real networks
are scale free. In Chapters 6, 7 and 8, we describe three scale-free random graph models.
In Chapter 6, we describe the generalized random graph. The philosophy of this model is
simple: we adapt the random graph in such a way that it becomes scale free. For this,
we note that the degrees of the Erdős-Rényi random graph with edge probability p = λ/n
are close to to a Poisson random variable with mean λ. As mentioned before, these are
not scale free. However, we can make these degrees scale free by taking the parameter λ
to be a random variable with a power law. Thus, to each vertex i, we associate a random
variable Wi, and, conditionally on Wi, the edges emanating from i will be occupied with a
probability depending on i. There are many ways in which this can be done. For example,
in the generalized random graph [73], the probability that edge between vertices s and t,
which we denote by st, is occupied, conditionally on the weights {Wi}ni=1, is equal to

pst =
WsWt

WsWt + Ln
, (1.5.2)

where Ln =
∑n
i=1 Wi is the total weight of the graph, and different edges are conditionally

independent given {Wi}ni=1. In Chapter 6, we shall prove that this further randomization
of the Erdős-Rényi random graph does, in the case when the Wi are i.i.d. and satisfy a
power law, lead to scale-free graphs. There are various other possibilities to generalize the
Erdős-Rényi random graph, some of which will also be discussed. See [84, 225] for two
specific examples, and [61] for the most general set-up of generalized random graphs.

In the second scale-free random graph model, the idea is that we should take the degrees
as a start for the model. Thus, to each vertex i, we associate a degree Di, and in some way
connect up the different edges. Clearly, we need that the sum of the degrees Ln =

∑n
i=1 Di

is even, and we shall assume this from now on. Then we think of placing Di half-edges
or stubs incident to vertex i, and connecting all the stubs in a certain way to yield a
graph. One way to do this is to attach all the stub uniformly, and this leads to the
configuration model. Naturally, it is possible that the above procedure does not lead to
a simple graph, since self-loops and multiple edges can occur. As it turns out, when the
degrees are not too large, more precisely, when they have finite variance, then the graph
is with positive probability simple. By conditioning on the graph being simple, we end
up with a uniform graph with the specified degrees. Sometimes this is also referred to as
the repeated configuration model, since we can think of conditioning as repeatedly forming
the graph until it is simple, which happens with strictly positive probability. A second
approach to dealing with self-loops and multiple edges is simply to remove them, leading
to the so-called erased configuration model. In Chapter 7, we investigate these two models,
and show that the degrees are given by the degree distribution, when the graph size tends
to infinity. Thus, the erasing and the conditioning do not alter the degrees too much.

The generalized random graph and configuration models describe networks, in some
sense, quite satisfactorily. Indeed, they give rise to models with degrees that can be
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matched to degree distributions found in real networks. However, they do not explain how
the networks came to be as they are. A possible explanation for the occurrence of scale-free
behavior was given by Albert and Barabási [28], by a feature called preferential attachment.
Most real networks grow. For example, the WWW has increased from a few web pages
in 1990 to an estimated size of a few billion now. Growth is an aspect that is not taken
into account in Erdős-Rényi random graphs, but it would not be hard to reformulate them
as a growth process where elements are successively added, and connections are added
and removed. Thus, growth by itself is not enough to explain the occurrence of power
laws. However, viewing real networks as evolving in time does give us the possibility to
investigate just how they grow.

So, how do real networks grow? Think of a social network describing a certain pop-
ulation in which a newcomer arrives, increasing it by one element. He/She will start to
socialize with people in the population, and this process is responsible for the connections
to the newly arrived person. In an Erdős-Rényi random graph, the connections to the
newcomer will be spread uniformly over the population. Is this realistic? Is the newcomer
not more likely to get to know people who are socially active, and, therefore, already have a
larger degree? Probably so! We do not live in a perfectly egalitarian world. Rather, we live
in a self-reinforcing world, where people who are successful are more likely to become even
more successful! Therefore, rather than equal probabilities for our newcomer to acquaint
him-/herself to other individuals in the population, there is a bias towards individuals who
already know many people. When we think of the degree of elements as describing the
wealth of the individuals in the population, we live in a world where the rich get richer!

Phrased in a more mathematical way, preferential attachment models are such that new
elements are more likely to attach to elements with high degree compared to elements with
small degree. For example, suppose that new elements are born with a fixed amount of
edges to the older elements. Each edge is connected to a specific older element with a
probability which is proportional to the degree of that older element. This phenomenon
is now mostly called preferential attachment, and was first described informally by Albert
and Barabási [28]. See also the book [27] for a highly readable and enthusiastic personal
account by Barabási. Albert and Barabási have been two of the major players in the
investigation of the similarities of real networks, and their papers have proved to be very
influential. See [8, 9, 10, 28]. The notion of preferential attachment in networks has lead the
theoretical physics and the mathematics communities to study the structure of preferential
attachment models in numerous papers. For some of the references, see Chapter 8.

While the above explanation is for social networks, also in other examples some form
of preferential attachment is likely to be present. For example, in the WWW, when a new
web page is created, it is more likely to link to an already popular site, such as Google,
than to my personal web page. For the Internet, it may be profitable for new routers to
be connected to highly connected routers, since these give rise to short distances. Even in
biological networks, a more subtle form of preferential attachment exists.

In Chapter 8, we shall introduce and study preferential attachment models, and show
that preferential attachment leads to scale-free random graphs. The power-law exponent of
the degrees depends sensitively on the precise parameters of the model, such as the number
of added edges and how dominant the preferential attachment effect is, in a similar way
as the suggested power law exponent in the heuristic derivation in (1.3.6) depends on the
parameters of that model.

In Chapters 6, 7 and 8, we investigate the degrees of the proposed random graph models.
This explains the scale-free nature of the models. In Chapters 9, 10 and 11, we investi-
gate further properties of these models, focussing on the connected components and the
distances in the graphs. As observed in Section 1.1, most real networks are small worlds.
As a result, one would hope that random graph models for real networks are such that
distances between their elements are small. In Chapters 9, 10 and 11, we shall quantify
this, and relate graph distances to the properties of the degrees. A further property we
shall investigate is the phase transition of the largest connected component, as described
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in detail for the Erdős-Rényi random graph in Chapter 4.

1.6 Notes and discussion





Chapter 2

Probabilistic methods

In this chapter, we describe basic results in probability theory that we shall rely on in these
notes. We describe convergence of random variables in Section 2.1, coupling in Section 2.2
and stochastic domination in Section 2.3. In Section 2.4 we describe bounds on random
variables, namely the Markov inequality, the Chebychev inequality and the Chernoff bound.
Particular attention will be given to binomial random variables, as they play a crucial role
throughout these notes. In Section 2.5, we describe a few results on martingales. Finally,
in Section 2.6, we describe some extreme value theory of random variables. In this chapter,
not all proofs are given.

2.1 Convergence of random variables

In the random graph with p = λ/n, for some λ > 0, we note that the degree of a vertex
is distributed as a Bin(n − 1, p) random variable. When n is large, and np = λ is fixed,
then it is well known that a Bin(n− 1, p) is close to a Poisson random variable with mean
λ. In Chapter 4, we make heavy use of this convergence result, and a version of it is stated
in Theorem 2.10 below.

In order to formalize that
Bin(n, p) ≈ Poi(np), (2.1.1)

we need to introduce the notions of convergence of random variables. For this, we note
that random variables are defined to be functions on a sample space. It is well known
that there are several possible notions for convergence of functions on function spaces. In
a similar fashion, there are several notions of convergence of random variables, three of
which we state in the following definition. For more background on the convergence of
random variables, we refer the reader to [49].

Definition 2.1 (Convergence of random variables).

(a) A sequence Xn of random variables converges in distribution to a limiting random
variable X when

lim
n→∞

P(Xn ≤ x) = P(X ≤ x), (2.1.2)

for every x for which F (x) = P(X ≤ x) is continuous. We write this as Xn
d−→ X.

(b) A sequence Xn of random variables converges in probability to a limiting random
variable X when, for every ε > 0

lim
n→∞

P(|Xn −X| > ε) = 0. (2.1.3)

We write this as Xn
P−→ X.

(c) A sequence Xn of random variables converges almost surely to a limiting random
variable X when

P( lim
n→∞

Xn = X) = 1. (2.1.4)

We write this as Xn
a.s.−→ X.

25



26 Probabilistic methods

It is not hard to see that convergence in probability implies convergence in distribution.
The notion of convergence almost surely is clearly the most difficult to grasp. It turns out
that convergence almost surely implies convergence in probability, making it the strongest
version of convergence to be discussed in these notes. We shall mainly work with conver-
gence in distribution and convergence in probability.

There are also further forms of convergence that we do not discuss, such as convergence
in L1 or L2. We again refer to [49], or to introductory books in probability, such as
[50, 130, 131, 140].

There are examples where convergence in distribution holds, but convergence in prob-
ability fails:

Exercise 2.1. Find an example of a sequence of random variables where convergence in
distribution occurs, but convergence in probability does not.

Exercise 2.2. Show that the sequence of random variables {Xn}∞n=1, where Xn takes the
value n with probability 1

n
and 0 with probability 1 − 1

n
converges both in distribution and

in probability to 0.

We next state some theorems that give convenient criterions by which we can conclude that
random variables converge in distribution. In their statement, we make use of a number
of functions of random variables that we introduce now.

Definition 2.2 (Generating functions of random variables). Let X be a random variable.
Then

(a) The characteristic function of X is the function

φX(t) = E[eitX ], t ∈ R. (2.1.5)

(b) The probability generating function of X is the function

GX(t) = E[tX ], t ∈ R. (2.1.6)

(c) The moment generating function of X is the function

MX(t) = E[etX ], t ∈ R. (2.1.7)

We note that the characteristic function exists for every random variable X, since |eitX | = 1
for every t. The moment generating function, however, does not always exist.

Exercise 2.3. Find a random variable for which the moment generating function is equal
to +∞ for every t 6= 0.

Theorem 2.3 (Criteria for convergence in distribution). The sequence of random variables
{Xn}∞n=1 converges in distribution to a random variable X

(a) if and only if the characteristic functions φn(t) of Xn converge to the characteristic
function φX(t) of X for all t ∈ R.

(b) when, for some ε > 0, the moment generating functions Mn(t) of Xn converge to
the moment generating function MX(t) of X for all |t| < ε.
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(c) when, for some ε > 0, the probability generating functions Gn(t) of Xn converge to
the probability generating function GX(t) of X for all |t| < 1 + ε for some ε > 0.

(d) when the Xn are non-negative and integer-valued, and the moments E[Xr
n] converge

to the moments E[Xr] of X for each r = 1, 2, . . ., provided the moments of X satisfy

lim
r→∞

E[Xr]rm

r!
= 0 ∀m = 0, 1, . . . (2.1.8)

(e) when the moments E[Xr
n] converge to the moments E[Xr] of X for each r = 1, 2, . . .,

and MX(t), the moment generating function of X, is finite for t in some neighborhood
of the origin.

Exercise 2.4. Show that a Poisson random variable satisfies the moment condition in
(2.1.8).

Exercise 2.5. Prove that when X is a Poisson random variable with mean λ, then

E[(X)r] = λr. (2.1.9)

Exercise 2.6. Show that the moments of a Poisson random variable X with mean λ satisfy
the recursion

E[Xm] = λE[(X + 1)m−1]. (2.1.10)

We finally discuss a special case of convergence in distribution, namely, when we deal
with a sum of indicators, and the limit is a Poisson random variable. We write (X)r =
X(X − 1) · · · (X − r + 1), so that E[(X)r] is the rth factorial moment of X.

For a random variable X taking values in {0, 1, . . . , n}, the factorial moments of X
uniquely determine the probability mass function, since

P(X = k) =

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.11)

see e.g. [58, Corollary 1.11]. To see (2.1.11), we write

1{X=k} =

(
X

k

)(
1 − 1

)X−k
, (2.1.12)

using the convention that 00 = 1. Then, by Newton’s binomial, we obtain

1{X=k} =

(
X

k

)
X−k∑
i=0

(−1)i
(
X − k
i

)
=

∞∑
i=0

(−1)i
(
X

k

)(
X − k
i

)
, (2.1.13)

where, by convention, we take that
(
n
k

)
= 0 when k < 0 or k > n. Rearranging the

binomials, we arrive at

1{X=k} =

∞∑
r=k

(−1)k+r (X)r
(r − k)!k!

, (2.1.14)

where r = k + i, and taking expectations yields

P(X = k) =

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.15)
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which is (2.1.11). Similar results also hold for unbounded random variables, since the sum

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
(2.1.16)

is alternatingly smaller than P(X = k) (for n even) and larger than P(X = k) (for n odd).
This implies the following result:

Theorem 2.4 (Convergence to a Poisson random variable). A sequence of integer-valued
random variables {Xn}∞n=1 converges in distribution to a Poisson random variable with
parameter λ when, for all r = 1, 2, . . . ,

lim
n→∞

E[(Xn)r] = λr. (2.1.17)

Exercise 2.7. Show that if

lim
n→∞

∑
r≥n

E[(X)r]

(r − k)!
= 0, (2.1.18)

then also

P(X = k) =

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.19)

and use this to conclude that when limn→∞ E[(Xn)r] = E[(X)r] for all r ≥ 1, where Xn

and X are all integer-valued non-negative random variables, then also Xn
d−→ X.

Theorem 2.4 is particularly convenient when dealing with sums of indicators, i.e., when

Xn =
∑
i∈In

Ii,n, (2.1.20)

where Ii,n takes the values 0 and 1 only, as the following result shows:

Theorem 2.5 (Factorial moments of sums of indicators). When X =
∑
i∈I Ii is a sum of

indicators, then

E[(X)r] =
∑∗

i1,...,ir∈I

E[

r∏
l=1

Iil ] =
∑∗

i1,...,ir∈I

P
(
Ii1 = · · · = Iir = 1

)
, (2.1.21)

where
∑∗
i1,...,ir∈I denotes a sum over distinct indices.

Exercise 2.8. Prove (2.1.21) for r = 2.

Exercise 2.9. Compute the factorial moments of a binomial random variable with param-
eters n and p = λ/n and the ones of a Poisson random variable with mean λ, and use this
to conclude that a binomial random variable with parameters n and p = λ/n converges in
distribution to a Poisson random variable with mean λ.
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Proof of Theorem 2.5. We prove (2.1.21) by induction on r ≥ 1 and for all probability
measures P and corresponding expectations E. For r = 1, we have that (X)1 = X, and
(2.1.21) follows from the fact that the expectation of a sum of random variables is the sum
of expectations. This initializes the induction hypothesis.

In order to advance the induction hypothesis, we first note that it suffices to prove the
statement for indicators Ii for which P(Ii = 1) > 0. Then, for r ≥ 2, we write out

E[(X)r] =
∑
i1∈I

E
[
Ii1(X − 1) · · · (X − r + 1)

]
. (2.1.22)

Denote by Pi1 the conditional distribution given that Ii1 = 1, i.e., for any event E, we
have

Pi1(E) =
P(E ∩ {Ii1 = 1})

P(Ii1 = 1)
. (2.1.23)

Then we can rewrite

E
[
Ii1(X − 1) · · · (X − r + 1)

]
= P(Ii1 = 1)Ei1

[
(X − 1) · · · (X − r + 1)

]
. (2.1.24)

We define
Y = X − Ii1 =

∑
j∈I\{i1}

Ij , (2.1.25)

and note that, conditionally on Ii1 = 1, we have that X = Y + 1. As a result, we obtain
that

Ei1
[
(X − 1) · · · (X − r + 1)

]
= Ei1

[
Y · · · (Y − r + 2)

]
= Ei1

[
(Y )r−1

]
. (2.1.26)

We now apply the induction hypothesis to Ei1
[
(Y )r−1

]
, to obtain

Ei1
[
(Y )r−1

]
=

∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.27)

As a result, we arrive at

E[(X)r] =
∑
i1∈I

P(Ii1 = 1)
∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.28)

We complete the proof by noting that

P(Ii1 = 1)Pi1
(
Ii2 = · · · = Iir = 1

)
= P

(
Ii1 = Ii2 = · · · = Iir = 1

)
, (2.1.29)

and that ∑
i1∈I

∑∗

i2,...,ir∈I\{i1}

=
∑∗

i1,...,ir∈I

. (2.1.30)

There also exist multidimensional versions of Theorems 2.4 and 2.5:

Theorem 2.6 (Convergence to independent Poisson random variables). A vector of integer-
valued random variables {(X1,n, . . . , Xd,n)}∞n=1 converges in distribution to a vector of in-
dependent Poisson random variable with parameters λ1, . . . , λd when, for all r1, . . . , rd ∈ N,

lim
n→∞

E[(X1,n)r1 · · · (Xd,n)rd ] = λr11 · · ·λ
rd
d . (2.1.31)
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Theorem 2.7 (Factorial moments of sums of indicators). When Xl =
∑
i∈Il

Ii,l for all

l = 1, . . . , d are sums of indicators, then

E[(X1,n)r1 · · · (Xd,n)rd ] =
∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

P
(
I(l)

is
= 1∀l = 1, . . . , d&s = 1, . . . , rl

)
.

(2.1.32)

Exercise 2.10. Prove Theorem 2.7 using Theorem 2.5.

The fact that the convergence of moments as in Theorems 2.3, 2.4 and 2.6 yields conver-
gence in distribution is sometimes called the method of moments, and is a good way of
proving convergence results.

2.2 Coupling

For any λ fixed, it is well known that, when n→∞,

Bin(n, λ/n)
P−→ Poi(λ). (2.2.1)

In general, convergence in probability implies convergence in distribution, so that also
convergence in distribution follows. To prove this convergence, we will use a coupling
proof. Couplings will be quite useful in what follows, so we will discuss couplings, as well
as the related topic of stochastic orderings, in detail. An excellent treatment of coupling
theory is given in [262], to which we refer for more details.

In general, two random variables X and Y are coupled when they are defined on the
same probability space. This means that there is one probability law P such that P(X ∈
E, Y ∈ F ) are defined for all events E and F . This is formalized in the following definition,
where it is also generalized to more than one random variable:

Definition 2.8 (Coupling of random variables). The random variables (X̂1, . . . , X̂n) are

a coupling of the random variables X1, . . . , Xn when (X̂1, . . . , X̂n) are defined on the same

probability space, and are such that the marginal distribution of X̂i is the same as the
distribution of Xi for all i = 1, . . . , n, i.e., for all measurable subsets E of R, we have

P(X̂i ∈ E) = P(Xi ∈ E). (2.2.2)

The key point of Definition 2.8 is that while the random variables X1, . . . , Xn may be de-

fined on different probability spaces, the coupled random variables (X̂1, . . . , X̂n) are defined

on the same probability space. The coupled random variables (X̂1, . . . , X̂n) are related to
the original random variables X1, . . . , Xn by the fact that the marginal distributions of

(X̂1, . . . , X̂n) are equal to the random variables X1, . . . , Xn. Note that one coupling arises

by taking (X̂1, . . . , X̂n) to be independent, with X̂i having the same distribution as Xi.
However, in our proofs, we shall often make use of more elaborate couplings, which give
rise to stronger results.

Couplings are very useful to prove that random variables are somehow related. We
now describe a general coupling between two random variables which makes two random
variables be with high probability equal. We let X and Y be two random variables with

P(X = x) = px, P(Y = y) = qy, x ∈ X , y ∈ Y (2.2.3)

where {px}x∈X and {qy}y∈Y are any two probability mass functions on two subsets X and
Y of the same space.
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Theorem 2.9 (Strassen’s Theorem). For any two discrete random variables X and Y ,

there exists coupling (X̂, Ŷ ) of X and Y such that

P(X̂ 6= Ŷ ) = dTV(p, q). (2.2.4)

For any coupling (X̂, Ŷ ) of X and Y ,

P(X̂ 6= Ŷ ) ≥ dTV(p, q). (2.2.5)

Proof. Then, we define the random vector (X̂, Ŷ ) by

P(X̂ = Ŷ = x) = min{px, qx}, (2.2.6)

P(X̂ = x, Ŷ = y) =
(px −min{px, qx})(qy −min{py, qy})

1
2

∑
z |pz − qz|

, x 6= y. (2.2.7)

First of all, this is a probability distribution, since∑
x

(px −min{px, qx}) =
∑
x

(qx −min{px, qx}) =
1

2

∑
x

|px − qx|. (2.2.8)

Exercise 2.11 (Coupling and total variation distance). Prove (2.2.8).

The distance between discrete probability distributions {px}x∈X and {qx}x∈X in (2.2.8) is
called the total variation distance between the discrete probability mass functions {px}x∈X
and {qx}x∈X . In general, for two probability measures µ and ν, the total variation distance
is given by

dTV(µ, ν) = max
A
|µ(A)− ν(A)|, (2.2.9)

where µ(A) and ν(A) are the probabilities of the event A under the measures µ and ν.
When µ and ν are the distribution functions corresponding to two discrete probability

mass functions p = {px}x∈X and q = {qx}x∈X , so that, for every measurable A with
A ⊂ X , we have

µ(A) =
∑
x∈A

px, ν(A) =
∑
x∈A

qx, (2.2.10)

then it is not hard to see that

dTV(p, q) =
1

2

∑
x

|px − qx|. (2.2.11)

When F and G are the distribution functions corresponding to two continuous densities
f = {f(x)}x∈R and g = {g(x)}x∈R, so that for every measurable A ⊆ R,

µ(A) =

∫
A

f(x)dx, ν(A) =

∫
A

g(x)dx, (2.2.12)

then we obtain

dTV(f, g) =
1

2

∫ ∞
−∞
|f(x)− g(x)|dx. (2.2.13)

Exercise 2.12 (Total variation and L1-distances). Prove (2.2.11) and (2.2.13).
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We now continue investigating the coupling in (2.2.6) for two discrete random variables.
By construction,

P(X̂ = x) = px, P(Ŷ = y) = qy, (2.2.14)

so that X̂ and Ŷ have the right marginal distributions as required in Definition 2.8. More-
over, we have that, by (2.2.8),

P(X̂ 6= Ŷ ) =
∑
x,y

(px −min{px, qx})(qy −min{py, qy})
1
2

∑
z |pz − qz|

=
1

2

∑
x

|px − qx| = dTV(p, q). (2.2.15)

It turns out that this is an optimal or maximal coupling. See [262] for details. Indeed,
we have that for all x,

P(X̂ = Ŷ = x) ≤ P(X̂ = x) = P(X = x) = px, (2.2.16)

and also
P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = P(Y = x) = qx, (2.2.17)

so that for any coupling we must have that

P(X̂ = Ŷ = x) ≤ min{px, qx}. (2.2.18)

Therefore, any coupling must be such that

P(X̂ = Ŷ ) =
∑
x

P(X̂ = Ŷ = x) ≤
∑
x

min{px, qx}. (2.2.19)

As a result, we have that, for any coupling,

P(X̂ 6= Ŷ ) ≥ 1−
∑
x

min{px, qx} =
1

2

∑
x

|px − qx|. (2.2.20)

The coupling in (2.2.6) attains this equality, which makes it the best coupling possible, in

the sense that it maximizes P(X̂ = Ŷ ).
In these notes, we will often work with binomial random variables which we wish to

compare to Poisson random variables. We will make use of the following theorem, which
will be proved using a coupling argument:

Theorem 2.10 (Poisson limit for binomial random variables). let {Ii}ni=1 be independent
with Ii ∼ Be(pi), and let λ =

∑n
i=1 pi. Let X =

∑n
i=1 Ii and let Y be a Poisson random

variable with parameter λ. Then, there exists a coupling (X̂, Ŷ ) of (X,Y ) such that

P(X̂ 6= Ŷ ) ≤
n∑
i=1

p2
i . (2.2.21)

Consequently, for every λ ≥ 0 and n ∈ N, there exists a coupling (X̂, Ŷ ), where X̂ ∼
Bin(n, λ/n) and Ŷ ∼ Poi(λ) such that

P(X̂ 6= Ŷ ) ≤ λ2

n
. (2.2.22)
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Exercise 2.13. Let X ∼ Bin(n, λ/n) and Y ∼ Poi(λ). Write fi = P(X = i) and gi =
P(Y = i). Prove that Theorem 2.10 implies that dTV(f, g) ≤ λ2/n. Conclude also that, for
every i ∈ N, ∣∣P(X = i)− P(Y = i)

∣∣ ≤ λ2/n. (2.2.23)

Proof of Theorem 2.10. Throughout the proof, we let Ii ∼ Be(pi) and assume that {Ii}ni=1

are independent, and we let Ji ∼ Poi(pi) and assume that {Ji}ni=1 are independent. In the
proof, we write

pi,x = P(Ii = x) = pi1{x=1} + (1− pi)1{x=0}, qi,x = P(Ji = x) = e−pi
pxi
x!

(2.2.24)

for the Bernoulli and Poisson probability mass functions.

For each pair Ii, Ji, the maximal coupling (Îi, Ĵi) described above satisfies

P(Îi = Ĵi = x) = min{p1,x, q1,x} =


1− pi for x = 0,

pie
−pi for x = 1,

0 for x ≥ 2,

(2.2.25)

where we have used the inequality 1−pi ≤ e−pi for x = 0. Thus, now using that 1−e−pi ≤
pi,

P(Îi 6= Ĵi) = 1− P(Îi = Ĵi) = 1− (1− pi)− pie−pi = pi(1− e−pi) ≤ p2
i . (2.2.26)

Next, let X̂ =
∑n
i=1 Îi and Ŷ =

∑n
i=1 Ĵi. Then, X̂ has the same distribution as X =∑n

i=1 Ii, and Ŷ has the same distribution as Y =
∑n
i=1 Ji ∼ Poi(p1 + · · · + pn). Finally,

by Boole’s inequality and (2.2.26),

P(X̂ 6= Ŷ ) ≤ P
( n⋃
i=1

{Îi 6= Ĵi}
)
≤

n∑
i=1

P(Îi 6= Ĵi) ≤
n∑
i=1

p2
i . (2.2.27)

This completes the proof of Theorem 2.10.

For p = {px} and q = {qx}, the total variation distance dTV(p, q) is obviously larger
than 1

2
|px − gx|, so that convergence in total variation distance of p(n) = {px(n)} to a

probability mass function p = {px} implies pointwise convergence of the probability mass
functions limn→∞ px(n) = px for every x. Interestingly, it turns out that these notions are
equivalent:

Exercise 2.14. Show that if limn→∞ px(n) = px for every x, and p = {px} is a probability
mass function, then also limn→∞ dTV(p(n), p) = 0.

2.3 Stochastic ordering

To compare random variables, we will rely on the notion of stochastic ordering, which
is defined as follows:

Definition 2.11 (Stochastic domination). Let X and Y be two random variables, not
necessarily living on the same probability space. The random variable X is stochastically
smaller than the random variable Y when, for every x ∈ R, the inequality

P(X ≤ x) ≥ P(Y ≤ x) (2.3.1)

holds. We denote this by X � Y .
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A nice coupling reformulation of stochastic ordering is presented in the following lemma:

Lemma 2.12 (Coupling definition of stochastic domination). The random variable X is
stochastically smaller than the random variable Y if and only if there exists a coupling

(X̂, Ŷ ) of X,Y such that

P(X̂ ≤ Ŷ ) = 1. (2.3.2)

Proof. When P(X̂ ≤ Ŷ ) = 1, then

P(Y ≤ x) = P(Ŷ ≤ x) = P(X̂ ≤ Ŷ ≤ x)

≤ P(X̂ ≤ x) = P(X ≤ x), (2.3.3)

so that X is stochastically smaller than Y .
For the other direction, suppose that X is stochastically smaller than Y . We define the

generalized inverse of a distribution function F by

F−1(u) = inf{x ∈ R : F (x) ≥ u}, (2.3.4)

where u ∈ [0, 1]. If U is a uniform random variable on [0, 1], then it is well-known that the
random variable F−1(U) has distribution function F . This follows since the function F−1

is such that
F−1(u) > x precisely when u > F (x). (2.3.5)

Denote by FX and FY the marginal distribution functions of X and Y . Then (2.3.1) is
equivalent to

FX(x) ≥ FY (x) (2.3.6)

for all x. It follows that, for all u ∈ [0, 1],

F−1
X (u) ≤ F−1

Y (u). (2.3.7)

Therefore, since X̂ = F−1
X (U) and Ŷ = F−1

Y (U) have the same marginal distributions as
X and Y , respectively, it follows that

P(X̂ ≤ Ŷ ) = P(F−1
X (U) ≤ F−1

Y (U)) = 1. (2.3.8)

There are many examples of pairs of random variables which are stochastically ordered,
and we will now describe a few.

Binomial random variables. A simple example of random variables which are stochas-
tically ordered is as follows. Let m,n ∈ N be integers such that m ≤ n. Let X ∼ Bin(m, p)

and Y ∼ Bin(n, p). Then, we claim that X � Y . To see this, let X̂ =
∑m
i=1 Ii and

Ŷ =
∑n
i=1 Ii, where {Ii}∞i=1 is an i.i.d. sequence of Bernoulli random variables, i.e.,

P(Ii = 1) = 1− P(Ii = 0) = p, i = 1, . . . , n, (2.3.9)

and I1, I2, . . . , In are mutually independent. Then, since Ii ≥ 0 for each i, we have that

P(X̂ ≤ Ŷ ) = 1. (2.3.10)

Therefore, X � Y .
The stochastic domination above also holds when X = Bin(n−Z, p) and Y = Bin(n, p),

when Z is any random variable that takes non-negative integer values. This domination
result will prove to be useful in the investigation of the Erdős-Rényi random graph.
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Poisson random variables. Another example of random variables which are stochas-
tically ordered is as follows. Let λ, µ ∈ R be such that λ ≤ µ. Let X ∼ Poi(λ) and

Y ∼ Poi(µ). Then, X � Y . To see this, let X̂ ∼ Poi(λ), Ẑ ∼ Poi(µ − λ), where X̂ and Ẑ

are independent, and let Ŷ = X̂ + Ẑ. Then, Ŷ ∼ Poi(µ). Moreover, since Ẑ ≥ 0 for each
i, we have that

P(X̂ ≤ Ŷ ) = 1. (2.3.11)

Therefore, X � Y .

Exercise 2.15. Let X and Y be normal distributions with equal variances σ2 and means
µX ≤ µY . Is X � Y ?

Exercise 2.16. Let X and Y be normal distributions with variances σ2
X < σ2

Y and equal
means µ. Is X � Y ?

2.3.1 Consequences of stochastic domination

In this section, we discuss a number of consequences of stochastic domination, such as
the fact that the means of a stochastically ordered pair of random variables is ordered as
well.

Theorem 2.13 (Ordering of means for stochastically ordered random variables). Suppose
X � Y . Then

E[X] ≤ E[Y ]. (2.3.12)

Proof. We apply Lemma 2.12. Let X̂ and Ŷ have the same law as X and Y , and be such

that X̂ ≤ Ŷ with probability 1. Then

E[X] = E[X̂] ≤ E[Ŷ ] = E[Y ]. (2.3.13)

Theorem 2.14 (Preservation of ordering under monotone functions). Suppose X � Y ,
and g : R→ R is non-decreasing. Then g(X) � g(Y ).

Proof. Let X̂ and Ŷ have the same laws as X and Y and be such that X̂ ≤ Ŷ (see

Lemma 2.12). Then, g(X̂) and g(Ŷ ) have the same distributions as g(X) and g(Y ), and

g(X̂) ≤ g(Ŷ ) with probability one, by the fact that g is non-decreasing. Therefore, by
Lemma 2.12, the claim follows.

2.4 Probabilistic bounds

We will often make use of a number of probabilistic bounds, which we will summarise
and prove in this section.

Theorem 2.15 (Markov inequality). Let X be a non-negative random variable with E[X] <
∞. Then,

P(X ≥ a) ≤ E[X]

a
. (2.4.1)

In particular, when X is integer valued with E[X] ≤ m, then

P(X = 0) ≥ 1−m. (2.4.2)
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By (2.4.2), if the integer random variable has a small mean, then it must be equal to
0 with high probability. This is called the first moment method, and is a powerful tool to
prove results.

Proof. Equation (2.4.1) follows by

aP(X ≥ a) ≤ E[X1{X≥a}] ≤ E[X]. (2.4.3)

Theorem 2.16 (Chebychev inequality). Assume that X is integer valued with Var(X) =
σ2. Then,

P
(∣∣X − E[X]

∣∣ ≥ a) ≤ σ2

a2
. (2.4.4)

In particular, when X is integer valued with E[X] ≥ m and Var(X) = σ2, then

P(X = 0) ≤ σ2

m2
. (2.4.5)

By (2.4.5), if the integer random variable has a large mean, and a variance which is
small compared to the square of the mean, then it must be positive with high probability.
This is called the second moment method.

Proof. For (2.4.4), we note that

P
(∣∣X − E[X]

∣∣ ≥ a) = P
(

(X − E[X])2 ≥ a2
)
, (2.4.6)

and apply the Markov inequality. For (2.4.5), we note that

P(X = 0) ≤ P
(
|X − E[X]| ≥ E[X]

)
≤ Var(X)

E[X]2
≤ σ2

m2
. (2.4.7)

We will often rely on bounds on the probability that a sum of independent random variables
is larger than its expectation. For such probabilities, large deviation theory gives good
bounds. We will describe these bounds here. For more background on large deviations, we
refer the reader to [102, 157, 228].

Theorem 2.17 (Cramér’s upper bound, Chernoff bound). Let {Xi}∞i=1 be a sequence of
i.i.d. random variables. Then, for all a ≥ E[X1],

P
( n∑
i=1

Xi ≥ na
)
≤ e−nI(a), (2.4.8)

while, for all a ≤ E[X1],

P
( n∑
i=1

Xi ≤ na
)
≤ e−nI(a), (2.4.9)

where, for a ≥ E[X1],

I(a) = sup
t≥0

(
ta− logE[etX1 ]

)
, (2.4.10)

while, for a ≤ E[X1],

I(a) = sup
t≤0

(
ta− logE[etX1 ]

)
. (2.4.11)
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Note that the function t 7→ ta − logE[etX1 ] is concave, and the derivative in 0 is a −
E[X1] ≥ 0 for a ≥ E[X1]. Therefore, for a ≥ E[X1], the supremum of t 7→ (ta− logE[etX1 ])
will be attained for a t ≥ 0 when E[etX1 ] exists in a neighborhood of t = 0. As a result,
(2.4.10)–(2.4.11) can be combined as

I(a) = sup
t

(
ta− logE[etX1 ]

)
. (2.4.12)

Proof. We only prove (2.4.8), the proof of (2.4.9) is identical when we replace Xi by −Xi.
We rewrite, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)

= P
(
et

∑n
i=1 Xi ≥ etna

)
≤ e−ntaE

[
et

∑n
i=1 Xi

]
, (2.4.13)

where we have used Markov’s inequality in Theorem 2.15. Since {Xi}∞i=1 is a sequence of
i.i.d. random variables, we have

E
[
et

∑n
i=1 Xi

]
= E[etX1 ]n, (2.4.14)

so that, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)
≤
(
e−taE[etX1 ]

)n
. (2.4.15)

Minimizing the right-hand side over t ≥ 0 gives that

P
( n∑
i=1

Xi ≥ na
)
≤ e−n supt≥0

(
ta−log E[etX1 ]

)
. (2.4.16)

This proves (2.4.8).

Exercise 2.17. Compute I(a) for {Xi}∞i=1 being independent Poisson random variables
with mean λ. Show that, for a > λ,

P
( n∑
i=1

Xi ≥ na
)
≤ e−nIλ(a), (2.4.17)

where Iλ(a) = a(log (a/λ)− 1) + λ. Show also that, for a < λ

P
( n∑
i=1

Xi ≤ na
)
≤ e−nIλ(a). (2.4.18)

Prove that Iλ(a) > 0 for all a 6= λ.

2.4.1 Bounds on binomial random variables

In this section, we investigate the tails of the binomial distribution. We start by a
corollary of Theorem 2.17:
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Corollary 2.18 (Large deviations for binomial distribution). Let Xn be a binomial random
variable with parameters p and n. Then, for all a ∈ (p, 1],

P
(
Xn ≥ na

)
≤ e−nI(a), (2.4.19)

where

I(a) = a log
(a
p

)
+ (1− a) log

(1− a
1− p

)
. (2.4.20)

Moreover,
I(a) ≥ Ip(a) (2.4.21)

where
Iλ(a) = λ− a− a log (λ/a) (2.4.22)

is the rate function of a Poisson random variable with mean λ.

We can recognize (2.4.22) as the rate function of a Poisson random variable with mean
λ (recall Exercise 2.17). Thus, Corollary 2.18 suggests that the upper tail of a binomial
random variable is thinner than the one of a Poisson random variable.

Proof. We start by proving (2.4.19), using (2.4.8). We note that, by (2.4.10), we obtain a
bound with I(a) instead of Ip, where, with X1 ∼ Be(p),

I(a) = sup
t≥0

(
ta−logE[etX1 ]

)
= sup

t

(
ta−log

(
pet+(1−p)

))
= a log

(a
p

)
+(1−a) log

(1− a
1− p

)
.

(2.4.23)
We note that, for t ≥ 0,

pet + (1− p) = 1 + p(et − 1) ≤ ep(e
t−1), (2.4.24)

so that
I(a) ≥ sup

t

(
ta− p(et − 1)

)
= p− a− a log

(
p/a
)

= Ip(a). (2.4.25)

We continue to study tails of the binomial distribution, following [171]. The main bound
is the following:

Theorem 2.19. Let Xi ∼ Be(pi), i = 1, 2, . . . , n, be independent Bernoulli distributed
random variables, and write X =

∑n
i=1 Xi and λ = E[X] =

∑n
i=1 pi. Then

P(X ≥ E[X] + t) ≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0; (2.4.26)

P(X ≤ E[X]− t) ≤ exp

(
− t

2

2λ

)
, t ≥ 0. (2.4.27)

Further similar bounds under the same conditions and, even more generally, for indepen-
dent random variables Xi such that 0 ≤ Xi ≤ 1, are given, for example, in [34, 148] and
[15, Appendix A].

Exercise 2.18. Prove that Theorem 2.19 also holds for the Poisson distribution by a
suitable limiting argument.
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Proof. Let Y ∼ Bin(n, λ/n) where we recall that λ =
∑n
i=1 pi. Since x 7→ log x is concave,

we have that for every x1, . . . , xn ∈ R,

n∑
i=1

1

n
log(xi) ≤ log

( 1

n

n∑
i=1

xi
)
. (2.4.28)

As a result, for every real u, upon taking the logarithm,

E[euX ] =

n∏
i=1

(1 + (eu − 1)pi) = en
∑n
i=1

1
n

log(1+(eu−1)pi) (2.4.29)

≤ en log(1+(eu−1)λ/n) =
(

1 + (eu − 1)λ/n
)n

= E[euY ].

Then we compute that, for all u ≥ 0, by the Markov inequality,

P(X ≥ E[X] + t) ≤ e−u(E[X]+t)E[euX ] ≤ e−u(E[X]+t)E[euY ] = e−u(λ+t)(1− p+ peu)n,
(2.4.30)

where p = λ/n and using that E[X] = λ.
When t > n− λ, the left-hand side of (2.4.30) equals 0, and there is nothing to prove.

For λ + t < n, the right-hand side of (2.4.30) attains its minimum for the u satisfying
eu = (λ+ t)(1− p)/(n− λ− t)p. This yields, for 0 ≤ t ≤ n− λ,

P(X ≥ λ+ t) ≤
(

λ

λ+ t

)λ+t(
n− λ

n− λ− t

)n−λ−t
. (2.4.31)

The bound is implicit in [80] and is often called the Chernoff bound, appearing for the first
time explicitly in [226].

For 0 ≤ t ≤ n− λ,, we can rewrite (2.4.31) as

P(X ≥ λ+ t) ≤ exp

(
−λϕ

(
t

λ

)
− (n− λ)ϕ

(
−t
n− λ

))
, (2.4.32)

where ϕ(x) = (1 + x) log(1 + x)− x for x ≥ −1 (and ϕ(x) =∞ for x < −1). Replacing X
by n−X, we also obtain, again for 0 ≤ t ≤ n− λ,

P(X ≤ λ− t) ≤ exp

(
−λϕ

(
t

λ

)
− (n− λ)ϕ

(
t

n− λ

))
. (2.4.33)

Since ϕ(x) ≥ 0 for every x we can ignore the second term in the exponent. Furthermore,
ϕ(0) = 0 and ϕ′(x) = log(1 + x) ≤ x, so that ϕ(x) ≥ x2/2 for x ∈ [−1, 0], which proves
(2.4.27). Similarly, ϕ(0) = ϕ′(0) = 0 and, for x ∈ [0, 1],

ϕ′′(x) =
1

1 + x
≥ 1

(1 + x/3)3
=

(
x2

2(1 + x/3)

)′′
, (2.4.34)

so that ϕ(x) ≥ x2/(2(1 + x/3)), which proves (2.4.26).

2.5 Martingales

In this section, we state and prove some results concerning martingales. These results
will be used in the remainder of the text. For more details on martingales, we refer the
reader to [140, 271].

We assume some familiarity with conditional expectations. For the readers who are
unfamiliar with filtrations and conditional expectations given a σ-algebra, we start by
giving the simplest case of a martingale:
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Definition 2.20 (Martingale). A stochastic process {Mn}∞n=0 is a martingale process if

E[|Mn|] <∞ for all n ≥ 0, (2.5.1)

and
E[Mn+1|M0,M1, . . . ,Mn] = Mn for all n ≥ 0. (2.5.2)

As can be seen from (2.5.2), a martingale can be interpreted as a fair game. Indeed, when
Mn denotes the profit after the nth game has been played, then (2.5.2) tells us that the
expected profit at time n+ 1 given the profits up to time n is equal to the profit at time n.

Exercise 2.19. Show that when {Mn}∞n=0 is a martingale process, then µ = E[Mn] is
independent of n.

We now give a second definition, which we will need in Chapter 8, where a martingale
is defined with respect to a more general filtration.

Definition 2.21 (Martingale definition general). A stochastic process {Mn}∞n=0 is a mar-
tingale process with respect to {Xn}∞n=0 if

E[|Mn|] <∞ for all n ≥ 0, (2.5.3)

Mn is measurable with respect to the σ-algebra generated by (X0, . . . , Xn), and

E[Mn+1|X0, . . . , Xn] = Mn for all n ≥ 0. (2.5.4)

For Xn = Mn, the definitions in (2.5.2) and (2.5.4) coincide.

Exercise 2.20. Let {Xi}∞0=1 be an independent sequence of random variables with E[|Xi|] <
∞ and E[Xi] = 1. Show that, for n ≥ 0,

Mn =

n∏
i=0

Xi (2.5.5)

is a martingale.

Exercise 2.21. Let {Xi}∞i=0 be an independent sequence of random variables with E[|Xi|] <
∞ and E[Xi] = 0. Show that, for n ≥ 0,

Mn =

n∑
i=0

Xi (2.5.6)

is a martingale.

Exercise 2.22. Let Mn = E[Y |X0, . . . , Xn] for some random variables {Xi}∞i=0 and Y
with E[|Y |] < ∞ and {Xn}∞n=0. Show that {Mn}∞n=0 is a martingale process with respect
to {Xn}∞n=0. {Mn}∞n=0 is called a Doob martingale.

In the following two sections, we state and prove two key results for martingales, the
martingale convergence theorem and the Azuma-Hoeffding inequality. These results are
a sign of the power of martingales. Martingale techniques play a central role in modern
probability theory, partly due to these results.
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2.5.1 Martingale convergence theorem

We start with the martingale convergence theorem:

Theorem 2.22 (Martingale convergence theorem). Let {Mn}∞n=0 be a martingale process
with respect to {Xn}∞n=0 satisfying

E[|Mn|] ≤ B for all n ≥ 0. (2.5.7)

Then, Mn
a.s.−→M∞, for some limiting random variable M∞ which is finite with probability

1.

The martingale convergence theorem comes in various forms. There also is an L2-
version, for which it is assumed that E[M2

n] ≤ M uniformly for all n ≥ 1. In this case,
one also obtains the convergence limn→∞ E[M2

n] = E[M2
∞]. Theorem 2.22 is an adaptation

of the L1-martingale convergence theorem, for which one only needs that {Mn}∞n=0 is a
submartingale, i.e., when we assume (2.5.7), but (2.5.4) is replaced with

E[Mn+1|X0, . . . , Xn] ≥Mn for all n ≥ 0. (2.5.8)

See e.g., [140, Section 12.3].

Exercise 2.23. Prove that when the martingale {Mn}∞n=0 is non-negative, i.e., when Mn ≥
0 with probability 1 for all n ≥ 1, then Mn

a.s.−→M∞ to some limiting random variable M∞
which is finite with probability 1.

Exercise 2.24. Let {Xi}∞i=0 be an independent sequence of random variables with E[Xi] =
1 and for which Xi ≥ 0 with probability 1. Show that the martingale

Mn =

n∏
i=0

Xi (2.5.9)

converges in probability to a random variable which is finite with probability 1. Hint: Prove
that E[|Mn|] = E[Mn] = 1, and apply Exercise 2.23.

Exercise 2.25. For i = 1, . . . ,m, let {M (i)
n }∞n=0 be a sequence of martingales with respect

to {Xn}∞n=0. Show that

Mn =
m

max
i=0

M (i)
n (2.5.10)

is a submartingale with respect to {Xn}∞n=0.

Proof of Theorem 2.22. We shall prove Theorem 2.22 in the case where Mn is a submartin-
gale.

We follow the proof of the martingale convergence theorem in [140, Section 12.3]. The
key step in this classical probabilistic proof is ‘Snell’s up-crossings inequality’. Suppose
that {mn : n ≥ 0} is a real sequence, and [a, b] is a real interval. An up-crossing of [a, b]
is defined to be a crossing by m of [a, b] in the upwards direction. More precisely, let
T1 = min{n : mn ≤ a}, the first time m hits the interval (−∞, a], and T2 = min{n >
T1 : mn ≥ b}, the first subsequent time when m hits [b,∞); we call the interval [T1, T2] an
up-crossing of [a, b]. In addition, for k > 1, define the stopping times Tn by

T2k−1 = min{n > T2k−2 : mn ≤ a}, T2k = min{n > T2k−1 : mn ≥ b}, (2.5.11)

so that the number of up-crossings of [a, b] is equal to the number of intervals [T2k−1, T2k]
for k ≥ 1. Let Un(a, b;m) be the number of up-crossings of [a, b] by the subsequence
m0,m1, . . . ,mn, and let U(a, b;m) = limn→∞ Un(a, b;m) be the total number of up-
crossings of m.
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a

b

Figure 2.1: Up-crossings

Let {Mn}∞n=0 be a submartingale, and let Un(a, b;M) be the number of up-crossings of
[a, b] by M up to time n. Then the up-crossing inequality gives a bound on the expected
number of up-crossings of an interval [a, b]:

Proposition 2.23 (Up-crossing inequality). If a < b then

E[Un(a, b;M)] ≤ E[(Mn − a)+]

b− a ,

where (Mn − a)+ = max{0,Mn − a}.

Proof. Setting Zn = (Mn− a)+, we have that Zn is a non-negative submartingale because
E[|Mn|] ≤ E[|Mn|] + |a| <∞. Furthermore, for every random variable X and a ∈ R,

E[(X − a)+] ≥ E[X − a]+, (2.5.12)

so that

Zn ≤
(
E[Mn+1|X0, . . . , Xn]− a

)
+
≤ E[(Mn+1 − a)+|X0, . . . , Xn] = E[Zn+1|X0, . . . , Xn],

(2.5.13)
where we first used the submartingale property E[Mn+1|X0, . . . , Xn] ≥ Mn, followed by
(2.5.12). Up-crossings of [a, b] by M correspond to up-crossings of [0, b− a] by Z, so that
Un(a, b;M) = Un(0, b− a;Z).
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Let [T2k−1, T2k], for k ≥ 1, be the up-crossings of Z of [0, b−a], and define the indicator
functions

Ii =

{
1 if i ∈ (T2k−1, T2k] for some k,
0 otherwise

(2.5.14)

Note that the event {Ii = 1} depends on M0,M1, . . . ,Mi−1 only. Since M0,M1, . . . ,Mi−1

are measurable with respect to the the σ-algebra generated by (X0, . . . , Xi−1), also Ii is
measurable with respect to the σ-algebra generated by (X0, . . . , Xi−1). Now

(b− a)Un(0, b− a;Z) ≤
n∑
i=1

(Zi − Zi−1)Ii (2.5.15)

since each up-crossing of [0, b − a] by Z contributes an amount of at least b − a to the
summation. The expectation of the summands on the right-hand side of (2.5.15) is equal
to

E[(Zi − Zi−1)Ii] =E
[
E
[
(Zi − Zi−1)Ii|X0, . . . , Xi−1

]]
= E[Ii(E[Zi|X0, . . . , Xi−1]− Zi−1)]

≤E[E[Zi|X0, . . . , Xi−1]− Zi−1] = E[Zi]− E[Zi−1],

where we use that Ii is measurable with respect to the σ-algebra generated by (X0, . . . , Xi−1)
for the second equality, and we use that Z is a submartingale and 0 ≤ Ii ≤ 1 to obtain the
inequality. Summing over i and take expectations on both sides of (2.5.15), we obtain

(b− a)E[Un(0, b− a;Z)] ≤ E[Zn]− E[Z0] ≤ E[Zn], (2.5.16)

which completes the proof of Proposition 2.23.

Now we have the tools to give the proof of Theorem 2.22:

Proof of Theorem 2.22. Suppose {Mn}∞n=0 is a submartingale and E[|Mn|] ≤ B for all n.
Let Λ be defined as follows

Λ = {ω : Mn(ω) does not converge to a limit in [−∞,∞]}.
The claim that Mn converges is proved if we show that P(Λ) = 0. The set Λ has an
equivalent definition

Λ = {ω : lim inf Mn(ω) < lim supMn(ω)}

=
⋃

a,b∈Q:a<b

{ω : lim inf Mn(ω) < a < b < lim supMn(ω)}

=
⋃

a,b∈Q:a<b

Λa,b.

However,
Λa,b ⊆ {ω : U(a, b;M) =∞},

so that, by Proposition 2.23, P(Λa,b) = 0. Since Λ is a countable union of sets Λa,b, it
follows that P(Λ) = 0. This concludes the first part of the proof that Mn converges almost
surely to a limit M∞.

To show that the limit is bounded, we use Fatou’s lemma (see Theorem A.45 in the
appendix) to conclude

E[|M∞|] = E[lim inf
n→∞

|Mn|] ≤ lim inf
n→∞

E[|Mn|] ≤ sup
n≥0

E[|Mn|] <∞,

so that, by Markov’s inequality (recall Theorem 2.15),

P(M∞ <∞) = 1.

This completes the proof of Theorem 2.22.
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2.5.2 Azuma-Hoeffding inequality

We continue with the Azuma-Hoeffding inequality, which provides exponential bounds
for the tails of a special class of martingales:

Theorem 2.24 (Azuma-Hoeffding inequality). Let {Mn}∞n=0 be a martingale process with
the property that, with probability 1, there exists Kn ≥ 0 such that

|Mn −Mn−1| ≤ Kn for all n ≥ 0, (2.5.17)

where, by convention, we define M−1 = µ = E[Mn] (recall also Exercise 2.19). Then, for
every a ≥ 0,

P(|Mn − µ| ≥ a) ≤ 2 exp
{
− a2

2
∑n
i=0 K

2
i

}
. (2.5.18)

Theorem 2.24 is very powerful, as it provides tails on the distribution of Mn. In many
cases, the bounds are close to optimal. The particular strength of Theorem 2.24 is that
the bound is valid for all n ≥ 1.

Proof. For ψ > 0, the function g(d) = eψd is convex, so that, for all d with |d| ≤ 1,

eψd ≤ 1

2
(1− d)e−ψ +

1

2
(1 + d)eψ. (2.5.19)

Applying this with d = D to a random variable D having mean 0 and satisfying P(|D| ≤
1) = 1, we obtain

E[eψD] ≤ E[
1

2
(1−D)e−ψ +

1

2
(1 +D)eψ] =

1

2
(e−ψ + eψ). (2.5.20)

We can use that (2n)! ≥ 2nn! for all n ≥ 0 to obtain that

1

2
(e−ψ + eψ) =

∑
n≥0

ψ2n

(2n)!
≤
∑
n≥0

ψ2n

2nn!
= eψ

2/2. (2.5.21)

By Markov’s inequality in Theorem 2.15, for any θ > 0,

P(Mn − µ ≥ x) = P(eθ(Mn−µ) ≥ eθx) ≤ e−θxE[eθ(Mn−µ)]. (2.5.22)

Writing Dn = Mn −Mn−1, we obtain

E[eθ(Mn−µ)] = E[eθ(Mn−1−µ)eθDn ].

Conditioning on X0, . . . , Xn−1 yields

E[eθ(Mn−µ) |X0, . . . , Xn−1] = eθ(Mn−1−µ)E[eθDn |X0, . . . , Xn−1] ≤ eθ(Mn−1−µ) exp(
1

2
θ2K2

n),

(2.5.23)
where (2.5.20) and (2.5.21) are applied to the random variable Dn/Kn which satisfies

E[Dn|X0, . . . , Xn−1] = E[Mn|X0, . . . , Xn−1]−E[Mn−1|X0, . . . , Xn−1] = Mn−1−Mn−1 = 0.
(2.5.24)

Taking expectations on both sides of (2.5.23) and iterate to find

E[eθ(Mn−µ)] ≤ E[eθ(Mn−1−µ)] exp(
1

2
θ2K2

n) ≤ exp

(
1

2
θ2

n∑
i=0

K2
i

)
. (2.5.25)
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Therefore, by (2.5.22), for all θ > 0,

P(Mn − µ ≥ x) ≤ exp

(
−θx+

1

2
θ2

n∑
i=0

K2
i

)
. (2.5.26)

The exponential is minimized, with respect to θ, by setting θ = x/
∑n
i=0 K

2
i . Hence,

P(Mn − µ ≥ x) ≤ exp

(
− x2∑n

i=0 K
2
i

)
. (2.5.27)

Using that also −Mn is a martingale, we obtain by symmetry that

P(Mn − µ ≤ −x) ≤ exp

(
− x2∑n

i=0 K
2
i

)
. (2.5.28)

Adding the two bounds completes the proof.

Exercise 2.26. Show that Theorem 2.24 implies that for X ∼ Bin(n, p) with p ≤ 1/2

P(|X − np| ≥ a) ≤ 2 exp
{
− a2

2n(1− p)2

}
. (2.5.29)

Exercise 2.27. Let {Xi}∞i=0 be an independent identically distributed sequence of random
variables with E[Xi] = 0 and |Xi| ≤ 1, and define the martingale {Mn}∞n=0 by

Mn =

n∑
i=0

Xi. (2.5.30)

Show that

P(|Mn| ≥ a) ≤ 2 exp
(
− a2

2n

)
. (2.5.31)

Take a = x
√
n, and prove by using the central limit theorem that P(|Mn| ≥ a) converges.

Compare the limit to the bound in (2.5.31).

2.6 Order statistics and extreme value theory

In this section, we study the largest values of a sequence of i.i.d. random variables. For
more background on order statistics, we refer the reader to [118]. We will be particularly
interested in the case where the random variables in question have heavy tails. We let
{Xi}ni=1 be an i.i.d. sequence, and introduce the order statistics of {Xi}ni=1 by

X(1) ≤ X(2) ≤ · · · ≤ X(n), (2.6.1)

so that X(1) = min{X1, . . . , Xn}, X(2) is the second smallest of {Xi}ni=1, etc. In the
notation in (2.6.1), we ignore the fact that the distribution of X(i) depends on n. Sometimes
the notation X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) is used instead to make the dependence on n
explicit. In this section, we shall mainly investigate X(n), i.e., the maximum of X1, . . . , Xn.
We note that the results immediately translate to X(1), by changing to −Xi.

We denote the distribution function of the random variables {Xi}ni=1 by

FX(x) = P(X1 ≤ x). (2.6.2)
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Before stating the results, we introduce a number of special distributions. We say that
the random variable Y has a Fréchet distribution if there exists an α > 0 such that

P(Y ≤ y) =

{
0, y ≤ 0,

exp{−y−α} y > 0.
(2.6.3)

We say that the random variable Y has a Weibull distribution if there exists an α > 0 such
that

P(Y ≤ y) =

{
exp{−(−y)α}, y ≤ 0,

1 y > 0.
(2.6.4)

We say that the random variable Y has a Gumbel distribution if

P(Y ≤ y) = exp{− exp{−y}}, y ∈ R. (2.6.5)

One of the fundamental results in extreme value theory is the following characterization
of possible limit distributions of X(n):

Theorem 2.25 (Fisher-Tippett theorem, limit laws for maxima). Let {Xn}∞n=0 be a se-
quence of i.i.d. random variables. If there exists norming constants cn > 0 and dn ∈ R and
some non-degenerate distribution function H such that

X(n) − cn
dn

d−→ Y, (2.6.6)

where Y has distribution function H, then H is the distribution function of a Fréchet,
Weibull or Gumbel distribution.

A fundamental role in extreme value statistics is played by approximate solutions un of
[1− FX(un)] = 1/n. More precisely, we define un by

un = inf{u : 1− FX(u) ≥ 1/n}. (2.6.7)

We shall often deal with random variables which have a power-law distribution. For such
random variables, the following theorem identifies the Fréchet distribution as the only
possible extreme value limit:

Theorem 2.26 (Maxima of heavy-tailed random variables). Let {Xn}∞n=0 be a sequence
of i.i.d. unbounded random variables satisfying

1− FX(x) = x1−τLX(x), (2.6.8)

where x 7→ LX(x) is a slowly varying function, and where τ > 1. Then

X(n)

un

d−→ Y, (2.6.9)

where Y has a Fréchet distribution with parameter α = τ − 1 and un is defined in (2.6.7).

Exercise 2.28. Show that when (2.6.8) holds, then un is regularly varying with exponent
1

τ−1
.

For completeness, we also state two theorems identifying when the Weibull distribution
or Gumbel distribution occur as the limiting distribution in extreme value theory:



2.6 Order statistics and extreme value theory 47

Theorem 2.27 (Maxima of bounded random variables). Let {Xn}∞n=0 be a sequence of
i.i.d. random variables satisfying that FX(xX) = 1 for some xX ∈ R and

1− FX(xX − x−1) = x−αLX(x), (2.6.10)

where x 7→ LX(x) is a slowly varying function, and where α > 1. Then

X(n) − xX
dn

d−→ Y, (2.6.11)

where Y has a Weibull distribution with parameter α, and dn = xX−un where un is defined
in (2.6.7).

Theorem 2.28 (Maxima of random variables with thin tails). Let {Xn}∞n=0 be a sequence
of i.i.d. bounded random variables satisfying that F (xF ) = 1 for some xF ∈ [0,∞], and

lim
x↑xF

1− F (x+ ta(x))

1− F (x)
= e−t, t ∈ R, (2.6.12)

where x 7→ a(x) is given by

a(x) =

∫ xF

x

1− F (t)

1− F (x)
dt. (2.6.13)

Then
X(n) − un

dn

d−→ Y, (2.6.14)

where Y has a Gumbel distribution, and dn = a(un) where un is defined in (2.6.7).

We next assume that the random variables {Xi}ni=1 have infinite mean. It is well known
that the order statistics of the random variables, as well as their sum, are governed by un
in the case that τ ∈ (1, 2). The following theorem shows this in detail. In the theorem
below, E1, E2, . . . is an i.i.d. sequence of exponential random variables with unit mean and
Γj = E1 +E2 + . . .+Ej , so that Γj has a Gamma distribution with parameters j and 1.

It is well known that when the distribution function F of {Xi}ni=1 satisfies (2.6.8), then∑n
i=1 Xi has size approximately n1/(τ−1), just as holds for the maximum, and the rescaled

sum n−1/(τ−1)∑n
i=1 Xi converges to a stable distribution. The next result generalizes this

statement to convergence of the sum together with the first order statistics:

Theorem 2.29 (Convergence in distribution of order statistics and sum). {Xn}∞n=0 be a
sequence of i.i.d. random variables satisfying (2.6.8) for some τ ∈ (1, 2). Then, for any
k ∈ N, (

Ln
un

,
{X(n+1−i)

un

}n
i=1

)
d−→ (η, {ξi}∞i=1) , as n→∞, (2.6.15)

where (η, {ξi}∞i=1) is a random vector which can be represented by

η =

∞∑
j=1

Γ
−1/(τ−1)
j , ξi = Γ

−1/(τ−1)
i , (2.6.16)

and where un is slowly varying with exponent 1/(τ − 1) (recall Exercise 2.28). Moreover,

ξkk
1/(τ−1) P−→ 1 as k →∞. (2.6.17)
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Proof. Because τ − 1 ∈ (0, 1), the proof is a direct consequence of [197, Theorem 1’], and
the continuous mapping theorem [49, Theorem 5.1], which together yield that on R×R∞,
equipped with the product topology, we have

(S#
n , Z

(n))
d−→ (S#, Z), (2.6.18)

where S#
n = u−1

n Ln, Z(n) = u−1
n (D(n:n), . . . , D(1:n), 0, 0, . . .), and Zj = Γ

−1/(τ−1)
j , j ≥ 1.

Finally, (2.6.17) follows because by the weak law of large numbers,

Γk
k

P−→ 1, (2.6.19)

and ξk = Γ
−1/(τ−1)
k .

Interestingly, much can be said about the random probability distribution Pi = ξi/η,
which is called the Poisson-Dirichlet distribution (see e.g., [233]). For example, [233, Eqn.
(10)] proves that for any f : [0, 1]→ R, and with α = τ − 1 ∈ (0, 1),

E
[ ∞∑
i=1

f(Pi)
]

=
1

Γ(α)Γ(1− α)

∫ 1

0

f(u)u−α−1(1− u)α−1du. (2.6.20)

2.7 Notes and discussion

Notes on Section 2.1. For a through discussion on convergence issues of integer random
variables including Theorems 2.4–2.6 and much more, see [58, Section 1.4].

Notes on Section 2.4. Theorem 2.17 has a long history. See e.g., [102, Theorem 2.2.3]
for a more precise version of Cramér’s Theorem, which states that (2.4.8)–(2.4.9) are sharp,
in the sense that − 1

n
log P( 1

n

∑n
i=1 Xi ≤ a) converges to I(a). See [228, Theorem 1.1] for

a version of Cramér’s Theorem that includes also the Chernoff bound.

Notes on Section 2.5. This discussion is adapted after [140]. For interesting examples of
martingale argument, as well as adaptations of the Azuma-Hoeffding inequality in Theorem
2.24, see [88].

Notes on Section 2.6. Theorem 2.25 is [118, Theorem 3.2.3]. Theorem 2.26 is [118,
Theorem 3.3.7]. Theorem 2.27 is [118, Theorem 3.3.12]. Theorem 2.28 is [118, Theorem
3.3.27]. For a thorough discussion of extreme value results, as well as many examples, we
refer to the standard work on the topic [118].



Chapter 3

Branching processes

Branching processes will be used in an essential way throughout these notes to describe
the connected components of various random graphs. To prepare for this, we describe
branching processes in quite some detail here. Special attention will be given to branching
processes with a Poisson offspring distribution, as well as to branching processes with a
binomial offspring distribution and their relation (see Sections 3.6 and 3.7 below). We start
by describing the survival versus extinction transition in Section 3.1, and provide a useful
random walk perspective on branching processes in Section 3.3. For more information
about branching processes, we refer to the books [22, 145, 158].

3.1 Survival versus extinction

A branching process is the simplest possible model for a population evolving in time.
Suppose each organism independently gives birth to a number of children with the same
distribution. We denote the offspring distribution by {pi}∞i=0, where

pi = P(individual has i children). (3.1.1)

We denote by Zn the number of individuals in the nth generation, where, by convention,
we let Z0 = 1. Then Zn satisfies the recursion relation

Zn =

Zn−1∑
i=1

Xn,i, (3.1.2)

where {Xn,i}n,i≥1 is a doubly infinite array of i.i.d. random variables. We will often write
X for the offspring distribution, so that {Xn,i}n,i≥1 is a doubly infinite array of i.i.d.
random variables with Xn,i ∼ X for all n, i.

One of the major results of branching processes is that when E[X] ≤ 1, the population
dies out with probability one (unless X1,1 = 1 with probability one), while if E[X] > 1,
there is a non-zero probability that the population will not become extinct. In order to
state the result, we denote the extinction probability by

η = P(∃n : Zn = 0). (3.1.3)

Theorem 3.1 (Survival v.s. extinction for branching processes). For a branching process
with i.i.d. offspring X, η = 1 when E[X] < 1, while η < 1 when E[X] > 1. When E[X] = 1,
and P(X = 1) < 1, then η = 1. Moreover, with GX the probability generating function of
the offspring distribution X, i.e.,

GX(s) = E[sX ], (3.1.4)

the extinction probability η is the smallest solution in [0, 1] of

η = GX(η). (3.1.5)

49
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Figure 3.1: The solution of s = GX(s) when E[X] < 1,E[X] = 1,E[X] > 1 respectively.
Note that E[X] = G′X(1), and G′X(1) > 1 precisely when there is a solution η < 1 to
η = GX(η).

Proof. We write
ηn = P(Zn = 0). (3.1.6)

Because {Zn = 0} ⊆ {Zn+1 = 0}, we have that ηn ↑ η. Let

Gn(s) = E[sZn ] (3.1.7)

denote the generating function of the nth generation. Then, since for an integer-valued
random variable X, P(X = 0) = GX(0), we have that

ηn = Gn(0). (3.1.8)

By conditioning on the first generation, we obtain that

Gn(s) = E[sZn ] =

∞∑
i=0

piE[sZn |Z1 = i] =

∞∑
i=0

piGn−1(s)i. (3.1.9)

Therefore, writing GX = G1 for the generating function of X1,1, we have that

Gn(s) = GX(Gn−1(s)). (3.1.10)

When we substitute s = 0, we obtain that ηn satisfies the recurrence relation

ηn = GX(ηn−1). (3.1.11)

See Figure 3.2 for the evolution of n 7→ ηn.
When n→∞, we have that ηn ↑ η, so that, by continuity of s 7→ GX(s), we have

η = GX(η). (3.1.12)

When P(X = 1) = 1, then Zn = 1 a.s., and there is nothing to prove. When, further,
P(X ≤ 1) = 1, but p = P(X = 0) > 0, then P(Zn = 0) = 1 − (1 − p)n → 1, so again
there is nothing to prove. Therefore, for the remainder of this proof, we shall assume that
P(X ≤ 1) < 1.
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0
1

1

Figure 3.2: The iteration for n 7→ ηn in (3.1.11).

Suppose that ψ ∈ [0, 1] satisfies ψ = GX(ψ). We claim that η ≤ ψ. We use induction to
prove that ηn ≤ ψ for all n. Indeed, η0 = 0 ≤ ψ, which initializes the induction hypothesis.
To advance the induction, we use (3.1.11), the induction hypothesis, as well as the fact
that s 7→ GX(s) is increasing on [0, 1], to see that

ηn = GX(ηn−1) ≤ GX(ψ) = ψ, (3.1.13)

where the final conclusion comes from the fact that ψ is a solution of ψ = GX(ψ). Therefore,
ηn ≤ ψ, which advances the induction. Since ηn ↑ η, we conclude that η ≤ ψ for all
solutions ψ of ψ = GX(ψ). Therefore, η is the smallest such solution.

We note that s 7→ GX(s) is increasing and convex for s ≥ 0, since

G′′X(s) = E[X(X − 1)sX−2] ≥ 0. (3.1.14)

When P(X ≤ 1) < 1, then E[X(X − 1)sX−2] > 0, so that s 7→ GX(s) is strictly increasing
and strictly convex for s > 0. Therefore, there can be at most two solutions of s = GX(s) in
[0, 1]. Note that s = 1 is always a solution of s = GX(s), since G is a probability generating
function. Since GX(0) > 0, there is precisely one solution when G′X(1) < 1, while there
are two solutions when G′X(1) > 1. The former implies that η = 1 when G′X(1) > 1,
while the latter implies that η < 1 when G′X(1) < 1. When G′X(1) = 1, again there is
precisely one solution, except when GX(s) = s, which is equivalent to P(X = 1) = 1. Since
G′X(1) = E[X], this proves the claim.
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Figure 3.3: The survival probability ζ = ζλ for a Poisson branching process with mean
offspring equal to λ. The survival probability equals ζ = 1 − η, where η is the extinction
probability.

In many cases, we shall be interested in the survival probability, denoted by ζ = 1−η, which
is the probability that the branching process survives forever, i.e., ζ = P(Zn > 0 ∀n ≥ 0).
See Figure 3.3 for the survival probability of a Poisson branching process with parameter
λ, as a function of λ.

Exercise 3.1. Show that η = 0 precisely when p0 = 0.

Exercise 3.2. When the offspring distribution is given by

px = (1− p)1{x=0} + p1{x=2}, (3.1.15)

we speak of binary branching. Prove that η = 1 when p ≤ 1/2 and, for p > 1/2,

η =
1− p
p

. (3.1.16)

Exercise 3.3 ([22], Pages 6-7.). Let the probability distribution {pk}∞k=0 be given by{
pk = b(1− p)k−1 for k = 1, 2, . . . ;

p0 = 1− b/p for k = 0,
(3.1.17)

so that, for b = p, the offspring distribution has a geometric distribution with success
probability p. Show that the extinction probability η is given by η = 1 if µ = E[X] = b/p2 ≤
1, while, with the abbreviation q = 1− p,

η =
1− µp
q

. (3.1.18)

Exercise 3.4 (Exercise 3.3 cont.). Let the probability distribution {pk}∞k=0 be given by
(3.1.17). Show that Gn(s), the generating function of Zn is given by

Gn(s) =


1− µn 1−η

µn−η +
µn
(

1−η
µn−η

)2

s

1−
(
µn−1
µn−η

) when b 6= p2;

nq−(nq−p)s
p+nq−nps when b = p2.

(3.1.19)
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Exercise 3.5 (Exercise 3.4 cont.). Conclude from Exercise 3.4 that, for {pk}∞k=0 in
(3.1.17),

P(Zn > 0, ∃m > n such that Zm = 0) =


µn 1−η

µn−η when b < p2;
p

p+nq
when b = p2;

(1−η)η
µn−η when b > p2.

(3.1.20)

We continue by studying the total progeny T of the branching process, which is defined as

T =
∞∑
n=0

Zn. (3.1.21)

We denote by GT (s) the probability generating function of T , i.e.,

GT (s) = E[sT ]. (3.1.22)

The main result is the following:

Theorem 3.2 (Total progeny probability generating function). For a branching process
with i.i.d. offspring X having probability generating function GX(s) = E[sX ], the probability
generating function of the total progeny T satisfies the relation

GT (s) = sGX(GT (s)). (3.1.23)

Proof. We again condition on the size of the first generation, and use that when Z1 = i,
for j = 1, . . . , i, the total progeny Tj of the jth child of the initial individual satisfies that
{Tj}ij=1 is an i.i.d. sequence of random variables with law equal to the one of T . Therefore,
using also that

T = 1 +

i∑
j=1

Tj , (3.1.24)

where, by convention, the empty sum, arising when i = 0, is equal to zero, we obtain

GT (s) =

∞∑
i=0

piE[sT |Z1 = i] = s

∞∑
i=0

piE[sT1+···+Ti ] = s
∞∑
i=0

piGT (s)i = sGX(GT (s)).

(3.1.25)
This completes the proof.

Exercise 3.6 (Exercise 3.2 cont.). In the case of binary branching, i.e., when p is given
by (3.1.15), show that

GT (s) =
1−

√
1− 4s2pq

2sp
. (3.1.26)

Exercise 3.7 (Exercise 3.5 cont.). Show, using Theorem 3.2, that, for {pk}∞k=0 in (3.1.17),

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
(3.1.27)



54 Branching processes

3.2 Family moments

In this section, we compute the mean generation size of a branching process, and use
this to compute the mean family size or the mean total progeny. The main result is the
following theorem:

Theorem 3.3 (Moments of generation sizes). For all n ≥ 0, and with µ = E[Z1] = E[X]
the expected offspring of a given individual,

E[Zn] = µn. (3.2.1)

Proof. Recall that

Zn =

Zn−1∑
i=1

Xn,i, (3.2.2)

where {Xn,i}n,i≥1 is a doubly infinite array of i.i.d. random variables. In particular,
{Xn,i}i≥1 is independent of Zn−1.

Exercise 3.8. Complete the proof of Theorem 3.3 by conditioning on Zn−1 and showing
that

E
[ Zn−1∑
i=1

Xn,i|Zn−1 = m
]

= mµ, (3.2.3)

so that
E[Zn] = µE[Zn−1]. (3.2.4)

Exercise 3.9. Prove that {µ−nZn}n≥1 is a martingale.

Exercise 3.10. When the branching process is critical, note that Zn
P−→ 0. On the other

hand, conclude that E[Zn] = 1 for all n ≥ 1.

Theorem 3.4. Fix n ≥ 0. Let µ = E[Z1] = E[X] be the expected offspring of a given
individual, and assume that µ < 1. Then,

P(Zn > 0) ≤ µn. (3.2.5)

Exercise 3.11. Prove Theorem 3.4 by using Theorem 3.3, together with the Markov in-
equality (2.4.1).

Theorem 3.4 implies that in the subcritical regime, i.e., when the expected offspring µ < 1,
the probability that the population survives up to time n is exponentially small in n.

Theorem 3.5 (Expected total progeny). For a branching process with i.i.d. offspring X
having mean offspring µ < 1,

E[T ] =
1

1− µ. (3.2.6)

Exercise 3.12. Prove (3.2.6).
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3.3 Random-walk perspective to branching processes

In branching processes, it is common to study the number of descendants of each gener-
ation. For random graph purposes, it is often convenient to use a different construction of
a branching process by sequentially investigating the number of children of each member
of the population. This picture leads to a random walk formulation of branching processes.
For more background on random walks, we refer the reader to [257] or [140, Section 5.3].

We now give the random walk representation of a branching process. Let X1, X2, . . .
be independent random variables with the same distribution as X1,1 in (3.1.2). Define
S0, S1, . . . by the recursion

S0 = 1,

Si = Si−1 +Xi − 1 = X1 + . . .+Xi − (i− 1).
(3.3.1)

Let T be the smallest t for which St = 0, i.e.,

T = min{t : St = 0} = min{t : X1 + . . .+Xt = t− 1}. (3.3.2)

If such a t does not exist, then we define T = +∞.
The above description is equivalent to the normal definition of a branching process, but

records the branching process tree in a different manner. For example, in the random walk
picture, it is slightly more difficult to extract the distribution of the generation sizes. To
see that the two pictures agree, we shall show that the distribution of the random variable
T is equal to the total progeny of the branching process as defined in (3.1.21), and it is
equal to the total number of individuals in the family tree of the initial individual.

To see this, we note that we can explore the branching process family tree as follows.
We let X1 denote the children of the original individual, and set S1 as in (3.3.1). Then,
there are S1 = X1 − 1 unexplored individuals, i.e., individuals of whom we have not yet
explored how many children they have. We claim that after exploring i individuals, and
on the event that there are at least i individuals in the family tree, the random variable
Si denotes the number of individuals of whom the children have not yet been explored:

Lemma 3.6 (The interpretation of {Si}∞i=0). The random process {Si}∞i=0 in (3.3.1) has
the same distribution as the random process {S′i}∞i=0, where S′i denotes the number of
unexplored individuals in the exploration of a branching process population after exploring
i individuals successively.

Proof. We shall prove this by induction on i. Clearly, it is correct when i = 0. We next
advance the induction hypothesis. For this, suppose this is true for Si−1. We are done when
Si−1 = 0, since then all individuals have been explored, and the total number of explored
individuals is clearly equal to the size of the family tree, which is T by definition. Thus,
assume that Si−1 > 0. Then we pick an arbitrary unexplored individual and denote the
number of its children by Xi. By the independence property of the offspring of different
individuals in a branching process, we have that the distribution of Xi is equal to the
distribution of Z1, say. Also, after exploring the children of the ith individual, we have
added Xi individuals that still need to be explored, and have explored a single individual,
so that now the total number of unexplored individuals is equal to Si−1 + Xi − 1, which,
by (3.3.1) is equal to Si. This completes the proof using induction.

Lemma 3.6 gives a nice interpretation of the random process {Si}∞i=0 in (3.3.1). Finally,
since the branching process total progeny is explored precisely at the moment that all of
its individuals have been explored, it follows that T in (3.3.2) has the same distribution as
the total progeny of the branching process.

Exercise 3.13. Compute P(T = k) for T in (3.3.2) and P(T = k) for T in (3.1.21)
explicitly, for k = 1, 2 and 3.
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The branching process belonging to the recursion in (3.3.1) is the following. The population
starts with one active individual. At time i, we select one of the active individuals in the
population, and give it Xi children. The children (if any) are set to active, and the
individual becomes inactive.

This process is continued as long as there are active individuals in the population. Then,
the process Si describes the number of active individuals after the first i individuals have
been explored. The process stops when St = 0, but the recursion can be defined for all t
since this leaves the value of T unaffected. Note that, for a branching process, (3.3.1) only
makes sense as long as i ≤ T , since only then Si ≥ 0 for all i ≤ T . However, (3.3.1) in
itself can be defined for all i ≥ 0, also when Si < 0. This fact will be useful in the sequel.

Exercise 3.14 (Exercise 3.2 cont.). In the case of binary branching, i.e., when the offspring
distribution is given by (3.1.15), show that

P(T = k) =
1

p
P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
, (3.3.3)

where {Si}∞i=1 is a simple random walk, i.e.,

Si = Y1 + · · ·+ Yi, (3.3.4)

where {Yi}∞i=1 are i.i.d. random variables with distribution

P(Y1 = 1) = 1− P(Y1 = −1) = p. (3.3.5)

This gives a one-to-one relation between random walks excursions and the total progeny of
a binary branching process.

Denote by H = (X1, . . . , XT ) the history of the process up to time T . We include
the case where T = ∞, in which case the vector H has infinite length. A sequence
(x1, . . . , xt) is a possible history if and only if the sequence xi satisfies (3.3.1), i.e., when
si > 0 for all i < t, while st = 0, where si = x1 + · · ·+ xi − (i− 1). Then, for any t <∞,

P(H = (x1, . . . , xt)) =

t∏
i=1

pxi . (3.3.6)

Note that (3.3.6) determines the law of the branching process when conditioned on extinc-
tion.

We will use the random walk perspective in order to describe the distribution of a
branching process conditioned on extinction. Call the distributions p and p′ a conjugate
pair if

p′x = ηx−1px, (3.3.7)

where η is the extinction probability belonging to the offspring distribution {px}∞x=0, so
that η = GX(η).

Exercise 3.15. Prove that p′ = {p′x}∞x=0 defined in (3.3.7) is a probability distribution.

The relation between a supercritical branching process conditioned on extinction and its
conjugate branching process is as follows:

Theorem 3.7 (Duality principle for branching processes). Let p and p′ be conjugate off-
spring distributions. The branching process with distribution p, conditional on extinction,
has the same distribution as the branching process with offspring distribution p′.
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The duality principle takes a particularly appealing form for Poisson branching pro-
cesses, see Theorem 3.15 below.

Proof. It suffices to show that for every finite history H = (x1, . . . , xt), the probability
(3.3.6) is the same for the branching process with offspring distribution p, when conditioned
on extinction, and the branching process with offspring distribution p′. Fix a t <∞. First
observe that

P(H = (x1, . . . , xt)|extinction) =
P({H = (x1, . . . , xt)} ∩ extinction)

P(extinction)

= η−1P(H = (x1, . . . , xt)), (3.3.8)

since a finite history implies that the population becomes extinct. Then, we use (3.3.6),
together with the fact that

t∏
i=1

pxi =

t∏
i=1

p′xiη
−(xi−1) = ηt−

∑t
i=1 xi

t∏
i=1

p′xi = η

t∏
i=1

p′xi , (3.3.9)

since x1 + . . .+ xt = t− 1. Substitution into (3.3.8) yields that

P(H = (x1, . . . , xt)|extinction) = P′(H = (x1, . . . , xt)), (3.3.10)

where P′ is the distribution of the branching process with offspring distribution p′.

Exercise 3.16. Let Gd(s) = E′[sX1 ] be the probability generating function of the offspring
of the dual branching process. Show that

Gd(s) =
1

η
GX(ηs). (3.3.11)

Exercise 3.17. Let X ′ have probability mass function p′ = {p′x}∞x=0 defined in (3.3.7).
Show that when η < 1, then

E[X ′] < 1. (3.3.12)

Thus, the branching process with offspring distribution p′ is subcritical.

Another convenient feature of the random walk perspective for branching processes is that
it allows one to study what the probability is of extinction when the family tree has at
least a given size. The main result in this respect is given below:

Theorem 3.8 (Extinction probability with large total progeny). For a branching process
with i.i.d. offspring X having mean µ = E[X] > 1,

P(k ≤ T <∞) ≤ e−Ik

1− e−I
, (3.3.13)

where the exponential rate I is given by

I = sup
t≤0

(
t− logE[etX ]

)
> 0. (3.3.14)
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Theorem 3.8 can be reformulated by saying that when the total progeny is large, then
the branching process will survive with high probability.

Note that when µ = E[X] > 1 and when E[etX ] < ∞ for all t ∈ R, then we can also
write

I = sup
t

(
t− logE[etX ]

)
, (3.3.15)

(see also (2.4.12)). However, in Theorem 3.8, it is not assumed that E[etX ] < ∞ for all
t ∈ R! Since X ≥ 0, we clearly do have that E[etX ] < ∞ for all t ≤ 0. Therefore, since
also the derivative of t 7→ t − logE[etX ] in t = 0 is equal to 1 − E[X] < 0, the supremum
is attained at a t < 0, and, therefore, we obtain that I > 0 under no assumptions on the
existence of the moment generating function of the offspring distribution. We now give the
full proof:

Proof. We use the fact that T = s implies that Ss = 0, which in turn implies that X1 +
. . .+Xs = s− 1 ≤ s. Therefore,

P(k ≤ T <∞) ≤
∞∑
s=k

P(Ss = 0) ≤
∞∑
s=k

P(X1 + . . .+Xs ≤ s). (3.3.16)

For the latter probability, we use (2.4.9) and (2.4.11) in Theorem 2.17 with a = 1 < E[X].
Then, we arrive at

P(k ≤ T <∞) ≤
∞∑
s=k

e−sI =
e−Ik

1− e−I
. (3.3.17)

3.4 Supercritical branching processes

In this section, we prove a convergence result for the population in the nth generation.
Clearly, in the (sub)critical case, the limit of Zn is equal to 0, and there is nothing to
prove. In the supercritical case, when the expected offspring is equal to µ > 1, it is also
known that (see e.g., [22, Theorem 2, p. 8]) limn→∞ P(Zn = k) = 0 unless k = 0, and
P(limn→∞ Zn = 0) = 1 − P(limn→∞ Zn = ∞) = η, where η is the extinction probability
of the branching process. In particular, the branching process population cannot stabilize.
It remains to investigate what happens when η < 1, in which case limn→∞ Zn =∞ occurs
with positive probability. We prove the following convergence result:

Theorem 3.9 (Convergence for supercritical branching processes). For a branching pro-

cess with i.i.d. offspring X having mean µ = E[X] > 1, µ−nZn
a.s.−→ W∞ for some random

variable W∞ which is finite with probability 1.

Proof. We use the martingale convergence theorem (Theorem 2.22), and, in particular, its
consequence formulated in Exercise 2.23. Denote Mn = µ−nZn, and recall that by Exercise
3.9, {Mn}∞n=1 is a martingale. By Theorem 3.3, we have that E[|Mn|] = E[Mn] = 1, so
that Theorem 2.22 gives the result.

Unfortunately, not much is known about the limiting distribution W∞. Its probability
generating function GW (s) = E[sW∞ ] satisfies the implicit relation, for s ∈ [0, 1],

GW (s) = GX
(
GW (s1/µ)

)
. (3.4.1)

Exercise 3.18. Prove (3.4.1).
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We next investigate when P(W∞ > 0) = 1− η = ζ:

Theorem 3.10 (Kesten-Stigum Theorem). For a branching process with i.i.d. offspring
X having mean µ = E[X] > 1, P(W∞ = 0) = η precisely when E[X logX] < ∞. When
E[X logX] <∞, also E[W∞] = 1, while, when E[X logX] =∞, P(W∞ = 0) = 1.

Theorem 3.10 implies that P(W∞ > 0) = 1 − η, where η is the extinction probability
of the branching process, so that conditionally on survival, the probability that W∞ > 0
is equal to one. Theorem 3.10 was first proved by Kesten and Stigum in [183, 184, 185].
It is remarkable that the precise condition when W∞ = 0 a.s. can be so easily expressed
in terms of a moment condition on the offspring distribution. A proof of Theorem 3.10
is given in [22, Pages 24-26], while in [205] a conceptual proof is given. See [111, Proof
of Theorem 2.16] for a simple proof of the statement under the stronger condition that
E[X2] <∞, using the L2-martingale convergence theorem (see also below Theorem 2.22).

Theorem 3.10 leaves us with the question what happens when E[X logX] = ∞. In
this case, Seneta [243] has shown that there always exists a proper renormalization, i.e.,

there exists a sequence {cn}∞n=1 with limn→∞ c
1/n
n = µ such that Zn/cn converges to a

non-degenerate limit. However, cn = o(µn), so that P(W∞ = 0) = 1.

Exercise 3.19. Prove that P(W∞ > 0) = 1− η implies that P(W∞ > 0| survival) = 1.

Exercise 3.20. Prove, using Fatou’s lemma (Theorem A.45), that E[W∞] ≤ 1 always
holds.

We continue by studying the number of particles with an infinite line of descent, i.e., the
particles of whom the family tree survives forever. Interestingly, these particles form a
branching process again, as we describe now. In order to state the result, we start with
some definitions. We let Z(1)

n denote those particles from the nth generation of {Zk}∞k=0

that survive forever. Then, the main result is as follows:

Theorem 3.11 (Individuals with an infinite line of descent). Conditionally on survival,
the process {Z(∞)

n }∞n=0 is again a branching process with offspring distribution p(∞) =

{p(∞)

k }
∞
k=0 given by p(∞)

0 = 0 and, for k ≥ 1,

p(∞)

k =
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)kpj . (3.4.2)

Moreover, since
µ(∞) = E[Z(∞)

1 ] = µ = E[Z1], (3.4.3)

this branching process is supercritical with the same expected offspring as {Zn}∞n=0 itself.

Comparing Theorem 3.11 to Theorem 3.7, we see that in the supercritical regime, the
branching process conditioned on extinction is a branching process with the dual (subcrit-
ical) offspring distribution, while, conditional on survival, the individuals with an infinite
line of descent for a (supercritical) branching process.

Exercise 3.21. Prove that p(∞) is a probability distribution.

Proof of Theorem 3.11. We let A∞ be the event that Zn → ∞. We shall prove, by
induction on n ≥ 0, that the distribution of {Z(∞)

k }nk=0 conditionally on A∞ is equal to

that of a {Ẑk}nk=0, where {Ẑk}∞k=0 is a branching process with offspring distribution p(∞)

given in (3.4.2). We start by initializing the induction hypothesis. For this, we note that,

on A∞, we have that Z(∞)

0 = 1, whereas, by convention, Ẑ0 = 1. This initializes the
induction hypothesis.
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To advance the induction hypothesis, we argue as follows. Suppose that the distribution

of {Z(∞)

k }nk=0, conditionally on A∞, is equal to that of {Ẑk}nk=0. Then, we shall show that

also the distribution of {Z(∞)

k }n+1
k=0 , conditionally on A∞, is equal to that of {Ẑk}n+1

k=0 . By

the induction hypothesis, this immediately follows if the conditional distributions of Z(∞)

n+1

given {Z(∞)

k }nk=0 is equal to the conditional distribution of Ẑn+1 given {Ẑk}nk=0.

The law of Ẑn+1 given {Ẑk}nk=0 is that of an independent sum of Ẑn i.i.d. random

variables with law p(∞). Now, the law of Z(∞)

n+1 given {Z(∞)

k }nk=0 is equal to the law of Z(∞)

n+1

given Z(∞)
n , and each individual with infinite line of descent in the nth generation gives rise

to a random and i.i.d. number of individuals with infinite line of descent in the (n + 1)st

generation with the same law as Z(∞)

1 conditionally on A∞. As a result, to complete the
proof of (3.4.2), we must show that

P
(
Z(∞)

1 = k
∣∣A∞) = p(∞)

k . (3.4.4)

For k = 0, this is trivial, since, conditionally on A∞, we have that Z(∞)

1 ≥ 1, so that
both sides are equal to 0 for k = 0. For k ≥ 1, on the other hand, the proof follows by
conditioning on Z1. We have that, for k ≥ 1, Z(∞)

1 = k implies that Z1 ≥ k and that A∞
occurs, so that

P
(
Z(∞)

1 = k
∣∣A∞) = ζ−1P

(
Z(∞)

1 = k
)

= ζ−1
∑
j≥k

P
(
Z(∞)

1 = k
∣∣Z1 = j

)
P(Z1 = j)

= ζ−1
∑
j≥k

(
j

k

)
ηj−k(1− η)kpj , (3.4.5)

since each of the j particles has infinite line of descent with probability ζ = 1− η, so that
P
(
Z(∞)

1 = k
∣∣Z1 = j

)
= P(Bin(j, 1− η) = k).

We complete the proof of Theorem 3.11 by proving (3.4.3). We start by proving (3.4.2)
when µ < ∞. For this, we write, using that for k = 0, we may substitute the right-hand
side of (3.4.2) instead of p(∞)

0 = 0, to obtain

µ(∞) =

∞∑
k=0

kp(∞)

k =

∞∑
k=0

k
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)kpj

=
1

ζ

∞∑
j=0

pj

j∑
k=0

k

(
j

k

)
ηj−k(1− η)k =

1

ζ

∞∑
j=0

pj(ζj) =

∞∑
j=0

jpj = µ. (3.4.6)

This proves (3.4.2) when µ <∞. When µ =∞, on the other hand, we only need to show
that µ(∞) = ∞ as well. This can easily be seen by an appropriate truncation argument,
and is left to the reader.

Exercise 3.22. Prove (3.4.2) when µ =∞.

With Theorems 3.11 and 3.9 at hand, we see an interesting picture emerging. Indeed, by

Theorem 3.9, we have that Znµ
−n a.s.−→ W∞, where, if the X logX-condition in Theorem

3.10 is satisfied, P(W∞ > 0) = ζ, the branching process survival probability. On the other
hand, by Theorem 3.11 and conditionally on A∞, {Z(∞)

n }∞n=0 is also a branching process

with expected offspring µ, which survives with probability 1. As a result, Z(∞)
n µ−n

a.s.−→
W (∞)
∞ , where, conditionally on A∞, P(W (∞)

∞ > 0) = 1, while, yet, Z(∞)
n ≤ Zn for all
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n ≥ 0, by definition. This raises the question what the relative size is of Z(∞)
n and Zn,

conditionally on A∞. This question is answered in the following theorem:

Theorem 3.12 (Proportion of particles with infinite line of descent). Conditionally on
survival,

Z(∞)
n

Zn

a.s.−→ ζ. (3.4.7)

Theorem 3.12 will prove to be quite useful, since it allows us sometimes to transfer results
on branching processes which survive with probability 1, such as {Z(∞)

n }∞n=0 conditionally
on survival, to branching processes which have a non-zero extinction probability, such as
{Zn}∞n=0.

Proof of Theorem 3.12. We first give the proof in the case where the mean offspring µ is
finite. Applying Theorem 3.11 together with Theorem 3.9 and the fact that, condition-
ally on survival, E[Z(∞)

1 ] = µ (see (3.4.3)), we obtain that there exists W (∞) such that
Z(∞)
n µ−n → W (∞). Moreover, by Theorem 3.10 and the fact that the survival proba-

bility of the branching process in {Z(∞)
n }∞n=0 equals 0 (recall Exercise 3.1), we have that

P(W (∞) > 0) = 1. Further, again by Theorem 3.9 now applied to {Zn}∞n=0, conditionally
on survival, Zn/µ

n converges in distribution to the conditional distribution of W∞ condi-
tionally on W∞ > 0. Thus, we obtain that Z(∞)

n /Zn converges a.s. to a finite and positive
limit R.

In order to see that this limit in fact equals ζ, we use that the distribution of Z(∞)
n

given that Zn = k is binomial with parameters k probability of success ζ. As a result,
since as n → ∞ and conditionally on survival Zn → ∞, we have that Z(∞)

n /Zn converges
in probability to ζ. This implies that R = ζ a.s. Add proof when

µ =∞!

3.5 Hitting-time theorem and the total progeny

In this section, we derive a general result for the law of the total progeny for branching
processes, by making use of the Hitting-time theorem for random walks. The main result
is the following:

Theorem 3.13 (Law of total progeny). For a branching process with i.i.d. offspring dis-
tribution Z1 = X,

P(T = n) =
1

n
P(X1 + · · ·+Xn = n− 1), (3.5.1)

where {Xi}ni=1 are i.i.d. copies of X.

Exercise 3.23 (Total progeny for binomial branching processes). Compute the probability
mass function of a branching process with a binomial offspring distribution using Theorem
3.13.

Exercise 3.24 (Total progeny for geometric branching processes). Compute the probability
mass function of a branching process with a geometric offspring distribution using Theorem
3.13. Hint: note that when {Xi}ni=1 are i.i.d. geometric, then X1 + · · ·+Xn has a negative
binomial distribution.
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We shall prove Theorem 3.13 below. In fact, we shall prove a more general version of
Theorem 3.13, which states that

P(T1 + · · ·+ Tk = n) =
k

n
P(X1 + · · ·+Xn = n− k), (3.5.2)

where T1, . . . , Tk are k independent random variables with the same distribution as T .
Alternatively, we can think of T1 + · · · + Tk as being the total progeny of a branching
process starting with k individuals, i.e., when Z0 = k.

The proof is based on the random walk representation of a branching process, together
with the random-walk hitting time theorem. In its statement, we write Pk for the law of
a random walk starting in k, we let {Yi}∞i=1 be the i.i.d. steps of the random walk, and we
let Sn = k + Y1 + · · · + Yn be the position of the walk, starting in k, after n steps. We
finally let

T0 = inf{n : Sn = 0} (3.5.3)

denote the first hitting time of the origin of the walk. Then, the hitting-time theorem is
the following result:

Theorem 3.14 (Hitting-time theorem). For a random walk with i.i.d. steps {Yi}∞i=1 sat-
isfying that

P(Yi ≥ −1) = 1, (3.5.4)

the distribution of T0 is given by

Pk(T0 = n) =
k

n
Pk(Sn = 0). (3.5.5)

Theorem 3.14 is a remarkable result, since it states that, conditionally on the event {Sn =
0}, and regardless of the precise distribution of the steps of the walk {Yi}∞i=1 satisfying
(3.5.4), the probability of the walk to be at 0 for the first time at time n is equal to k

n
.

Equation (3.5.2) follows from Theorem 3.14 since the law of T1 + · · ·+ Tk is that of a the
hitting time of a random walk starting in k with step distribution Yi = Xi − 1, where
{Xi}∞i=1 are the offsprings of the vertices. Since Xi ≥ 0, we have that Yi ≥ −1, which
completes the proof of (3.5.2) and hence of Theorem 3.13. The details are left as an
exercise:

Exercise 3.25 (The total progeny from the hitting-time theorem). Prove that Theorem
3.14 implies (3.5.2).

Exercise 3.26 (The condition in the hitting-time theorem). Is Theorem 3.14 still true
when the restriction that P(Yi ≥ −1) = 1 is dropped?

Proof of Theorem 3.14. We prove (3.5.5) for all k ≥ 0 by induction on n ≥ 1. When n = 1,
then both sides are equal to 0 when k > 1 and k = 0, and are equal to P(Y1 = −1) when
k = 1. This initializes the induction.

To advance the induction, we take n ≥ 2, and note that both sides are equal to 0 when
k = 0. Thus, we may assume that k ≥ 1. We condition on the first step to obtain

Pk(T0 = n) =

∞∑
s=−1

Pk(T0 = n
∣∣Y1 = s)P(Y1 = s). (3.5.6)

By the random-walk Markov property,

Pk(T0 = n
∣∣Y1 = s) = Pk+s(T0 = n− 1) =

k + s

n− 1
Pk+s(Sn−1 = 0), (3.5.7)
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where in the last equality we used the induction hypothesis, which is allowed since k ≥ 1
and s ≥ −1, so that k + s ≥ 0. This leads to

Pk(T0 = n) =

∞∑
s=−1

k + s

n− 1
Pk+s(Sn−1 = 0)P(Y1 = s). (3.5.8)

We undo the law of total probability, using that Pk+s(Sn−1 = 0) = Pk(Sn = 0
∣∣Y1 = s), to

arrive at

Pk(T0 = n) =

∞∑
s=−1

(k + s)Pk(Sn = 0
∣∣Y1 = s)P(Y1 = s) = Pk(Sn = 0)

(
k + Ek[Y1|Sn = 0]

)
,

(3.5.9)

where Ek[Y1|Sn = 0] is the conditional expectation of Y1 given that Sn = 0 occurs. We
next note that the conditional expectation of Ek[Yi|Sn = 0] is independent of i, so that

Ek[Y1|Sn = 0] =
1

n

n∑
i=1

Ek[Yi|Sn = 0] =
1

n
Ek
[ n∑
i=1

Yi
∣∣Sn = 0

]
= − k

n
, (3.5.10)

since
∑n
i=1 Yi = Sn − k = −k when Sn = 0. Therefore, we arrive at

Pk(T0 = n) =
1

n− 1

[
k − k

n

]
Pk(Sn = 0) =

k

n
Pk(Sn = 0). (3.5.11)

This advances the induction, and completes the proof of Theorem 3.14.

Exercise 3.27 (Extension of Theorem 3.14). Extend the hitting-time theorem, Theorem
3.14, to the case where {Yi}ni=1 is an exchangeable sequence rather than an i.i.d. sequence,
where a sequence {Yi}ni=1 is called exchangeable when its distribution is the same as the
distribution of any permutation of the sequence. Hint: if {Yi}ni=1 is exchangeable, then so
is {Yi}ni=1 conditioned on

∑n
i=1 Yi = −k.

3.6 Properties of Poisson branching processes

In this section, we specialize the discussion of branching processes to branching processes
with Poisson offspring distributions. We will denote the distribution of a Poisson branching
process by P∗λ. We also write T ∗ for the total progeny of the Poisson branching process,
and X∗ for a Poisson random variable.

For a Poisson random variable X∗ with mean λ, we have that the probability generating
function of the offspring distribution is equal to

G∗λ(s) = E∗λ[sX
∗
] =

∞∑
i=0

sie−λ
λi

i!
= eλ(s−1). (3.6.1)

Therefore, the relation for the extinction probability η in (3.1.5) becomes

ηλ = eλ(ηλ−1), (3.6.2)

where we add the subscript λ to make the dependence on λ explicit.
For λ ≤ 1, the equation (3.6.2) has the unique solution ηλ = 1, which corresponds

to certain extinction. For λ > 1 there are two solutions, of which the smallest satisfies
ηλ ∈ (0, 1). As P∗λ(T ∗ <∞) < 1, we know

P∗λ(T ∗ <∞) = ηλ. (3.6.3)
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We recall that H = (X∗1 , . . . , X
∗
T ) is the history of the branching process, where again

we have added superscripts ∗ to indicate that we mean a Poisson branching process. Then,
conditionally on extinction, a Poisson branching process has law p′ given by

p′i = ηi−1
λ pi = e−ληλ

(ληλ)i

i!
, (3.6.4)

where we have used (3.6.2). Note that this offspring distribution is again Poisson with
mean

µλ = ληλ, (3.6.5)

and, again by (3.6.2),

µλe−µλ = ληλe−ληλ = λe−λ. (3.6.6)

Therefore, we call µ < 1 < λ a conjugate pair if

µe−µ = λe−λ. (3.6.7)

Since x 7→ xe−x is first increasing and then decreasing, with a maximum of e−1 at x = 1,
the equation µe−µ = λe−λ has precisely two solutions, a solution µ < 1 and a solution
λ > 1. Therefore, for Poisson offspring distributions, the duality principle in Theorem 3.7
can be reformulated as follows:

Theorem 3.15 (Poisson duality principle). Let µ < 1 < λ be conjugates. The Poisson
branching process with mean λ, conditional on extinction, has the same distribution as a
Poisson branching process with mean µ.

We further describe the law of the total progeny of a Poisson branching process:

Theorem 3.16 (Total progeny for Poisson BP). For a branching process with i.i.d. off-
spring X, where X has a Poisson distribution with mean λ,

P∗λ(T ∗ = n) =
(λn)n−1

n!
e−λn, (n ≥ 1). (3.6.8)

Exercise 3.28 (The total progeny of a Poisson branching process). Prove Theorem 3.16
using Theorem 3.13.

Exercise 3.29 (Large, but finite, Poisson total progeny). Use Theorem 3.16 to show that,
for any λ, and for k sufficiently large,

P∗λ(k ≤ T ∗ <∞) ≤ e−Iλk, (3.6.9)

where Iλ = λ− 1− log λ.

We use Theorem 3.16 to prove Cayley’s Theorem. on the number of labeled trees [77].
In its statement, we define a labeled tree on [n] to be a tree of size n where all vertices have
a label in [n] and each label occurs precisely once. We now make this definition precise.
An edge of a labeled tree is a pair {v1, v2}, where v1 and v2 are the labels of two connected
vertices in the tree. The edge set of a tree of size n is the collection of its n− 1 edges. Two
labeled trees are equal if and only if they consist of the same edge sets. A labeled tree of
n vertices is equivalent to a spanning tree of the complete graph Kn on the vertices [n].
Cayley’s Theorem reads as follows:
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Theorem 3.17 (Cayley’s Theorem). The number of labeled trees of size n is equal to
nn−2. Equivalently, the number of spanning trees of the complete graph of size n equals
nn−2.

Proof. In is convenient to label the vertices of a tree in terms of words. These words arise
inductively as follows. The root is the word ∅. The children of the root are the words
1, 2, . . . , d∅, where, for a word w, we let dw denote the number of children of w. The
children of 1 are 11, 12, . . . , 1d1, etc. A tree is then uniquely represented by its set of
words. For example, the word 1123 represents the third child of the second child of the
first child of the first child of root.

Two trees are the same if and only if they are represented by the same set of words. We
obtain a branching process when the variables (dw)w are equal to a collection i.i.d. random
variables. For a word w, we let |w| be its length, where |0| = 0. The length of a word w is
the number of steps the word is away from the root, and equals its generation.

Let T denote the family tree of a branching process with Poisson offspring distribution
with parameter 1. We compute the probability of obtaining a given tree t by

P(T = t) =
∏
w∈t

P(ξ = dw), (3.6.10)

where ξ is a Poisson random variable with parameter 1, and dw is the number of children
of the word w in the tree t. For a Poisson branching process, P(ξ = cw) = e−1/dw!, so that

P(T = t) =
∏
w∈t

e−1

dw!
=

e−n∏
w∈t dw!

, (3.6.11)

where n denotes the number of vertices in t. We note that the above probability is the
same for each tree with the same number of vertices of degree k for each k.

Conditionally on having total progeny T ∗ = n, we introduce a labeling as follows. We
give the root label 1, and give all other vertices a label from the set {2, . . . , n}, giving a
labeled tree on n vertices. Given T , there are precisely∏

w∈T

dw! (3.6.12)

possible ways to put down the labels that give rise to the same labeled tree, since permuting
the children of any vertex does not change the labeled tree. Also, the probability that w
receives label iw with i∅ = 1 is precisely equal to 1/(n− 1)!, where n = |T |. For a labeled
tree `, let t` be any tree, i.e., a collection of words, from which ` can be obtained by
labeling the vertices. Then, the probability of obtaining a given labeled tree ` of arbitrary
size equals

P(L = `) = P(T = t`)

∏
w∈t`

dw!

(|`| − 1)!
=

e−|`|∏
w∈t`

dw!

∏
w∈t`

dw!

(|`| − 1)!
=

e−|`|

(|`| − 1)!
. (3.6.13)

Therefore, conditionally on T ∗ = n, the probability of a given labeled tree L of size n
equals

P(L | |L| = n) =
P(L = `)

P(|L| = n)
. (3.6.14)

By Theorem 3.16,

P(|L| = n) = P(T ∗ = n) =
e−nnn−2

(n− 1)!
. (3.6.15)
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As a result, for each labeled tree L of size |L| = n

P(L = ` | |L| = n) =
P(L = `)

P(|L| = n)
=

e−n

(n− 1)!

e−nnn−2

(n− 1)!
=

1

nn−2
. (3.6.16)

The obtained probability is uniform over all labeled trees. Therefore, the number of labeled
trees equals

P(L = ` | |L| = n)−1 = nn−2. (3.6.17)

The above not only proves Cayley’s Theorem, but also gives an explicit construction of a
uniform labeled tree from a Poisson branching process.

Exercise 3.30. Verify (3.6.8) for n = 1, 2 and n = 3.

Theorem 3.18 (Asymptotics for total progeny for Poisson BP). For a branching process
with i.i.d. offspring X, where X has a Poisson distribution with mean λ, as n→∞,

P∗λ(T ∗ = n) =
1

λ
√

2πn
e−Iλn(1 + o(1)), (3.6.18)

where
Iλ = λ− 1− log λ. (3.6.19)

In particular, when λ = 1,

P∗1(T ∗ = n) = (2π)−1/2n−3/2[1 +O(n−1)]. (3.6.20)

Proof.

Add proof Theo-
rem 3.18.

Equation (3.6.20) is an example of a power-law relationship that

often holds at criticality. The above n−3/2 behavior is associated more generally with the
distribution of the total progeny whose offspring distribution has finite variance (see e.g.,
[13, Proposition 24]).

In Chapter 4, we will investigate the behavior of the Erdős-Rényi random graph by
making use of couplings to branching processes. There, we also need the fact that, for
λ > 1, the survival probability is sufficiently smooth (see Section 4.4):

Corollary 3.19 (Differentiability of the survival probability). Let ηλ denote the extinction
probability of a branching process with a mean λ Poisson offspring distribution. Then, for
all λ > 1,

| d
dλ
ζλ| =

ηλ(λ− µλ)

λ(1− µλ)
<∞, (3.6.21)

where µλ is the dual of λ. When λ ↓ 1,

ζλ = 2(λ− 1)(1 + o(1)). (3.6.22)

Proof. The function ηλ, which we denote in this proof by η(λ), is decreasing and satisfies

η(λ) = P∗λ(T ∗ <∞) =

∞∑
n=1

e−λn
(λn)n−1

n!
, (3.6.23)

and thus

0 ≤ − d

dλ
η(λ) =

∞∑
n=1

e−nλ
[

(λn)n−1

(n− 1)!

]
−
∞∑
n=2

e−nλ
[

(λn)n−2

(n− 2)!

]
. (3.6.24)
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On the other hand,

E∗λ[T ∗|T ∗ <∞] =
1

P∗λ(T ∗ <∞)

∞∑
n=1

n · e−λn (λn)n−1

n!
=

1

η(λ)

∞∑
n=1

e−λn
(λn)n−1

(n− 1)!
, (3.6.25)

so that

− d

dλ
η(λ) = η(λ)E∗λ[T ∗|T ∗ <∞]− η(λ)

λ
E∗λ[T ∗|T ∗ <∞] +

η(λ)

λ
, (3.6.26)

where we have made use of the fact that
∞∑
n=2

e−λn
(λn)n−2

(n− 2)!
=

∞∑
n=1

e−λn(n− 1)
(λn)n−2

(n− 1)!
=

∞∑
n=1

e−λn
1

λ

(λn)n−1

(n− 1)!
−
∞∑
n=1

e−λn
(λn)n−2

(n− 1)!

=
η(λ)

λ
E∗λ[T ∗|T ∗ <∞]−

∞∑
n=1

e−λn
1

λ

(λn)n−1

n!

=
η(λ)

λ
E∗λ[T ∗|T ∗ <∞]− 1

λ
P∗λ(T ∗ <∞). (3.6.27)

By the duality principle and Theorem 3.5,

E[T ∗|T ∗ <∞] =
1

1− µλ
where µλ = λη(λ), by (3.6.5). Hence,

0 ≤ − d

dλ
η(λ) =

η(λ)

1− µλ

(
1− 1

λ

)
+
η(λ)

λ

=
η(λ)(λ− µ(λ))

λ(1− µλ)
. (3.6.28)

Add proof of
(3.6.22)!

3.7 Binomial and Poisson branching processes

When dealing with random graphs where the probability of keeping an edge is λ/n,
the total number of vertices incident to a given vertex has a binomial distribution with
parameters n and success probability λ/n. By Theorem 2.10, this distribution is close
to a Poisson distribution with parameter λ. This suggests that also the corresponding
branching processes, the one with a binomial offspring distribution with parameters n
and λ/n, and the one with Poisson offspring distribution with mean λ, are close. In the
following theorem, we make this statement more precise. In its statement, we write Pn,p
for the law of a Binomial branching process with parameters n and success probability p.

Theorem 3.20 (Poisson and binomial branching processes). For a branching process with
binomial offspring distribution with parameters n and p, and the branching process with
Poisson offspring distribution with parameter λ = np, for each k ≥ 1,

Pn,p(T ≥ k) = P∗λ(T ∗ ≥ k) + ek(n), (3.7.1)

where T and T ∗ are the total progenies of the binomial and Poisson branching processes,
respectively, and where

|ek(n)| ≤ 2λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.7.2)

In particular, |ek(n)| ≤ 2kλ2

n
.
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Proof. We use a coupling proof. The branching processes are described by their offspring
distributions, which are binomial and Poisson random variables respectively. We use the
coupling in Theorem 2.10 for each of the random variables Xi and X∗i determining the
branching processes, where Xi ∼ Bin(n, λ/n), X∗i ∼ Poi(λ), and where

P(Xi 6= X∗i ) ≤ λ2

n
. (3.7.3)

We use P to denote the joint probability distributions of the binomial and Poisson branching
processes, where the offspring is coupled in the above way.

We start by noting that

Pn,p(T ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ≥ k, T ∗ < k), (3.7.4)

and
P∗λ(T ∗ ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ∗ ≥ k, T < k). (3.7.5)

Subtracting the two probabilities yields

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ P(T ≥ k, T ∗ < k) + P(T ∗ ≥ k, T < k). (3.7.6)

We then use Theorem 2.10, as well as the fact that the event {T ≥ k} is determined by
the values of X1, . . . , Xk−1 only. Indeed, by (3.3.1), by investigating X1, . . . , Xk−1, we can
verify whether there exists a t < k such that X1 + · · ·+Xt = t− 1, implying that T < k.
When there is no such t, then T ≥ k. Similarly, by investigating X∗1 , . . . , X

∗
k−1, we can

verify whether there exists a t < k such that X∗1 + · · ·+X∗t = t− 1, implying that T < k.
When T ≥ k and T ∗ < k, or when T ∗ ≥ k and T < k, there must be a value of s < k

for which Xs 6= X∗s . Therefore, we can bound, by splitting depending on the first value
s < k where Xs 6= X∗s ,

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(Xi = X∗i ∀i ≤ s− 1, Xs 6= X∗s , T ≥ k), (3.7.7)

where {X∗i }∞i=1 are i.i.d. Poisson random variables with mean λ and {Xi}∞i=1 are i.i.d.
binomial random variables with parameters n and p. Now we note that when Xi = X∗i
for all i ≤ s − 1 and T ≥ k, this implies in particular that X∗1 + . . . + X∗i ≥ i for all
i ≤ s− 1, which in turn implies that T ∗ ≥ s. Moreover, the event {T ∗ ≥ s} depends only
on X∗1 , . . . , X

∗
s−1, and, therefore, is independent of the event that Xs 6= X∗s . Thus, we

arrive at the fact that

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(T ∗ ≥ s,Xs 6= X∗s )

=

k−1∑
s=1

P(T ∗ ≥ s)P(Xs 6= X∗s ). (3.7.8)

By Theorem 2.10,

P(Xs 6= X∗s ) ≤ λ2

n
, (3.7.9)

so that

P(T ≥ k, T ∗ < k) ≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.7.10)
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An identical argument yields that

P(T ∗ ≥ k, T < k) ≤
k−1∑
s=1

P(T ∗ ≥ s)P(Xs 6= X∗s )

≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.7.11)

We conclude from (3.7.6) that

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ 2λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.7.12)

This completes the proof of Theorem 3.20.

3.8 Notes and discussion

Notes on Section 3.6. The proof of Theorem 3.17 is taken from [199]. Theorem 3.16,
together with (3.6.2), can also be proved making use of Lambert’s W function. Indeed,
we use that the generating function of the total progeny in (3.1.23), for Poisson branching
process, reduces to

GT (s) = seλ(GT (s)−1). (3.8.1)

Equation (3.8.1) actually defines a function analytic in C\[1,∞), and we are taking the
principal branch. Equation (3.8.1) can be written in terms of the Lambert W function,

which is defined by W (x)eW (x) = x, as GT (s) = −W (−sλe−λ)/λ. The branches of W are
described in [95], where also the fact that

W (x) = −
∞∑
n=1

nn−1

n!
(−x)n. (3.8.2)

is derived. Theorem 3.17 follows immediately from this equation upon substituting x =
λe−λ and using that the coefficient of sn in GT (s) equals P(T = n). Also, since ηλ =
lims↑1 GT (s) = −W (−λe−λ)/λ. This also allows for a more direct proof of Corollary 3.19,
since

d

dλ
ηλ = − d

dλ

[W (−λe−λ)

λ

]
, (3.8.3)

and where, since W (x)eW (x) = x,

W ′(x) =
1

x

W (x)

1 +W (x)
. (3.8.4)

We omit the details of this proof, taking a more combinatorial approach instead.

Notes on Section 3.5. The current proof is taken from [155], where also an extension
is proved by conditioning on the numbers of steps of various sizes. The first proof of the
special case of Theorem 3.14 for k = 1 can be found in [229]. The extension to k ≥ 2 is
in [182], or in [114] using a result in [113]. Most of these proofs make unnecessary use of
generating functions, in particular, the Lagrange inversion formula, which the simple proof
given here does not employ. See also [140, Page 165-167] for a more recent version of the
generating function proof. In [270], various proofs of the hitting-time theorem are given,



70 Branching processes

including a combinatorial proof making use of a relation in [112]. A proof for random
walks making only steps of size ±1 using the reflection principle can for example be found
in [140, Page 79].

The hitting-time theorem is closely related to the ballot theorem, which has a long
history dating back to Bertrand in 1887 (see [191] for an excellent overview of the history
and literature). The version of the ballot theorem in [191] states that, for a random walk
{Sn}∞n=0 starting at 0, with exchangeable, nonnegative steps, the probability that Sm < m
for all m = 1, . . . , n, conditionally on Sn = k, equals k/n. This proof borrows upon
queueing theory methodology, and is related to, yet slightly different from, our proof.

The ballot theorem for random walks with independent steps is the following result:

Theorem 3.21 (Ballot theorem). Consider a random walk with i.i.d. steps {Xi}∞i=1 taking
non-negative integer values. Then, with Sm = X1 + · · ·+Xm the position of the walk after
m steps,

P0(Sm < m for all 1 ≤ m ≤ n|Sn = n− k) =
k

n
. (3.8.5)

Exercise 3.31. Prove the ballot theorem using the hitting-time theorem. Hint: Let S′m =
k + (Sn − n)− (Sn−m − n+m), and note that Sm < m for all 1 ≤ m ≤ n precisely when
S′m > 0 for all 0 ≤ m < n, and {S′m}nm=0 is a random walk taking steps Ym = S′m−S′m−1 =
Xn−m − 1.



Chapter 4

Phase transition for the Erdős-Rényi

random graph

In this chapter, we study the connected components of the Erdős-Rényi random graph.
In the introduction in Section 4.1, we will argue that these connected components can
be described in a similar way as for branching processes. As we have seen in Chapter
3, branching processes have a phase transition: when the mean offspring is below 1, the
branching process dies out almost surely, while when the expected offspring exceeds 1,
then it will survive with positive probability. The Erdős-Rényi random graph has a related
phase transition. Indeed, when the expected degree is smaller than 1, the components are
small, the largest one being of order logn. On the other hand, when the expected degree
exceeds 1, the there is a giant connected component which contains a positive proportion
of all vertices. This phase transition can already be observed for relatively small graphs.
For example, Figure 4.1 shows two realizations of Erdős-Rényi random graphs with 100
elements and expected degree close to 1/2, respectively, 3/2. The left picture is in the
subcritical regime, and the connected components are tiny, while the right picture is in the
supercritical regime, and the largest connected component is already substantial. The aim
of this chapter is to quantify these facts.

The link between the Erdős-Rényi random graph and branching processes is described
in more detail in Section 4.2, where we prove upper and lower bounds for the tails of
the cluster size (or connected component size) distribution. The connected component
containing v is denoted by C(v), and consists of all vertices that can be reached from
v using occupied edges. We sometimes also call C(v) the cluster of v. The connection
between branching processes and clusters is used extensively in the later sections, Section
4.3–4.5. In Section 4.3, we study the subcritical regime of the Erdős-Rényi random graph.
In Sections 4.4 and 4.5 we study the supercritical regime of the Erdős-Rényi random graph,
by proving a law of large numbers for the largest connected component in Section 4.4 and
a central limit theorem in Section 4.5.

In Chapter 5, we shall investigate several more properties of the Erdős-Rényi random
graph. In particular, in Section 5.1, we study the bounds on the component sizes of
the critical Erdős-Rényi random graph, in Section 5.1.3 we describe the weak limits of the
connected components ordered in size at criticality, in Section 5.2 we study the connectivity
threshold of the Erdős-Rényi random graph, while in Section 5.3 we prove that the Erdős-
Rényi random graph is sparse and identify its asymptotic degree sequence.

4.1 Introduction

In this section, we introduce some notation for the Erdős-Rényi random graph, and prove
some elementary properties. We recall from Section 1.5 that the Erdős-Rényi random graph
has vertex set [n] = {1, . . . , n}, and, denoting the edge between vertices s, t ∈ [n] by st, st
is occupied or present with probability p, and absent or vacant otherwise, independently
of all the other edges. The parameter p is called the edge probability. The above random
graph is denoted by ERn(p).

Exercise 4.1 (Number of edges in ERn(p)). What is the distribution of the number of
edges in the Erdős-Rényi random graph ERn(p)?

71
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Figure 4.1: Two realizations of Erdős-Rényi random graphs with 100 elements and edge
probabilities 1/200, respectively, 3/200. The three largest connected components are or-
dered by the darkness of their edge colors, the remaining connected components have edges
with the lightest shade.

Exercise 4.2 (CLT for number of edges in ERn(p)). Prove that the number of edges in
ERn(p) satisfies a central limit theorem and compute its asymptotic mean and variance.

We now introduce some notation. For two vertices s, t ∈ [n], we write s ←→ t when
there exists a path of occupied edges connecting s and t. By convention, we always assume
that v ←→ v. For v ∈ [n], we denote the connected component containing v or cluster of v
by

C(v) =
{
x ∈ [n] : v ←→ x

}
. (4.1.1)

We denote the size of C(v) by |C(v)|. The largest connected component is equal to any
cluster C(v) for which |C(v)| is maximal, so that

|Cmax| = max{|C(v)| : v = 1, . . . , n}. (4.1.2)

Note that the above definition does identify |Cmax| uniquely, but it may not identify Cmax

uniquely. We can make this definition unique, by requiring that Cmax is the cluster of
maximal size containing the vertex with the smallest label. As we will see, the typical size
of Cmax will depend sensitively on the value λ.

We first define a procedure to find the connected component C(v) containing a given
vertex v in a given graph G. This procedure is closely related to the random walk per-
spective for branching processes described in Section 3.3, and works as follows. In the
course of the exploration, vertices can have three different statuses: vertices are active,
neutral or inactive. The status of vertices is changed in the course of the exploration of
the connected component of v, as follows. At time t = 0, only v is active and all other
vertices are neutral, and we set S0 = 1. At each time t, we choose an active vertex w in an
arbitrary way (for example, by taking the smallest active vertex) and explore all the edges
ww′, where w′ runs over all the neutral vertices. If there is an edge in G connecting the
active vertex w and some neutral vertex w′, then we set w′ active, otherwise it remains
neutral. After searching the entire set of neutral vertices, we set w inactive and we let St
equal the new number of active vertices at time t. When there are no more active vertices,
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i.e., when St = 0 for the first time, the process terminates and C(v) is the set of all inactive
vertices, i.e., |C(v)| = t. Note that at any stage of the process, the size of C(v) is bounded
from below by the sum of the number of active and inactive vertices.

Let wt be the tth active vertex of which all edges to neutral vertices are explored. Let
Xt denote the number of neutral vertices w′ with wtw

′ ∈ G. Let St be the total number of
active vertices at time t. Similarly as for the branching process in (3.3.1), we can represent
this procedure with the recursive relation

S0 = 1, St = St−1 +Xt − 1. (4.1.3)

The variable Xt is the number of vertices that become active due to the exploration of
the tth vertex, and after its exploration, the tth explored vertex becomes inactive. Thus,
if St−1 denotes the number of active vertices after the exploration of (t− 1) vertices, then
St = St−1 +Xt−1 denotes the number of active vertices after the exploration of t vertices.
This explains (4.1.3).

The above description is true for any graph G. We now specialize to the random
graph ERn(p), where each edge can be independently occupied or vacant. As a result, the
distribution of Xt depends on the number of active vertices at time t−1, i.e., on St−1, and
not in any other way on which vertices are active, inactive or neutral. More precisely, each
neutral w′ in the random graph has probability p to become active. The edges ww′ are
examined precisely once, so that the conditional probability for ww′ ∈ ERn(p) is always
equal to p. After t − 1 explorations of active vertices, we have t − 1 inactive vertices and
St−1 active vertices. This leaves n−(t−1)−St−1 neutral vertices. Therefore, conditionally
on St−1,

Xt ∼ Bin
(
n− (t− 1)− St−1, p

)
. (4.1.4)

We note that the recursion in (4.1.3) is identical to the recursive relation (3.3.1). The
only difference is the distribution of the process {Xi}ni=1, as described in (4.1.4). For
branching processes, {Xi}ni=1 is an i.i.d. sequence, but for the exploration of connected
components, we see that this is not quite true. However, by (4.1.4), it is ‘almost’ true as
long as the number of active vertices is not too large. We see in (4.1.4) that the parameter
of the binomial distribution decreases. This is due to the fact that after more explorations,
fewer neutral vertices remain, and is sometimes called the depletion of points effect.

Let T be the least t for which St = 0, i.e.,

T = inf{t : St = 0}, (4.1.5)

then |C(v)| = T , see also (3.3.2) for a similar result in the branching process setting. This
describes the exploration of a single connected component. While of course the recursion
in (4.1.3) and (4.1.4) only makes sense when St−1 ≥ 1, that is, when t ≤ T , there is no
harm in continuing it formally for t > T . This will be prove to be extremely useful later
on.

Exercise 4.3 (Verification of cluster size description). Verify that T = |C(v)| by computing
the probabilities of the events that {|C(v)| = 1}, {|C(v)| = 2} and {|C(v)| = 3} directly, and
by using (4.1.4), (4.1.3) and (4.1.5).

We end this section by introducing some notation. For the Erdős-Rényi random graph,
the status of all edges {st : 1 ≤ s < t ≤ n} are i.i.d. random variables taking the value
1 with probability p and the value 0 with probability 1 − p, 1 denoting that the edge
is occupied and 0 that it is vacant. We will sometimes call the edge probability p, and
sometimes λ/n. We will always use the convention that

p =
λ

n
. (4.1.6)

We shall write Pλ for the distribution of ERn(p) = ERn(λ/n).
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Exercise 4.4 (CLT for number of edges in ERn(λ/n)). Prove that the number of edges
in ERn(λ/n) satisfies a central limit theorem with asymptotic mean and variance equal to
λn/2.

Exercise 4.5 (Mean number of triangles in ERn(λ/n)). We say that the distinct vertices
(i, j, k) form an occupied triangle when the edges ij, jk and ki are all occupied. Note that
(i, j, k) is the same triangle as (i, k, j) and as any other permutation. Compute the expected
number of occupied triangles in ERn(λ/n).

Exercise 4.6 (Mean number of squares in ERn(λ/n)). We say that the distinct vertices
(i, j, k, l) form an occupied square when the edges ij, jk, kl and li are all occupied. Note
that the squares (i, j, k, l) and (i, k, j, l) are different. Compute the expected number of
occupied squares in ERn(λ/n).

Exercise 4.7 (Poisson limits for number of triangles and squares in ERn(λ/n)). Show
that the number of occupied triangles in an Erdős-Rényi random graph with edge probability
p = λ/n has an asymptotic Poisson distribution. Do the same for the number of occupied
squares. Hint: use the method of moments in Theorem 2.4.

Exercise 4.8 (Clustering of ERn(λ/n)). Define the clustering coefficient of a random
graph G to be

CCG =
E[∆G]

E[WG]
, (4.1.7)

where
∆G =

∑
i,j,k∈G

1{ij,ik,jk occupied}, WG =
∑

i,j,k∈G

1{ij,ik occupied}. (4.1.8)

Thus, ∆G is six times the number of triangles in G, and WG is two times the number of
open wedges in G, and CCG is the ratio of the number of expected closed triangles to the
expected number of open wedges. Compute CCG for ERn(λ/n).

Exercise 4.9 (Asymptotic clustering of ERn(λ/n)). Show that WG/n
P−→ λ2 by using the

second moment method. Use Exercise 4.7 to conclude that

n∆G

WG

d−→ 3

λ2
Y, (4.1.9)

where Y ∼ Poi(λ3/6).

4.1.1 Monotonicity of Erdős-Rényi random graphs in the edge probability

In this section, we investigate Erdős-Rényi random graphs with different values of p, and
show that the Erdős-Rényi random graph is monotonically increasing in p, using a coupling
argument. The material in this section makes it clear that components of the Erdős-Rényi
random graph are growing with the edge probability p, as one would intuitively expect.
This material shall also play a crucial role in determining the critical behavior of the
Erdős-Rényi random graph in Section 5.1 below.

We use a coupling of all random graphs ERn(p) for all p ∈ [0, 1]. For this, we draw
independent uniform random variables for each edge st, and, for fixed p, we declare an
edge to be p-occupied if and only if Ust ≤ p. The above coupling shows that the number
of occupied bonds increases when p increases. Therefore, the Erdős-Rényi random graph
ERn(p) is monotonically increasing in p. Because of the monotone nature of ERn(p) one
expects that certain events and random variables grow larger when p increases. This is
formalized in the following definition:
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Definition 4.1 (Increasing events and random variables). We say that an event is in-
creasing when, if the event occurs for a given set of occupied edges, it remains to hold when
we make some more edges occupied.
We say that a random variable X is increasing when the events {X ≥ x} are increasing
for each x ∈ R.

An example of an increasing event is {s ←→ t}. An example of a monotone random
variable is |C(v)| and the maximal cluster |Cmax|, where

|Cmax| =
n

max
v=1
|C(v)|. (4.1.10)

Exercise 4.10. Show that |Cmax| is an increasing random variable.

Exercise 4.11. Is the event {v ∈ Cmax} an increasing event?

4.1.2 Informal link to Poisson branching processes

We now describe the link to Poisson branching processes in an informal manner. The
results in this section will not be used in the remainder of the chapter, even though the
philosophy forms the core of the argument. Fix λ > 0. Let S∗0 , S

∗
1 , . . . , X

∗
1 , X

∗
2 , . . . , H

∗

refer to the history of a branching process with Poisson offspring distribution with mean
λ and S0, S1, . . . , X1, X2, . . . , H refer to the history of the random graph, where S0, S1, . . .
are defined in (4.1.3) above. The event {H∗ = (x1, . . . , xt)} is the event that the total
progeny T ∗ of the Poisson branching process is equal to t, and the values of X∗1 , . . . , X

∗
t

are given by x1, . . . , xt. Recall that P∗λ denotes the law of a Poisson branching process with
mean offspring distribution λ. Naturally, by (3.3.2), we have that

t = min{i : si = 0} = min{i : x1 + . . .+ xi = i− 1}, (4.1.11)

where
s0 = 1, si = si−1 + xi − 1. (4.1.12)

For any possible history (x1, . . . , xt), we have that (recall (3.3.6))

P∗λ(H∗ = (x1, . . . , xt)) =

t∏
i=1

P∗λ(X∗i = xi), (4.1.13)

where {X∗i }∞i=1 are i.i.d. Poisson random variables with mean λ, while

Pλ(H = (x1, . . . , xt)) =

t∏
i=1

Pλ(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1),

where, conditionally on X1 = x1, . . . , Xi−1 = xi−1, the random variable Xi is binomially
distributed Bin(n− (i− 1)− si−1, λ/n), recall (4.1.4) and (4.1.12).

As shown in Theorem 2.10, the Poisson distribution is the limiting distribution of bi-
nomials when n is large and p = λ/n. When m(n) = n(1 + o(1)) and λ, i are fixed, then
we can extend this to

lim
n→∞

P
(

Bin
(
m(n), λ/n

)
= i
)

= e−λ
λi

i!
. (4.1.14)

Therefore, for every t <∞,

lim
n→∞

Pλ
(
H = (x1, . . . , xt)

)
= P∗λ

(
H∗ = (x1, . . . , xt)

)
. (4.1.15)

Thus, the distribution of finite connected components in the random graph ERn(λ/n) is
closely related to a Poisson branching process with mean λ. This relation shall be explored
further in the remainder of this chapter.
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4.2 Comparisons to branching processes

In this section, we investigate the relation between connected components and binomial
branching processes. We start by proving two stochastic domination results for connected
components in the Erdős-Rényi random graph. In Theorem 4.2, we give a stochastic upper
bound on |C(v)|, and in Theorem 4.3 a lower bound on the cluster tails. These bounds will
be used in the following sections to prove results concerning |Cmax|.

4.2.1 Stochastic domination of connected components

We prove the following upper bound, which shows that each connected component is
bounded from above by the total progeny of a branching process with binomial offspring
distribution:

Theorem 4.2 (Stochastic domination of the cluster size). For each k ≥ 1,

Pnp(|C(1)| ≥ k) ≤ Pn,p(T≥ ≥ k), i.e., |C(1)| � T≥, (4.2.1)

where T≥ is the total progeny of a binomial branching process with parameters n and p.

Proof. Let Ni = n − i − Si denote the number of neutral vertices after i explorations, so
that, conditionally on Ni−1, Xi ∼ Bin(Ni−1, p). Let Yi ∼ Bin(n−Ni−1, p), and write

X≥i = Xi + Yi. (4.2.2)

Then, conditionally on (Xj)
i−1
j=1, X≥i ∼ Bin(n, p). Since this distribution is independent of

(Xj)
i−1
j=1, the sequence (X≥j )j≥1 is in fact i.i.d. Also, X≥i ≤ Xi a.s. since Yi ≥ 0 a.s.

Denote
S≥i = X≥1 + . . .+X≥i − (i− 1). (4.2.3)

Then,

Pnp(|C(1)| ≥ k) = P(St > 0∀t ≤ k − 1) ≤ P(S≥t > 0∀t ≤ k − 1) = P(T≥ ≥ k), (4.2.4)

where T≥ = min{t : S≥t = 0} is the total progeny of a branching process with binomial
distribution with parameters n and success probability p.

Exercise 4.12 (Upper bound for mean cluster size). Show that, for λ < 1, Eλ[|C(v)|] ≤
1/(1− λ).

4.2.2 Lower bound on the cluster tail

We prove the following lower bound, which shows that the probability that a connected
component has size at least k is bounded from below by the probability that the total
progeny of a branching process with binomial offspring distribution exceeds k, where now
the parameters of the binomial distribution are n− k and p:

Theorem 4.3 (Lower bound on cluster tail). For every k ∈ [n],

Pnp(|C(1)| ≥ k) ≥ Pn−k,p(T≤ ≥ k), (4.2.5)

where T≤ is the total progeny of a branching process with binomial distribution with pa-
rameters n− k and success probability p = λ/n.

Note that, since the parameter n−k on the right-hand side of (4.2.5) depends explicitly
on k, Theorem 4.3 does not imply a stochastic lower bound on |C(1)|.
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Proof. We again use a coupling approach. Recall that Ni denotes the number of neutral
vertices after i explorations. Denote the stopping time Tk by

Tk = min{t : Nt ≤ n− k}. (4.2.6)

Then, Tk ≤ k − 1, since Nk−1 ≤ n − (k − 1) − 1 = n − k. We let X≤i denote an i.i.d.
sequence of Bin(n− k, p) random variables. For i ≤ Tk + 1, and conditionally on Ni−1, let
Yi have a Bin(Ni−1 − (n− k), p) distribution independently of all other random variables
involved. Define

Xi = X≤i + Yi. (4.2.7)

Then, clearly, Xi ≤ X≤i a.s. for all i ≤ Tk + 1.
Now, we can rewrite

Pnp(|C(1)| ≥ k) = Pnp(St > 0∀t ≤ k − 1) = Pnp(St > 0∀t ≤ Tk). (4.2.8)

Indeed, if St > 0 for all t ≤ Tk, then also St > 0 for all t ≤ k − 1, since then (a)
STk = n− Tk −NTk ≥ n− Tk − (n− k) = k − Tk and (b) t 7→ St goes down by at most 1,
so that St > 0 for all t ≤ Tk + (k − Tk)− 1 = k − 1, as required.

Denote
S≤i = X≤1 + . . .+X≤i − (i− 1). (4.2.9)

Then, S≤t ≤ St for all t ≤ Tk. Using the above coupling and the fact that Tk ≤ k − 1, we
can therefore bound

{St > 0∀t ≤ Tk − 1} ⊇ {S≤t > 0∀t ≤ Tk} ⊇ {S≤t > 0∀t ≤ k − 1} = {T≤ ≥ k}, (4.2.10)

where T≤ = min{t : S≤t = 0} is the total progeny of a branching process with binomial
distribution with parameters n− k and success probability p.

The general strategy for the investigation of the largest connected component |Cmax| is as
follows. We make use of the stochastic bounds in Theorems 4.2–4.3 in order to compare the
cluster sizes to binomial branching processes. Then, using Theorem 3.20, we can make the
comparison to a Poisson branching process with a parameter that is close to the parameter
λ in ERn(λ/n). Using the results on branching processes in Chapter 3 then allows us to
complete the proofs.

By Theorems 4.2–4.3, the connected components of the Erdős-Rényi random graph are
closely related to binomial branching processes with a binomial offspring with parameters
n and p = λ/n. By Theorem 3.1, the behavior of branching processes is rather different
when the expected offspring is larger than 1 or smaller than or equal to 1. In Theorems
4.2–4.3, when k = o(n), the expected offspring is close to np ≈ λ. Therefore, for the
Erdős-Rényi random graph, we expect different behavior in the subcritical regime λ < 1,
in the supercritical regime λ > 1 and in the critical regime λ = 1.

The proof of the behavior of the largest connected component |Cmax| is substantially
different in the subcritical regime where λ < 1, which is treated in Section 4.3, compared
to the supercritical regime λ > 1, which is treated in Section 4.4. In Section 4.5, we prove
a central limit theorem for the giant supercritical component. The critical regime λ = 1
requires some new ideas, and is treated in Section 5.1.

4.3 The subcritical regime

In this section, we derive bounds for the size of the largest connected component for the
Erdős-Rényi random graph in the subcritical regime, i.e., when λ = np < 1. Let Iλ denote
the large deviation rate function for Poisson random variables with mean λ, given by

Iλ = λ− 1− log(λ). (4.3.1)
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Recall Exercise 2.17 to see an upper bound on Poisson random variables involving Iλ, as
well as the fact that Iλ > 0 for all λ 6= 1.

The main results when λ < 1 are Theorem 4.4, which proves that |Cmax| ≤ a logn with
high probability, for any a > I−1

λ , and Theorem 4.5, where a matching lower bound on

|Cmax| is provided by proving that |Cmax| ≥ a logn with high probability, for any a < I−1
λ .

These results are stated now:

Theorem 4.4 (Upper bound on largest subcritical component). Fix λ < 1. Then, for
every a > I−1

λ , there exists a δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≥ a logn) = O(n−δ). (4.3.2)

Theorem 4.5 (Lower bound on largest subcritical component). Fix λ < 1. Then, for
every a < I−1

λ , there exists a δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≤ a logn) = O(n−δ). (4.3.3)

Theorems 4.4 and 4.5 will be proved in Sections 4.3.2 and 4.3.3 below. Together, they

prove that |Cmax|/ logn
P−→ I−1

λ :

Exercise 4.13 (Convergence in probability of largest subcritical cluster). Prove that The-

orems 4.4 and 4.5 imply |Cmax|/ logn
P−→ I−1

λ .

4.3.1 Largest subcritical cluster: strategy of proof of Theorems 4.4 and 4.5

We start by describing the strategy of proof. We denote by

Z≥k =

n∑
v=1

1{|C(v)|≥k} (4.3.4)

the number of vertices that are contained in connected components of size at least k. We
can identify |Cmax| as

|Cmax| = max{k : Z≥k ≥ k}, (4.3.5)

which allows us to prove bounds on |Cmax| by investigating Z≥k for an appropriately chosen
k. In particular, (4.3.5) implies that {|Cmax| ≥ k} = {Z≥k ≥ k}:

Exercise 4.14 (Relation |Cmax| and Z≥k). Prove (4.3.5) and conclude that {|Cmax| ≥ k} =
{Z≥k ≥ k}.

To prove Theorem 4.4, we use the first moment method or Markov inequality (Theorem
2.15). We compute that

Eλ[Z≥k] = nPλ(|C(1)| ≥ k), (4.3.6)

and we use Theorem 4.2 to bound Pλ(|C(1)| ≥ kn) for kn = a logn for any a > I−1
λ .

Therefore, with high probability, Z≥kn = 0, so that, again with high probability, |Cmax| ≤
kn. This proves Theorem 4.4. For the details we refer to the formal argument in Section
4.3.2.

To prove Theorem 4.5, we use the second moment method or Chebychev inequality
(Theorem 2.16). In order to be able to apply this result, we first prove an upper bound
on the variance of Z≥k, see Proposition 4.7 below. We further use Theorem 4.3 to prove a
lower bound on Eλ[Z≥kn ], now for kn = a logn for any a < I−1

λ . Then, (2.4.5) in Theorem
2.16 proves that with high probability, Z≥kn > 0, so that, again with high probability,
|Cmax| ≥ kn. We now present the details of the proofs.
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4.3.2 Upper bound on the largest subcritical cluster: proof of Theorem 4.4

By Theorem 4.2,
Pλ(|C(v)| > t) ≤ Pn,p(T > t), (4.3.7)

where T is the total progeny of a branching process with a binomial offspring distribution

with parameters n and p = λ/n. To study Pn,p(T > t), we let {X̂i}∞i=1 be an i.i.d. sequence
of binomial random variables with parameters n and success probability p, and let

Ŝt = X̂1 + . . .+ X̂t − (t− 1). (4.3.8)

Then, by (3.3.2) and (3.3.1), we have that

Pn,p(T > t) ≤ Pn,p(Ŝt > 0) = Pn,p(X̂1 + . . .+ X̂t ≥ t) ≤ e−tIλ, (4.3.9)

by Corollary 2.18 and using the fact that X̂1 + . . .+ X̂t ∼ Bin(nt, λ/n). We conclude that

Pλ(|C(v)| > t) ≤ e−tIλ . (4.3.10)

Therefore, using Exercise 4.14, the Markov inequality (Theorem 2.15) and again with
kn = a logn,

Pλ(|Cmax| > a logn) ≤ Pλ(Z≥kn ≥ 1) ≤ Eλ[Z≥kn ]

= nPλ(|C(1)| ≥ a logn) ≤ n1−aIλeIλ = O(n−δ), (4.3.11)

whenever a > 1/Iλ and with δ = aIλ − 1. This proves that with high probability the
largest connected component is bounded by a logn for every a > I−1

λ .

We now give a second proof of (4.3.10), which is based on a distributional equality of St,
and which turns out to be useful in the analysis of the Erdős-Rényi random graph with
λ > 1 as well. The result states that St is also binomially distributed, but with a different
success probability. In the statement of Proposition 4.6 below, we make essential use of
the formal continuation of the recursions in (4.1.3) and (4.1.4) for the breadth-first search,
defined right below (4.1.4). Note that, in particular, St need not be non-negative.

Proposition 4.6 (The law of St). For all t ∈ [n],

St + (t− 1) ∼ Bin
(
n− 1, 1− (1− p)t

)
. (4.3.12)

We shall only make use of Proposition 4.6 when |C(v)| ≥ t, in which case St ≥ 0 does
hold.

Proof. Let Nt represent the number of unexplored vertices, i.e.,

Nt = n− t− St. (4.3.13)

Note that X ∼ Bin(m, p) holds precisely when Y = m − X ∼ Bin(m, 1 − p). It is more
convenient to show the equivalent statement that for all t

Nt ∼ Bin
(
n− 1, (1− p)t

)
. (4.3.14)

Heuristically, (4.3.14) can be understood by noting that each of the vertices {2, . . . , n}
has, independently of all other vertices, probability (1 − p)t to stay neutral in the first t
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explorations. More formally, conditionally on St, we have that Xt ∼ Bin
(
n − (t − 1) −

St−1, p
)

by (4.1.4). Thus, noting that N0 = n− 1 and

Nt = n− t− St = n− t− St−1 −Xt + 1

= n− (t− 1)− St−1 − Bin(n− (t− 1)− St−1, p)

= Nt−1 − Bin(Nt−1, p) = Bin(Nt−1, 1− p), (4.3.15)

the conclusion follows by recursion on t.

Exercise 4.15 (A binomial number of binomial trials). Show that if N ∼ Bin(n, p) and,
conditionally on N , M ∼ Bin(N, q), then M ∼ Bin(n, pq). Use this to complete the proof
that Nt ∼ Bin(n− 1, (1− p)t).

To complete the second proof of (4.3.10), we use Proposition 4.6 to see that

Pλ(|C(v)| > t) ≤ P(St > 0) ≤ Pλ
(
Bin(n− 1, 1− (1− p)t) ≥ t

)
. (4.3.16)

Using Bernoulli’s inequality 1− (1− p)t ≤ tp, we therefore arrive at

Pλ(|C(v)| > t) ≤ Pλ
(
Bin(n,

tλ

n
) ≥ t

)
≤ min

s≥0
e−stEλ[esBin(n, tλ

n
)]

= min
s≥0

e−st
[
1 +

tλ

n
(es − 1)

]n ≤ min
s≥0

e−stetλ(es−1), (4.3.17)

where we have used the Markov inequality (Theorem 2.15) in the second inequality, and
1 + x ≤ ex in the last. We arrive at the bound

Pλ(|C(v)| > t) ≤ e−Iλt, (4.3.18)

which reproves (4.3.10).

4.3.3 Lower bound on the largest subcritical cluster: proof of Theorem 4.5

The proof of Theorem 4.5 makes use of a variance estimate on Z≥k. We use the notation

χ≥k(λ) = Eλ
[
|C(v)|1{|C(v)|≥k}

]
. (4.3.19)

Note that, by exchangeability of the vertices, χ≥k(λ) does not depend on v.

Proposition 4.7 (A variance estimate for Z≥k). For every n and k ∈ [n],

Varλ(Z≥k) ≤ nχ≥k(λ). (4.3.20)

Proof. We use that

Varλ(Z≥k) =
n∑

i,j=1

[
Pλ(|C(i)| ≥ k, |C(j)| ≥ k)− Pλ(|C(i)| ≥ k)Pλ(|C(j)| ≥ k)

]
. (4.3.21)

We split the probability Pλ(|C(i)| ≥ k, |C(j)| ≥ k), depending on whether i←→ j or not:

Pλ(|C(i)| ≥ k, |C(j)| ≥ k) = Pλ(|C(i)| ≥ k, i←→ j) + Pλ(|C(i)| ≥ k, |C(j)| ≥ k, i←→/ j).
(4.3.22)

Clearly,

Pλ(|C(i)| = l, |C(j)| ≥ k, i←→/ j)

= Pλ(|C(i)| = l, i←→/ j)Pλ
(
|C(j)| ≥ k

∣∣ |C(i)| = l, i←→/ j
)
. (4.3.23)
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When |C(i)| = l and i←→/ j, then all vertices in the components different from the one of
i, which includes the components of j, form a random graph where the size n is replaced
by n− l. Since the probability that |C(j)| ≥ k in ERn(p) is increasing in n, we have that

Pλ(|C(j)| ≥ k
∣∣|C(i)| = l, i←→/ j) ≤ Pλ(|C(j)| ≥ k). (4.3.24)

We conclude that

Pλ(|C(i)| = l, |C(j)| ≥ k, i←→/ j)− Pλ(|C(i)| = l)Pλ(|C(j)| ≥ k) ≤ 0, (4.3.25)

which in turn implies that

Varλ(Z≥k) ≤
n∑

i,j=1

Pλ(|C(i)| ≥ k, i←→ j). (4.3.26)

Therefore, we arrive at the fact that, by the exchangeability of the vertices,

Varλ(Z≥k) ≤
n∑

i,j=1

Pλ(|C(i)| ≥ k, i←→ j)

=

n∑
i=1

n∑
j=1

Eλ
[
1{|C(i)|≥k}1{j∈C(i)}

]
=

n∑
i=1

Eλ
[
1{|C(i)|≥k}

n∑
j=1

1{j∈C(i)}

]
. (4.3.27)

Since
∑n
j=1 1{j∈C(i)} = |C(i)|, we arrive at

Varλ(Z≥k) ≤
∑
i

Eλ[|C(i)|1{|C(i)|≥k}] = nEλ[|C(1)|1{|C(1)|≥k}] = nχ≥k(λ). (4.3.28)

Proof of Theorem 4.5. To prove Theorem 4.5, it suffices to prove that Pλ(Z≥kn = 0) =
O(n−δ), where kn = a logn with a < I−1

λ . For this, we use the Chebychev inequality
(Theorem 2.16). In order to apply Theorem 2.16, we need to derive a lower bound on
Eλ[Z≥k] and an upper bound on Varλ(Z≥k).

We start by giving a lower bound on Eλ[Z≥k]. We use that

Eλ[Z≥k] = nP≥k(λ), where P≥k(λ) = Pλ(|C(v)| ≥ k). (4.3.29)

We take k = kn = a logn. We use Theorem 4.3 to see that, with T a binomial branching
process with parameters n− kn and p = λ/n,

P≥k(λ) ≥ Pn−kn,p(T ≥ a logn). (4.3.30)

By Theorem 3.20, with T ∗ the total progeny of a Poisson branching process with mean
λn = λn−kn

n
,

Pn−kn,p(T ≥ a logn) = P∗λn(T ∗ ≥ a logn) +O
(aλ2 logn

n

)
. (4.3.31)

Also, by Theorem 3.16, we have that

P∗λn(T ∗ ≥ a logn) =

∞∑
k=a logn

P∗λn(T ∗ = k) =

∞∑
k=a logn

(λnk)k−1

k!
e−λnk. (4.3.32)
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By Stirling’s formula,

k! =
(k
e

)k√
2πk

(
1 + o(1)

)
, (4.3.33)

so that, recalling (4.3.1), and using that Iλn = Iλ + o(1),

P(T ∗ ≥ a logn) = λ−1
∞∑

k=a logn

1√
2πk3

e−Iλnk(1 + o(1)) = e−Iλa logn(1+o(1)). (4.3.34)

As a result, it follows that, with kn = a logn and any 0 < α < 1− Iλa,

Eλ[Z≥kn ] = nP≥kn(λ) ≥ n(1−Iλa)(1+o(1)) ≥ nα. (4.3.35)

We next bound the variance of Z≥kn using Proposition 4.7. By (4.3.10),

χ≥kn(λ) =

n∑
t=kn

P≥t(λ) ≤
n∑

t=kn

e−Iλ(t−1)

≤ e−(kn−1)Iλ

1− e−Iλ
= O(n−aIλ). (4.3.36)

We conclude that, by Proposition 4.7,

Varλ(Z≥kn) ≤ nχ≥kn(λ) ≤ O(n1−aIλ), (4.3.37)

while
Eλ[Z≥kn ] ≥ nα. (4.3.38)

Therefore, by the Chebychev inequality (Theorem 2.15),

Pλ(Z≥kn = 0) ≤ Varλ(Z≥kn)

Eλ[Z≥kn ]2
≤ O(n1−aI−2α) = O(n−δ), (4.3.39)

when we pick δ = 2α− (1− Iλa), and 0 < α < 1− Iλa such that δ = 2α− (1− Iλa) > 0.
Finally, we use that

Pλ(|Cmax| < kn) = Pλ(Z≥kn = 0), (4.3.40)

to complete the proof of Theorem 4.5.

4.4 The supercritical regime

In this section, we fix λ > 1. The main result proved in this section is the following
theorem. In its statement, we write ζλ = 1 − ηλ for the survival probability of a Poisson
branching process with mean offspring λ.

Theorem 4.8 (Law of large numbers for giant component). Fix λ > 1. Then, for every
ν ∈ ( 1

2
, 1), there exists a δ = δ(ν, λ) > 0 such that

Pλ
(∣∣∣|Cmax| − ζλn

∣∣∣ ≥ nν) = O(n−δ). (4.4.1)

Theorem 4.8 can be interpreted as follows. A vertex has a large connected component
with probability ζλ. Therefore, there are of the order ζλn vertices with large connected
components. Theorem 4.8 implies that all these vertices in large components are in fact
in the same connected component, which is called the giant component. We first give an
overview of the proof of Theorem 4.8.
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4.4.1 Strategy of proof of law of large numbers for the giant component

In this section, we give an overview of the proof of Theorem 4.8. We again crucially
rely on an analysis of the number of vertices in connected components of size at least k,

Z≥k =

n∑
v=1

1{|C(v)|≥k}. (4.4.2)

The proof contains 4 main steps. In the first step, we compute

E[Z≥kn ] = nPλ(|C(v)| ≥ kn). (4.4.3)

We evaluate Pλ(|C(v)| ≥ kn) using the bound in Theorem 4.3. Indeed, Proposition 4.9
below states that for kn = K logn and K sufficiently large

Pλ(|C(v)| ≥ kn) = ζλ(1 + o(1)). (4.4.4)

In the second step, we use a variance estimate on Z≥k in Proposition 4.10, which implies
that, whpand for all ν ∈ ( 1

2
, 1),

|Z≥kn − Eλ[Z≥kn ]| ≤ nν . (4.4.5)

In the third step, we show that, for k = kn = K logn, for some K > 0 sufficiently
large, there is with high probability no connected component with size in between kn and
αn for any α < ζλ. This is done by a first moment argument: the expected number of
vertices in such connected components is equal to Eλ[Z≥kn −Z≥αn], and we use the bound
in Proposition 4.9 described above, as well as Proposition 4.12, which states that, for any
α < ζλ, there exists J > 0 such that

Pλ
(
kn ≤ |C(v)| < αn

)
≤ e−knJ . (4.4.6)

In the fourth step, we prove that for 2α > ζλ, and on the event that there are no
clusters with size in between kn and αn, and on the event in (4.4.5),

Z≥kn = |Cmax|. (4.4.7)

The proof of Theorem 4.8 follows by combining (4.4.3), (4.4.5) and (4.4.7). We now give
the details of the proof of Theorem 4.8.

Step 1: The expected number of vertices in large components. In the first step,
we show that the probability that |C(v)| ≥ k is, for kn ≥ a logn, close to the survival
probability of a Poisson branching process with mean λ. Proposition 4.9 implies (4.4.4).

Proposition 4.9 (Cluster tail is branching process survival probability). Fix λ > 1 and
let n→∞. Then, for kn ≥ a logn where a > I−1

λ and Iλ is defined in (4.3.1),

Pλ(|C(v)| ≥ kn) = ζλ +O(kn/n). (4.4.8)

Proof. For the upper bound on Pλ(|C(v)| ≥ k), we first use Theorem 4.2, followed by
Theorem 3.20, to deduce

Pλ(|C(v)| ≥ kn) ≤ Pn,λ/n(T ≥ kn) ≤ P∗λ(T ∗ ≥ kn) +O(kn/n), (4.4.9)

where T and T ∗, respectively, are the total progeny of a binomial branching process with
parameters n and λ/n and a Poisson mean λ branching process, respectively. To complete
the upper bound, we use Theorem 3.8 to see that

P∗λ(T ∗ ≥ kn) = P∗λ(T ∗ =∞) + P∗λ(kn ≤ T ∗ <∞)

= ζλ +O(e−knIλ) = ζλ +O(kn/n), (4.4.10)
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as required.
For the lower bound, we use Theorem 4.3 again followed by Theorem 3.20, so that, with

λn = λ(1− kn/n),

Pλ(|C(v)| ≥ kn) ≥ Pn−kn,λ/n(T ≥ kn) ≥ P∗λn(T ∗ ≥ kn) +O(kn/n), (4.4.11)

where now T and T ∗, respectively, are the the total progeny of a binomial branching process
with parameters n− kn and λ/n and a Poisson mean λn branching process, respectively.

By Exercise 3.29 for kn ≥ a logn with a > I−1
λ ,

P∗λn(T ∗ ≥ kn) = ζλn +O(e−knIλn ) = ζλn +O(kn/n). (4.4.12)

Now, furthermore, by the mean-value theorem,

ηλn = ηλ + (λn − λ)
d

dλ
ηλ
∣∣
λ=λ∗n

= ηλ +O(kn/n), (4.4.13)

for some λ∗n ∈ (λn, λ), where we use Corollary 3.19 for λ > 1 and λn − λ = kn/n.
Therefore, also ζλn = ζλ + O(kn/n). Putting these estimates together proves the lower
bound. Together, the upper and lower bound complete the proof of Proposition 4.9.

Step 2: Concentration of the number of vertices in large clusters. The proof
of Theorem 4.8 makes use of a variance estimate on Z≥k. In its statement, we use the
notation

χ<k(λ) = Eλ[|C(v)|1{|C(v)|<k}]. (4.4.14)

Proposition 4.10 (A second variance estimate on Z≥k). For every n and k ∈ [n],

Varλ(Z≥k) ≤ (λk + 1)nχ<k(λ). (4.4.15)

Note that the variance estimate in Proposition 4.10 is, in the supercritical regime, much
better than the variance estimate in Proposition 4.7. Indeed, the bound in Proposition 4.7
reads

Varλ(Z≥k) ≤ nχ≥k(λ). (4.4.16)

However, when λ > 1, according to Theorem 4.8 (which is currently not yet proved),
|C(1)| = Θ(n) with positive probability. Therefore,

nχ≥k(λ) = Θ(n2), (4.4.17)

which is a trivial bound. The bound in Proposition 4.10 is at most Θ(k2n), which is much
smaller when k is not too large.

Proof. Define

Z<k =

n∑
v=1

1{|C(v)|<k}. (4.4.18)

Then, since Z<k = n− Z≥k, we have

Varλ(Z≥k) = Varλ(Z<k). (4.4.19)

Therefore, it suffices to prove that Var(Z<k) ≤ (λk + 1)nχ<k(λ). For this, we compute

Varλ(Z<k) =

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
. (4.4.20)
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We again split, depending on whether i←→ j or not:

Varλ(Z<k) =

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k, i←→/ j)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
+

n∑
i,j=1

Pλ(|C(i)| < k, |C(j)| < k, i←→ j). (4.4.21)

We compute explicitly, using that |C(i)| = |C(j)| when i←→ j,

n∑
i,j=1

Pλ(|C(i)| < k, |C(j)| < k, i←→ j) =

n∑
i,j=1

Eλ
[
1{|C(i)|<k}1{i←→j}

]
=

n∑
i=1

Eλ
[
1{|C(i)|<k}

n∑
j=1

1{i←→j}
]

=

n∑
i=1

Eλ[|C(i)|1{|C(i)|<k}] = nχ<k(λ). (4.4.22)

To compute the first sum on the right hand-side of (4.4.21) we write that, for l < k,

Pλ(|C(i)| = l, |C(j)| < k, i←→/ j)

= Pλ(|C(i)| = l)Pλ
(
i←→/ j

∣∣|C(i)| = l
)
Pλ
(
|C(j)| < k

∣∣|C(i)| = l, i←→/ j
)
. (4.4.23)

See Exercise 4.16 below for an explicit formula for Pλ
(
i ←→/ j

∣∣|C(i)| = l
)
. We bound

Pλ
(
i←→/ j

∣∣|C(i)| = l
)
≤ 1, to obtain

Pλ(|C(i)| = l, |C(j)| < k, i←→/ j) ≤ Pλ(|C(i)| = l)Pλ
(
|C(j)| < k

∣∣|C(i)| = l, i←→/ j
)
.

(4.4.24)

Now we use that, when |C(i)| = l and when i ←→/ j, the law of |C(j)| is identical to the
law of |C(1)| in a random graph with n− l vertices and edge probability p = λ/n, i.e.,

Pn,λ(|C(j)| < k
∣∣|C(i)| = l, i←→/ j) = Pn−l,λ(|C(1)| < k), (4.4.25)

where we write Pm,λ for the distribution of ER(m,λ/n). Therefore,

Pλ(|C(j)| < k
∣∣|C(i)| = l, i←→/ j) (4.4.26)

= Pn−l,λ(|C(1)| < k) = Pn,λ(|C(1)| < k) + Pn−l,λ(|C(1)| < k)− Pn,λ(|C(1)| < k).

We can couple ER(n− l, p) and ERn(p) by adding the vertices {n− l + 1, . . . , n}, and by
letting st, for s ∈ {n− l+ 1, . . . , n} and t ∈ [n] be independently occupied with probability
p. In this coupling, we note that Pn−l,λ(|C(1)| < k) − Pn,λ(|C(1)| < k) is equal to the
probability of the event that |C(1)| < k in ER(n − l, p), but |C(1)| ≥ k in ERn(p). If
|C(1)| < k in ER(n − l, p), but |C(1)| ≥ k in ERn(p), it follows that at least one of the
vertices {n − l + 1, . . . , n} must be connected to one of the at most k vertices in the
connected component of vertex 1 in ER(n− l, p). This has probability at most lkp, so that,
by Boole’s inequality,

Pλ(|C(j)| < k, i←→/ j
∣∣|C(i)| = l)− Pλ(|C(j)| < k) ≤ lkλ/n. (4.4.27)
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Therefore,

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k, i←→/ j)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
≤
k−1∑
l=1

∑
i,j

λkl

n
Pλ(|C(i)| = l) =

λk

n

∑
i,j

Eλ[|C(i)|1{|C(i)|<k}] = nkλχ<k(λ), (4.4.28)

which, together with (4.4.21)–(4.4.22), completes the proof.

Exercise 4.16 (Connectivity with given expected cluster size). Show that

Pλ
(
1←→/ 2

∣∣|C(1)| = l
)

= 1− l − 1

n− 1
. (4.4.29)

Corollary 4.11 (Concentration of the number of vertices in large components). Fix kn =
K logn. Then, for K sufficiently large,

Pλ(|Z≥kn − nζλ| > nν) = O(n−δ). (4.4.30)

Proof. We use Proposition 4.9 to note that

Eλ[Z≥kn ] = nPλ(|C(v)| ≥ kn) = nζλ +O(kn), (4.4.31)

and therefore, for n sufficiently large and since kn = o(nν),

{|Z≥kn − Eλ[Z≥kn ]| ≤ nν/2} ⊆ {|Z≥kn − nζλ| ≤ n
ν}. (4.4.32)

By the Chebychev inequality (Theorem 2.16), and using Proposition 4.10 as well as χ<kn(λ) ≤
kn, we then obtain that

Pλ(|Z≥kn − nζλ| ≤ n
ν) ≥ Pλ(|Z≥kn − Eλ[Z≥kn ]| ≤ nν/2) ≥ 1− 4n−2νVar(Z≥kn)

≥ 1− 4n1−2ν(λk2
n + kn) ≥ 1− n−δ, (4.4.33)

for any δ < 2ν − 1 and n sufficiently large, since kn = K logn.

Step 3: No middle ground. We next show that the probability that kn ≤ |C(v)| ≤ αn
is exponentially small in kn:

Proposition 4.12 (Exponential bound for supercritical clusters smaller than ζλn). Fix
λ > 1 and let kn →∞. Then, for any α < ζλ, and with

J(α, λ) = Ig(α;λ) > 0, with g(α;λ) = (1− e−λα)/α, (4.4.34)

such that
Pλ(kn ≤ |C(v)| ≤ αn) ≤ e−knJ(α,λ)/[1− e−J(α,λ)]. (4.4.35)

Proof. We start by bounding

Pλ(kn ≤ |C(v)| ≤ αn) =

αn∑
t=kn

Pλ(|C(v)| = t) ≤
αn∑
t=kn

Pλ(St = 0), (4.4.36)

where we recall (4.1.3). By Proposition 4.6, we have that St ∼ Bin(n−1, 1−(1−p)t)+1−t.
Therefore, with p = λ/n,

Pλ(St = 0) = Pλ
(

Bin
(
n− 1, 1− (1− p)t

)
= t− 1

)
. (4.4.37)
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To explain the exponential decay, we note that, for p = λ/n and t = αn,

1− (1− p)t = 1−
(

1− λ

n

)αn
= (1− e−λα)(1 + o(1)) for large n. (4.4.38)

The unique solution to the equation 1− e−λα = α is α = ζλ:

Exercise 4.17 (Uniqueness solution of Poisson survival probability equation). Prove that
the unique solution to the equation 1 − e−λα = α is α = ζλ, where ζλ is the survival
probability of a Poisson branching process with parameter λ.

If α < ζλ, then α < 1− e−λα, and thus the probability in (4.4.37) drops exponentially.
We now fill in the details. First, by (4.4.37) and using that 1−p ≤ e−p, so that 1−(1−p)t ≥
1− e−pt,

Pλ(St = 0) = Pλ
(
Bin(n− 1, 1− (1− p)t) = t− 1

)
≤ Pλ

(
Bin(n− 1, 1− (1− p)t) ≤ t− 1

)
≤ Pλ

(
Bin(n, 1− (1− p)t) ≤ t

)
≤ Pλ

(
Bin(n, 1− e−pt) ≤ t

)
. (4.4.39)

We bound, for each s ≥ 0, and using that 1− x ≤ e−x,

Pλ(St = 0) ≤ estE
[
esBin

(
n,1−e−pt

)]
= est

(
(1− e−pt)e−s + e−pt

)n
(4.4.40)

= est
(

1 + (1− e−pt)(e−s − 1)
)n
≤ est+n(1−e−pt)(1−e−s)

= est+n(1−e−λt/n)(1−e−s).

The minimizer of s 7→ st+ n(1− e−pt)(1− e−s) over s is equal to

s∗ = log
(
n(1− e−λt/n)/t

)
, (4.4.41)

Write t = βn and g(β;λ) = (1 − e−λβ)/β. Note that limβ↓0 g(β;λ) = λ > 1, and, by
Exercise 4.17, g(ζλ;λ) = 1. Further, β 7→ g(β;λ) is decreasing, since

∂

∂β
g(β;λ) =

g(β;λ)

β

[
(βλ)e−βλ − 1

]
< 0. (4.4.42)

As a result, s∗ ≥ 0 precisely when β < ζλ.

Substitution of s∗ = log
(
n(1− e−λt/n)/t

)
yields

Pλ(St = 0) ≤ e−t
(

log g(t/n;λ)−1−g(t/n;λ)
)

= e−tIg(t/n;λ) . (4.4.43)

Since λ 7→ Iλ is increasing and t/n ≤ α < ζλ, it follows that

Pλ(St = 0) ≤ e−tIg(α;λ) = e−tJ(α;λ). (4.4.44)

We conclude that

Pλ(kn ≤ |C(v)| ≤ αn) ≤
αn∑
t=kn

Pλ(St = 0) ≤
αn∑
t=kn

e−tJ(α;λ) ≤ e−knJ(α;λ)/[1− e−J(α;λ)].

(4.4.45)
This completes the proof of Proposition 4.12.

We finally state a consequence of Proposition 4.12 that shows that there is, with high
probability, no cluster with intermediate size, i.e., size in between kn = K logn and αn.
Corollary 4.13 implies (4.4.6):



88 Phase transition for the Erdős-Rényi random graph

Corollary 4.13 (No intermediate clusters). Fix kn = K logn and α < ζλ. Then, for K
sufficiently large, and with probability at least 1 − n−δ, there is no connected component
with size in between kn and αn.

Proof. We use that the expected number of clusters with sizes in between kn and αn, for
any α < ζλ, is equal to

Eλ[Z≥kn − Z≥αn+1] = nPλ(kn ≤ |C(v)| ≤ αn) ≤ Cne−knJ , (4.4.46)

where we have used Proposition 4.12 for the last estimate. When kn = K logn, and K
is sufficiently large, the right-hand side is O(n−δ). By the Markov inequality (Theorem
2.15),

Pλ(∃v : kn ≤ |C(v)| ≤ αn) = Pλ(Z≥kn − Z≥αn+1 ≥ 1) (4.4.47)

≤ Eλ[Z≥kn − Z≥αn+1] = O(n−δ).

This completes the proof of Corollary 4.13.

Exercise 4.18 (Connectivity and expected cluster size). Prove that the expected cluster
size of a given vertex

χ(λ) = Eλ[|C(1)|], (4.4.48)

satisfies
χ(λ) = 1 + (n− 1)Pλ(1←→ 2). (4.4.49)

Exercise 4.19 (Connectivity function). Prove that (4.4.1) and Corollary 4.13 imply that,
for λ > 1,

Pλ(1←→ 2) = ζ2
λ[1 + o(1)]. (4.4.50)

Exercise 4.20 (Supercritical expected cluster size). Prove that (4.4.1) implies that the
expected cluster size satisfies, for λ > 1,

χ(λ) = ζ2
λn(1 + o(1)). (4.4.51)

Step 4: proof of law of large numbers of giant component in Theorem 4.8. We
fix ν ∈ ( 1

2
, 1), α ∈ (ζλ/2, ζλ) and take kn = K logn with K sufficiently large. Let En be

the event that

(1) |Z≥kn − nζλ| ≤ nν ;

(2) there does not exist a v ∈ [n] such that kn ≤ |C(v)| ≤ αn.

In the proof of Theorem 4.8 we use the following lemma:

Lemma 4.14 (|Cmax| equals Z≥kn with high probability). The event En occurs with high
probability, i.e., Pλ(Ecn) = O(n−δ), and |Cmax| = Z≥kn on the event En.

Proof. We start by proving that En occurs with high probability. For this, we note that
Ecn equals the union of complements of the events in (1) and (2) above, and we shall bound
these complements one by one. By Corollary 4.11, Pλ(|Z≥kn − nζλ| > nν) = O(n−δ). By
Corollary 4.13, Pλ(∃v ∈ [n] such that kn ≤ |C(v)| ≤ αn) ≤ n−δ. Together, these estimates
imply that Pλ(Ecn) = O(n−δ).

To prove that |Cmax| = Z≥kn , we start by noting that {|Z≥kn − ζλn| ≤ nν} ⊆ {Z≥kn ≥
1}. Thus, |Cmax| ≤ Z≥kn when the event En holds. In turn, |Cmax| < Z≥kn implies that
there are two connected components with size at least kn. Furthermore, since En occurs,
there are no connected components with sizes in between kn and αn. Therefore, there must
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be two connected components with size at least αn, which in turn implies that Z≥kn ≥ 2αn.
When 2α > ζλ and n is sufficiently large, this is in contradiction with Z≥kn ≤ ζλn + nν .
We conclude that |Cmax| = Z≥kn .

Proof of Theorem 4.8. By the fact that |Cmax| = Z≥kn , we have

Pλ
(∣∣|Cmax| − ζλn

∣∣ ≤ nν) ≥ Pλ
(
{
∣∣|Cmax| − ζλn

∣∣ ≤ nν} ∩ En) = Pλ(En) ≥ 1−O(n−δ),
(4.4.52)

since, by Lemma 4.14 and on the event En, |Cmax| = Z≥kn and |Z≥kn − nζλ| ≤ nν . This
completes the proof of the law of large number of the giant component in Theorem 4.8.

4.4.2 The discrete duality principle

Using the results we can construct a duality principle for Erdős-Rényi random graphs
similar to the duality principle for branching processes:

Theorem 4.15 (Discrete duality principle). Let µλ < 1 < λ be conjugates as in (3.6.7).
Conditionally, the graph ERn(λ/n) with the giant component removed is close in law to
the random graph ER(m, µλ

m
), where the variable m = dnηλe is the asymptotic number of

vertices outside the giant component.

We will see that the proof follows from Theorem 4.8, since this implies that the giant
component has size n −m = ζλn(1 + o(1)). In the statement of Theorem 4.15 we make
use of the informal notion ‘close in law’. This notion can be made precise as follows. Let
ERn(λ/n)′ be ERn(λ/n) with the giant component removed. We write P′λ for the law of
ERn(λ/n)′, and we recall that Pm,µ denotes the law of ER(m,µ). Let E be an event which
is determined by the edges variables. Then, if limm→∞ Pm,µλ(E) exists, then

lim
n→∞

P′n,λ(E) = lim
m→∞

Pm,µλ(E). (4.4.53)

We shall sketch a proof of Theorem 4.15. First of all, all the edges in the complement of
the giant component in ERn(p) are independent. Furthermore, the conditional probability
that an edge st is occupied in ERn(p) with the giant component removed is, conditionally
on |Cmax| = n−m, equal to

λ

n
=

λ

m

m

n
. (4.4.54)

Now, m ≈ ηλn, so that the conditional probability that an edge st is occupied in ERn(p)
with the giant component removed, conditionally on |Cmax| ≈ ζλn, is equal to

λ

n
≈ ληλ

m
=
µλ
m
, (4.4.55)

where we have used (3.6.2) and (3.6.5), which implies that ληλ = µλ. Therefore, the
conditional probability that an edge st is occupied in ERn(p) with the giant component
removed, conditionally on |Cmax| ≈ ζλn, is equal to µλ

m
.

Exercise 4.21 (Second largest supercritical cluster). Use the duality principle to show that
the second largest component of a supercritical Erdős-Rényi random graph C(2) satisfies

|C(2)|
logn

P−→ I−1
µλ . (4.4.56)
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4.5 The CLT for the giant component

In this section, we prove a central limit theorem for the giant component in the super-
critical regime, extending the law of large numbers for the giant component in Theorem
4.8. The main result is as follows:

Theorem 4.16 (Central limit theorem for giant component). Fix λ > 1. Then,

|Cmax| − ζλn√
n

d−→ Z, (4.5.1)

where Z is a normal random variable with mean 0 and variance σ2
λ = ζλ(1−ζλ)

(1−λ+λζλ)2
.

We shall make use of the exploration of connected components to prove Theorem 4.16. In
the proof, we shall make essential use of Theorem 4.8.

In order to present the proof, we start with some introductions. Fix k = kn, which will
be chosen later on. We shall explore the union of the connected components of the vertices
[k] = {1, . . . , k}. When k → ∞ and using Theorem 4.8, this union contains the largest
connected component Cmax, and it cannot be larger than |Cmax|+ kbn, where bn ≤ K logn
is an upper bound on the second largest component. Taking k = o(nν) with ν < 1

2
, this

union of components is equal to |Cmax| + o(
√
n). As a result, a central limit theorem for

the union of components implies one for |Cmax|. We now describe the size of the union of
the components of {1, . . . , k}.

Let S0 = k and, for t ≥ 1, let

St = St−1 +Xt − 1, (4.5.2)

where

Xt ∼ Bin
(
n− St−1 − (t− 1), p

)
. (4.5.3)

Equations (4.5.2) and (4.5.3) are similar to the ones in (4.1.3) and (4.1.4). We next derive
the distribution of St in a similar way as in Proposition 4.6:

Proposition 4.17 (The law of St revisited). For all t ∈ [n],

St + (t− 1) ∼ Bin(n− k, 1− (1− p)t−1). (4.5.4)

Moreover, for all l, t ∈ [n] satisfying l ≥ t, and conditionally on St,

Sl + (l − t)− St ∼ Bin
(
n− (t− 1)− St, 1− (1− p)l−t

)
. (4.5.5)

For k = 1, the equality in distribution (4.5.4) in Proposition 4.17 reduces to Proposition
4.6.

Proof. For t ≥ 1, let Nt represent the number of unexplored vertices, i.e.,

Nt = n− (t− 1)− St. (4.5.6)

It is more convenient to show the equivalent statement that for all t ≥ 1

Nt ∼ Bin
(
n− k, (1− p)t−1). (4.5.7)

To see this, we note that each of the vertices {k+ 1, . . . , n} has, independently of all other
vertices, probability (1 − p)t−1 to stay neutral in the first t explorations. More formally,
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conditionally on St−1, and by (4.5.3), we have that Xt ∼ Bin
(
n − St−1 − (t − 1), p) =

Bin
(
Nt−1, p) by (4.5.3). Thus, noting that N1 ∼ Bin(n− k, (1− p)k) and

Nt = n− (t+ k − 1)− St = n− (t+ k − 1)− St−1 −Xt + 1

= n− (t+ k − 2)− St−1 − Bin(Nt−1, p)

= Nt−1 − Bin(Nt−1, p) = Bin(Nt−1, 1− p), (4.5.8)

the conclusion follows by recursion on t ≥ 1 and Exercise 4.15. We note that (4.5.8) also
implies that for any l ≥ t,

Nl ∼ Bin(Nt, (1− p)l−t). (4.5.9)

Substituting Nt = n− (t− 1)− St, this implies that

n− (l − 1)− Sl ∼ Bin
(
n− (t− 1)− St, (1− p)l−t

)
(4.5.10)

= n− (t− 1)− St − Bin
(
n− (t− 1)− St, 1− (1− p)l−t

)
,

which, in turn, is equivalent to the statement that, for all l ≥ t and, conditionally on St,

Sl + (l − t)− St ∼ Bin
(
n− (t− 1)− St, 1− (1− p)l−t

)
. (4.5.11)

We now state a corollary of Proposition 4.17 which states that Sbntc satisfies a central limit
theorem. In its statement, we make use of the asymptotic mean

µt = 1− t− e−λt (4.5.12)

and asymptotic variance
vt = e−λt(1− e−λt). (4.5.13)

The central limit theorem for Sbntc reads as follows:

Corollary 4.18 (CLT for Sbntc). Fix k = kn = o(
√
n). Then, for every t > 0, the random

variable
Sbntc−nµt√

nvt
converges in distribution to a standard normal random variable.

Proof. The statement follows immediately from the central limit theorem for the binomial
distribution when we can show that

E[Sbntc] = nµt + o(
√
n), Var(Sbntc) = nvt + o(n). (4.5.14)

Indeed, by the central limit theorem for the binomial distribution we have that

Sbntc − E[Sbntc]√
Var(Sbntc)

d−→ Z, (4.5.15)

where Z is a standard normal random variable.

Exercise 4.22 (CLT for binomials with general parameters). Prove that if Xn = Bin(an, pn),
where Var(X) = anpn(1− pn)→∞, then

Xn − anpn√
anpn(1− pn)

d−→ Z, (4.5.16)

where Z is a standard normal random variable. Use this to conclude that (4.5.14) implies
(4.5.15).



92 Phase transition for the Erdős-Rényi random graph

Write

Sbntc − nµt√
nvt

=

√
Var(Sbntc)

nvt

Sbntc − E[Sbntc]√
Var(Sbntc)

+
E[Sbntc]− nµt√

Var(Sbntc)
. (4.5.17)

By (4.5.14), we have that the last term converges to zero, and the factor
√

Var(Sbntc)

nvt

converges to one. Therefore, (4.5.14) implies the central limit theorem.
To see the asymptotics of the mean in (4.5.14), we note that

E[Sbntc] = (n− k)
(

1− (1− λ

n
)bntc+k−1

)
−
(
bntc − 1

)
= nµt + o(

√
n), (4.5.18)

as long as k = o(
√
n). For the asymptotics of the variance in (4.5.14), we note that

Var(Sbntc) = (n− k)(1− λ

n
)bntc+k−1(1− (1− λ

n
)bntc+k−1) = nvt + o(n), (4.5.19)

as long as k = o(n).

Proof of Theorem 4.16. Let |C([k])| be the size of the union of the components of the
vertices 1, . . . , k. Then,

|C([k])| ∼ min{m : Sm = 0}. (4.5.20)

Let k = kn →∞. We will prove below that |C([k])| satisfies a CLT with asymptotic mean
nζλ and asymptotic variance nσ2

λ. By Corollary 4.13, for 2α > ζλ and Theorem 4.8, whp,
the second largest cluster has size at most K logn. Hence, whp,

|Cmax| ≤ |C([k])| ≤ |Cmax|+ (k − 1)K logn. (4.5.21)

We conclude that a central limit theorem for |Cmax| follows from that for |C([k])| for any
k = kn →∞.

The central limit theorem for |C([k])| is proved by upper and upper bounds on the
probabilities

Pλ
( |C([k])| − ζλn√

n
> x

)
.

For the upper bound, we use that (4.5.20) implies that, for every `,

Pλ(|C([k])| > `) = Pλ(∀m ≤ ` : Sm > 0). (4.5.22)

Applying (4.5.22) to ` = mx = bnζλ + x
√
nc, we obtain

Pλ
( |C([k])| − ζλn√

n
> x

)
= Pλ(∀m ≤ mx : Sm > 0) ≤ Pλ(Smx > 0). (4.5.23)

Now we use (4.5.12), (4.5.14) and µζλ = 0, and writing µ′t for the derivative of t 7→ µt, to
see that

E[Smx ] = nµζλ+
√
nxµ′ζλ+o(

√
n) =

√
nx(λe−λζλ−1)+o(

√
n) =

√
nx(λe−λζλ−1)+o(

√
n),

(4.5.24)
where we note that λe−λζλ − 1 < 0 for λ > 1.

Exercise 4.23 (Asymptotic mean and variance at t = ζλ). Prove that µζλ = 0 and

µ′ζλ = λe−λζλ − 1 < 0 for λ > 1.
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The variance of Smx is, by (4.5.13) and (4.5.14),

Var(Smx) = nvζλ + o(n), (4.5.25)

where vζλ > 0. Thus,

Pλ(Smx > 0) = Pλ
(Smx − E[Smx ]√

Var(Smx)
>
x(1− λe−λζλ)
√
vζλ

)
+ o(1). (4.5.26)

By Corollary 4.18, the right-hand side converges to

P
(
Z >

x(1− λe−λζλ)
√
vζλ

)
= P(Z′ > x), (4.5.27)

where Z′ has a normal distribution with mean 0 and variance vζλ(1−λe−λζλ)−2. We finally

note that, by (3.6.2) and ζλ = 1− ηλ, we have that 1− ζλ = e−λζλ , so that

vζλ = e−λζλ(1− e−λζλ) = ζλ(1− ζλ). (4.5.28)

By (4.5.28), the variance of the normal distribution appearing in the lower bound can be
rewritten as

vζλ
(1− λe−λζλ)2

=
ζλ(1− ζλ)

(1− λ+ λζλ)2
. (4.5.29)

By (4.5.23), this completes the upper bound.
For the lower bound, we again use the fact that

Pλ
(
|C([k])| − ζλn > x

)
= Pλ(∀m ≤ mx : Sm > 0), (4.5.30)

where we recall that mx = bnζλ + x
√
nc. Then, for any ε > 0, we bound from below

Pλ(∀m ≤ mx : Sm > 0) ≥ Pλ(∀m < mx : Sm > 0, Smx > ε
√
n)

= Pλ(Smx > ε
√
n)− Pλ(Smx > ε

√
n,∃m < mx : Sm = 0).

(4.5.31)

The first term can be handled in a similar way as for the upper bound. Indeed, repeating
the steps in the upper bound, we obtain that, for every ε > 0,

Pλ(Smx > ε
√
n) = P

(
Z >

x(1− λe−λζλ) + ε
√
vζλ

)
+ o(1). (4.5.32)

The quantity in (4.5.32) converges to P(Z′ > x), where Z′ has a normal distribution with
mean 0 and variance σ2

λ, as ε ↓ 0.
We conclude that it suffices to prove that

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) = o(1). (4.5.33)

To bound the probability in (4.5.33), we first use Boole’s inequality to get

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) ≤

mx−1∑
m=1

Pλ(Sm = 0, Smx > ε
√
n). (4.5.34)

For m ≤ αn with α < ζλ, we can show that, when k = K logn and K sufficiently large,
and uniformly in m ≤ αn,

Pλ(Sm = 0) ≤ e−mJ(m/n,λ). (4.5.35)
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Exercise 4.24 (The probability that Sm = 0). Prove that (4.5.35) holds uniformly in
m ≤ αn with α < ζλ, by using (4.5.4) in Proposition 4.17 and adapting the proof in
(4.4.44).

We continue by proving a similar bound for m > αn, where α < ζλ can be chosen
arbitrarily close to ζλ. Here we shall make use of the fact that, for m close to ζλn,
Eλ[Xm] < 1, so that m 7→ Sm, for m ≥ αn is close to a random walk with negative drift.
As a result, the probability that Sm = 0, yet Smx > ε

√
n is exponentially small.

We now present the details of this argument. We bound

Pλ
(
Sm = 0, Smx > ε

√
n
)

= Pλ
(
Smx > ε

√
n | Sm = 0

)
Pλ(Sm = 0) (4.5.36)

= Pλ
(

Bin
(
n− (m− 1), 1− (1− p)mx−m

)
> (mx −m) + ε

√
n
)
Pλ(Sm = 0),

since, by (4.5.5) in Proposition 4.17 and conditionally on Sm = 0,

Sl + (l −m) ∼ Bin
(
n− (m− 1), 1− (1− p)l−m

)
.

We pick κ = ζλ− ε, for some ε > 0 which is very small. Then, using that 1− (1− a)b ≤ ab
for every a, b with 0 < a < 1, b ≥ 1, we arrive at

1− (1− p)mx−m = 1−
(
1− λ

n

)mx−m ≤ λ(mx −m)

n
. (4.5.37)

As a result, with X = Bin
(
n− (m− 1), 1− (1− p)mx−m

)
, and using that n− (m− 1) ≤

n−m ≤ n(1− ζλ + ε) and p = λ/n,

Eλ[X] = [n− (m− 1)][1− (1− p)mx−m] ≤ (mx −m)λ(1− ζλ + ε). (4.5.38)

Since λ > 1, we can use that λ(1 − ζλ) = λe−λζλ < 1 by Exercise 4.23, so that, taking
ε > 0 so small that λ(1− ζλ + ε) < 1− ε, we have

E[X] ≤ (1− ε)(mx −m). (4.5.39)

Therefore,

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ Pλ

(
X − E[X] > ε

(
(mx −m) +

√
n
))
. (4.5.40)

By Theorem 2.19, with t = ε
(
(mx −m) +

√
n
)

and using (4.5.39), we obtain

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
− t2

2
(
(1− ε)(mx −m) + t/3

))

≤ exp

(
− t2

2
(
(mx −m) + 2ε

√
n/3

)) . (4.5.41)

Thus, for mx −m ≥ ε
√
n, since t ≥ ε(mx −m), we have

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
−3ε2(mx −m)/8

)
= o(n−1), (4.5.42)

while, for mx −m ≤ ε
√
n, since t ≥ ε

√
n, we have

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
−3ε
√
n/8

)
= exp

(
−ε
√
n/2

)
= o(n−1). (4.5.43)

The bounds (4.5.35), (4.5.42) and (4.5.43) complete the proof of Theorem 4.16.

Adapt this proof
further, by ap-
plying Chernoff
bounds on bino-
mials...
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4.6 Notes and discussion

Notes on Section 4.1. There are several possible definitions of the Erdős-Rényi random
graph. Many of the classical results are proved for ER(n,M), which is the random graph
on the vertices [n] obtained by adding M edges uniformly at random. Since the number
of edges in the Erdős-Rényi random graph has a binomial distribution with parameters
n(n − 1)/2 and p, we should think of M corresponding roughly to pn(n − 1)/2. Also,
writing PM for the distribution of ER(n,M), we have that Pλ and PM are related as

Pλ(E) =

n(n−1)/2∑
M=1

PM(E)P
(
Bin(n(n− 1)/2, p) = M), (4.6.1)

where E is any event. This allows one to deduce results for ER(n,M) from the ones for
ER(n, p) and vice versa. The model ER(n,M) was first studied in [121], the model ER(n, p)
was introduced in [135], and a model with possibly multiple edges between vertices in [23].

The random graph ER(n,M) has the advantage that we can think of the graph as
evolving as a process, by adding the edges one at a time, which also allows us to investigate
dynamical properties, such as when the first cycle appears. This is also possible for ER(n, p)
using the coupling in Section 4.1.1, but is slightly less appealing.

We refer to the books [15, 58, 171] for more detailed references of the early literature
on random graphs.

Notes on Section 4.2.

Notes on Section 4.3. The strategy in the proof of Theorems 4.4 and 4.5 is close in
spirit to the proof in [15], with ingredients taken from [65], which, in turn, was inspired by
[69, 70]. In particular, the use of the random variable Z≥k has appeared in these references.
The random variable Z≥k also plays a crucial role in the analysis of |Cmax| both when λ > 1
and when λ = 1.

Exercise 4.25 (Subcritical clusters for ER(n,M)). Use (4.6.1) and Theorems 4.4–4.5 to

show that |Cmax|/ logn
P−→ I−1

λ for ER(n,M) when M = nλ/2.

Notes on Section 4.4.

Exercise 4.26 (Supercritical clusters for ER(n,M)). Use (4.6.1) and Theorem 4.8 to show

that |Cmax|/n
P−→ ζλ for ER(n,M) when M = nλ/2.

Exercises 4.25 and 4.26 show that ER(n,M) has a phase transition when M = nλ/2 at
λ = 1.

Notes on Section 4.5. The central limit theorem for the largest supercritical cluster was
proved in [206],[234] and [31]. In [234], the result follows as a corollary of the main result,
involving central limit theorems for various random graph quantities, such as the number
tree components of various size. Martin-Löf [206] studies the giant component in the
context of epidemics. His proof makes clever use of a connection to asymptotic stochastic
differential equations, and is reproduced in [111]. Since we do not assume familiarity with
stochastic differential equations, we have produced an independent proof which only relies
on elementary techniques.





Chapter 5

Erdős-Rényi random graph revisited

In the previous chapter, we have proved that the largest connected component of the Erdős-
Rényi random graph exhibits a phase transition. In this chapter, we investigate several
more properties of the Erdős-Rényi random graph. We start by investigating the critical
behavior of the size of largest connected component in the Erdős-Rényi random graph
by studying p = 1/n in Section 5.1. After this, in Section 5.2, we investigate the phase
transition for the connectivity of ERn(p), and for p inside the critical window, compute
the asymptotic probability that the Erdős-Rényi random graph is connected. Finally, in
Section 5.3, we study the degree sequence of an Erdős-Rényi random graph.

5.1 The critical behavior

In this section, we study the behavior of the largest connected component for the critical
value p = 1/n. In this case, it turns out that there is interesting behavior, where the size
of the largest connected component is large, yet much smaller than the size of the volume.

Theorem 5.1 (Largest critical cluster). Take λ = 1 + θn−1/3, where θ ∈ R. There exists
a constant b = b(θ) > 0 such that, for all ω > 1,

P1+θn−1/3

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
≥ 1− b

ω
. (5.1.1)

Theorem 5.1 shows that the largest critical cluster obeys a non-trivial scaling result.
While |Cmax| is logarithmically small in the subcritical regime λ < 1 by Theorem 4.4, and
|Cmax| = Θ(n) in the supercritical regime λ > 1 by Theorem 4.8, at the critical value

λ = 1, we see that the largest cluster is Θ(n2/3). The result in Theorem 5.1 shows that

the random variable |Cmax|n−2/3 is tight, in the sense that with high probability, we have

|Cmax|n−2/3 ≤ ω for ω sufficiently large. Also, with high probability, |Cmax|n−2/3 ≥ ω−1,

so that with substantial probability, |Cmax| = Θ(n2/3).

5.1.1 Strategy of the proof

We start by studying the tail of the distribution of |C(v)| for the critical case λ = 1 in

the following theorem. We generalize the setting to values of λ = 1 + θn−1/3 that are close
to the critical value λ = 1:

Proposition 5.2 (Critical cluster tails). Take λ = 1 + θn−1/3, where θ ∈ R, and let

r > 0. For k ≤ rn2/3, there exist constants 0 < c1 < c2 < ∞ with c1 = c1(r, θ) such that
minr≤1 c1(r) > 0, and c2 independent of r and θ, such that, for n sufficiently large,

c1√
k
≤ P1+θn−1/3(|C(1)| ≥ k) ≤ c2(θ+n

−1/3 +
1√
k

). (5.1.2)

Proposition 5.2 implies that the tails of the critical cluster size distribution obey similar
asymptotics as the tails of the total progeny of a critical branching process (see (3.6.20)).
The tail in (5.1.2) is only valid for values of k that are not too large. Indeed, when k > n,
then Pλ(|C(v)| ≥ k) = 0. Therefore, there must be a cut-off above which the asymptotics

97
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fails to hold. As it turns out, this cut-off is given by rn2/3. The upper bound in (5.1.2)
holds for a wider range of k, in fact, the proof yields that (5.1.2) is valid for all k.

We next study the critical expected cluster size:

Proposition 5.3 (Bound on critical expected cluster size). Take λ = 1 + θn−1/3, where
θ ∈ R. Then, for all n ≥ 1,

E1+θn−1/3 [|C(1)|] ≤ n1/3/θ−. (5.1.3)

Proposition 5.3 is intuitively consistent with Theorem 5.1. Indeed, in the critical regime,
the expected cluster size receives a substantial amount from the largest cluster. Therefore,
intuitively, for any v ∈ [n],

E1+θn−1/3 [|C(1)|] ∼ E1+θn−1/3 [|C(v)|1{v∈Cmax}] = E1[|Cmax|1{v∈Cmax}], (5.1.4)

where ∼ denotes an equality with an uncontrolled error.
When |Cmax| = Θ(n2/3), then

E1+θn−1/3 [|Cmax|1{v∈Cmax}] ∼ n
2/3P1(v ∈ Cmax). (5.1.5)

Furthermore, when |Cmax| = Θ(n2/3), then

P1+θn−1/3

(
v ∈ Cmax

)
∼ n2/3

n
= n−1/3. (5.1.6)

Therefore, one is intuitively lead to the conclusion

E1+θn−1/3 [|C(1)|] ∼ n1/3. (5.1.7)

Exercise 5.1 (Critical expected cluster size). Prove that Proposition 5.2 also implies that

χ(1) ≥ cn1/3 for some c > 0. Therefore, for λ = 1, the bound in Proposition 5.3 is
asymptotically sharp.

Propositions 5.2 and 5.3 are proved in Section 5.1.2 below. We will first prove Theorem
5.1 subject to them.

Proof of Theorem 5.1 subject to Propositions 5.2 and 5.3. The statement in Theorem 5.1
is vacuous when ω ≤ b, so that, by taking b sufficiently large, we may assume that ω ≥ 1 is
large. In turn, the statement in Theorem 5.1 is vacuous when ω−1n2/3 ≤ 1 and ωn2/3 ≤ n,
i.e., for n ≤ ω2/3. Since ω is large, we may also assume that n ≥ N , where N is large.

We start with the upper bound on |Cmax|. We again make use of the fundamental
equality {|Cmax| ≥ k} = {Z≥k ≥ k}, where we recall that

Z≥k =
∑
v∈[n]

1{|C(v)|≥k}. (5.1.8)

By the Markov inequality (Theorem 2.15), we obtain

P1+θn−1/3

(
|Cmax| ≥ ωn2/3) = P1+θn−1/3

(
Z≥ωn2/3 ≥ ωn2/3) ≤ ω−1n−2/3E1+θn−1/3 [Z≥ωn2/3 ].

(5.1.9)
By Proposition 5.2,

E1+θn−1/3 [Z≥ωn2/3 ] = nP1+θn−1/3(|C(1)| ≥ ωn2/3) ≤ c2n2/3(θ+ + 1/
√
ω), (5.1.10)



5.1 The critical behavior 99

so that

P1+θn−1/3

(
|Cmax| > ωn2/3) ≤ c2n2/3(θ+ + 1/

√
ω)/(ωn2/3) ≤ c2

ω
(θ+ + 1/

√
ω). (5.1.11)

For the lower bound on |Cmax|, we first note that for ω < b, there is nothing to prove.
The constant b > 0 will be taken large, so that we shall assume that ω > κ−1, where κ > 0
is the constant appearing in Proposition 5.2.

We start by proving the result for θ ≤ −1. We use the Chebychev inequality (Theorem
2.16), as well as {|Cmax| < k} = {Z≥k = 0}, to obtain that

P1+θn−1/3

(
|Cmax| < ω−1n2/3) = P1+θn−1/3

(
Z≥ω−1n2/3 = 0

)
≤

Var1+θn−1/3(Z≥ω−1n2/3)

E1+θn−1/3 [Z≥ω−1n2/3 ]2
.

(5.1.12)
By (5.1.2), we have that

E1+θn−1/3 [Z≥ω−1n2/3 ] = nP1+θn−1/3(|C(1)| ≥ k) ≥ c1
√
ωn2/3, (5.1.13)

where we used that ω ≥ κ−1, and c1 = minr≤κ c1(r) > 0. Also, by Proposition 4.7, with

kn = ω−1n2/3,

Var1+θn−1/3(Z≥ω−1n2/3) ≤ nE1+θn−1/3 [|C(1)|1{|C(1)|≥ω−1n2/3}]. (5.1.14)

By Proposition 5.3, we can further bound, using that θ ≤ −1,

Var1+θn−1/3(Z≥ω−1n2/3) ≤ nE1+θn−1/3 [|C(1)|] ≤ n4/3. (5.1.15)

Substituting (5.1.12)–(5.1.15), we obtain, for n sufficiently large,

P1+θn−1/3

(
|Cmax| < ω−1n2/3) ≤ n4/3

c21ωn
4/3

=
1

c21ω
. (5.1.16)

We conclude that

P1+θn−1/3

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
= 1− P1+θn−1/3

(
|Cmax| < ω−1n2/3) (5.1.17)

− P1+θn−1/3

(
|Cmax| > ωn2/3)

≥ 1− 1

c21ω
− c2
ω3/2

≥ 1− b

ω
, (5.1.18)

when b = c−2
1 + c2.

Finally, we make use of monotonicity in λ. The random variable |Cmax| is increasing,
and therefore,

P1+θn−1/3

(
|Cmax| < ω−1n2/3

)
≤ P1−θ̄n−1/3

(
|Cmax| < ω−1n2/3

)
, (5.1.19)

where we define θ̄ = |θ| ∨ 1. Thus, −θ̄ ≤ −1, and the result follows from our previous
calculation. This completes the proof of Theorem 5.1 subject to Propositions 5.2 and
5.3.
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5.1.2 Proofs of Propositions 5.2 and 5.3

Proof of Proposition 5.2. Theorem 4.2 gives

P1+θn−1/3(|C(1)| ≥ k) ≤ Pn,p(T ≥ k), (5.1.20)

where we recall that Pn,p is the law of a binomial branching process with parameters n

and p = λ/n = (1 + θn−1/3)/n, and T its total progeny. By Theorem 3.20, for λ = 1,

P1+θn−1/3(|C(1)| ≥ k) ≤ P∗λ(T ∗ ≥ k) + ek(n), (5.1.21)

where, by (3.7.2),

|ek(n)| ≤ 2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s), (5.1.22)

and where we recall that P∗λ is the law of a Poisson branching process with parameter λ,
and T ∗ is its total progeny.

By Theorem 3.18, it follows that there exists a C > 0 such that for all s ≥ 1,

P∗1+θn−1/3(T ∗ ≥ s) ≤ ζλ +

∞∑
t=s

P∗1+θn−1/3(T ∗ = t) ≤ C
(
θ+n

−1/3 + 1/
√
s
)
, (5.1.23)

by (3.6.22) in Corollary 3.19. Therefore, for all k ≤ n,

|ek(n)| ≤ 4

n

k∑
s=1

C
(
θ+n

−1/3 + 1/
√
s
)
≤ 4C

(
θ+kn

−4/3 +

√
k

n

)
≤ 4C

(
θ+n

−1/3 + 1/
√
k
)
.

(5.1.24)
We conclude that, for all k ≤ n,

P1+θn−1/3(|C(1)| ≥ k) ≤ 5C
(
θ+n

−1/3 + 1/
√
k
)
. (5.1.25)

We proceed with the lower bound in (5.1.2), for which we make use of Theorem 4.3 with

k ≤ rn2/3. This gives that

P1+θn−1/3(|C(1)| ≥ k) ≥ Pn−k,p(T ≥ k). (5.1.26)

where T is the total progeny of a binomial branching process with parameters n− k ≤ n−
rn2/3 and p = λ/n = (1+θn−1/3)/n. We again use Theorem 3.20 for λn = 1+(θ−r)n−1/3,
as in (5.1.21) and (5.1.22). We apply the one-but-last bound in (5.1.24), so that

P1+θn−1/3(|C(1)| ≥ k) ≥ P∗λn(T ∗ ≥ k)− 4C
√
k

n
≥ P∗λn(T ∗ ≥ k)− 4C

√
r

n2/3
. (5.1.27)

We then use Theorem 3.16 to obtain, since λn ≤ 1,

Pλ(|C(1)| ≥ k) ≥
∞∑
t=k

P∗λn(T ∗ = t)− 4C
√
r

n2/3

=
∞∑
t=k

(λnt)
t−1

t!
e−λnt − 4C

√
r

n2/3

=
1

λn

∞∑
t=k

P∗1(T ∗ = t)e−Iλn t − 4C
√
r

n2/3
, (5.1.28)
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where, for λn = 1 + (θ − r)n−1/3 and by (3.6.19),

Iλn = λn − 1− log λn =
1

2
(λn − 1)2 +O(|λn − 1|3). (5.1.29)

Therefore,

Pλ(|C(1)| ≥ k) ≥
2k∑
t=k

P∗1(T ∗ = t)e−
1
2

(λn−1)2t(1+o(1)) − 4C
√
r

n2/3

≥
2k∑
t=k

C√
t3

e−
1
2

(λn−1)2t(1+o(1)) − 4C
√
r

n2/3

≥ 2−3/2C√
k

e−k(λn−1)2(1+o(1)) − 4C
√
r

n2/3
, (5.1.30)

since λn − 1 = (θ − r)n−1/3. Now use that, for n ≥ N ,

√
rn−2/3 =

√
rkn−2/3/

√
k ≤ rn−1/3/

√
k ≤ rN−1/3/

√
k, (5.1.31)

so that

Pλ(|C(1)| ≥ k) ≥ c1(r)√
k
, (5.1.32)

with c1(r) = C(2−3/2e−r(θ−r)
2

− 4
√
r/N−1/3) > 0 for r ≤ 1, whenever N is sufficiently

large. This completes the proof of Proposition 5.2.

Proof of Proposition 5.3. Theorem 4.2 gives that |C(1)| � T , where T is the total
progeny of a branching process with a Bin(n, λ/n) branching process, and where λ =

1 + θn−1/3. As a result, for θ < 0,

E1+θn−1/3 [|C(1)|] ≤ E[T ] = 1/(1− λ) = n1/3/|θ|. (5.1.33)

This proves the claim.

5.1.3 Connected components in the critical window revisited

In this section, we discuss the critical window of the Erdős-Rényi random graph. By
Theorem 5.1, we know that, for p = 1/n, the largest connected component has size roughly

equal to n2/3. As it turns out, such behavior is also seen for related values of p. Namely,
if we choose p = (1 + tn−1/3)/n, then we see similar behavior appearing for the largest

connected component size. Therefore, the values of p for which p = (1+tn−1/3)/n are called
the critical window. We start by discussing the most detailed work on this problem, which
is by Aldous [14], following previous work on the critical window in [56, 169, 202, 204].

The point in [14] is to prove simultaneous weak convergence of all connected components
at once. We start by introducing some notation. Let |C(j)(t)| denote the jth largest cluster

of ERn(p) for p = (1 + tn−1/3)/n. Then one of the main results in [14] is the following
theorem:

Theorem 5.4 (Weak convergence of largest clusters in critical window). For p = (1 +

tn−1/3)/n, and any t ∈ R, the vector C(t) ≡ (n−2/3|C(1)(t)|, n−2/3|C(2)(t)|, n−2/3|C(3)(t)|, . . .)
converges in distribution to a random vector γ ≡ (γi(t))i≥1.
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Thus, Theorem 5.4 is stronger than Theorem 5.1 in three ways: (1) Theorem 5.4 proves
weak convergence, rather than tightness only; (2) Theorem 5.4 considers all connected
components, ordered by size, rather than only the first one; (3) Theorem 5.4 investigates
all values inside the critical window at once.

While [14] is the first paper where a result as in Theorem 5.4 is stated explicitly, sim-
ilar results had been around before [14], which explains why Aldous calls Theorem 5.4 a
‘Folk Theorem’. The beauty of [14] is that Aldous gives two explicit descriptions of the
distribution of the limiting random variable (Ct(1)|, Ct(2), Ct(3)|, . . .), the first being in terms of
lengths of excursions of Brownian motion, the second in terms of the so-called multiplicative
coalescent process. We shall intuitively explain these constructions now.

We start by explaining the construction in terms of excursions of Brownian motion. Let
{W (s)}s≥0 be standard Brownian motion, and define

W t(s) = W (s) + ts− s2/2 (5.1.34)

be Brownian motion with an (inhomogeneous) drift t− s at time s. Let

Bt(s) = W t(s)− min
0≤s′≤s

W t(s′) (5.1.35)

correspond to the process {W t(s)}s≥0 reflected at 0. We now consider the excursions of
this process, ordered in their length. Here an excursion γ of {Bt(s)}s≥0 is a time interval
[l(γ), r(γ)] for which Bt(l(γ)) = Bt(r(γ)) = 0, but Bt(s) > 0 for all s ∈ (l(γ), r(γ)). Let
the length |γ| of the excursion γ be given by r(γ)− l(γ). As it turns out (see [14, Section
1] for details), the excursions of {Bt(s)}s≥0 can be ordered by decreasing length, so that
{γtj : j ≥ 1} are the excursions. Then, the limiting random vector Cn has the same

distribution as the ordered excursions {γtj : j ≥ 1}. The idea behind this is as follows. We
make use of the random walk representation of the various clusters, which connects the
cluster exploration to random walks. However, as for example (4.5.3) shows, the step size
distribution is decreasing as we explore more vertices, which means that we arrive at an
inhomogeneous and ever decreasing drift, as in (5.1.34). Since, in general, random walks
converge to Brownian motions, this way the connection between these precise processes
can be made.

To explain the connection to the multiplicative coalescent, we shall interpret the t-
variable in p = (1 + tn−1/3)/n as time. We note that when we have two clusters of

size xn2/3 and yn2/3 say, and we increase t to t + dt, then the probability that these
two clusters merge is roughly equal to the number of possible connecting edges, which is
xn2/3 × yn2/3 = xyn4/3 times the probability that an edge turns from vacant to occupied
when p increases from p = (1+ tn−1/3)/n to (1+(t+dt)n−1/3)/n, which is dtn−4/3. Thus,
this probability is, for small dt close to

xydt. (5.1.36)

Thus, distinct clusters meet at a rate proportional to the rescaled product of their sizes.
The continuous process which does this precisely is called the multiplicative coalescent,
and using the above ideas, Aldous is able to show that the limit of Ct,n equals such a
multiplicative coalescent process.

5.2 Connectivity threshold

In this section, we investigate the connectivity threshold for the Erdős-Rényi random
graph. As we can see in Theorem 4.8, for every 1 < λ < ∞, the largest cluster for the
Erdős-Rényi random graph when p = λ/n is ζλn(1 + o(1)), where ζλ > 0 is the survival
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probability of a Poisson branching process with parameter λ. Since extinction is certain
when the root has no offspring, we have

ζλ ≤ 1− P∗(Z∗1 = 0) = 1− e−λ < 1. (5.2.1)

Therefore, the Erdős-Rényi random graph with edge probability p = λ/n is with high
probability disconnected for each fixed λ < ∞. Here, we use the terminology “with high
probability” to denote an event of which the probability tends to 1. We now investigate
the threshold for connectivity for an appropriate choice λ = λn → ∞. Theorem 5.5 and
its extension, Theorem 5.8, were first proved in [121].

Theorem 5.5 (Connectivity threshold). For λ − logn → ∞, the Erdős-Rényi random
graph is with high probability connected, while for λ−logn→ −∞, the Erdős-Rényi random
graph is with high probability disconnected.

In the proof, we investigate the number of isolated vertices. Define

Y =

n∑
i=1

Ii, where Ii = 1{|C(i)|=1} (5.2.2)

for the number of isolated vertices. Clearly, when Y ≥ 1, then there exists at least one
isolated vertex, so that the graph is disconnected. Remarkably, it turns out that when
there is no isolated vertex, i.e., when Y = 0, then the random graph is also with high
probability connected. See Proposition 5.7 below for the precise formulation of this result.
By Proposition 5.7, we need to investigate the probability that Y ≥ 1. In the case where
|λ − logn| → ∞, we make use of the Markov and Chebychev inequality (Theorems 2.15
and 2.16) combined with a first and second moment argument using a variance estimate
in Proposition 5.6. We will extend the result to the case that λ = logn+ t, in which case
we need a more precise result in Theorem 5.8 below. The main ingredient to the proof of
Theorem 5.8 is to show that, for λ = logn+ t, Y converges to a Poisson random variable
with parameter e−t when n→∞.

To prove that Y ≥ 1 with high probability when λ− logn→ −∞, and Y = 0 with high
probability when λ− logn→∞ we use the Markov inequality (Theorem 2.15). We make
use of an estimate on the mean and variance of Y :

Proposition 5.6 (Mean and variance of number of isolated vertices). For every λ ≤ n/2,

Eλ[Y ] = ne−λ(1 +O(e−
λ2

n )), (5.2.3)

and, for every λ ≤ n,

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.2.4)

Proof. Since |C(i)| = 1 precisely when all edges emanating from i are vacant, we have,
using 1− x ≤ e−x,

Eλ[Y ] = nPλ(|C(1)| = 1) = n(1− λ

n
)n−1 ≤ ne−λe

λ
n . (5.2.5)

Also, using that 1− x ≥ e−x−x
2

for 0 ≤ x ≤ 1
2
, we obtain

Eλ[Y ] = nPλ(|C(1)| = 1) ≥ ne−(n−1) λ
n

(1+ λ
n

)

≥ ne−λ(1+ λ
n

) = ne−λe−
λ2

n . (5.2.6)
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This proves (5.2.3).
To prove (5.2.4), we use the exchangeability of the vertices to compute

Eλ[Y 2] = nPλ(|C(1)| = 1) + n(n− 1)Pλ(|C(1)| = 1, |C(2)| = 1). (5.2.7)

Therefore, we obtain

Varλ(Y ) = n
[
Pλ(|C(1)| = 1)− Pλ(|C(1)| = 1, |C(2)| = 1)]

+ n2[Pλ(|C(1)| = 1, |C(2)| = 1)− Pλ(|C(1)| = 1)2]. (5.2.8)

The first term is bounded above by Eλ[Y ]. The second term can be computed by using
(5.2.5), together with

Pλ(|C(1)| = 1, |C(2)| = 1) = (1− λ

n
)2n−3. (5.2.9)

Therefore, by (5.2.5) and (5.2.8), we obtain

Pλ(|C(1)| = 1, |C(2)| = 1)− Pλ(|C(1)| = 1)2 = Pλ(|C(1)| = 1)2[(1− λ

n
)−1 − 1

]
=

λ

n(1− λ
n

)
Pλ(|C(1)| = 1)2. (5.2.10)

We conclude that

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.2.11)

Proposition 5.7 (Connectivity and isolated vertices). For all 0 ≤ λ ≤ n,

Pλ
(

ERn(λ/n) connected
)
≤ Pλ(Y = 0). (5.2.12)

Moreover, if there exists an a > 1/2 such that λ ≥ a logn, then, for n→∞,

Pλ
(

ERn(λ/n) connected
)

= Pλ(Y = 0) + o(1). (5.2.13)

Proof. We use that

Pλ
(

ERn(λ/n) disconnected
)

= Pλ(Y > 0) + Pλ
(

ERn(λ/n) disconnected, Y = 0
)
.

(5.2.14)
This immediately proves (5.2.12).

To prove (5.2.13), we make use of a computation involving trees. For k = 2, . . . , n, we
denote by Xk the number of occupied trees of size equal to k on the vertices 1, . . . , n that
cannot be extended to a tree of larger size. Thus, each tree which is counted in Xk has
size precisely equal to k, and when we denote it’s vertices by v1, . . . , vk, then all the edges
between vi and v /∈ {v1, . . . , vk} are vacant. Moreover, there are precisely k − 1 occupied
edges between the vi that are such that these occupied edges form a tree. Note that a
connected component of size k can contain more than one tree of size k, since the connected
component may contain cycles. Note furthermore that, when ERn(λ/n) is disconnected,
but Y = 0, there must be a k ∈ {2, . . . , n/2} for which Xk ≥ 1.
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We conclude from Boole’s inequality and the Markov inequality (Theorem 2.15) that

Pλ
(

ERn(λ/n) disconnected, Y = 0
)
≤ Pλ

(
∪n/2k=2 {Xk ≥ 1}

)
≤

n/2∑
k=2

Pλ(Xk ≥ 1) ≤
n/2∑
k=2

Eλ[Xk]. (5.2.15)

Therefore, we need to bound Eλ[Xk]. For this, we note that there are
(
n
k

)
ways of choosing k

vertices, and, by Cayley’s Theorem 3.17, there are kk−2 labeled trees containing k vertices.
Therefore,

Eλ[Xk] =

(
n

k

)
kk−2qk, (5.2.16)

where qk is the probability that any tree of size k is occupied and all the edges from the
tree to other vertices are vacant, which is equal to

qk =
(λ
n

)k−1(
1− λ

n

)k(n−k)

≤
(λ
n

)k−1

e−λk(n−k)/n. (5.2.17)

We conclude that

Eλ[Xk] ≤ nλk−1 k
k−2

k!
e−

λ
n
k(n−k). (5.2.18)

If we further use that k! ≥ kke−k, and also use that λ ≥ 1, then we arrive at

Eλ[Xk] ≤ n(eλ)k
1

k2
e−

λ
n
k(n−k). (5.2.19)

Since λ 7→ e−
λ
n
k(n−k) is decreasing in λ, it suffices to investigate λ = a logn for some

a > 1/2. For k ∈ {2, 3, 4}, for λ = a logn for some a > 1/2,

Eλ[Xk] ≤ n(eλ)4e−λkeo(1) = o(1). (5.2.20)

For all k ≤ n/2 with k ≥ 5, we bound k(n− k) ≥ kn/2, so that

Eλ[Xk] ≤ n(eλe−λ/2)k. (5.2.21)

As a result, for λ = a logn with a > 1/2, and all k ≥ 5, and using that λ 7→ λe−λ/2 is
decreasing for λ ≥ 2,

Eλ[Xk] ≤ n1−k/4. (5.2.22)

We conclude that

Pλ
(

ERn(λ/n) disconnected, Y = 0
)
≤

n/2∑
k=2

Eλ[Xk] ≤
n/2∑
k=2

n1−k/4 = o(1). (5.2.23)

Proof of Theorem 5.5. The proof makes essential use of Proposition 5.7. We start by
proving that for λ− logn→ −∞, the Erdős-Rényi random graph is with high probability
disconnected. We use (5.2.3) to note that

Eλ[Y ] = ne−λ(1 + o(1)) = e−λ+logn(1 + o(1))→∞. (5.2.24)
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By the Chebychev inequality (Theorem 2.16), and the fact that λ ≤ logn,

Pλ(Y = 0) ≤
Eλ[Y ] + λ

n−λEλ[Y ]2

Eλ[Y ]2
= Eλ[Y ]−1 +

λ

n− λ → 0. (5.2.25)

Proposition 5.7 completes the proof that for λ − logn → −∞, the Erdős-Rényi random
graph is with high probability disconnected.

When λ− logn→∞ with λ ≤ 2 logn, then, by the Markov inequality (Theorem 2.15)
and (5.2.5),

Pλ(Y = 0) = 1− Pλ(Y ≥ 1) ≥ 1− Eλ[Y ] ≥ 1− ne−λO(1)→ 1. (5.2.26)

Since the connectivity is an increasing property, this also prove the claim for λ− logn→∞
with λ ≥ 2 logn. Therefore, the claim again follows from Proposition 5.7.

5.2.1 Critical window for connectivity∗

In this section, we investigate the critical window for connectivity, by considering con-
nectivity of ERn(λ/n) when λ = log n + t for fixed t ∈ R. The main result in this section
is as follows:

Theorem 5.8 (Critical window for connectivity). For λ = log n+t→∞, the Erdős-Rényi

random graph is connected with probability e−e−t(1 + o(1)).

Proof. In the proof, we again rely on Proposition 5.7. We fix λ = log n+ t for some t ∈ R.

We prove a Poisson approximation for Y that reads that Y
d−→ Z, where Z is a Poisson

random variable with parameter

lim
n→∞

Eλ[Y ] = e−t, (5.2.27)

where we recall (5.2.3). Therefore, the convergence in distribution of Y to a Poisson random
variable with mean e−t implies that

Pλ(Y = 0) = e− limn→∞ Eλ[Y ] + o(1) = e−e−t + o(1), (5.2.28)

and the result follows by Proposition 5.7.

In order to show that Y
d−→ Z, we use Theorem 2.4 and Theorem 2.5, so that it suffices

to prove, recalling that Ii = 1{|C(i)|=1}, for all r ≥ 1,

lim
n→∞

E[(Y )r] = lim
n→∞

∑∗

i1,...,ir

Pλ
(
Ii1 = · · · = Iir = 1

)
= e−tr, (5.2.29)

where the sum ranges over all i1, . . . , ir ∈ [n] which are distinct. By exchangeability of
the vertices, Pλ

(
Ii1 = · · · = Iir = 1

)
is independent of the precise choice of the indices

i1, . . . , ir, so that

Pλ
(
Ii1 = · · · = Iir = 1

)
= Pλ

(
I1 = · · · = Ir = 1

)
. (5.2.30)

Using that there are n(n− 1) · · · (n− r+ 1) distinct choices of i1, . . . , ir ∈ [n], we arrive at

E[(Y )r] =
n!

(n− r)!Pλ
(
I1 = · · · = Ir = 1

)
. (5.2.31)
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The event {I1 = · · · = Ir = 1} occurs precisely when all edges st with s ∈ [r] and t ∈ [n]
are vacant. There are r(r−1)/2+ r(n− r) = r(2n− r−1)/2 of such edges, and since these
edges are all independent, we arrive at

Pλ
(
I1 = · · · = Ir = 1

)
= (1− λ

n
)r(2n−r−1)/2

= (1− λ

n
)nr(1− λ

n
)−r(r+1)/2 = n−rEλ[Y ]r(1 + o(1)), (5.2.32)

using that Eλ[Y ] = n(1− λ/n)n−1. Thus,

lim
n→∞

E[(Y )r] = lim
n→∞

n!

(n− r)!n
−rEλ[Y ]r = e−tr, (5.2.33)

where we use (5.2.27). This completes the proof of Theorem 5.8.

Exercise 5.2 (Second moment of the number of isolated vertices). Prove directly that the
second moment of Y converges to the second moment of Z, by using (5.2.10).

5.3 Degree sequence of the Erdős-Rényi random graph

As described in Chapter 1, the degree sequences of various real networks obey power
laws. Therefore, in this section, we investigate the degree sequence of the Erdős-Rényi
random graph for fixed λ > 0. In order to be able to state the result, we first introduce
some notation. We write

pk = e−λ
λk

k!
, k ≥ 0, (5.3.1)

for the Poisson distribution with parameter λ. Let Di denote the degree of vertex i and
write

P (n)

k =
1

n

n∑
i=1

1{Di=k} (5.3.2)

for the empirical degree distribution of the degrees. The main result is as follows:

Theorem 5.9 (Degree sequence of the Erdős-Rényi random graph). Fix λ > 0. Then, for
every εn such that

√
nεn →∞,

Pλ
(

max
k
|p(n)

k − pk| ≥ εn
)
→ 0. (5.3.3)

Proof. We note that

Eλ[P (n)

k ] = Pλ(D1 = k) =

(
n− 1

k

)(λ
n

)k(
1− λ

n

)n−k−1

. (5.3.4)

Furthermore,

∞∑
k=0

∣∣∣pk −(n− 1

k

)(λ
n

)k(
1− λ

n

)n−k−1
∣∣∣ =

∞∑
k=0

∣∣P(X∗ = k)− P(Xn = k)
∣∣, (5.3.5)

where X∗ is a Poisson random variable with mean λ, and Xn is a binomial random variable
with parameters n − 1 and p = λ/n. We will use a coupling argument to bound this
difference. Indeed, we let X denote a binomial random variable with parameters n and
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p = λ/n. Since we can couple X and Xn such that the probability that they are different
is precisely equal to p = λ/n, we obtain

∞∑
k=0

∣∣P(Xn = k)− P(X = k)
∣∣ ≤ λ

n
. (5.3.6)

Therefore, for all k ≥ 0,

∞∑
k=0

∣∣P(X∗ = k)− P(Xn = k)
∣∣ ≤ λ

n
+ P(X∗ 6= X) ≤ λ+ λ2

n
, (5.3.7)

where we have also used Theorem 2.10. Since λ+λ2

n
≤ εn

2
, we have just shown that∑∞

k=0 |pk − Eλ[P (n)

k ]| ≤ εn/2 for n sufficiently large. Thus, it suffices to prove that

Pλ
(∑

k

|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
= o(1). (5.3.8)

For this, we use Boole’s inequality to bound

Pλ
(

max
k
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤
∞∑
k=1

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
. (5.3.9)

By the Chebychev inequality (Theorem 2.16),

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤ 4ε−2

n Varλ(P (n)

k ). (5.3.10)

We then note that

Varλ(P (n)

k ) =
1

n

[
Pλ(D1 = k)− Pλ(D1 = k)2

]
+
n− 1

n

[
Pλ(D1 = D2 = k)− Pλ(D1 = k)2

]
. (5.3.11)

We now use a coupling argument. We let X1, X2 be two independent Bin(n − 2, λ/n)
random variables, and I1, I2 two independent Bernoulli random variables with success
probability λ/n. Then, the law of (D1, D2) is the same as the one of (X1 + I1, X2 + I1)
while (X1 + I1, X2 + I2) are two independent copies of the D1. Then,

Pλ(D1 = D2 = k) = Pλ
(

(X1 + I1, X2 + I1) = (k, k)
)
, (5.3.12)

Pλ(D1 = k)2 = Pλ
(

(X1 + I1, X2 + I2) = (k, k)
)
, (5.3.13)

so that

Pλ(D1 = D2 = k)−Pλ(D1 = k)2 ≤ Pλ
(

(X1+I1, X2+I1) = (k, k), (X1+I1, X2+I2) 6= (k, k)
)
.

(5.3.14)
When (X1 + I1, X2 + I1) = (k, k), but (X1 + I1, X2 + I2) 6= (k, k), we must have that
I1 6= I2. If I1 = 1, then I2 = 0 and X2 = k, while, if I1 = 0, then I2 = 1 and X1 = k.
Therefore, since X1 and X2 have the same distribution,

Pλ(D1 = D2 = k)− Pλ(D1 = k)2 ≤ 2λ

n
Pλ(X1 = k). (5.3.15)
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We conclude from (5.3.11) that

Varλ(P (n)

k ) ≤ (2λ+ 1)

n
Pλ(X1 = k), (5.3.16)

so that, by (5.3.9)–(5.3.10),

Pλ
(

max
k
|P (n)

k − Eλ[P (n)

k ]| ≥ εn/2
)
≤ 4(2λ+ 1)

ε2
nn

∞∑
k=0

Pλ(X1 = k)

=
4(2λ+ 1)

ε2
nn

→ 0. (5.3.17)

This completes the proof of Theorem 5.9.

In Chapter 6 below, we give an alternative proof of Theorem 5.9, allowing for weaker
bounds on εn. In that proof, we use that the Erdős-Rényi random graph is a special case
of the generalized random graph with equal weights. See Theorem 6.11 below.

5.4 Notes and discussion

Notes on Section 5.1. We list some more recent results. In [172], a point process de-

scription is given of the sizes and number of components of size εn2/3. In [236], an explicit,

yet involved, description is given for the distribution of the limit of |Cmax|n−2/3. The
proof makes use of generating functions, and the relation between the largest connected
component and the number of labeled graphs with a given complexity l. Here, the com-
plexity of a graph is its number of edges minus its number of vertices. Relations between
Erdős-Rényi random graphs and the problem of counting the number of labeled graphs
has received considerable attention, see e.g. [57, 156, 203, 256, 274, 275] and the references
therein. Consequences of the result by Pittel [236] are for example that the probability

that |Cmax|n−2/3 exceeds a for large a decays as e−a
3/8 (in fact, the asymptotics are much

stronger than this!), and for very small a > 0, the probability that |Cmax|n−2/3 is smaller

than a decays as e−ca
−3/2

for some explicit constant c > 0. The bound on the upper tails
of |Cmax|n−2/3 is also proved in [214], and is valid for all n and a, with the help of relatively
simple martingale arguments. In [214], the bound (5.1.11) is also explicitly proved.

The relation between the Erdős-Rényi random graph and coalescing processes can also
be found in [38, Section 5.2] and the references therein. In fact, ERn(p) for the entire regime
of p ∈ [0, 1] can be understood using coalescent processes, for which the multiplicative
coalescent is most closely related to random graphs.

Notes on Section 5.2. Connectivity of the Erdős-Rényi random graph was investigated
in the early papers on the subject. In [121], versions of Theorems 5.5–5.8 were proved for
ER(n,M). Bollobás gives two separate proofs in [58, Pages 164-165].

Notes on Section 5.3. The degrees of Erdős-Rényi random graphs have attracted con-
siderable attention. In particular, when ordering the degrees by size as d1 ≥ d2 ≥ · · · ≥ dn,
various properties have been shown, such as the fact that there is, with high probability,
a unique vertex with degree d1 [125]. See [55] or [58] for more details. The result on the
degree sequence proved here is a weak consequence of the result in [163, Theorem 4.1],
where even asymptotic normality was shown for the number of vertices with degree k, for
all k simultaneously.





Intermezzo: Back to real networks I...

Theorem 5.9 shows that the degree sequence of the Erdős-Rényi random graph is close to a
Poisson distribution with parameter λ. A Poisson distribution has thin tails, for example,
its moment generating function is always finite. As a result, the Erdős-Rényi random graph
cannot be used to model real networks where power law degree sequences are observed.
Therefore, several related models have been proposed. In this intermezzo, we shall discuss
three of them.

The first model is the so-called generalized random graph (GRG), and was first intro-
duced in [73]. In this model, each vertex i ∈ {1, . . . , n} receives a weight Wi. Given the
weights, edges are present independently, but the occupation probabilities for different
edges are not identical, but moderated by the weights of the vertices. Naturally, this can
be done in several different ways. The most general version is presented in [61], which we
explain in detail in Chapter 9. In the generalized random graph, the edge probability of
the edge between vertex i and j (conditionally on the weights {Wi}ni=1) is equal to

pij =
WiWj

Ln +WiWj
, (I.1)

where the random variables {Wi}ni=1 are the weights of the vertices, and Ln is the total
weight of all vertices given by

Ln =

n∑
i=1

Wi. (I.2)

We shall assume that the weights {Wi}ni=1 are independent and identically distributed.

The second model is the configuration model, in which the degrees of the vertices are
fixed. Indeed, we write Di for the degree of vertex i, and let, similarly to (I.2), Ln =∑n
i=1 Di denote the total degree. We assume that Ln is even. We will make a graph where

vertex i has degree Di. For this, we think of each vertex having Di stubs attached to it.
Two stubs can be connected to each other to form an edge. The configuration model is
the model where all stubs are connected in a uniform fashion, i.e., where the stubs are
uniformly matched.

The third model is the so-called preferential attachment model, in which the growth of
the random graph is modeled by adding edges to the already existing graph in such a way
that vertices with large degree are more likely to be connected to the newly added edges.
See Chapter 8 for details.

All these models have in common that the degree sequence converges to some limiting
distribution which can have various shapes, particularly including power laws. For the
generalized random graph and the configuration model, this is proved in Chapter 6 and
Chapter 7 respectively. For the preferential attachment models, we will defer this proof
to Chapter 8. In Chapters 6–8, we shall focus on properties of the degree sequence of
the random graphs involved. We shall study further properties, namely, the connected
components and distances in these models, in Chapters 9–11, respectively.

In Chapters 6–8 we shall be interested in the properties of the degree sequence of a graph.
A natural question is which sequences of numbers can occur as the degree sequence of a
simple graph. A sequence {d1, d2, . . . , dn} with d1 ≤ d2 ≤ · · · ≤ dn is called graphic if it is
the degree sequence of a simple graph. Thus, the question is which degree sequences are
graphic? Erdős and Gallai [120] proved that a degree sequence {d1, d2, . . . , dn} is graphic
if and only if

∑n
i=1 di is even and
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k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(k, di), (I.3)

for each integer k ≤ n − 1. The fact that the total degree of a graph needs to be even
is fairly obvious:

Exercise 5.3 (Handshake lemma). Show that for every graph, and dj the degree of vertex
j we have that

∑n
j=1 dj is even.

The necessity of (I.3) is relatively easy to see. The left side of (I.3) is the degree
of the first k vertices. The first term on the right-hand side of (I.3) is the twice the
maximal number of edges between the vertices in {1, . . . , k}. The second term is a bound
on the total degree of the vertices {1, . . . , k} coming from edges that connect to vertices
in {k + 1, . . . , n}. The sufficiency is harder to see, see [81] for a simple proof of this fact,
and [246] for seven different proofs. Arratia and Liggett [21] investigate the asymptotic
probability that an i.i.d. sequence of n integer random variables is graphical, the result
being in many cases equal to 0 or 1/2, at least when P(D even) 6= 1. The limit is equal to
0 when limn→∞ nP(Di ≥ n) = ∞ and 1/2 when limn→∞ nP(Di ≥ n) = 0. Interestingly,
when limn→∞ nP(Di ≥ n) = c for some constant c > 0, then the set of limit points of the
probability that {D1, . . . , Dn} is graphical is a subset of (0, 1/2). The proof is by verifying
that (I.3) holds.



Chapter 6

Inhomogeneous random graphs

In this chapter, we discuss inhomogeneous random graphs, in which the equal edge proba-
bilities of the Erdős-Rényi random graph are replaced by edge occupation statuses that are
independent, and are moderated by certain vertex weights. These weights can be taken
to be deterministic or random, and both options have been considered in the literature.
An important example, on which we shall focus in this chapter, is the so-called generalized
random graph. We shall see that this model gives rise to random graphs having a power-law
degree sequence when the weights have a power law distribution. As such, this is one of the
simplest adaption of the Erdős-Rényi random graph having a power-law degree sequence.

This chapter is organized as follows. In Section 6.1, we introduce the model. In Section
6.2, we investigate the degree of a fixed vertex in the generalized random graph, and in
Section 6.3, we investigate the degree sequence of the generalized random graph. In Section
6.4, we study the generalized random graph with i.i.d. vertex weights. In Section 6.5 we
show that the generalized random graph, conditioned on its degrees, is a uniform random
graph with these degrees. In Section 6.6, we study when two inhomogeneous random graphs
are asymptotically equivalent, meaning that they have the same asymptotic probabilities.
Finally, in Section 6.7, we introduce several more models of inhomogeneous random graphs
similar to the generalized random graph that have been studied in the literature, such as
the so-called Chung-Lu or random graph with prescribed expected degrees and the Norros-
Reittu or Poisson graph process model. We close this chapter with notes and discussion in
Section 6.8.

6.1 Introduction of the model

In the generalized random graph, each vertex has a weight associated to it. Edges are
present independently given these weights, but the occupation probabilities for edges are
not identical, but are rather moderated by the vertex weights. We start with a simple
example.

Example 6.1 (Population of two types). Suppose that we have a complex network in which
two distinct types of vertices are present. The first type has on average m1 neighbors, the
second type m2, where m1 6= m2. How can we construct a random graph in which such
heterogeneity can be incorporated?

Example 6.2 (Power-law or related degrees). In Chapter 1, many examples of real-world
networks were given where the degrees are quite variable, including hubs having quite high
degrees. How can we construct a random graph with power-law degrees?

Example 6.1 deals with a population having only two types. In many situations, there
can be many different types. An important example is the case where the degrees obey a
power law as in Example 6.2, in which case any finite number of types is insufficient. We
model this inhomogeneity by adding vertex weights. Vertices with higher weights are more
likely to have many neighbors than vertices with small weights. Vertices with extremely
high weights could act as the hubs observed in many real-world networks.

In the generalized random graph model, the edge probability of the edge between vertices
i and j is equal to

pij = p(GRG)

ij =
wiwj

`n + wiwj
, (6.1.1)
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where w = (wi)i∈[n] are the weights of the vertices, and `n is the total weight of all vertices
given by

`n =
∑
i∈[n]

wi. (6.1.2)

We denote the resulting graph by GRGn(w). A special case of the generalized random
graph is when we take wi ≡ nλ

n−λ , in which case pij = λ/n for all i, j ∈ [n], so that we

retrieve the Erdős-Rényi random graph ERn(λ/n).

Exercise 6.1 (The Erdős-Rényi random graph). Prove that pij = λ/n when wi = nλ/(n−
λ) for all i ∈ [n].

Without loss of generality, we assume that wi > 0. Note that when, for a particular
i ∈ [n], wi = 0, then vertex i will be isolated with probability 1, and, therefore, we can omit
i from the graph. The vertex weights moderate the inhomogeneity in the random graph,
vertices with high weights have higher edge occupation probabilities than vertices with low
weights. Therefore, by choosing the weights in an appropriate way, this suggests that we
can create graphs with flexible degree sequences. We investigate the degree structure in
more detail in this chapter.

Example 6.3 (Population of two types (Cont.)). In Example 6.1, we let the vertices of
type 1 have weight m1, and the vertices of type 2 have weight m2. Let n1 and n2 denote
the number of vertices of weight 1 and 2, respectively. Then, we compute that

`n = n1m1 + n2m2. (6.1.3)

Further, the probability that a vertex of type 1 is connected to another vertex of type 1 is
equal to m2

1/(`n +m2
1), while the probability that it is connected to a vertex of type 2 equals

m1m2/(`n +m1m2). Therefore, the expected degree of a vertex of type 1 is equal to

n1
m2

1

`n +m2
1

+ n2
m1m2

`n +m1m2
= m1[

n1m1

`n +m2
1

+
n2m2

`n +m1m2
] ≈ m1, (6.1.4)

whenever m2
1 + m2

2 = o(`n). Thus, our graph is such that the first type has on average
approximately m1 neighbors, the second type m2.

Naturally, the topology of the generalized random graph sensitively depends upon the
choice of the vertex weights w = (wi)i∈[n]. These vertex weights can be rather general.
In order to describe the empirical proporties of the weights, we define their empirical
distribution function to be

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x}, x ≥ 0. (6.1.5)

We can interpret Fn as the distribution of the weight of a uniformly chosen vertex in [n]:

Exercise 6.2 (The weight of a uniformly chosen vertex). Let U be a uniformly chosen
vertex in [n]. Show that the weight wU of U has distribution function Fn.

We denote the weight of a uniformly chosen vertex in [n] by Wn = wU , so that, by
Exercise 6.2, Wn has distribution function Fn. We often assume that the vertex weights
satisfy the following regularity conditions:
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Condition 6.4 (Regularity conditions for vertex weights).
(a) Weak convergence of vertex weight.
There exists a distribution function F such that

Wn
d−→W, (6.1.6)

where Wn and W have distribution functions Fn and F , respectively.
Equivalently, for any x for which x 7→ F (x) is continuous,

lim
n→∞

Fn(x) = F (x). (6.1.7)

(b) Convergence of average vertex weight.

lim
n→∞

E[Wn] = E[W ], (6.1.8)

where Wn and W have distribution functions Fn and F , respectively. Further, we assume
that E[W ] > 0.
(c) Convergence of second moment vertex weight.

lim
n→∞

E[W 2
n ] = E[W 2]. (6.1.9)

Condition 6.4(a) guarantees that the weight of a ‘typical’ vertex is close to a random
variable W . Condition 6.4(b) implies that the average degree in GRGn(w) converges, while
Condition 6.4(c) ensures also the convergence of the second moment of the degree. In most
of our results, we assume Condition 6.4(a)-(b), in some we also need Condition 6.4(c).

Exercise 6.3 (Bound on the maximal weight assuming Condition 6.4(b)-(c)). Prove that
Condition 6.4(b) implies that maxi∈[n] wi = o(n), while Condition 6.4(c) implies that
maxi∈[n] wi = o(

√
n).

We now discuss two key examples of choices of vertex weights.

Key example of generalized random graph with deterministic weights. Let F
be a distribution function for which F (0) = 0 and fix

wi = [1− F ]−1(i/n), (6.1.10)

where [1− F ]−1 is the generalized inverse function of 1− F defined, for u ∈ (0, 1), by

[1− F ]−1(u) = inf{s : [1− F ](s) ≤ u}. (6.1.11)

By convention, we set [1 − F ]−1(1) = 0. Here the definition of [1 − F ]−1 is chosen such
that

[1− F ]−1(1− u) = F−1(u) = inf{x : F (x) ≥ u}. (6.1.12)

We shall often make use of (6.1.12), in particular since it implies that [1 − F ]−1(U) has
distribution function F when U is uniform on (0, 1). For this choice,

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x} =
1

n

∑
i∈[n]

1{[1−F ]−1(i/n)≤x} =
1

n

n−1∑
j=0

1{[1−F ]−1(1− j
n

)≤x}

=
1

n

n−1∑
j=0

1{F−1( j
n

)≤x} =
1

n

n−1∑
j=0

1{ j
n
≤F (x)} =

1

n

(⌊
nF (x)

⌋
+ 1
)
∧ 1, (6.1.13)

where we write j = n− i in the third equality and use (6.1.12) in the fourth equality.
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Exercise 6.4 (Condition 6.4(a)). Prove that Condition 6.4(a) holds for (wi)i∈[n] as in
(6.1.10).

Note that by (6.1.13), we obtain Fn(x) ≥ F (x) for every x ≥ 0, which shows that Wn

is stochastically dominated by W . In particular, this implies that for increasing functions
x 7→ h(x),

1

n

n∑
j=1

h(wj) ≤ E[h(W )]. (6.1.14)

We now study some properties of the weights in (6.1.10):

Exercise 6.5 (Moments of w and F [127]). Prove that u 7→ [1−F ]−1(u) is non-increasing,
and conclude that, for every non-decreasing function x 7→ h(x) and for wi as in (6.1.10),

1

n

∑
i∈[n]

h(wi) ≤ E[h(W )], (6.1.15)

where W is a random variable with distribution function F .

Exercise 6.6 (Moments of w and F [127] (Cont.)). Set α > 0, assume that E[Wα] < ∞
where W is a random variable with distribution function F . Use Lebesgue’s dominated
convergence theorem (Theorem A.42) to prove that for wi as in (6.1.10),

1

n

∑
i∈[n]

wαi → E[Wα]. (6.1.16)

Conclude that Condition 6.4(a) holds when E[W ] <∞, and Condition 6.4(b) when E[W 2] <
∞.

An example of the generalized random graph arises when we take, for some a ≥ 0 and
τ > 1,

F (x) =

{
0 for x ≤ a,
1− (a/x)τ−1 for x > a,

(6.1.17)

for which

[1− F ]−1(u) = au−1/(τ−1), (6.1.18)

so that

wi = a
(
i/n
)−1/(τ−1)

. (6.1.19)

Exercise 6.7 (Bounds on w). Fix (wi)i∈[n] as in (6.1.10). Prove that when

1− F (x) ≤ cx−(τ−1), (6.1.20)

then there exists a c′ > 0 such that wj ≤ w1 ≤ c′n
1

τ−1 for all j ∈ [n], and all large enough
n.
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The generalized random graph with i.i.d. weights. GRG can be studied both
with deterministic weights as well as with independent and identically distributed (i.i.d.)
weights. The GRG with deterministic weights is denoted by GRGn(w), the GRG with i.i.d.
weights by GRGn(W ). Since we often deal with ratios of the form WiWj/(

∑
k∈[n] Wk),

we shall assume that P(W = 0) = 0 to avoid situations where all weights are zero.
Both models have their own merits (see Section 6.8 for more details). The great advan-

tage of independent and identically distributed weights is that the vertices in the resulting
graph are, in distribution, the same. More precisely, the vertices are completely exchange-
able, like in the Erdős-Rényi random graph ERn(p). Unfortunately, when we take the
weights to be i.i.d., then in the resulting graph the edges are no longer independent (de-
spite the fact that they are conditionally independent given the weights):

Exercise 6.8 (Dependence edges in GRGn(W )). Let (Wi)i∈[n] be an i.i.d. sequence of

weights for which E[W 2] < ∞. Assume further that there exists ε > 0 such that P(W ≤
ε) = 0. Prove that

nP(12 present) = nP(23 present)→ E[W ], (6.1.21)

while
n2P(12 and 23 present)→ E[W 2]. (6.1.22)

Conclude that the status of different edges that share a vertex are dependent whenever
Var(W ) > 0.

When the weights are random, we need to specify the kind of convergence in Condition
6.4, and we shall assume that the limits hold in probability. We now investigate the
conditions under which Condition 6.4(a)-(c) hold. The empirical distribution function Fn
of the weights is given by

Fn(x) =
1

n

∑
i∈[n]

1{Wi≤x}. (6.1.23)

When the weights are independently and identically distributed with distribution function
F , then it is well-known that this empirical distribution function is close to F (this is the
Glivenko-Cantelli Theorem). Therefore, Condition 6.4(a) holds.

We close this introductory section by investigating the total number of edges E(GRGn(w))
in the GRG:

Theorem 6.5 (Total number of edges in GRGn(w)). Assume that Condition 6.4(a)-(b)
hold. Then,

1

n
E(GRGn(w))

P−→ 1
2
E[W ]. (6.1.24)

Proof. We apply a second moment method. For this, we note

E[E(GRGn(w))] = 1
2

∑
i,j∈[n] : i 6=j

pij =
∑

i,j∈[n] : i6=j

wiwj
`n + wiwj

. (6.1.25)

We start by bounding this from above by

E[E(GRGn(w))] ≤ 1
2

∑
i,j∈[n]

wiwj
`n

= `n, (6.1.26)

which proves an upper bound on E[E(GRGn(w))]. Further, for any sequence an →∞ and
since x 7→ x/(`n + x) is increasing,

E[E(GRGn(w))] ≥ 1
2

∑
i,j∈[n] : i 6=j

(wi ∧ an)(wj ∧ an)

`n + (wi ∧ an)(wj ∧ an)
. (6.1.27)
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Therefore, with `n(an) =
∑
i∈[n](wi ∧ an),

`n(an)2/`n − 2E[E(GRGn(w))] ≤
∑
i∈[n]

(wi ∧ an)2

`n + (wi ∧ an)2
(6.1.28)

+
∑
i,j∈[n]

(wi ∧ an)(wj ∧ an)
[ 1

`n
− 1

`n + (wi ∧ an)(wj ∧ an)

]
≤
∑
i∈[n]

(wi ∧ an)2

`n + (wi ∧ an)2
+
∑
i,j∈[n]

(wi ∧ an)2(wj ∧ an)2

`n(`n + (wi ∧ an)(wj ∧ an))

≤
∑
i∈[n]

(wi ∧ an)2

`n

(
1 +

∑
i∈[n]

(wi ∧ an)2

`n

)
.

Since ∑
i∈[n]

(wi ∧ an)2

`n
≤ an, (6.1.29)

the right-hand side of (6.1.28) is o(n) when we choose an = o(
√
n) , so that it suffices to

prove that `n(an)2/(n`n)→ E[W ] and `n/n→ E[W ].
By Condition 6.4(b), `n/n = E[Wn]→ E[W ], and also `n(an)/n = E[(Wn∧an)]→ E[W ]

by Condition 6.4(a)-(b). We conclude that

E[E(GRGn(w))]/n→ 1
2
E[W ]. (6.1.30)

We continue by bounding Var(E(GRGn(w))), for which we use that the edge statuses are
independent to obtain

Var(E(GRGn(w))) = 1
2

∑
i,j∈[n] : i6=j

Var(Iij) = 1
2

∑
i,j∈[n] : i 6=j

pij(1− pij) (6.1.31)

≤ 1
2

∑
i,j∈[n] : i6=j

pij = E[E(GRGn(w))].

As a result, Var(E(GRGn(w))) ≤ E[E(GRGn(w))], which is o(E[E(GRGn(w))]2), by
(6.1.30) and the fact that E[W ] > 0 by Condition 6.4(a). We conclude that

E(GRGn(w))/E[E(GRGn(w))]
P−→ 1. (6.1.32)

6.2 Degrees in the generalized random graph

In this section, we study the degrees of vertices in GRGn(w). In order to state the
main results, we start with some definitions. Given weights w = (wi)i∈[n], we let the
probability that the edge ij is occupied be equal to pij in (6.1.1), and where we recall that

`n =
∑
i∈[n] wi. We write Dk = D(n)

k for the degree of vertex k in GRGn(w). Thus, Dk is

given by

Dk =

n∑
j=1

Xkj , (6.2.1)

where Xkj is the indicator that the edge kj is occupied. By convention, we set Xij = Xji.
The main result concerning the degrees is as follows:
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Theorem 6.6 (Degree of GRG with deterministic weights). Assume that Condition 6.4(a)-
(b) hold. Then,

(a) there exists a coupling (D̂k, Ẑk) of the degree Dk of vertex k and a Poisson random
variable Zk with parameter wk, such that it satisfies

P(D̂k 6= Ẑk) ≤ w2
k

`n

(
1 + 2

E[W 2
n ]

E[Wn]

)
. (6.2.2)

In particular, Dk can be coupled to a Poisson random variable with parameter wk.

(b) When pij given by (6.1.1) are all such that limn→∞ pij = 0, the degrees D1, . . . , Dm
of vertices 1, . . . ,m are asymptotically independent.

Before proving Theorem 6.6, we state a consequence for the degree sequence when the
weights are given by (6.1.10). To be able to state this consequence, we need the following
definition:

Definition 6.7 (Mixed Poisson distribution). A random variable X has a mixed Poisson
distribution with mixing distribution F when, for every k ∈ N,

P(X = k) = E[e−W
W k

k!
], (6.2.3)

where W is a random variable with distribution function F .

The next exercises investigate some properties of mixed Poisson random variables:
Not every random variable can be obtained as a mixed Poisson distribution (recall

Definition 6.7). In the following exercises, aspects of mixed Poisson distributions are further
investigated.

Exercise 6.9 (Not every random variable is mixed Poisson). Give an example of a random
variable that cannot be represented as a mixed Poisson distribution.

Exercise 6.10 (Characteristic function of mixed Poisson distribution). Let X have a
mixed Poisson distribution with mixing distribution F and moment generating function
MW , i.e., for t ∈ C,

MW (t) = E[etW ], (6.2.4)

where W has distribution function F . Show that the characteristic function of X is given
by

φX(t) = E[eitX ] = MW (eit − 1). (6.2.5)

Exercise 6.11 (Mean and variance mixed Poisson distribution). Let X have a mixed
Poisson distribution with mixing distribution F . Express the mean and variance of X into
the moments of W , where W has distribution function F .

Exercise 6.12 (Tail behavior mixed Poisson). Suppose that there exist constants 0 < c1 <
c2 <∞ such that

c1x
1−τ ≤ 1− F (x) ≤ c2x1−τ . (6.2.6)

Show that there exist 0 < c′1 < c′2 < ∞ such that the distribution function G of a mixed
Poisson distribution with mixing distribution F satisfies

c′1x
1−τ ≤ 1−G(x) ≤ c′2x1−τ . (6.2.7)
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By Theorem 6.6, the degree of vertex i is close to Poisson with parameter wi. Thus,
when we choose a vertex uniformly at random, and we denote the outcome by U , then the
degree of that vertex is close to a Poisson distribution with random parameter wU = Wn.

Since Wn
d−→W by Condition 6.4, this suggests the following result:

Corollary 6.8 (Degree of uniformly chosen vertex in GRG). Assume that Condition
6.4(a)-(b) hold. Then,

(a) the degree of a uniformly chosen vertex converges in distribution to a mixed Poisson
random variable with mixing distribution F ;

(b) the degrees of m uniformly chosen vertices in [n] are asymptotically independent.

We now prove Theorem 6.6 and Corollary 6.8:

Proof of Theorem 6.6. We make essential use of Theorem 2.10, in particular, the cou-
pling of a sum of Bernoulli random variables with a Poisson random variable in (2.2.21).
Throughout this proof, we shall omit the dependence on n of the weights, and abbreviate
wi = w(n)

i . We recall that

Dk =
∑
i∈[n]

Xkj , (6.2.8)

where Xkj are independent Bernoulli random variables with success probabilities pkj =
wkwj

`n+wkwj
. By Theorem 2.10, there exists a Poisson random variable Ŷk with parameter

λk =
∑
j 6=k

wkwj
`n + wkwj

, (6.2.9)

and a random variable D̂k where D̂k has the same distribution as Dk, such that

P(D̂k 6= Ŷk) ≤
∑
j 6=k

p2
kj =

∑
j 6=k

w2
kw

2
j

(`n + wkwj)2
≤ w2

k

n∑
j=1

w2
j

`2n
. (6.2.10)

Thus, in order to prove the claim, it suffices to prove that we can, in turn, couple Ŷk to a

Poisson random variable Ẑk with parameter wk, such that

P(Ŷk 6= Ẑk) ≤ w2
k

n∑
j=1

w2
j

`2n
+
w2
k

`2n
. (6.2.11)

For this, we note that

λk ≤
∑
6=k

wkwj
`n

≤ wk
`n

k∑
j=1

wj = wk. (6.2.12)

Let εk = wk − λk ≥ 0. Then, we let V̂k ∼ Poi(εk) be independent of Ŷk, and write

Ẑk = Ŷk + V̂k, so that

P(Ŷk 6= Ẑk) = P(V̂k 6= 0) = P(V̂k ≥ 1) ≤ E[V̂k] = εk. (6.2.13)

To bound εk, we note that

εk = wk −
∑
j 6=k

wkwj
`n + wkwj

=

n∑
j=1

wkwj
( 1

`n
− 1

`n + wkwj

)
+

w2
k

`n + w2
k

=

n∑
j=1

w2
jw

2
k

`n(`n + wkwj)
+

w2
k

`n + w2
k

≤ w2
k

`n
+

n∑
j=1

w2
jw

2
k

`2n
= w2

k

( 1

`n
+

n∑
j=1

w2
j

`2n

)
. (6.2.14)
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We conclude that

P(D̂k 6= Ẑk) ≤ P(D̂k 6= Ŷk) + P(Ŷk 6= Ẑk) ≤ 2w2
k

n∑
j=1

w2
j

`2n
+
w2
k

`n
, (6.2.15)

as required. This proves Theorem 6.6(a).
To prove Theorem 6.6(b), it suffices to prove that we can couple (Di)i∈[m] to an inde-

pendent vector (D̂i)i∈[m] such that

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
= o(1). (6.2.16)

To this end, we recall that Xij denotes the indicator that the edge ij is occupied. The
random variables (Xij)1≤i<j≤n are independent Bernoulli random variables with param-
eters (pij)1≤i<j≤n given in (6.1.1). We let (X ′ij)1≤i<j≤n denote an independent copy of
(Xij)1≤i<j≤n, and let, for i = 1, . . . , n,

D̂i =
∑
j<i

X ′ij +

n∑
j=i+1

Xij . (6.2.17)

Then, we observe the following: (1) Since (X ′ij)1≤i<j≤n is an independent copy of (Xij)1≤i<j≤n,

the distribution of D̂i is equal to the one of Di, for every i = 1, . . . , n. (2) Set i < j. While

Di and Dj are dependent since they both contain Xij = Xji, D̂i contains Xij , while D′j
contains X ′ji = X ′ij , which is an independent copy of Xij . We conclude that (D̂i)i∈[m] are
sums of independent Bernoulli random variables, and, therefore, are independent. (3) Fi-

nally, (Di)i∈[m] 6= (D̂i)i∈[m] precisely when there exists at least one edge ij with i, j ∈ [m]
such that Xij 6= X ′ij . Since Xij and X ′ij are Bernoulli random variables, Xij 6= X ′ij implies
that either Xij = 0, X ′ij = 1 or Xij = 1, X ′ij = 0. Thus, by Boole’s inequality, we obtain
that

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
≤ 2

m∑
i,j=1

P(Xij = 1) = 2

m∑
i,j=1

pij . (6.2.18)

By assumption, limn→∞ pij = 0, so that (6.2.16) holds for every m ≥ 2 fixed. This proves
Theorem 6.6(b).

Exercise 6.13 (Independence of a growing number of degrees for bounded weights). As-
sume that the conditions in Corollary 6.8 hold, and further suppose that there exists a ε > 0
such that ε ≤ wi ≤ ε−1 for every i, so that the weights are uniformly bounded from above

and below. Then, prove that we can couple (Di)i∈[m] to an independent vector (D̂i)i∈[m]

such that (6.2.16) holds whenever m = o(
√
n). As a result, even the degrees of a growing

number of vertices can be coupled to independent degrees.

Proof of Corollary 6.8. By (6.2.2) together with the fact that maxi∈[n] wi = o(n) by
Exercise 6.3 we have that the degree of vertex k is close to a Poisson random variable with
parameter wk. Thus, the degree of a uniformly chosen vertex in [n] is close in distribution
to a Poisson random variable with parameter wU , where U is a uniform random variable
in [n]. This is a mixed Poisson distribution with mixing distribution equal to wU .

Since a mixed Poisson random variable converges to a limiting mixed Poisson random
variable whenever the mixing distribution converges in distribution, it suffices to show
that the weight Wn = wU of a uniform vertex has a limiting distribution given by F . This
follows from Condition 6.4(a), whose validity follows by (6.1.13).

The proof of part (b) is a minor adaptation of the proof of Theorem 6.6(b). We shall
only discuss the asymptotic independence. Let (Ui)i∈[m] be independent uniform random
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variables. Then, the dependence between the degrees of the vertices (Ui)i∈[m] arises only
through the edges between the vertices (Ui)i∈[m]. Now, the expected number of occupied
edges between the vertices (Ui)i∈[m], conditionally on (Ui)i∈[m], is bounded by

m∑
i,j=1

wUiwUj
`n + wUiwUj

≤
m∑

i,j=1

wUiwUj
`n

=
1

`n

( m∑
i=1

wUi

)2

. (6.2.19)

The random variables (wUi)i∈[m] are i.i.d., so that the expected number of occupied edges
between m uniformly chosen vertices is equal to

1

`n
E
[( m∑

i=1

wUi

)2]
=
m

`n
Var(wU1) +

m(m− 1)

`n
E[wU1 ]2. (6.2.20)

We can bound
Var(wU1) ≤ E[w2

U1
] ≤ (max

i∈[n]
wi)E[wU1 ] = o(n), (6.2.21)

by Exercise 6.3. Therefore, the expected number of edges between the vertices (Ui)i∈[m]

is o(1), so that with high probability there are none. We conclude that we can couple
the degrees of m uniform vertices to m independent mixed Poisson random variables with
mixing distribution w(n)

U . Since these random variables converge in distribution to inde-
pendent mixed Poisson random variables with mixing distribution F , this completes the
argument.

6.3 Degree sequence of generalized random graph

Theorem 6.6 investigates the degree of a single vertex in the generalized random graph.
In this section, we extend the result to the convergence of the empirical degree sequence.
For k ≥ 0, we let

P (n)

k =
1

n

∑
i∈[n]

1{Di=k} (6.3.1)

denote the degree sequence of GRGn(w). Due to Theorem 6.6, one would expect that this
degree sequence is close to a mixed Poisson distribution. We denote the probability mass
function of such a mixed Poisson distribution by pk, i.e., for k ≥ 0,

pk = E
[
e−W

W k

k!

]
. (6.3.2)

Theorem 6.9 shows that indeed the degree sequence (P (n)

k )k≥0 is close to the mixed Poisson
distribution with probability mass function (pk)k≥0 in (6.3.2):

Theorem 6.9 (Degree sequence of GRGn(w)). Assume that Condition 6.4(a)-(b) hold.
Then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.3.3)

where (pk)∞k=0 is given by (6.3.2).

Proof of Theorem 6.9. By Exercise 2.14 and the fact that (pk)∞k=0 is a probability mass

function, we have that
∑∞
k=0 |P

(n)

k − pk| = 2dTV(P (n), p)→ 0 if and only if max∞k=0 |P
(n)

k −
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pk| → 0. Thus, we need to show that, for every ε > 0, P
(

max∞k=0 |P
(n)

k −pk| ≥ ε
)

converges
to 0. We use that

P
( ∞

max
k=0
|P (n)

k − pk| ≥ ε
)
≤
∞∑
k=0

P
(
|P (n)

k − pk| ≥ ε
)
. (6.3.4)

Note that
E[P (n)

k ] = P(DU = k), (6.3.5)

and, by Corollary 6.8(a), we have that

lim
n→∞

P(DU = k) = pk. (6.3.6)

Also, it is not hard to see that the convergence is uniform in k, that is, for every ε > 0,
and for n sufficiently large, we have

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (6.3.7)

Exercise 6.14 (Uniform convergence of mean degree sequence). Prove (6.3.7).

By (6.3.4) and (6.3.7), it follows that, for n sufficiently large,

P
(

max
k
|P (n)

k − pk| ≥ ε
)
≤
∞∑
k=0

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
. (6.3.8)

Note that, by Chebychev inequality (Theorem 2.16),

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
≤ 4

ε2
Var(P (n)

k ), (6.3.9)

so that

P
(

max
k
|P (n)

k − pk| ≥ ε
)
≤ 4

ε2

∞∑
k=0

Var(P (n)

k ). (6.3.10)

We use the definition in (6.3.1) to see that

E[(P (n)

k )2] =
1

n2

∑
i,j∈[n]

P(Di = Dj = k) (6.3.11)

=
1

n2

∑
i∈[n]

P(Di = k) +
1

n2

∑
i,j∈[n] : i 6=j

P(Di = Dj = k)P(Di = Dj = k).

Therefore,

Var(P (n)

k ) ≤ 1

n2

∑
i∈[n]

[P(Di = k)− P(Di = k)2] (6.3.12)

+
1

n2

∑
i,j∈[n] : i 6=j

[P(Di = Dj = k)− P(Di = k)P(Dj = k)].

We let
Xi =

∑
k∈[n] : k 6=i,j

Iik, Xj =
∑

k∈[n] : k 6=i,j

Ijk, (6.3.13)
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where (Iij)i,j∈[n] are independent Be(pij) random variables. Then, the law of (Di, Dj) is
the same as the one of (Xi+Iij , Xj+Iij) while (Xij+Iij , Xj+I

′
ij), where I ′ij is independent

of (Iij)i,j∈[n] has the same distribution as Iij , are two independent random variables with
the same marginals as Di and Dj . Then,

P(Di = Dj = k) = P
(

(Xi + Iij , Xj + Iij) = (k, k)
)
, (6.3.14)

P(Di = k)P(Dj = k) = P
(

(Xi + Iij , Xj + I ′ij) = (k, k)
)
, (6.3.15)

so that

P(Di = Dj = k)− P(Di = k)P(Dj = k) (6.3.16)

≤ P
(

(Xi + Iij , Xj + Iij) = (k, k), (Xi + Iij , Xj + I ′ij) 6= (k, k)
)
.

When (XI + IIJ , Xj + Iij) = (k, k), but (Xi + Iij , Xj + I ′ij) 6= (k, k), we must have that
Iij 6= I ′ij . If Iij = 1, then I ′ij = 0 and Xj = k, while, if Iij = 0, then I ′ij = 1 and Xi = k.
Therefore,

P(Di = Dj = k)− P(Di = k)P(Dj = k) ≤ 2pij [P(Di = k) + P(Dj = k)]. (6.3.17)

We conclude from (6.3.12) that∑
k≥0

Var(P (n)

k ) ≤ 1

n
+

2

n2

∑
i,j∈[n]

pij → 0, (6.3.18)

since
∑
i,j∈[n] pij = O(n) (recall Exercise 6.3).

6.4 Generalized random graph with i.i.d. weights

We next state a consequence of Theorem 6.6, where we treat the special case where
(wi)i∈[n] are independent and identically distributed. To avoid confusion with Wn, which
is the weight of a vertex chosen uniformly at random from [n], we continue to write the
weights as (wi)i∈[n], bearing in mind that now these weights are random. Note that there
now is double randomness. Indeed, there is randomness due to the fact that the weights
(wi)i∈[n] are random themselves, and then there is the randomness in the occupation
status of the edges conditionally on the weights (wi)i∈[n]. We denote the resulting graph
by GRGn(w). By Exercise 6.8, the edge statuses are not independent.

We now investigate the degrees and degree sequence of GRGn(w):

Corollary 6.10 (Degrees of GRGn(W )). When (wi)i∈[n] are i.i.d. random variables with
distribution function F with a finite mean, then

(a) the degree Dk of vertex k converges in distribution to a mixed Poisson random vari-
able with mixing distribution F ;

(b) the degrees D1, . . . , Dm of vertices 1, . . . ,m are asymptotically independent.

To see that Corollary 6.10 follows from Theorem 6.6, we note that when (wi)i∈[n]

are i.i.d. copies of a random variable W with distribution function F , we have that
1
n2

∑
i∈[n] w

2
i → 0, since 1

n

∑
i∈[n] w

2
i = oP(n) follows when W has a finite mean:
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Exercise 6.15 (Bound on sum of squares of i.i.d. random variables). Show that when
(wi)i∈[n] are i.i.d. random variables with distribution function F with a finite mean, then

1

n
max
i∈[n]

wi
P−→ 0. (6.4.1)

Conclude that
1

n2

∑
i∈[n]

w2
i

P−→ 0. (6.4.2)

Hint: Use that

P(max
i∈[n]

wi ≥ εn) ≤
∑
i∈[n]

P(wi ≥ εn)

= nP(W ≥ εn). (6.4.3)

Then use a variant of the Markov inequality (Theorem 2.15) to show that P(W ≥ εn) =
o( 1
n

).

Theorem 6.6 is an extension of [73, Theorem 3.1], in which Corollary 6.10 was proved
under the extra assumption that wi have a finite (1 + ε)−moment.

Theorem 6.11 (Degree sequence of GRGn(W )). When (wi)i∈[n] are i.i.d. random vari-
ables with distribution function F having finite mean, then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.4.4)

where (pk)∞k=0 is the probability mass function of a mixed Poisson distribution with mixing
distribution F .

We leave the proof of Theorem 6.11, which is quite similar to the proof of Theorem 6.9,
to the reader:

Exercise 6.16 (Proof of Theorem 6.11). Complete the proof of Theorem 6.11, now using
Corollary 6.8, as well as the equality

E[(P (n)

k )2] =
1

n2

∑
1≤i,j≤n

P(Di = Dj = k)

=
1

n
P(D1 = k) +

2

n2

∑
1≤i<j≤n

P(Di = Dj = k). (6.4.5)

We next turn our attention to the case where the weights (Wi)i∈[n] are i.i.d. with infinite
mean. We denote the distribution of Wi by F .

Exercise 6.17 (Condition for infinite mean). Show that the mean of W is infinite precisely
when the distribution function F of W satisfies∫ ∞

0

[1− F (x)]dx =∞. (6.4.6)

Our next goal is to obtain a random graph which has a power-law degree sequence with
a power-law exponent τ ∈ (1, 2). We shall see that this is a non-trivial issue.
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Theorem 6.12 (Degrees of GRGn(W ) with i.i.d. conditioned weights). Let (wi)i∈[n] be

i.i.d. random variables with distribution function F , and let (w(n)

i )i∈[n] be i.i.d. copies of the
random variable W conditioned on W ≤ an. Then, for every an →∞ such that an = o(n),

(a) the degree D(n)

k of vertex k in the GRG with weights (w(n)

i )i∈[n], converges in distri-
bution to a mixed Poisson random variable with mixing distribution F ;

(b) the degrees (D(n)

i )i∈[m] of vertices 1, . . . ,m are asymptotically independent.

Proof. Theorem 6.12 follows by a simple adaptation of the proof of Theorem 6.6 and will
be left as an exercise:

Exercise 6.18 (Proof of Theorem 6.12). Prove Theorem 6.12.

We finally show that the conditioning in Theorem 6.12 is necessary by proving that if
we do not condition the weights to be at most an, then the degree distribution changes:

Theorem 6.13 (Degrees of GRGn(W ) with i.i.d. infinite mean weights). When (wi)i∈[n]

are i.i.d. random variables with distribution function F satisfying that for some τ ∈ (1, 2),

lim
x→∞

xτ−1[1− F (x)] = c. (6.4.7)

Let the edge probabilities (pij)1≤i<j≤n conditionally on the weights (wi)i∈[n] be given by

pij =
wiwj

n1/(τ−1) + wiwj
. (6.4.8)

Then,

(a) the degree Dk of vertex k converges in distribution to a mixed Poisson random vari-
able with parameter γW τ−1, where

γ = c

∫ ∞
0

(1 + x)−2x−(τ−1)dx. (6.4.9)

(b) the degrees (Di)i∈[m] of vertices 1, . . . ,m are asymptotically independent.

The proof of Theorem 6.13 is deferred to Section 6.5 below. We note that a mixed Pois-
son distribution with mixing distribution γWα does not obey a power law with exponent
τ :

Exercise 6.19 (Tail of degree law for τ ∈ (1, 2)). Let the distribution function F satisfy
(6.4.7), and let Y be a mixed Poisson random variable with parameter W τ−1, where W has
distribution function F . Show that Y is such that there exists a constant c > 0 such that

P(Y ≥ y) = cy−1(1 + o(1)). (6.4.10)

As a result of Exercise 6.19, we see that if we do not condition on the weights to be at
most an, and if the distribution function F of the weights satisfies (6.4.7), then the degree
distribution always obeys a power law with exponent τ = 2.

We note that the choice of the edge probabilities in (6.4.8) is different from the choice
in (6.1.1). Indeed, the term `n =

∑
i∈[n] wi in the denominator in (6.1.1) is replaced by

n1/(τ−1) in (6.4.8). Since, when (6.4.7) is satisfied,

n−1/(τ−1)
∑
i∈[n]

wi
d−→ S, (6.4.11)

where S is a stable random variable with parameter τ − 1 ∈ (0, 1), we expect that the
behavior for the choice (6.1.1) is similar (recall Theorem 2.29).
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6.5 Generalized random graph conditioned on its degrees

In this section, we investigate the distribution of GRGn(w) in more detail. The main re-
sult in this section is that the generalized random graph conditioned on its degree sequence
is a uniform random graph with that degree sequence (see Theorem 6.14 below).

We start by introducing some notation. We let X = (Xij)1≤i<j≤n, where Xij are
independent random variables with

P(Xij = 1) = 1− P(Xij = 0) = pij , (6.5.1)

where pij is given in (6.1.1). Then, with qij = 1− pij , we have that, for x = (xij)1≤i<j≤n,

P(X = x) =
∏

1≤i<j≤n

p
xij
ij q

1−xij
ij . (6.5.2)

We define the odd-ratios (rij)1≤i<j≤n by

rij =
pij
qij

. (6.5.3)

Then

pij =
rij

1 + rij
, qij =

1

1 + rij
, (6.5.4)

so that

P(X = x) =
∏

1≤i<j≤n

1

1 + rij

∏
1≤i<j≤n

r
xij
ij . (6.5.5)

We now specialize to the setting of the generalized random graph, and choose

rij = uiuj , (6.5.6)

for some weights {ui}i∈[n]. Later, we shall choose

ui =
wi√
`n
, (6.5.7)

in which case we return to (6.1.1) since

pij =
rij

1 + rij
=

uiuj
1 + uiuj

=
wiwj

`n + wiwj
. (6.5.8)

Then, with

G(u) =
∏

1≤i<j≤n

(1 + uiuj), (6.5.9)

we obtain

P(X = x) = G(u)−1
∏

1≤i<j≤n

(uiuj)
xij = G(u)−1

∏
i∈[n]

u
di(x)
i , (6.5.10)

where {di(x)}i∈[n] is given by

di(x) =
n∑
j=1

xij , (6.5.11)

i.e., di(x) is the degree of vertex i in the generalized random graph configuration x =
(xij)1≤i<j≤n. By convention, we assume that xii = 0, and we recall that xij = xji.
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Exercise 6.20 (Equality for probability mass function GRG). Prove the last equality in
(6.5.10).

From (6.5.10), and using that
∑
x P(X = x) = 1, it follows that∏

1≤i<j≤n

(1 + uiuj) = G(u) =
∑
x

∏
i∈[n]

u
di(x)
i . (6.5.12)

Furthermore, it also follows from (6.5.10) that the distribution of X conditionally on
{di(X) = di∀1 ≤ i ≤ n} is uniform. That is, all graphs with the same degree sequence
have the same probability. This wonderful result is formulated in the following theorem:

Theorem 6.14 (GRG conditioned on degrees has uniform law). The GRG with edge
probabilities (pij)1≤i<j≤n given by

pij =
uiuj

1 + uiuj
, (6.5.13)

conditioned on {di(X) = di∀i = 1, . . . , n}, is uniform over all graphs with degree sequence
{di}i∈[n].

Proof. For x satisfying di(x) = di for all i = 1, . . . , n, we can write out

P(X = x|di(X) = di∀i = 1, . . . , n) =
P(X = x)

P(di(X) = di∀i = 1, . . . , n)

=
P(X = x)∑

y:di(y)=di∀i P(X = y)
. (6.5.14)

By (6.5.10), we have that (6.5.14) simplifies to

P(X = x|di(X) = di∀i = 1, . . . , n) =

∏
i∈[n] u

di(x)
i∑

y:di(y)=di∀i
∏
i∈[n] u

di(y)
i

=

∏
i∈[n] u

di
i∑

y:di(y)=di∀i
∏
i∈[n] u

di
i

=
1

#{y : di(y) = di∀i = 1, . . . , n} , (6.5.15)

that is, the distribution is uniform over all graphs with the prescribed degree sequence.
We next compute the generating function of all degrees, that is, for t1, . . . , tn ∈ R, we

compute, with Di = di(X),

E
[ ∏
i∈[n]

tDii

]
=
∑
x

P(X = x)
∏
i∈[n]

t
di(x)
i . (6.5.16)

By (6.5.10) and (6.5.12),

E
[ ∏
i∈[n]

tDii

]
= G(u)−1

∑
x

∏
i∈[n]

(uiti)
di(x) =

G(tu)

G(u)
, (6.5.17)

where (tu)i = tiui. By (6.5.9), we obtain

E
[ ∏
i∈[n]

tDii

]
=

∏
1≤i<j≤n

1 + uitiujtj
1 + uiuj

. (6.5.18)

Therefore, we have proved the following nice property:
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Proposition 6.15 (Generating function of degrees of GRGn(w)). For the edge probabili-
ties given by (6.1.1) and (6.5.7),

E
[ ∏
i∈[n]

tDii

]
=

∏
1≤i<j≤n

`n + witiwjtj
`n + wiwj

. (6.5.19)

Exercise 6.21 (Alternative proof Theorem 6.6). Use Proposition 6.15 to give an alterna-
tive proof of Theorem 6.6.

Exercise 6.22 (Degree of vertex 1 in ERn(λ/n)). Show that for the Erdős-Rényi random
graph with p = λ/n, the degree of vertex 1 is close to a Poisson random variable with mean
λ by using (B.119). Hint: Use that the Erdős-Rényi random graph is obtained by taking
Wi ≡ λ

1− λ
n

.

Exercise 6.23 (Asymptotic independence of vertex degrees in ERn(λ/n)). Show that
for the Erdős-Rényi random graph with p = λ/n, the degrees of vertices 1, . . . ,m are
asymptotically independent.

We finally make use of Proposition 6.15 to prove Theorem 6.13:

Proof of Theorem 6.13. We study the generating function of the degree Dk. We note that

E[tDk ] = E
[∏
i 6=k

1 + tWiWkn
− 1
τ−1

1 +WiWkn
− 1
τ−1

]
. (6.5.20)

Denote φw : R 7→ R by

φw(x) =
1 + twx

1 + wx
. (6.5.21)

Then, by the independence of the weights (wi)i∈[n], we have that

E[tDk |Wk = w] = E
[∏
i 6=k

φw
(
Win

− 1
τ−1
)]

= ψn(w)n−1, (6.5.22)

where

ψn(w) = E
[
φw
(
Win

− 1
τ−1
)]
. (6.5.23)

We claim that

ψn(w) = 1 +
1

n
(t− 1)γwτ−1 + o(n−1). (6.5.24)

This completes the proof since it implies that

E[tDk |Wk = w] = ψn(w)n−1 = e(t−1)γwτ−1

(1 + o(1)), (6.5.25)

which in turn implies that

lim
n→∞

E[tDk ] = E[e(t−1)γWτ−1
k ]. (6.5.26)

Since E[e(t−1)γWτ−1
k ] is the probability generating function of a mixed Poisson random

variable with mixing distribution γW τ−1
k (see Exercise 6.24), (6.5.24) indeed completes

the proof.
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Exercise 6.24 (Identification of limiting vertex degree). Prove that E[e(t−1)γWτ−1

] is the
probability generating function of a mixed Poisson random variable with mixing distribution
γW τ−1

We complete the proof of Theorem 6.13 by showing that (6.5.24) holds. For this, we
first note

ψn(w) = E
[
φw
(
W1n

− 1
τ−1
)]

= 1 + E
[
φw
(
W1n

− 1
τ−1
)
− 1
]
. (6.5.27)

Exercise 6.25 (A partial integration formula). Prove that for every function h : [0,∞)→
R, with h(0) = 0 and every random variable X ≥ 0 with distribution function F , we have
the partial integration formula

E[h(X)] =

∫ ∞
0

h′(x)[1− F (x)]dx. (6.5.28)

Applying (6.5.28) to h(x) = φw
(
xn−

1
τ−1
)
− 1 and X = W1 yields

ψn(w) = 1 + n−
1

τ−1

∫ ∞
0

φ′w
(
xn−

1
τ−1
)
[1− F (x)]dx

= 1 +

∫ ∞
0

φ′w(x)[1− F (xn
1

τ−1 )]dx. (6.5.29)

Thus,

n(ψn(w)− 1) =

∫ ∞
0

φ′w(x)

xτ−1
(n

1
τ−1 x)τ−1[1− F (xn

1
τ−1 )]dx. (6.5.30)

By assumption, xτ−1[1− F (x)] is a bounded function that converges to c. As a result, by
the Dominated convergence theorem (Theorem A.42),

lim
n→∞

∫ ∞
0

φ′w(x)

xτ−1
(n

1
τ−1 x)τ−1[1− F (xn

1
τ−1 )]dx = c

∫ ∞
0

φ′w(x)

xτ−1
dx. (6.5.31)

Exercise 6.26 (Conditions for dominated convergence). Verify the conditions for domi-
nated convergence for the integral on the left-hand side of (6.5.31).

We complete the proof of (6.5.24) by noting that

φ′w(x) =
tw

1 + wx
− w(1 + twx)

(1 + wx)2
=

w(t− 1)

(1 + wx)2
, (6.5.32)

so that

c

∫ ∞
0

φ′w(x)

xτ−1
dx = c

∫ ∞
0

w(t− 1)

(1 + wx)2xτ−1
dx = γ(t− 1)wτ−1. (6.5.33)
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6.6 Asymptotic equivalence of inhomogeneous random graphs

There are numerous papers that introduce models along the lines of the generalized ran-
dom graph, in that they have (conditionally) independent edge statuses. The most general
model has appeared in [61]. In this paper, the properties of such random graphs (such as
diameter, phase transition and average distances) have been studied using comparisons to
multitype branching processes. We shall return to [61] in Chapter 9. We start by inves-
tigating when two inhomogeneous random graph sequences are asymptotically equivalent,
following the results of Janson in [167].

In this section, we shall investigate when two random graphs are asymptotically equiv-
alent. We shall start by introducing this notion for general random variables. Before we
can do so, we say that (X ,F) is a measurable space when X is the state space, i.e., the
space of all possible outcomes, and F the set of all possible events. We shall be particularly
interested in discrete measurable spaces, in which case X is a discrete set and F can be
taken to be the set of all subsets of X . However, all notions that will be introduced in this
section, can be more generally defined.

Definition 6.16 (Asymptotic equivalence of sequences of random variables). Let (Xn,Fn)
be a sequence of measurable spaces. Let Pn and Qn be two probability measures on (Xn,Fn).
Then, we say that the sequences (Pn)∞n=1 and (Qn)∞n=1 are asymptotically equivalent if, for
every sequence En ∈ Fn of events, we have

lim
n→∞

Pn(En)−Qn(En) = 0. (6.6.1)

Thus, (Pn)∞n=1 and (Qn)∞n=1 are asymptotically equivalent when they have asymptoti-
cally equal probabilities. In practice, this means that there is asymptotically no difference
between (Pn)∞n=1 and (Qn)∞n=1.

The main result that we shall prove in this section is the following theorem that gives a
sharp criterium on when two inhomogeneous random graph sequences are asymptotically
equivalent. In its statement, we write p = (pij)1≤i<j≤n for the edge probabilities in
the graph, and IRGn(p) for the inhomogeneous random graph for which the edges are
independent and the probability that the edge ij is present equals pij .

Theorem 6.17 (Asymptotic equivalence of inhomogeneous random graphs). Let IRGn(p)
and IRGn(q) be two inhomogeneous random graphs with edge probabilities p = (pij)1≤i<j≤n
and q = (qij)1≤i<j≤n respectively. Assume that there exists ε > 0 such that max1≤i<j≤n pij ≤
1− ε. Then IRGn(p) and IRGn(q) are asymptotically equivalent when

lim
n→∞

∑
1≤i<j≤n

(pij − qij)2

pij
= 0. (6.6.2)

When the edge probabilities p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n are themselves random
variables, with max1≤i<j≤n pij ≤ 1−ε a.s., then IRGn(p) and IRGn(q) are asymptotically
equivalent when ∑

1≤i<j≤n

(pij − qij)2

pij

P−→ 0. (6.6.3)

We note that, in particular, IRGn(p) and IRGn(q) are asymptotically equivalent when
they can be coupled in such a way that P(IRGn(p) 6= IRGn(q)) = o(1). Thus, Theorem
6.17 is a quite strong result. The remainder of this section shall be devoted to the proof
of Theorem 6.17. We start by introducing the necessary ingredients.

There is a strong relation between asymptotic equivalence of random variables and
coupling, in the sense that two sequences of random variables are asymptotically equivalent
precisely when they can be coupled such that they agree with high probability. Recall the
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results in Section 2.2 that we shall use and extend in this section. Let p = (px)x∈X and
q = (qx)x∈X be two discrete probability measures on the space X , and recall that the total
variation distance between p and q is given by

dTV(p, q) =
1

2

∑
x

|px − qx|. (6.6.4)

By (2.2.19)-(2.2.20), we see that two sequences of discrete probability measures p(n) =
(p(n)
x )x∈X and q(n) = (q(n)

x )x∈X are asymptotically equivalent when

dTV(p(n), q(n))→ 0. (6.6.5)

In fact, this turns out to be an equivalent definition:

Exercise 6.27 (Asymptotic equivalence and total variation distance). Use (2.2.9) and
Definition 6.16 to prove that p(n) = (p(n)

x )x∈X and q(n) = (q(n)
x )x∈X are asymptotically

equivalent if and only if dTV(p(n), q(n))→ 0.

When p and q correspond to Be(p) and Be(q) distributions, then it is rather simple to
show that

dTV(p, q) = |p− q|. (6.6.6)

Now, for IRGn(p) and IRGn(q), the edge occupation variables are all independent Be(pij)
and Be(qij) random variables. Thus, we can couple each of the edges in such a way that
the probability that a particular edge is distinct is equal to

dTV(pij , qij) = |pij − qij |, (6.6.7)

so that we are led to the naive bound

dTV(IRGn(p), IRGn(q)) ≤
∑

1≤i<j≤n

|pij − qij |, (6.6.8)

which is far worse than (6.6.2). As we shall see later on, there are many examples for which∑
1≤i<j≤n

(pij−qij)2

pij
= o(1), but

∑
1≤i<j≤n |pij − qij | 6= o(1). Thus, the coupling used in

the proof of Theorem 6.17 is substantially stronger.
To explain this seeming contradiction, it is useful to investigate the setting of the Erdős-

Rényi random graph ERn(p). Fix p and q, assume that q ≤ p and that p ≤ 1 − ε. Then,
by Theorem 6.17, ERn(p) and ERn(q) are asymptotically equivalent when∑

1≤i<j≤n

(pij − qij)2

pij
≤ n2(p− q)2/p = O(n3(p− q)2), (6.6.9)

when we assume that p ≥ ε/n. Thus, it suffices that p − q = o(n−3/2). On the other
hand, the right-hand side of (6.6.8) is o(1) when p− q = o(n−2), which is rather stronger.
This can be understood by noting that if we condition on the number of edges M , then the
conditional distribution of ERn(p) conditionally on M = m does not depend on the precise
value of p involved. As a result, we obtain that the asymptotic equivalence of ERn(p) and
ERn(q) follows precisely when we have asymptotic equivalence of the number of edges in
ERn(p) and ERn(q). For this, we note that M ∼ Bin(n(n− 1)/2, p) for ERn(p), while the
number of edges M ′ for ERn(q) satisfies M ′ ∼ Bin(n(n− 1)/2, q). By Exercise 4.2 as well
as Exercise 4.22, we have that binomial distributions with a variance that tends to infinity
satisfy a central limit theorem. When M and M ′ both satisfy central limit theorems with
equal asymptotic variances, it turns out that the asymptotic equivalence of M and M ′

follows when the asymptotic means are equal:
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Exercise 6.28 (Asymptotic equivalence of binomials with increasing variances [167]). Let
M and M ′ be two binomial random variables with M ∼ Bin(m, p) and M ′ ∼ Bin(m, q) for
some m. Show that M and M ′ are asymptotically equivalent when m(p− q)/√mp = o(1).

We apply Exercise 6.28 with m = n(n − 1)/2 to obtain that ERn(p) and ERn(q) are
asymptotically equivalent precisely when n2(p−q)2/p = o(1), and, assuming that p = λ/n,

this is equivalent to p − q = o(n−3/2). This explains the result in Theorem 6.17 for the
Erdős-Rényi random graph, and also shows that the result is optimal for the Erdős-Rényi
random graph.

We now proceed by proving Theorem 6.17. In this section, rather than working with
the total variation distance between two measures, it is more convenient to work with
the so-called Hellinger distance, which is defined, for discrete measures p = (px)x∈X and
q = (qx)x∈X by

dH(p, q) =

√
1

2

∑
x

(
√
px −

√
qx)2. (6.6.10)

It is readily seen that dH and dTV are quite intimately related:

Exercise 6.29 (Total variation and Hellinger distance). Prove that, for discrete probability
measures p = (px)x∈X and q = (qx)x∈X ,

dH(p, q)2 ≤ dTV(p, q) ≤ 21/2dH(p, q). (6.6.11)

Exercise 6.30 (Asymptotic equivalence and Hellinger distance). Use Exercises 6.27 and
6.29 to prove that p(n) = (p(n)

x )x∈X and q(n) = (q(n)
x )x∈X are asymptotically equivalent if

and only if dH(p(n), q(n))→ 0.

We define

ρ(p, q) = 2dH(Be(p),Be(q))2 =
(√
p−√q

)2
+
(√

1− p−
√

1− q
)2
, (6.6.12)

and note that
ρ(p, q) ≤ (p− q)2(p−1 + (1− p)−1). (6.6.13)

Exercise 6.31 (Bound on Hellinger distance Bernoulli variables). Prove that ρ(p, q) ≤
(p− q)2

(
p−1 + (1− p)−1

)
.

In particular, Exercise 6.31 implies that when p ≤ 1− ε, then

ρ(p, q) ≤ C(p− q)2/p (6.6.14)

for some C = C(ε) > 0. Now we are ready to complete the proof of Theorem 6.17:

Proof of Theorem 6.17. Let IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q =
(qij)1≤i<j≤n be two inhomogeneous random graphs. The asymptotic equivalence of IRGn(p)
and IRGn(q) is equivalent to the asymptotic equivalence of the edge variables, which are
independent Bernoulli random variables with success probabilities p = (pij)1≤i<j≤n and
q = (qij)1≤i<j≤n. In turn, asymptotic equivalence of the edge variables is equivalent to
the fact that dH(p, q) = o(1), which is what we shall prove now.

For two discrete probability measures p = (px)x∈X and q = (qx)x∈X , we denote

H(p, q) = 1− 1

2
dH(p, q)2 =

∑
x∈X

√
px
√
qx. (6.6.15)

We shall assume that
X = X (1) × · · · × X (m) (6.6.16)
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is of product form, and, for x = (x1, . . . , xm) ∈ X ,

px =

m∏
i=1

p(i)
xi , qx =

m∏
i=1

q(i)
xi (6.6.17)

are product measures, so that p and q correspond to the probability mass functions of
independent random variables. Then, due to the product structure of (6.6.15), we obtain

H(p, q) =

m∏
i=1

H(p(i), q(i)). (6.6.18)

For IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n, the edges are
independent, so that

H(p, q) =
∏

1≤i<j≤n

(1− 1

2
ρ(pij , qij)), (6.6.19)

so that
dH(p, q) =

√
2− 2H(p, q). (6.6.20)

As a result, dH(p, q) = o(1) precisely when H(p, q) = 1 + o(1). By (6.6.19) and using that
(1− x)(1− y) ≥ 1− x− y and 1− x ≤ e−x, we obtain

1− 1

2

∑
1≤i<j≤n

ρ(pij , qij) ≤ H(p, q) ≤ e−
1
2

∑
1≤i<j≤n ρ(pij ,qij), (6.6.21)

so that H(p, q) = 1 − o(1) precisely when
∑

1≤i<j≤n ρ(pij , qij) = o(1). By (6.6.14), we
further obtain that when max1≤i<j≤n pij ≤ 1− ε for some ε > 0, then∑

1≤i<j≤n

ρ(pij , qij) ≤ C
∑

1≤i<j≤n

(pij − qij)2

pij
= o(1), (6.6.22)

by (6.6.2). This completes the proof of the first part of Theorem 6.17. For the second part,
we note that if (6.6.3) holds, then we can find a sequence εn such that

P
( ∑

1≤i<j≤n

(pij − qij)2

pij
≤ εn

)
= 1− o(1). (6.6.23)

Then, the asymptotic equivalence of IRGn(p) and IRGn(q) is, in turn, equivalent to the

asymptotic equivalence of IRGn(p) and IRGn(q) conditionally on
∑

1≤i<j≤n
(pij−qij)2

pij
≤

εn. For the latter, we can use the first part of Theorem 6.17.

In fact, tracing back the above proof, we see that under the assumptions of Theorem 6.17,
we also obtain that ρ(p, q) ≥ c(p − q)2/p for some c = c(ε) ≥ 0. Thus, we can strengthen
Theorem 6.17 to the fact that IRGn(p) and IRGn(q) are asymptotically equivalent if and
only if (6.6.2) holds.

6.7 Related inhomogeneous random graph models

We now discuss two examples of inhomogeneous random graphs which have appeared
in the literature, and are related to the generalized random graph. We start with the
expected degree random graph.
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6.7.1 Chung-Lu model or expected degree random graph

In this section, we prove a coupling result for the degrees of the Chung-Lu random
graph, where the edge probabilities are given by

p(CL)

ij =
wiwj
`n
∧ 1, (6.7.1)

where again

`n =
∑
i∈[n]

wi. (6.7.2)

When maxi∈[n] w
2
i ≤ `n, we may forget about the maximum with 1 in (6.7.1). We shall as-

sume maxi∈[n] w
2
i ≤ `n throughout this section, and denote the resulting graph by CLn(w).

Naturally, when wi√
`n

is quite small, there is hardly any difference between edge weights

pij =
wiwj

`n+wiwj
and pij =

wiwj
`n

. Therefore, one would expect that these models behave

rather similarly. We shall make use of Theorem 6.17, and investigate the asymptotic
equivalence of CLn(w) and GRGn(w):

Theorem 6.18 (Asymptotic equivalence of CL and GRG with deterministic weights).
The random graphs CLn(w) and GRGn(w) are asymptotically equivalent precisely when∑

i∈[n]

w3
i = o(n3/2), (6.7.3)

where Wn is the weight of a uniformly chosen vertex in [n].

Proof. We make use of Theorem 6.17. For this, we compute, for fixed ij, and using the
fact that 1− 1/(1 + x) ≤ x,

p(CL)

ij − pij =
wiwj
`n
− wiwj
`n + wiwj

=
wiwj
`n

[
1− 1

1 +
wiwj
`n

]
≤
w2
iw

2
j

`2n
. (6.7.4)

Moreover, since wi = o(
√
n) by Condition 6.4(a)-(c) and Exercise 6.3, for n sufficiently

large

pij =
wiwj

`n + wiwj
≥ wiwj/(2`n), (6.7.5)

we arrive at∑
1≤i<j≤n

(pij − p(CL)

ij )2

pij
≤ 2`−3

n

∑
1≤i<j≤n

w3
iw

3
j ≤ `−3

n

( ∑
i∈[n]

w3
i

)2

= o(1), (6.7.6)

by (6.7.3).

When Condition 6.4(a)-(c) hold, Exercise 6.3 implies that maxi∈[n] wi = o(
√
n), so that∑

i∈[n]

w3
i = o(

√
n)
∑
i∈[n]

w2
i = o(n3/2)E[W 2

n ] = o(n3/2). (6.7.7)

Thus, we have proved the following corollary:

Corollary 6.19 (Asymptotic equivalence of CL and GRG). Assume that Condition 6.4(a)-
(c) hold. Then, the random graphs CLn(w) and GRGn(w) are asymptotically equivalent.

We can prove stronger results linking the degree sequences of CLn(w) and GRGn(w)
for deterministic weights given by (6.1.10) when E[W ] <∞, by splitting between vertices
with small and high weights, but we refrain from doing so.
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6.7.2 Norros-Reittu model or the Poisson graph process

In [225], the authors introduce a random multigraph with a Poisson number of edges in
between any two vertices i and j, with parameter equal to wiwj/`n. The graph is defined
as a graph process, where at each time t, a new vertex is born with an associated weight wt.
The number of edges between i and t is Poi(wiwt/`t) distributed. Furthermore, at each
time each of the older edges is erased with probability equal to wt/`t. We claim that the
number of edges between vertices i and j at time t is a Poisson random variable with mean
wiwj
`t

, and that the number of edges between the various pairs of vertices are independent.

To see this, we start by observing a useful property of Poisson random variables:

Exercise 6.32 (Poisson number of Bernoulli variables is Poisson). Let X be a Poisson
random variable with mean λ, and let (Ii)

∞
i=1 be an independent and identically distributed

sequence of Be(p) random variables. Prove that

Y =

X∑
i=1

Ii (6.7.8)

has a Poisson distribution with mean λp.

We make use of Exercise 6.32 to prove that the number of edges between vertices i and
j at time t is a Poisson random variable with mean

wiwj
`t

, and that the number of edges

between different pairs are independent. Indeed, making repeated use of Exercise 6.32
shows that the number of edges at time t between vertices i and j, for i < j, is Poisson
with parameter

wiwj
`j

t∏
s=j+1

(1− ws
`s

) =
wiwj
`j

t∏
s=j+1

(
`s−1

`s
) =

wiwj
`t

, (6.7.9)

as required. The independence of the number of edges between different pairs of vertices
follows by the independence in the construction of the graph.

The Norros-Reittu graph process produces a multigraph. However, when the weights
are sufficiently bounded, it can be seen that the resulting graph is with positive probability
simple:

Exercise 6.33 (Simplicity of the Norros-Reittu random graph). Compute the probability
that the Norros-Reittu random graph is simple at time n.

Exercise 6.34 (The degree of a fixed vertex). Assume that Condition 6.4(a)-(b) hold.
Prove that the degree of vertex k in the Norros-Reittu graph at time n has an asymptotic
mixed Poisson distribution with mixing distribution F , the asymptotic distribution function
of Wn.

We now discuss the Norros-Reittu model at time n, ignoring the dynamic formulation
given above. We shall denote this graph by NRn(w). The Norros-Reittu is a multigraph,
for which the probability that there is at least one edge between vertices i and j exists is,
conditionally on the weights (wi)i∈[n], given by

p(NR)

ij = 1− e
−
wiwj
`n , (6.7.10)

and the occupation status of different edges is independent.
We next return to the relation between the various random graph models discussed in

this section. We shall fixe the weights to be equal to (wi)i∈[n], and compare the generalized
random graph, Chung-Lu model and Norros-Reittu model with these weights. The latter
is denoted by NRn(w).
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We say that a random graph Gn is stochastically dominated by the random graph
G′n when, with (Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n denoting the occupation statuses of the

edges in Gn and G′n respectively, there exists a coupling
(

(X̂ij)1≤i<j≤n, (X̂
′
ij)1≤i<j≤n

)
of

(Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n such that

P
(
X̂ij ≤ X̂ ′ij∀i, j ∈ [n]

)
= 1. (6.7.11)

We write Gn � G′n when the random graph Gn is stochastically dominated by the random
graph G′n.

Exercise 6.35 (Stochastic domination of increasing random variables). Let Gn � G′n. Let
the random variable X(G) be an increasing random variable of the edge occupation random
variables of the graph G. Let Xn = X(Gn) and X ′n = X(G′n). Show that Xn � X ′n.

When the statuses of the edges are independent, then (6.7.11) is equivalent to the bound
that, for all i, j ∈ [n],

pij = P(Xij = 1) ≤ p′ij = P(X ′ij = 1). (6.7.12)

We note that, by (6.7.12) and the fact that, for every x ≥ 0,

x

1 + x
≤ 1− e−x ≤ max{x, 1}, (6.7.13)

we have that
GRGn(w) � NRn(w) � CLn(w). (6.7.14)

This provides a good way of comparing the various inhomogeneous random graph models
discussed in this chapter.

Exercise 6.36 (Asymptotic equivalence of IRGs). Assume that Condition 6.4(a)-(c) hold.
Show that NRn(w) is asymptotically equivalent to GRGn(W ).

6.8 Notes and discussion

Notes on Section 6.1. In the generalized random graph studied in [73], the situation
where the vertex weights are i.i.d. is investigated, and `n in the denominator of the edge
probabilities in (6.1.1) is replaced by n, which leads to a minor change. Indeed, when the
weights have finite mean, then `n = E[W ]n(1 + o(1)), by the law of large numbers. If we
would replace `n by E[W ]n in (6.1.1), then the edge occupation probabilities become

wiwj
E[W ]n+ wiwj

, (6.8.1)

so that this change amounts to replacing wi by wi/
√

E[W ]. Therefore, at least on a
heuristic level, there is hardly any difference between the definition of pij in (6.1.1), and
the choice pij =

wiwj
n+wiwj

in [73].

In the literature, both the cases with i.i.d. weights as well as the one with deterministic
weights have been studied. In [83, 84, 85, 89, 201], the Chung-Lu model, as defined in
Section 6.7, is studied with deterministic weights. In [127], general settings are studied,
including the one with deterministic weights as in (6.1.10). In [73], on the other hand, the
generalized random graph is studied where the weights are i.i.d., and in [127] for several
cases including the one for i.i.d. degrees, in the case where the degrees have finite variance
degrees, for the Chung-Lu model, the Norros-Reittu model, as well as the generalized
random graph.
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The advantage of deterministic weights is that there is no double randomness, which
makes the model easier to analyse. The results are also more general, since often the
results for random weights are a simple consequence of the ones for deterministic weights.
On the other hand, the advantage of working with i.i.d. weights is that the vertices are
exchangeable, and, in contrast to the deterministic weights case, not many assumptions
need to be made. For deterministic weights, one often has to make detailed assumptions
concerning the precise structure of the weights.

Notes on Section 6.2. The results in this section are novel, and are inspired by the
ones in [73].

Notes on Section 6.3. The results in this section are novel, and are inspired by the
ones in [73].

Notes on Section 6.4. Theorem 6.13 is [73, Proof of Theorem 3.2], whose proof we
follow. Exercise 6.19 is novel.

Notes on Section 6.5. The proof in Section 6.5 follows the argument in [73, Section 3].

Notes on Section 6.6. Theorem 6.17 is [167, Corollary 2.12]. In [167], there are many
more examples and results, also investigating the notion of asymptotic contiguity of random
graphs, which is a slightly weaker notion than asymptotic equivalence, and holds when
events that have vanishing probability under one measure also have vanishing probabilities
under the other. There are deep relations between convergence in probability and in
distribution and asymptotic equivalence and contiguity, see [167, Remark 1.4].

Notes on Section 6.7. The expected degree random graph, or Chung-Lu model, has
been studied extensively by Chung and Lu in [83, 84, 85, 89, 201]. See in particular the
recent book [87], in which many of these results are summarized.



Chapter 7

Configuration model

In this chapter, we investigate graphs with fixed degrees. Ideally, we would like to inves-
tigate uniform graphs having a prescribed degree sequence, i.e, a degree sequence which
is given to us beforehand. An example of such a situation could arise from a real-world
network, of which we know the degree sequence, and we would be interested in generating
a random graph with precisely the same degrees. We start by discussion a few examples
where such situation appears naturally.

Example 7.1 (Population of two types revisited). Suppose that we have a complex net-
work in which two distinct types of vertices are present. The first type has precisely m1

neighbors, the second type precisely m2. How can we construct a random graph satisfying
these restrictions?

Example 7.2 (Regular graphs). How many simple graphs are there in which every vertex
has degree precisely r? How can we generate a random instance of such a graph?

Example 7.3 (Real-world network and its degrees). Suppose that we have a complex
network of size n in which vertex i ∈ [n] has degree di. How can we decide whether this
network resembles a uniform random graph with the same degree sequence, or whether it
inherently has more structure? For this, we would need to be able to generate a random
graph having precisely the right degree sequence.

As it turns out, it is not a trivial task to generate graphs having prescribed degrees,
in particular, because they may not exist (recall (I.3) on page 112). We shall therefore
introduce a model that produces a multigraph with the prescribed degrees, and which,
when conditioned on simplicity, is uniform over all simple graphs with the prescribed
degree sequence. This random multigraph is called the configuration model. We shall
discuss the connections between the configuration model and a uniform simple random
graph having the same degree sequence, and give an asymptotic formula for the number
of simple graphs with a given degree sequence.

This chapter is organized as follows. In Section 7.1, we shall introduce the configuration
model. In Sections 7.2, we shall investigate properties of the configuration model, given
that the degrees satisfy some regularity conditions. We shall investigate two ways of turning
the configuration model into a simple graph, namely, by erasing the self-loops and multiple
edges, or by conditioning on obtaining a simple graph. For the latter, we compute the
asymptotic probability of the configuration model to be simple. This also allows us to
compute the asymptotic number of graphs with a given degree sequence in the case where
the degrees are not too large. In Section 7.4, we shall discuss the tight relations that
exist between the configuration model conditioned on being simple, and the generalized
random graph conditioned on its degrees. This relation shall prove to be quite useful when
deducing results for the generalized random graph from those for the configuration model.
In Section 7.5, we treat the special case of i.i.d. degrees. We close this chapter in Section
7.6 with notes and discussion.

7.1 Introduction to the model

Fix an integer n. Consider a sequence d = (di)i∈[n]. The aim is to construct an
undirected (multi)graph with n vertices, where vertex j has degree dj . Without loss of
generality, throughout this chapter, we shall assume that dj ≥ 1 for all j ∈ [n], since when

139
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dj = 0, vertex j is isolated and can be removed from the graph. One possible random
graph model is then to take the uniform measure over such undirected and simple graphs.
Here, we call a graph simple when it has no self-loops and no multiple edges between any
pair of vertices. However, the set of undirected simple graphs with n vertices where vertex
j has degree dj may be empty. For example, in order for such a graph to exist, we must
assume that the total degree

`n =
∑
j∈[n]

dj (7.1.1)

is even. We wish to construct a simple graph such that (di)i∈[n] are the degrees of the
n vertices. However, even when `n =

∑
j∈[n] dj is even, this is not always possible, as

explained in more detail in (I.3) on page 112.

Exercise 7.1 (Non-graphical degree sequence). Find a simple example of a (di)i∈[n] sat-
isfying that `n =

∑
j∈[n] dj is even, for which there is no simple graph where vertex i has

degree di.

Since it is not always possible to construct a simple graph with a given degree sequence,
instead, we can construct a multigraph, that is, a graph possibly having self-loops and
multiple edges between pairs of vertices. One way of obtaining a uniform multigraph with
the given degree sequence is to pair the half-edges attached to the different vertices in a
uniform way. Two half-edges together form an edge, thus creating the edges in the graph.

To construct the multigraph where vertex j has degree dj for all j ∈ [n], we have n
separate vertices and incident to vertex j, we have dj half-edges. Every half-edge needs
to be connected to another half-edge to build the graph. The half-edges are numbered in
an arbitrary order from 1 to `n. We start by randomly connecting the first half-edge with
one of the `n − 1 remaining half-edges. Once paired, two half-edges form a single edge of
the multigraph. Hence, a half-edge can be seen as the left or the right half of an edge. We
continue the procedure of randomly choosing and pairing the half-edges until all half-edges
are connected, and call the resulting graph the configuration model with degree sequence d,
abbreviated as CMn(d).

Unfortunately, vertices having self-loops, as well as multiple edges may occur. However,
we shall see that self-loops and multiple edges are scarce when n → ∞. Clearly, when
the total degree `n =

∑
j∈[n] dj is even, then the above procedure produces a multigraph

with the right degree sequence. Here, in the degree sequence of the multigraph, a self-loop
contributes two to the degree of the vertex incident to it, while each of the multiple edges
contributes one to the degree of each of the two vertices incident to it.

To explain the term configuration model, we now present an equivalent way of defining
the configuration model. For this, we construct a second graph, with vertices 1, . . . , `n.
These vertices in the new graph will correspond to the edges of the random multigraph
in the configuration model. We pair the vertices in a uniform way to produce a uniform
matching. For this, we pair vertex 1 with a uniform other vertex. After this, we pair the
first not yet paired vertex to a uniform vertex which is not yet paired. The procedure stops
when all vertices are paired to another (unique) vertex. We denote the resulting graph
by Confn(d). Thus, Confn(d) can be written as Confn(d) = {iσ(i) : i ∈ [`n]}, where σ(i)
is the label of the vertex to which vertex i ∈ [`n] is paired. The pairing of the vertices
1, . . . , `n is called a configuration, and each configuration has the same probability.

Exercise 7.2 (The number of configurations). Prove that there are (2m − 1)!! = (2m −
1)(2m− 3) · · · 3 · 1 different ways of pairing vertices 1, . . . , 2m.

To construct the graph of the configuration model from the above configuration, we
identify vertices 1, . . . , d1 in Confn(d) to form vertex 1 in CMn(d), and vertices d1 +
1, . . . , d1 +d2 in Confn(d) to form vertex 2 in CMn(d), etc. Therefore, precisely dj vertices
in Confn(d) are identified with vertex j in CMn(d).
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In the above identification, the number of edges in CMn(d) between vertices i, j ∈ [n] is
the number of vertices in Confn(d) that are identified with i ∈ CMn(d) and are paired to
the vertex in Confn(d) that is identified with vertex j ∈ CMn(d). As a consequence, the
degree of vertex j in CMn(d) is precisely equal to dj . The resulting graph is a multigraph,
since both self-loops and multiple edges between vertices are possible. We can identify
the graph as CMn(d) = (Xij)i,j∈[n], where Xij is the number of edges between vertices
i, j ∈ [n] and Xii is the number of self-loops of vertex i ∈ [n], so that, for all i ∈ [n],

di = Xii +
∑
j∈[n]

Xij . (7.1.2)

Here, the number of self-loops of vertex i, Xii, appears twice, so that a self-loop contributes
2 to the degree. Since the uniform matching of the `n vertices in Confn(d) is sometimes
referred to as the configuration, the resulting graph CMn(d) is called the configuration
model.

We note (see e.g. [169, Section 1]) that not all multigraph has the same probability,
i.e., not every multigraph is equally likely and the measure obtained is not the uniform
measure on all multigraphs with the prescribed degree sequence. Indeed, there is a weight
1/j! for every edge of multiplicity j, and a factor 1/2 for every self-loop:

Proposition 7.4 (The law of CMn(d)). Let G = (xij)i,j∈[n] be a multigraph on the vertices
[n] which is such that

di = xii +
∑
j∈[n]

xij . (7.1.3)

Then,

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij !
. (7.1.4)

Proposition 7.4 implies that if we condition on the graph as being simple, then the
resulting graph is a uniform simple graph with the prescribed degree sequence. Here, we
call a graph G = (xij)i,j∈[n] simple whenever xij ∈ {0, 1} for every i, j ∈ [n] with i 6= j,
and xii = 0 for every i ∈ [n], i.e., there are no multiple edges and no self-loops.

Proof. By Exercise 7.2, the number of configurations is equal to (`n − 1)!!. Each configu-
ration has the same probability, so that

P(CMn(d) = G) =
1

(`n − 1)!!
N(G), (7.1.5)

where N(G) is the number of configurations that, after identifying the vertices, give the
multigraph G. We note that if we permute the half-edges incident to a vertex, then the
resulting multigraph remains unchanged, and there are precisely

∏
i∈[n] di! ways to permute

the half-edges incident to all vertices. Some of these permutations, however, give rise to the
same configuration. The factor xij ! compensates for the multiple edges between vertices
i, j ∈ [n], and the factor 2xii compensates for the fact that the paring kl and lk in Confn(d)
give rise to the same configuration.

Exercise 7.3 (Example of multigraph). Let n = 2, d1 = 2 and d2 = 4. Use the direct
connection probabilities to show that the probability that CMn(d) consists of 3 self-loops
equals 1/5. Hint: Note that when d1 = 2 and d2 = 4, the graph CMn(d) consists only of
self-loops precisely when the first half-edge of vertex 1 connects to the second half-edge of
vertex 1.
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Exercise 7.4 (Example of multigraph (Cont.)). Let n = 2, d1 = 2 and d2 = 4. Use
Proposition 7.4 to show that the probability that CMn(d) consists of 3 self-loops equals 1/5.

The flexibility in choosing the degree sequence d gives us a similar flexibility as in
choosing the vertex weights w in Chapter 6. However, in this case, the choice of the vertex
degrees gives a much more direct control over the topology of the graph. For example, for
CMn(d), it is possible to build graphs with fixed degrees, or where all degrees are at least
a certain value. In many applications, such flexibility is rather convenient. For example,
it allows us to generate a (multi)graph with precisely the same degrees as a real-world
network, so that we can investigate whether the real-world network is similar to it or not.

The configuration model with fixed degrees has a long history, see e.g. [58, Section 2.4].
One specific example is to take the degrees all equal, in which case we speak of a random
regular graph.

As in Chapter 6, we shall again impose regularity conditions on the degree sequence d.
In order to state these assumptions, we introduce some notation. We denote the degree of
a uniformly chosen vertex U in [n] by Dn = dU . The random variable Dn has distribution
function Fn given by

Fn(x) =
1

n

∑
j∈[n]

1{dj≤x}. (7.1.6)

We assume that the vertex degrees satisfy the following regularity conditions:

Condition 7.5 (Regularity conditions for vertex degrees).
(a) Weak convergence of vertex weight.
There exists a distribution function F such that

Dn
d−→ D, (7.1.7)

where Dn and D have distribution functions Fn and F , respectively.
Equivalently, for any x,

lim
n→∞

Fn(x) = F (x). (7.1.8)

(b) Convergence of average vertex degrees.

lim
n→∞

E[Dn] = E[D], (7.1.9)

where Dn and D have distribution functions Fn and F , respectively. Further, we assume
that P(D ≥ 1) = 1.
(c) Convergence of second moment vertex degrees.

lim
n→∞

E[D2
n] = E[D2]. (7.1.10)

Similarly to Condition 6.4 in Chapter 6, we shall almost always assume that Condition
7.5(a)-(b) hold, and only sometimes assume Condition 7.5(c). We note that, since di
only takes values in the integers, so does Dn, and therefore so must the limiting random
variable D. As a result, the limiting distribution function F is constant between integers,
and makes a jump P(D = x) at x ∈ N. As a result, the distribution function F does have
discontinuity points, and the weak convergence in (7.1.7) usually only implies (7.1.8) at
continuity points. However, since Fn is constant in between integers, we do obtain the
implication:

Exercise 7.5 (Weak convergence integer random variables). Let (Dn) be a sequence of

integer random variables such that Dn
d−→ D. Show that, for all x ∈ R,

lim
n→∞

Fn(x) = F (x), (7.1.11)

and that also limn→∞ P(Dn = x) = P(D = x) for every x ∈ N.
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Instead of defining CMn(d) in terms of the degrees, we could have defined it in terms
of the number of vertices with fixed degrees. Indeed, let

nk =
∑
i∈[n]

1{di=k} (7.1.12)

denote the number of vertices with degree k. Then, clearly, apart from the vertex labels,
the degree sequence d is uniquely determined by the sequence (nk)k≥0. Then, Condition
7.5(a) is equivalent to limn→∞ nk/n = P(D = k), while Condition 7.5(b) is equivalent to
limn→∞

∑
k≥0 knk/n = E[D].

We next describe two canonical ways of obtaining a degree sequence d such that Con-
dition 7.5 holds.

The configuration model with fixed degrees moderated by F . Fix a distribution
function F of an integer random variable D. We take the number of vertices with degree
k to be equal to

nk = dnF (k)e − dnF (k − 1)e, (7.1.13)

and take the corresponding degree sequence d = (di)i∈[n] the unique ordered degree se-
quence compatible with (nk)k≥0. Clearly, for this sequence, Condition 7.5(a) is satisfied:

Exercise 7.6 (Regularity condition for configuration model moderated by F ). Fix CMn(d)
be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree k. Show
that Condition 7.5(a) holds.

The nice thing about our example is that

Fn(k) =
1

n
dnF (k)e. (7.1.14)

In particular, Dn � D, since Fn(x) ≥ F (x) for every x. As a result, Condition 7.5(b) holds
whenever E[D] <∞, and Condition 7.5(c) whenever E[D2] <∞:

Exercise 7.7 (Regularity condition for configuration model moderated by F (Cont.)). Fix
CMn(d) be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree
k. Show that Condition 7.5(b) holds whenever E[D] <∞.

The configuration model with i.i.d. degrees. The next canonical example arises by
assuming that the degrees D = (Di)i∈[n] are an i.i.d. sequence of random variables. When
we extend the construction of the configuration model to i.i.d. degrees D, we should bear
in mind that the total degree

Ln =
∑
i∈[n]

Di (7.1.15)

is odd with probability close to 1/2, as the following exercise shows:

Exercise 7.8 (Probability of i.i.d. sum to be odd). Assume that (Di)i≥1 is an i.i.d.
sequence of random variables. Prove that Ln =

∑
i∈[n] Di is odd with probability close to

1/2. For this, note that

P(Ln is odd) =
1

2

[
1− E[(−1)Ln ]

]
. (7.1.16)

Then compute

E[(−1)Ln ] = φD1
(π)n, (7.1.17)
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where

φD1
(t) = E[eitD1 ] (7.1.18)

is the characteristic function of the degree D1. Prove that, when P(D even) 6= 1, |φD1(π)| <
1, so that P(Ln is odd) is exponentially close to 1

2
.

There are different possible solutions to overcome the problem of an odd total degree
Ln, each producing a graph with similar characteristics. We make use of the following
solution: If Ln is odd, then we add a half-edge to the nth vertex, so that Dn is increased
by 1, i.e., di = Di + 1{Ln odd,i=n}. This single half-edge will make hardly any difference
in what follows, and we will ignore this effect. Also, we warn the reader that now Dn
has two distinct meanings. The first is the distribution of the degree of a random vertex
Dn = dU , the second the nth element of the sequence D = (Di)i∈[n]. In what follows, we
shall always be clear about the meaning of Dn, which is always equal to Dn = dU unless
explicitly stated otherwise.

It is not hard to see that Condition 7.5 follows from the Law of Large Numbers:

Exercise 7.9 (Regularity condition for configuration model with i.i.d. degrees). Fix CMn(d)
with degrees d given by di = Di + 1{Ln odd,i=n}, where (Di)i∈[n] is an i.i.d. sequence of
integer random variables. Show that Condition 7.5(a) holds, whereas Condition 7.5(b) and
(c) hold when E[D] and E[D2], respectively, are finite. Here the convergence is replaced
with convergence in probability.

Organization of the remaining chapter. In this chapter, we study the configuration
model both with fixed degrees, as well as with i.i.d. degrees. We focus on two main results.
The first main result shows that when we erase all self-loops and combine the multiple
edges into one, then we obtain a graph with asymptotically the same degree sequence.
This model is also referred to as the erased configuration model, see also [73, Section 2.1].

In the second main result, we investigate the probability that the configuration model
actually produces a simple graph. Remarkably, even though there could be many self-loops
and multiple edges, in the case when the degrees are not too large, there is an asymptotically
positive probability that the configuration model produces a simple graph. Therefore, we
may obtain a uniform simple random graph by repeating the procedure until we obtain a
simple graph. As a result, this model is sometimes called the repeated configuration model.
The fact that the configuration model yields a simple graph with asymptotically positive
probability has many interesting consequences that we shall explain in some detail. For
example, it allows us to compute the asymptotics of the number of simple graphs with a
given degree sequence.

7.2 Erased configuration model

We first define the erased configuration model. We fix the degrees d. We start with the
multigraph CMn(d) and erase all self-loops, if any exist. After this, we merge all multiple
edges into single edges. Therefore, the erased configuration model yields a simple random
graph, where two vertices are connected by an edge if and only if there is (at least one)
edge connecting them in the original multigraph definition of the configuration model.

We next introduce some notation. We denote the degrees in the erased configuration
model by D(er) = (D(er)

i )i∈[n], so that

D(er)

i = di − 2si −mi, (7.2.1)
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where (di)i∈[n] are the degrees in the configuration model, si = xii is the number of self-
loops of vertex i in the configuration model, and

mi =
∑
j 6=i

(xij − 1)1{xij≥2} (7.2.2)

is the number of multiple edges removed from i.
Denote the empirical degree sequence (p(n)

k )k≥1 in the configuration model by

p(n)

k =
1

n

∑
i∈[n]

1{di=k}, (7.2.3)

and denote the related degree sequence in the erased configuration model (P (er)

k )k≥1 by

P (er)

k =
1

n

∑
i∈[n]

1{D(er)
i =k}. (7.2.4)

From the notation it is clear that (p(n)

k )k≥1 is a deterministic sequence since (di)i∈[n] is

deterministic, while (P (er)

k )k≥1 is a random sequence, since the erased degrees (D(er)

i )i∈[n]

is a random vector.

Exercise 7.10 (Mean degree sequence equals average degree). Prove that

∞∑
k=1

kp(n)

k =
1

n

∑
i∈[n]

di =
`n
n
. (7.2.5)

Now we are ready to state the main result concerning the degree sequence of the erased
configuration model:

Theorem 7.6 (Degree sequence of erased configuration model with fixed degrees). For
fixed degrees d satisfying Condition 7.5(a)-(b), the degree sequence of the erased configura-

tion model (P (er)

k )k≥1 converges to (pk)k≥1. More precisely, for every ε > 0,

P
( ∞∑
k=1

|P (er)

k − pk| ≥ ε
)
→ 0. (7.2.6)

Proof. By Condition 7.5(a) and the fact that pointwise convergence of a probability mass
function is equivalent to convergence in total variation distance (recall Exercise 2.14), we
obtain that

lim
n→∞

∞∑
k=1

|p(n)

k − pk| = 0. (7.2.7)

Therefore, we can take n so large that

∞∑
k=1

|p(n)

k − pk| ≤ ε/2. (7.2.8)

We start by proving the result under the extra assumption that

max
i∈[n]

di = o(
√
n), (7.2.9)
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For this, we bound P(
∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε/2). For this, we use (7.2.1), which implies

that D(er)

i 6= di if and only if 2si +mi ≥ 1. We use

∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i

|1{D(er)
i =k} − 1{di=k}|, (7.2.10)

and write out that

1{D(er)
i =k} − 1{di=k} = 1{D(er)

i =k,di>k}
− 1{D(er)

i <k,di=k}

= 1{si+mi>0}
(
1{D(er)

i =k} − 1{di=k}
)
. (7.2.11)

Therefore,

|1{D(er)
i =k} − 1{di=k}| ≤ 1{si+mi>0}

(
1{D(er)

i =k} + 1{di=k}
)
, (7.2.12)

so that
∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i∈[n]

|1{D(er)
i =k} − 1{di=k}|

≤ 1

n

∑
i∈[n]

1{si+mi>0}

∞∑
k=1

(
1{D(er)

i =k} + 1{di=k}
)

=
2

n

∑
i∈[n]

1{si+mi>0} ≤
2

n

∑
i∈[n]

(si +mi). (7.2.13)

We denote the number of self-loops by Sn and the number of multiple edges by Mn, that
is

Sn =
∑
i∈[n]

si, Mn =
1

2

∑
i∈[n]

mi. (7.2.14)

Then, by (7.2.13),

P
( ∞∑
k=1

|P (er)

k − p(n)

k | ≥ ε/2
)
≤ P

(
2Sn + 4Mn ≥ εn/2

)
, (7.2.15)

so that Theorem 7.6 follows if

P(2Sn + 4Mn ≥ εn/2)→ 0. (7.2.16)

By the Markov inequality (Theorem 2.15), we obtain

P(2Sn + 4Mn ≥ εn/2) ≤ 4

εn

(
E[Sn] + 2E[Mn]

)
. (7.2.17)

Bounds on E[Sn] and E[Mn] are provided in the following proposition:

Proposition 7.7 (Bounds on the expected number of self-loops and multiple edge). The
expected number of self-loops Sn in the configuration model CMn(d) satisfies

E[Sn] ≤
∑
i∈[n]

d2
i

`n
, (7.2.18)

while the expected number of multiple edges Mn satisfies

E[Mn] ≤ 2
( ∑
i∈[n]

d2
i

`n

)2

. (7.2.19)
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Proof. For a vertex i, and for 1 ≤ s < t ≤ di, we define Ist,i to be the indicator of the
event that the half-edge s is paired to the half-edge t. Here we number the half-edges, or
half-edges, of the vertices in an arbitrary way. Then

Sn =
∑
i∈[n]

∑
1≤s<t≤di

Ist,i. (7.2.20)

Therefore,

E[Sn] =
∑
i∈[n]

∑
1≤s<t≤di

E[Ist,i] =
∑
i∈[n]

1

2
di(di − 1)E[I12,i], (7.2.21)

since the probability of producing a self-loop by pairing the half-edges s and t does not
depend on s and t. Now, E[I12,i] is equal to the probability that half-edges 1 and 2 are
paired to each other, which is equal to (`n − 1)−1. Therefore,

E[Sn] =
1

2

∑
i∈[n]

di(di − 1)

`n − 1
≤
∑
i∈[n]

d2
i

`n
. (7.2.22)

Similarly, for vertices i and j, and for 1 ≤ s1 < s2 ≤ di and 1 ≤ t1 6= t2 ≤ dj , we define
Is1t1,s2t2,ij to be the indicator of the event that the half-edge s1 is paired to the half-edge
t1 and half-edge s2 is paired to the half-edge t2. If Is1t1,s2t2,ij = 1 for some s1t1 and s2t2,
then there are multiple edges between vertices i and j. It follows that

Mn ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij , (7.2.23)

so that

E[Mn] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

E[Is1t1,s2t2,ij ]

=
1

4

∑
1≤i 6=j≤n

di(di − 1)dj(dj − 1)E[I11,22,ij ]. (7.2.24)

Now, since I11,22,ij is an indicator, E[I11,22,ij ] is the probability that I11,22,ij = 1, which is
equal to the probability that half-edge 1 of vertex i and half-edge 1 of vertex j, as well as
half-edge 2 of vertex i and half-edge 2 of vertex j are paired, which is equal to

E[I11,22,ij ] =
1

(`n − 1)(`n − 3)
. (7.2.25)

Therefore,

E[Mn] ≤
n∑

i,j=1

di(di − 1)dj(dj − 1)

4(`n − 1)(`n − 3)
=

(∑
i∈[n] di(di − 1)

)2

4(`n − 1)(`n − 3)
≤

2
(∑

i∈[n] di(di − 1)
)2

`2n
,

(7.2.26)

where we use that 8(`n − 1)(`n − 3) ≥ `2n since `n ≥ 4. Since Mn = 0 with probability one
when `n ≤ 3, the claim follows.
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To complete the proof of Theorem 7.6 in the case that maxi∈[n] di = o(
√
n) (recall (7.2.9)),

we apply Proposition 7.7, we obtain

E[Sn] ≤
∑
i∈[n]

d2
i

`n
≤ max

i∈[n]
di = o(

√
n). (7.2.27)

The bound on E[Mn] is similar. By (7.2.17), this proves the claim.
To prove the result assuming only Condition 7.5(a)-(b), we start by noting that Con-

dition 7.5(a)-(b) implies that maxi∈[n] di = o(n) (recall, e.g., Exercise 6.3). We note that∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε implies that the degrees of at least εn vertices are changed by
the erasure procedure. Take an →∞ arbitrarily slowly, such that there are at most εn/2

vertices i ∈ [n] of degree di ≥ an. Then,
∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε implies that the number
of vertices of degree at most an whose degrees are changed by the erasure procedure is at
least εn/2. Let

Sn(an) =
∑
i∈[n]

si1{di≤an}, Mn(an) =
1

2

∑
i∈[n]

mi1{di≤an} (7.2.28)

denote the number of self-loops and multiple edge incident to vertices of degree at most
an. Then, it is straightforward to adapt Proposition 7.7 to show that

E[Sn(an)] ≤
∑
i∈[n]

d2
i1{di≤an}

`n
, E[Mn(an)] ≤ 2

∑
i∈[n]

d2
i1{di≤an}

`n

∑
j∈[n]

d2
j

`n
. (7.2.29)

Therefore, E[Sn(an)] ≤ an,E[Mn(an)] ≤ an maxj∈[n] dj . Take an so small that an maxj∈[n] dj =
o(n) (which is possible since maxj∈[n] dj = o(n)), then

P(2Sn(an) + 4Mn(an) ≥ εn/2) ≤ 4

εn

(
E[Sn(an)] + 2E[Mn(an)]

)
= o(1), (7.2.30)

as required.

7.3 Repeated configuration model and probability simplicity

In this section, we investigate the probability that the configuration model yields a
simple graph, i.e., the probability that the graph produced in the configuration model
has no self-loops nor multiple edges. Then the asymptotics of the probability that the
configuration model is simple is derived in the following theorem:

Theorem 7.8 (Probability of simplicity of CMn(d)). Assume that d = (di)i∈[n] satisfies
Condition 7.5(a)-(c). Then, the probability that CMn(d) is a simple graph is asymptotically

equal to e−ν/2−ν
2/4, where

ν = E[D(D − 1)]/E[D]. (7.3.1)

Theorem 7.8 is a consequence of the following result:

Proposition 7.9 (Poisson limit of self-loops and multiple edges). Assume that d =
(di)i∈[n] satisfies Condition 7.5(a)-(c). Then (Sn,Mn) converges in distribution to (S,M),

where S and M are two independent Poisson random variables with means ν/2 and ν2/4.
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Indeed, Theorem 7.8 is a simple consequence of Proposition 7.9, since CMn(d) is simple
precisely when Sn = Mn = 0. By the weak convergence result stated in Proposition 7.9 and
the independence of S and M , the probability that Sn = Mn = 0 converges to e−µS−µM ,
where µS and µM are the means of the limiting Poisson random variables S and M . Using
the identification of the means of S and M in Proposition 7.9, this completes the proof of
Theorem 7.8. We are left to prove Proposition 7.9.

Proof of Proposition 7.9. Throughout the proof, we shall assume that S and M are two
independent Poisson random variables with means ν/2 and ν2/4.

We make use of Theorem 2.6 which imply that it suffices to prove that the factorial
moments converge. Also, Sn is a sum of indicators, so that we can use Theorem 2.7 to
identify its factorial moments. For Mn, this is not so clear. However, we define

M̃n =
∑

1≤i<j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij , (7.3.2)

so that, by (7.2.23), Mn ≤ M̃n. We shall first show that with high probability Mn = M ′n.

Note that Mn < M̃n precisely when there exist vertices i 6= j such that there are at least
three edges between i and j. The probability that there are at least three edges between i
and j is bounded above by

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
. (7.3.3)

Thus, by Boole’s inequality, the probability that there exist vertices i 6= j such that there
are at least three edges between i and j is bounded above by

n∑
i,j=1

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
= o(1), (7.3.4)

since di = o(
√
n) when Condition 7.5(a)-(c) holds (recall Exercise 6.3) as well as `n ≥ n.

We conclude that the probability that there are i, j ∈ [n] such that there are at least three
edges between i and j is o(1) as n → ∞. As a result, (Sn,Mn) converges in distribution

to (S,M) precisely when (Sn, M̃n) converges in distribution to (S,M).

To prove that (Sn, M̃n) converges in distribution to (S,M), we use Theorem 2.6 to see
that we are left to prove that, for every s, r ≥ 0,

lim
n→∞

E[(Sn)s(M̃n)r] =
(ν

2

)s(ν2

4

)r
. (7.3.5)

By Theorem 2.7,

E[(Sn)s(M̃n)r] =
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

m
(2)
1 ,...,m

(2)
r ∈I2

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)
, (7.3.6)

where

I1 = {(st, i) : i ∈ [n], 1 ≤ s < t ≤ di}, (7.3.7)

I2 = {(s1t1, s2t2, i, j) : 1 ≤ i < j ≤ n, 1 ≤ s1 < s2 ≤ di, 1 ≤ t1 6= t2 ≤ dj}, (7.3.8)

and where, for m(1) = (st, i) ∈ I1 and m(2) = (s1t1, s2t2, i, j) ∈ I2,

I(1)

m(1) = Ist,i, I(2)

m(2) = Is1t1,s2t2,ij . (7.3.9)
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Now, by the fact that all half-edges are uniformly paired, we have that

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)

=
1∏s+2r

i=0 (`n − 1− 2i)
, (7.3.10)

unless there is a conflict in the attachment rules, in which case

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)

= 0. (7.3.11)

Such a conflict arises precisely when a half-edge is required to be paired to two different
other half-half-edges. Since the upper bound in (7.3.10) always holds, we arrive at

E[(Sn)s(M̃n)r] ≤
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)

=
|I1|(|I1| − 1) · · · (|I1| − s+ 1)|̇I2|(|I2| − 1) · · · (|I2| − r + 1)

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)
. (7.3.12)

Since |I1|, |I2|, `n all tend to infinity, and s, r remain fixed, we have that

lim sup
n→∞

E[(Sn)s(M̃n)r] =
(

lim
n→∞

|I1|
`n

)s(
lim
n→∞

|I2|
`2n

)r
. (7.3.13)

Now,

lim
n→∞

|I1|
`n

= lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2
= ν/2, (7.3.14)

by Condition 7.5(b)-(c). Further, again by Condition 7.5(b)-(c) and also using that di =
o(
√
n) by Exercise 6.3, as well as `n ≥ n,

lim
n→∞

|I2|
`2n

= lim
n→∞

1

`2n

∑
1≤i<j≤n

di(di − 1)

2
dj(dj − 1)

=
(

lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2

)2

− lim
n→∞

∑
i∈[n]

d2
i (di − 1)2

2`2n
= (ν/2)2. (7.3.15)

This provides the required upper bound.
To prove the matching lower bound, we note that, by (7.3.11),∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1∏s+2r
i=0 (`n − 1− 2i)

− E[(Sn)s(M̃n)r]

=
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

I
m

(1)
1 ,...,m

(1)
s ,m

(2)
1 ,...,m

(2)
r

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)
, (7.3.16)

where the indicator I
m

(1)
1 ,...,m

(1)
s ∈I1,m

(2)
1 ,...,m

(2)
r

is equal to one precisely when there is a

conflict in m(1)

1 , . . . ,m(1)
s ,m(2)

1 , . . . ,m(2)
r . There is a conflict precisely when there exist a

vertex i such that one of its half-edges s must be paired to two different half-edges. For
this, there has to be a pair of indices in m(1)

1 , . . . ,m(1)
s , m(2)

1 , . . . ,m(2)
r which create the

conflict. There are three such possibilities: (a) the conflict is created by m(1)
a ,m(1)

b for
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some a, b; (b) the conflict is created by m(1)
a ,m(2)

b for some a, b; and (c) the conflict is

created by m(2)
a ,m(2)

b for some a, b. We shall bound each of these possibilities separately.

In case (a), the number of m(1)
c , c ∈ {1, . . . , s}\{a, b} and m(2)

d , d ∈ {1, . . . , r} is bounded

by |I1|s−2|I2|r. Thus, comparing with (7.3.12), we see that it suffices to prove that the

number of conflicting m(1)
a ,m(1)

b is o(|I1|2). Now, the number of conflicting m(1)
a ,m(1)

b is
bounded by ∑

i∈[n]

d3
i = o

( ∑
i∈[n]

di(di − 1)
)2

, (7.3.17)

where we use that di = o(
√
n), as required.

In case (b), the number of m(1)
c , c ∈ {1, . . . , s} \ {a} and m(2)

d , d ∈ {1, . . . , r} \ {b} is

bounded by |I1|s−1|I2|r−1, while the number of conflicting m(1)
a ,m(2)

b is bounded by∑
i∈[n]

d3
i

∑
j∈[n]

d2
j = o

( ∑
i∈[n]

di(di − 1)
)3

, (7.3.18)

where we again use that di = o(
√
n), as required.

In case (c), the number of m(1)
c , c ∈ {1, . . . , s} and m(2)

d , d ∈ {1, . . . , r}\{a, b} is bounded

by |I1|s|I2|r−2, while the number of conflicting m(2)
a ,m(2)

b is bounded by∑
i∈[n]

d3
i

∑
j∈[n]

d2
j

∑
k∈[n]

d2
k = o

( ∑
i∈[n]

di(di − 1)
)4

, (7.3.19)

where we again use that di = o(
√
n), as required. This completes the proof.

Exercise 7.11 (Characterization moments independent Poisson variables). Show that the
moments of (X,Y ), where (X,Y ) are independent Poisson random variables with param-
eters µX and µY are identified by the relations, for r ≥ 1,

E[Xr] = µXE[(X + 1)r−1], (7.3.20)

and, for r, s ≥ 1,
E[XrY s] = µY E[Xr(Y + 1)s−1]. (7.3.21)

Exercise 7.12 (Alternative proof of Proposition 7.9). Give an alternative proof of Propo-
sition 7.9 by using Theorem 2.3(e) together with Exercise 7.11 and the fact that all joint
moments of (Sn,Mn) converge to those of (S,M), where S and M are two independent

Poisson random variables with means ν
2

and ν2

4
.

Exercise 7.13 (Average number of triangles CM). Compute the average number of occu-
pied triangles in CMn(d).

Exercise 7.14 (Poisson limit triangles CM). Show that the number of occupied triangles
in CMn(d) converges to a Poisson random variable when Condition 7.5(a)-(c) holds.

7.4 Configuration model, uniform simple random graphs and
GRGs

In this section, we shall investigate the relations between the configuration model, uni-
form simple random graphs with given degrees, and the generalized random graph with
given weights. These results are ‘folklore’ in the random graph community, and allow to
use the configuration model to prove results for several other models.
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Proposition 7.10 (Uniform graphs with given degree sequence). For any degree sequence
(di)i∈[n], and conditionally on the event {CMn(d) is a simple graph}, CMn(d) is a uniform
simple random graph with the prescribed degree sequence.

Proof. We recall that the graph in the configuration model is produced by a uniform
matching of the corresponding configuration of half-edges. By Exercise 7.15 below, we note
that, conditionally on the matching producing a simple graph, the conditional distribution
of the configuration is uniform over all configurations which are such that the corresponding
graph is simple:

Exercise 7.15 (A conditioned uniform variable is again uniform). Let P be a uniform
distribution on some finite state space X , and let U be a uniform random variable on X .
Let Y ⊆ X be a non-empty subset of X . Show that the conditional probability P(·|U ∈ Y)
given that U is in Y is the uniform distribution on Y.

We conclude that Proposition 7.10 is equivalent to the statement that every simple graph
has an equal number of configurations contributing to it, which follows from Proposition
7.4.

Exercise 7.16 (Poisson limits for self-loops, multiple edges and triangles). Assume that
the fixed degree sequence (di)i∈[n] satisfies Condition 7.5(a)-(c). Let Tn denote the number
of triangles in CMn(d), i.e., the number of i, j, k such that i < j < k and such that there
are edges between i and j, between j and k and between k and i. Show that (Sn,Mn, Tn)
converges to three independent Poisson random variables and compute their asymptotic
parameters.

An important consequence of Theorem 7.8 is that it allows us to compute the asymptotic
number of graphs with a given degree sequence:

Corollary 7.11 (Number of graphs with given degree sequence). Assume that the degree
sequence (di)i∈[n] satisfies Condition 7.5(a)-(c), and that `n =

∑
i∈[n] di is even. Then,

the number of simple graphs with degree sequence (di)i∈[n] is equal to

e−ν/2−ν
2/4 (`n − 1)!!∏

i∈[n] di!
(1 + o(1)). (7.4.1)

Proof. By Proposition 7.10, the distribution of CMn(d), conditionally on CMn(d) being
simple, is uniform over all simple graphs with degree sequence d = (di)i∈[n]. Let Q(d)
denote the number of such simple graphs, and let G denote any simple random graph with
degree sequence d = (di)i∈[n]. Recall from the proof of Proposition 7.4 that N(G) denotes
the number of configurations that give rise to G. By Proposition 7.4, we have that N(G)
is the same for all simple G. Recall further that the total number of configurations is given
by (`n − 1)!!. Then,

Q(d) = P(CMn(d) simple)
(`n − 1)!!

N(G)
. (7.4.2)

By Proposition 6.15, for any simple graph G,

N(G) =
∏
i∈[n]

di!. (7.4.3)

Proposition 7.10 then yields the result.

A special case of the configuration model is when all degrees are equal to some r. In this
case, when we condition on the fact that the resulting graph in the configuration model to
be simple, we obtain a uniform regular random graph. Uniform regular random graphs can
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be seen as a finite approximation of a regular tree. In particular, Corollary 7.11 implies
that, when nr is even, the number of regular r-ary graphs is equal to

e−(r−1)/2−(r−1)2/4 (rn− 1)!!

(r!)n
(1 + o(1)). (7.4.4)

Exercise 7.17 (The number of r-regular graphs). Prove (7.4.4).

Exercise 7.18 (The number of simple graphs without triangles). Assume that the fixed
degree sequence (di)i∈[n] satisfies Condition 7.5(a)-(c). Compute the number of simple
graphs with degree sequence (di)i∈[n] not containing any triangle. Hint: use Exercise 7.16.

A further consequence of Theorem 7.8 is that it allows to prove a property for uniform
graphs with a given degree sequence by proving it for the configuration model with that
degree sequence:

Corollary 7.12 (Uniform graphs with given degree sequence and CMn(d)). Assume that
d = (di)i∈[n] satisfies Condition 7.5(a)-(c), and that `n =

∑
i∈[n] di is even. Then, an event

En occurs with high probability for a uniform simple random graph with degrees (di)i∈[n]

when it occurs with high probability for CMn(d).

Corollary 7.12 allows a simple strategy to study proporties of uniform simple random
graphs with a prescribed degree sequence. Indeed, CMn(d) can be constructed in a rather
simple manner, which makes it easier to prove properties for CMn(d) than it is for a uniform
random graph with degrees d. For completeness, we now prove the above statement.

Proof. Let UGn(d) denote a uniform simple random graph with degrees d. We need to
prove that if limn→∞ P(CMn(d) ∈ Ecn) = 0, then also limn→∞ P(UGn(d) ∈ Ecn) = 0. By
Proposition 7.10,

P(UGn(d) ∈ Ecn) = P(CMn(d) ∈ Ecn|CMn(d) simple) (7.4.5)

=
P(CMn(d) ∈ Ecn,CMn(d) simple)

P(CMn(d) simple)

≤ P(CMn(d) ∈ Ecn)

P(CMn(d) simple)
.

By Theorem 7.8, for which the assumptions are satisfied by the hypotheses in Corollary
7.12, lim infn→∞ P(CMn(d) simple) > 0. Moreover, limn→∞ P(CMn(d) ∈ Ecn) = 0, so that
P(UGn(d) ∈ Ecn)→ 0, as required.

As a consequence of Proposition 7.10 and Theorem 6.14, we see that the GRG con-
ditionally on its degrees, and CMn(d) with the same degrees conditioned on producing
a simple graph, have identically the same distribution. This also partially explains the
popularity of the configuration model: Some results for the Erdős-Rényi random graph
are more easily proved by conditioning on the degree sequence, proving the result for the
configuration model, and using that the degree distribution of the Erdős-Rényi random
graph is very close to a sequence of independent Poisson random variables. See Chapters
9 and 10. We shall formalize this ‘folklore’ result in the following theorem:

Theorem 7.13 (Relation between GRGn(w) and CMn(d)). Let Di be the degree of vertex
i in GRGn(w) defined in (6.2.1), and let D = (Di)i∈[n]. Then,

P(GRGn(w) = G |D = d) = P(CMn(d) = G | CMn(d) simple). (7.4.6)
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Assume that D = (Di)i∈[n] satisfies that Condition 7.5(a)-(c) hold in probability and that

P(CMn(D) ∈ En)
P−→ 1, where CMn(D) denotes the configuration model with degrees equal

to the (random) degrees of GRGn(w), and P(CMn(D) ∈ En) is interpreted as a function

of the random degrees D. Then, by (7.4.6), also P(GRGn(w) ∈ En)
P−→ 1.

We note that, by Theorem 6.9, in many cases, Condition 7.5(a)-(c). These properties
are often easier to verify than the event En itself. We also remark that related versions
of Theorem 7.13 can be stated with stronger hypotheses on the degrees. Then, the state-
ment becomes that, when an event En occurs with high probability for CMn(d) under the
assumptions on the degrees, En also occurs with high probability for GRGn(w).

Proof. Equation (7.4.6) follows from Theorem 6.14 and Corollary 7.12, for every simple
graph G with degree sequence d, as these two results imply that both GRGn(w) condi-
tionally on D = d and CMn(d) conditionally on being simple are uniform simple random
graphs with degree sequence d. By (7.4.6), for every event En,

P(GRGn(w) ∈ En |D = d) = P(CMn(d) ∈ En | CMn(d) simple). (7.4.7)

We rewrite

P(GRGn(w) ∈ Ecn) = E
[
P(GRGn(w) ∈ Ecn |D)

]
(7.4.8)

= E
[
P(CMn(D) ∈ Ecn | CMn(D) simple)

]
≤ E

[( P(CMn(D) ∈ Ecn)

P(CMn(D) simple)

)
∧ 1
]
. (7.4.9)

By assumption, P(CMn(D) ∈ Ecn)
P−→ 0. Further, since the degrees D satisfies Condition

7.5(a)-(c),

P(CMn(D) simple)
P−→ e−ν/2−ν

2/4 > 0. (7.4.10)

Therefore, by Dominated Convergence (Theorem A.43), we obtain that

lim
n→∞

E
[( P(CMn(D) ∈ Ecn)

P(CMn(D) simple)

)
∧ 1
]

= 0,

so that we conclude that limn→∞ P(GRGn(w) ∈ Ecn) = 0, as required.

7.5 Configuration model with i.i.d. degrees

In this section, we apply the results of the previous sections to the configuration model
with i.i.d. degrees. Indeed, we take the degrees (Di)i≥1 to be an i.i.d. sequence. Since the
total degree

∑
i∈[n] Di is with probability close to 1/2 odd (recall Exercise 7.8), we need

to make sure that the total degree is even. Therefore, by convention, we set

di = Di + 1{
∑
j∈[n] Dj odd,i=n}, (7.5.1)

and set
Ln =

∑
i∈[n]

di =
∑
i∈[n]

Di + 1{
∑
i∈[n] Di odd}. (7.5.2)

Often, we shall ignore the effect of the added indicator in the definition of dn, since it shall
hardly make any difference.
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We note that, similarly to the generalized random graph with i.i.d. weights, the in-
troduction of randomness in the degrees introduces a double randomness in the model:
firstly the randomness of the weights, and secondly, the randomness of the pairing of the
edges given the degrees. Due to this double randomness, we need to investigate the degree
sequence (P (n)

k )∞k=1 defined by

P (n)

k =
1

n

∑
i∈[n]

1{di=k}. (7.5.3)

If we ignore the dependence on n of dn, then we see that (P (n)

k )∞k=1 is precisely equal to
the empirical distribution of the degrees, which is an i.i.d. sequence. As a result, by the
Strong Law of Large Numbers, we have that

P (n)

k

a.s.−→ pk ≡ P(D1 = k), (7.5.4)

so that the empirical distribution of i.i.d. degrees is almost surely close to the probability
distribution of each of the degrees. By Exercise 2.14, the above convergence also implies

that dTV(P (n), p)
a.s.−→ 0, where p = (pk)k≥1 and P (n) = (P (n)

k )k≥1.
The main results are the following:

Theorem 7.14 (Degree sequence of erased configuration model with i.i.d. degrees). Let
(Di)i∈[n] be an i.i.d. sequence of finite mean random variables with P(D ≥ 1) = 1. The

degree sequence of the erased configuration model (P (er)

k )k≥1 with degrees (Di)i∈[n] converges
to (pk)k≥1. More precisely,

P(

∞∑
k=1

|P (er)

k − pk| ≥ ε)→ 0. (7.5.5)

Proof. By Exercise 7.9, when E[D] <∞, Condition 7.5(a)-(b) hold, where the convergence
is in probability. As a result, Theorem 7.14 follows directly from Theorem 7.6.

We next investigate the probability of obtaining a simple graph in CMn(D):

Theorem 7.15 (Probability of simplicity in CMn(D)). Let (Di)i≥1 be an i.i.d. sequence
of random variables with Var(D) < ∞ and P(D ≥ 1) = 1. Then, the probability that

CMn(D) is simple is asymptotically equal to e−ν/2−ν
2/4, where ν = E[D(D − 1)]/E[D].

Proof. By Exercise 7.9, when E[D] <∞, Condition 7.5(a)-(b) hold, where the convergence
is in probability. As a result, Theorem 7.15 follows directly from Theorem 7.8.

We finally investigate the case where the mean is infinite, with the aim to produce a
random graph with power-law degrees with an exponent τ ∈ (1, 2). In this case, the graph
topology is rather different, as the majority of edges is in fact multiple, and self-loops
from vertices with high degrees are abundant. As a result, the erased configuration model
has rather different degrees compared to those in the multigraph. Therefore, in order to
produce a more realistic graph, we need to perform some sort of a truncation procedure.
We start by investigating the case where we condition the degrees to be bounded above by
some an = o(n), which, in effect reduces the number of self-loops significantly.

Theorem 7.16 (Degree sequence of erased configuration model with i.i.d. conditioned

infinite mean degrees). Let (D(n)

i )i∈[n] be i.i.d. copies of the random variable D conditioned
on D ≤ an. Then, for every an = o(n), the empirical degree distribution of the erased

configuration model (P (er)

k )∞k=1 with degrees (D(n)

i )i∈[n] converges to (pk)k≥1, where pk =
P(D = k). More precisely,

P(

∞∑
k=1

|P (er)

k − pk| ≥ ε)→ 0. (7.5.6)
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Theorem 7.16 is similar in spirit to Theorem 6.12 for the generalized random graph,
and is left as an exercise:

Exercise 7.19 (Proof of Theorem 7.16). Adapt the proof of Theorem 7.14 to prove The-
orem 7.16.

We continue by studying the erased configuration model with infinite mean degrees in
the unconditioned case. We assume that there exists a slowly varying function x 7→ L(x)
such that

1− F (x) = x1−τL(x), (7.5.7)

where F (x) = P(D ≤ x) and where τ ∈ (1, 2). We now investigate the degree sequence in
the configuration model with infinite mean degrees, where we do not condition the degrees
to be at most an. We shall make substantial use of Theorem 2.29. In order to describe
the result, we need a few definitions. We define the (random) probability distribution
P = (Pi)i≥1 as follows. Let, as in Theorem 2.29, (Ei)i≥1 be i.i.d. exponential random

variables with parameter 1, and define Γi =
∑i
j=1 Ej . Let (Di)i≥1 be an i.i.d. sequence

of random variables with distribution function FD in (7.5.7), and let D(n:n) ≥ D(n−1:n) ≥
· · · ≥ D(1:n) be the order statistics of (Di)i∈[n]. We recall from Theorem 2.29 that there

exists a sequence un, with unn
−1/(τ−1) slowly varying, such that

u−1
n (Ln, {D(i)}∞i=1)

d−→

∑
j≥1

Γ
−1/(τ−1)
j , (Γ

−1/(τ−1)
i )i≥1

 . (7.5.8)

We abbreviate η =
∑
j≥1 Γ

−1/(τ−1)
j and ξi = Γ

−1/(τ−1)
i , and let

Pi = ξi/η, (7.5.9)

so that, by (7.5.8),
∞∑
i=1

Pi = 1. (7.5.10)

However, the Pi are all random variables, so that P = (Pi)i≥1 is a random probability
distribution. We further write MP,k for a multinomial distribution with parameters k and
probabilities P = (Pi)i≥1, and UP,Dk is the number of distinct outcomes of the random
variable MP,Dk

, where Dk is independent of P = (Pi)i≥1 and the multinomial trials.

Theorem 7.17 (Degree sequence of erased configuration model with i.i.d. infinite mean
degrees). Let (Di)i≥1 be i.i.d. copies of a random variable D1 having distribution function
F satisfying (7.5.7). Fix k ∈ N. The degree of vertex k in the erased configuration model
with degrees (Di)i∈[n] converges in distribution to the random variable UP,Dk , where P =
(Pi)i≥1 is given by (7.5.9), and the random variables Dk and P = (Pi)i≥1 are independent.

Theorem 7.17 is similar in spirit to Theorem 6.13 for the generalized random graph.

Proof. We fix vertex k, and note that its degree is given by Dk. With high probability,
we have that Dk ≤ logn, so that Dk is not one of the largest order statistics. Therefore,
Dk is independent of (η, ξ1, ξ2, . . . ). The vertex k now has Dk half-edges, which need to
be connected to other half-edges. The probability that any half-edge is connected to the
vertex with the jth largest degree is asymptotic to

P (n)

j = D(n−j+1:n)/Ln, (7.5.11)
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where, by Theorem 2.29 (see also (7.5.8)),

(P (n)

j )j≥1
d−→ (ξj/η)j≥1. (7.5.12)

Moreover, the vertices to which the Dk half-edges are connected are close to being inde-
pendent, when Dk ≤ logn. As a result, the Dk half-edges of vertex k are paired to Dk
vertices, and the number of edges of vertex k that are paired to the vertex with the ith

largest degree are asymptotically given by the ith coordinate of M
P (n),Dk

. The random

variable M
P (n),Dk

converges in distribution to MP,Dk
. We note that in the erased configu-

ration model, the degree of the vertex k is equal to the number of distinct vertices to which
k is connected, which is therefore equal to the number of distinct outcomes of the random
variable MP,Dk

, which, by definition, is equal to UP,Dk .
We next investigate the properties of the degree distribution, to obtain an equivalent

result as in Exercise 6.19.

Theorem 7.18 (Power law with exponent 2 for erased configuration model with infinite
mean degrees). Let the distribution function F of Dk satisfy (7.5.7) with L(x) = 1. Then,
the asymptotic degree of vertex k, which is given by UP,Dk satisfies that

P(UP,Dk ≥ x) ≤ x−1. (7.5.13)

The result in Theorem 7.18 is similar in spirit to Exercise 6.19. It would be of interest
to prove a precise identity here as well.

Proof. We give a sketch of proof only. We condition on Dk = dxbe, for some b ≥ 1.
Then, in order that UP,Dk ≥ x, at least x/2 values larger than x/2 need to be chosen. By
(2.6.17), we have that the probability that value k is chosen, for some large value k, is close

to k−1/(τ−1)/η. Therefore, the probability that a value at least k is chosen is close to

k−1/(τ−1)+1/η = k(τ−2)/(τ−1)/η. (7.5.14)

Moreover, conditionally on Dk = dxbe, the number of values larger than x/2 that are
chosen is equal to a Binomial random variable with dxbe trials and success probability

qx = x(τ−2)/(τ−1)/η. (7.5.15)

Therefore, conditionally on Dk = dxbe, and using Theorem 2.19, the probability that at
least x/2 values larger than x/2 are chosen is negligible when, for some sufficiently large
C > 0,

|xbqx −
x

2
| ≥ C log x

√
xbqx. (7.5.16)

Equations (7.5.15) and (7.5.16) above imply that b = 1− (τ − 2)/(τ − 1) = 1/(τ − 1). As
a result, we obtain that

P(UP,Dk ≥ x) ≤ P(Dk ≥ dxbe) ≤ x−b(τ−1) = x−1. (7.5.17)

7.6 Notes and discussion

Notes on Section 7.1. The configuration model has a long history. It was introduced
in [54] to study uniform random graphs with a given degree sequence (see also [58, Section
2.4]). The introduction was inspired by, and generalized the results in, the work of Bender
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and Canfield [33]. The original work allowed for a careful computation of the number of
graphs with prescribed degrees, using a probabilistic argument. This is the probabilistic
method at its best, and also explains the emphasis on the study of the probability for the
graph to be simple. It was further studied in [209, 210], where it was investigated when
the resulting graph has a giant component. We shall further comment on these results in
Chapter 10 below.

Notes on Section 7.2. The result in Theorem 7.6 can be found in [166]. The term
erased configuration model is first used in [73, Section 2.1].

Notes on Section 7.4. Corollary 7.12 implies that the uniform simple random graph
model is contiguous to the configuration model, in the sense that events with vanishing
probability for the configuration model also have vanishing probability for the uniform
simple random graph model with the same degree sequence. See [167] for a discussion of
contiguity of random graphs. Theorem 7.13 implies that the generalized random graph
conditioned on having degree sequence d is contiguous to the configuration model with
that degree sequence, whenever the degree sequence satisfies Condition 7.5(a)-(c).

Notes on Section 7.5. A version of Theorem 7.14 can be found in [73]. Results on
the erased configuration model as in Theorems 7.17-7.18 have appeared in [42], where
first passage percolation on CMn(D) was studied with infinite mean degrees, both for the
erased as well as for the original configuration model, and it is shown that the behavior in
the two models is completely different.



Chapter 8

Preferential attachment models

The generalized random graph model and the configuration model described in Chapters
6 and 7, respectively, are static models, i.e., the size of the graph is fixed, and we have
not modeled the growth of the graph. There is a large body of work investigating dynamic
models for complex networks, often in the context of the World-Wide Web. In various
forms, such models have been shown to lead to power-law degree sequences, and, thus, they
offer a possible explanation for the occurrence of power-law degree sequences in random
graphs. The existence of power-law degree sequences in various real networks is quite
striking, and models offering a convincing explanation can teach us about the mechanisms
which give rise to their scale-free nature.

A possible and convincing explanation for the occurrence of power-law degree sequences
is offered by the preferential attachment paradigm. In the preferential attachment model,
vertices are added sequentially with a number of edges connected to them. These edges are
attached to a receiving vertex with a probability proportional to the degree of the receiving
vertex at that time, thus favoring vertices with large degrees. For this model, it is shown
that the number of vertices with degree k decays proportionally to k−3 [64], and this result
is a special case of the more general result that we shall describe in this chapter.

The idea behind preferential attachment is simple. In an evolving graph, i.e., a graph
that evolves in time, the newly added vertices are connected to the already existing vertices.
In an Erdős-Rényi random graph, which can also be formulated as an evolving graph, where
edges are added and removed, these edges would be connected to each individual with equal
probability.

Exercise 8.1 (A dynamic formulation of ERn(p)). Give a dynamical model for the Erdős-
Rényi random graph, where at each time n we add a single individual, and where at time n
the graph is equal to ERn(p). See also the dynamic description of the Norros-Reittu model
on Page 136.

Now think of the newly added vertex as a new individual in a social population, which
we model as a graph by letting the individuals be the vertices and the edges be the ac-
quaintance relations. Is it then realistic that the edges connect to each already present
individual with equal probability, or is the newcomer more likely to get to know socially ac-
tive individuals, who already know many people? If the latter is true, then we should forget
about equal probabilities for receiving ends of the edges of the newcomer, and introduce
a bias in his/her connections towards more social individuals. Phrased in a mathematical
way, it should be more likely that the edges be connected to vertices that already have a
high degree. A possible model for such a growing graph was proposed by Barabási and
Albert [28], and has incited an enormous research effort since.

Strictly speaking, Barabási and Albert in [28] were not the first to propose such a model,
and we shall start by referring to the old literature on the subject. Yule [277] was the first
to propose a growing model where preferential attachment is present, in the context of
the evolution of species. He derives the power law distribution that we shall also find in
this chapter. Simon [248] provides a more modern version of the preferential attachment
model, as he puts it

“Because Yule’s paper predates the modern theory of stochastic processes, his
derivation was necessarily more involved than the one we shall employ here.”

The stochastic model of Simon is formulated in the context of the occurrence of words in
large pieces of text (as in [278]), and is based on two assumptions, namely (i) that the

159
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probability that the (k + 1)st word is a word that has already appeared exactly i times is
proportional to the number of occurrences of words that have occurred exactly i times, and
(ii) that there is a constant probability that the (k + 1)st word is a new word. Together,
these two assumptions give rise to frequency distributions of words that obey a power law,
with a power-law exponent that is a simple function of the probability of adding a new
vertex. We shall see a similar effect occurring in this chapter. A second place where the
model studied by Simon and Yule can be found is in work by Champernowne [78], in the
context of income distributions in populations.

In [28], Barabási and Albert describe the preferential attachment graph informally as
follows:

“To incorporate the growing character of the network, starting with a small
number (m0) of vertices, at every time step we add a new vertex with m(≤ m0)
edges that link the new vertex to m different vertices already present in the
system. To incorporate preferential attachment, we assume that the probability
Π that a new vertex will be connected to a vertex i depends on the connectivity
ki of that vertex, so that Π(ki) = ki/

∑
j kj. After t time steps, the model

leads to a random network with t+m0 vertices and mt edges.”

This description of the model is informal, but it must have been given precise meaning in
[28] (since, in particular, Barabási and Albert present simulations of the model predicting
a power-law degree sequence with exponent close to τ = 3). The model description does
not explain how the first edge is connected (note that at time t = 1, there are no edges,
so the first edge can not be attached according to the degrees of the existing vertices),
and does not give the dependencies between the m edges added at time t. We are left
wondering whether these edges are independent, whether we allow for self-loops, whether
we should update the degrees after each attachment of a single edge, etc. In fact, each of
these choices has, by now, been considered in the literature, and the results, in particular
the occurrence of power laws and the power-law exponent, do not depend sensitively on
the respective choices. See Section 11.8 for an extensive overview of the literature on
preferential attachment models.

The first to investigate the model rigorously, were Bollobás, Riordan, Spencer and
Tusnady [64]. They complain heavily about the lack of a formal definition in [28], arguing
that

“The description of the random graph process quoted above (i.e, in [28], edt.)
is rather imprecise. First, as the degrees are initially zero, it is not clear how
the process is started. More seriously, the expected number of edges linking a
new vertex v to earlier vertices is

∑
i Π(ki) = 1, rather than m. Also, when

choosing in one go a set S of m earlier vertices as the neighbors of v, the
distribution of S is not specified by giving the marginal probability that each
vertex lies in S.”

One could say that these differences in formulations form the heart of much confusion
between mathematicians and theoretical physicists. To resolve these problems, choices had
to be made, and these choices were, according to [64], made first in [62], by specifying the
initial graph to consist of a vertex with m self-loops, and that the degrees will be updated
in the process of attaching the m edges. This model will be described in full detail in
Section 8.1 below.

This chapter is organized as follows. In Section 8.1, we introduce the model. In Section
8.2, we investigate how the degrees of fixed vertices evolve as the graph grows. In Section
8.3, we investigate the degree sequences in preferential attachment models. The main result
is Theorem 8.2, which states that the preferential attachment model has a power-law degree
sequence. The proof of Theorem 8.2 consists of two key steps, which are formulated and
proved in Sections 8.4 and 8.5, respectively. In Section 8.6, we investigate the maximal
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degree in a preferential attachment model. In Section 11.8, we also discuss many related
preferential attachment models. We close this chapter with notes and discussion in Section
8.7.

8.1 Introduction to the model

In this chapter, we prove that the preferential attachment model has a power-law degree
sequence. We start by introducing the model. The model we investigate produces a graph
sequence which we denote by {PAt(m, δ)}∞t=1, which for every t yields a graph of t vertices
and mt edges for some m = 1, 2, . . . We start by defining the model for m = 1. In this
case, PA1,δ(1) consists of a single vertex with a single self-loop. We denote the vertices

of PAt(1, δ) by {v(1)

1 , . . . , v(1)

t }. We denote the degree of vertex v(1)

i in PAt(1, δ) by Di(t),
where a self-loop increases the degree by 2.

Then, conditionally on PAt(1, δ), the growth rule to obtain PAt+1(1, δ) is as follows.

We add a single vertex v(1)

t+1 having a single edge. This edge is connected to a second

end point, which is equal to v(1)

t+1 with probability (1 + δ)/(t(2 + δ) + (1 + δ)), and to a

vertex v(1)

i ∈ PAt(1, δ) with probability (Di(t) + δ)/(t(2 + δ) + (1 + δ)), where δ ≥ −1 is a
parameter of the model. Thus,

P
(
v(1)

t+1 → v(1)

i

∣∣PAt(1, δ)
)

=

{
1+δ

t(2+δ)+(1+δ)
for i = t+ 1,

Di(t)+δ
t(2+δ)+(1+δ)

for i ∈ [t].
(8.1.1)

Exercise 8.2 (Non-negativity of Di(t) + δ). Verify that Di(t) ≥ 1 for all i and t, so that
Di(t) + δ ≥ 0 for all δ ≥ −1.

Exercise 8.3 (Attachment probabilities sum up to one). Verify that the probabilities in
(8.1.1) sum up to one.

The model with m > 1 is defined in terms of the model for m = 1 as follows. We
start with PAmt(1, δ/m), and denote the vertices in PAmt(1, δ/m) by v(1)

1 , . . . , v(1)

mt. Then

we identify v(1)

1 , . . . , v(1)
m in PAmt(1, δ/m) to be v(m)

1 in PAt(m, δ), and v(1)

m+1, . . . , v
(1)

2m

in PAmt(1, δ/m) to be v(m)

2 in PAt(m, δ), and, more generally, v(1)

(j−1)m+1, . . . , v
(1)

jm in

PAmt(1, δ/m) to be v(m)

j in PAt(m, δ). This defines the model for general m ≥ 1. The
above identification procedure is sometimes called the collapsing of vertices. We note that
PAt(m, δ) is a multigraph with precisely t vertices and mt edges, so that the total degree
is equal to 2mt.

Exercise 8.4 (Total degree). Prove that the total degree of PAt(m, δ) equals 2mt.

In order to explain the description of PAt(m, δ) in terms of PAmt(1, δ/m), we note that

an edge in PAmt(1, δ/m) is attached to vertex v(1)

k with probability proportional to the

weight of vertex v(1)

k , where the weight is equal to the degree of vertex v(1)

k plus δ/m. Now,

vertices v(1)

(j−1)m+1, . . . , v
(1)

jm in PAmt(1, δ/m) are identified or collapsed to vertex v(m)

j in

PAt(m, δ). Thus, an edge in PAt(m, δ) is attached to vertex v(m)

j with probability propor-

tional to the total weight of the vertices v(1)

(j−1)m+1, . . . , v
(1)

jm. Since the sum of the degrees

of the vertices v(1)

(j−1)m+1, . . . , v
(1)

jm is equal to the degree of vertex v(m)

j , this probability is

proportional to the degree of vertex v(m)

j in PAt(m, δ) plus δ. We note that in the above
construction and for m ≥ 2, the degrees are updated after each edge is attached. This is
what we refer to as intermediate updating of the degrees.

The important feature of the model is that edges are more likely to be connected to
vertices with large degrees, thus making the degrees even larger. This effect is called



162 Preferential attachment models

Figure 8.1: Preferential attachment random graph with m = 2 and δ = 0 of sizes 10, 30
and 100.

preferential attachment. Preferential attachment may explain why there are quite large de-
grees. Therefore, the preferential attachment model is sometimes called the Rich-get-Richer
model. It is quite natural to believe in preferential attachment in many real networks. For
example, one is more likely to get to know a person who already knows many people,
making preferential attachment not unlikely in social networks. However, the precise form
of preferential attachment in (8.1.1) is only one possible example.

The above model is a slight variation of models that have appeared in the literature. The
model with δ = 0 is the Barabási-Albert model, which has received substantial attention
in the literature and which was first formally defined in [62]. We have added the extra
parameter δ to make the model more general.

The definition of {PAt(m, δ)}∞t=1 in terms of {PAt(1, δ/m)}∞t=1 is quite convenient. How-
ever, we can also equivalently define the model for m ≥ 2 directly. We start with PA1(m, δ)
consisting of a single vertex with m self-loops. To construct PAt+1(m, δ) from PAt(m, δ),
we add a single vertex with m edges attached to it. These edges are attached sequentially
with intermediate updating of the degrees as follows. The eth edge is connected to vertex
v(m)

i , for i ∈ [t], with probability proportional to (Di(e− 1, t) + δ), where, for e = 1, . . . ,m,

Di(e, t) is the degree of vertex i after the eth edge is attached, and to vertex v(m)

t+1 with
probability proportional to (Dt+1(e−1, t)+eδ/m), with the convention that Dt+1(0, t) = 1.
This alternative definition makes it perfectly clear how the choices missing in [28] are made.
Indeed, the degrees are updated during the process of attaching the edges, and the initial
graph at time 1 consists of a single vertex with m self-loops. Naturally, the edges could
also be attached sequentially by a different rule, for example by attaching the edges in-
dependently according to the distribution for the first edge. Also, one has the choice to
allow for self-loops or not. See Figure 8.1 for a realization of {PAt(m, δ)}∞t=1 for m = 2
and δ = 0, and Figure 8.2 for a realization of {PAt(m, δ)}∞t=1 for m = 2 and δ = −1.

Exercise 8.5 (Collapsing vs. growth of the PA model). Prove that the alternative definition
of {PAt(m, δ)}∞t=1 is indeed equal to the one obtained by collapsing m consecutive vertices
in {PAt(1, δ/m)}∞t=1.

Exercise 8.6 (Graph topology for δ = −1). Show that when δ = −1, the graph PAt(1, δ)

consists of a self-loop at vertex v(1)

1 , and each other vertex is connected to v(1)

1 with precisely
one edge. What is the implication of this result for m > 1?

In some cases, it will be convenient to consider a slight variation on the above model
where, form = 1, self-loops do not occur. We shall denote this variation by {PA(b)

t (m, δ)}t≥2

and sometimes refer to this model by model (b). To define PA(b)

t (1, δ), we let PA(b)

2 (1, δ)
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Figure 8.2: Preferential attachment random graph with m = 2 and δ = −1 of sizes 10, 30
and 100.

consist of two vertices v(1)

1 and v(1)

2 with two edges between them, and we replace the
growth rule in (8.1.1) by the rule that, for all i ∈ [t],

P
(
v(1)

t+1 → v(1)

i

∣∣PA(b)

t (1, δ)
)

=
Di(t) + δ

t(2 + δ)
. (8.1.2)

The advantage of this model is that it leads to a connected graph. We again define the
model with m ≥ 2 and δ > −m in terms of {PA(b)

t (1, δ/m)}∞t=2 as below Exercise 8.3.

We also note that the differences between {PAt(m, δ)}t≥1 and {PA(b)

t (m, δ)}t≥2 are minor,
since the probability of a self-loop in PAt(m, δ) is quite small when t is large. Thus,
most of the results we shall prove in this chapter for {PAt(m, δ)}t≥1 shall also apply to

{PA(b)

t (m, δ)}t≥2, but we shall not state these extensions explicitly.
Interestingly, the above model with δ ≥ 0 can be viewed as an interpolation between the

models with δ = 0 and δ =∞. We show this for m = 1, the statement for m ≥ 2 can again
be seen by collapsing the vertices. We again let the graph at time 2 consist of two vertices
with two edges between them. We fix α ∈ [0, 1]. Then, we first draw a random variable
Xt+1 taking values 0 with probability α and Xt+1 = 1 with probability 1−α. The random
variables {Xt}∞t=1 are independent. When Xt+1 = 0, then we attach the (t + 1)st edge to
a uniform vertex in [t]. When Xt+1 = 1, then we attach the (t+ 1)st edge to vertex i ∈ [t]

with probability Di(t)/(2t). We denote this model by {PA(b′)
t (1, α)}∞t=1. When α ≥ 0 is

chosen appropriately, then this is precisely the above preferential attachment model:

Exercise 8.7 (Alternative formulation of PAt(1, δ)). For α = δ
2+δ

, the law of {PA(b′)
t (1, α)}∞t=2

is equal to the one of {PAt(1, δ)}∞t=1.

Exercise 8.8 (Degrees grow to infinity a.s.). Fix m = 1. Prove that Di(t)
a.s.−→ ∞.

Hint: use that, with {It}∞t=i a sequence of independent Bernoulli random variables with
P(It = 1) = (1 + δ)/(t(2 + δ) + 1 + δ), we have that

∑t
s=i Is � Di(t). What does this imply

for m > 1?

8.2 Degrees of fixed vertices

We start by investigating the degrees of given vertices. To formulate the results, we
define the Gamma-function t 7→ Γ(t) for t > 0 by

Γ(t) =

∫ ∞
0

xt−1e−xdx. (8.2.1)
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We also make use of the recursion formula

Γ(t+ 1) = tΓ(t). (8.2.2)

Exercise 8.9 (Recursion formula for the Gamma function). Prove (8.2.2) using partial
integration, and also prove that Γ(n) = (n− 1)! for n = 1, 2, . . . .

The main result in this section is the following:

Theorem 8.1 (Degrees of fixed vertices). Fix m = 1 and δ > −1. Then, Di(t)/t
1

2+δ

converges almost surely to a random variable ξi as t→∞, and

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1)Γ(i− 1

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(i)
. (8.2.3)

In Section 8.6, we shall considerably extend the result in Theorem 8.1. For example,
we shall also prove the almost sure convergence of maximal degree.

Proof. Fix m = 1. We compute that

E[Di(t+ 1) + δ|Di(t)] = Di(t) + δ + E[Di(t+ 1)−Di(t)|Di(t)]

= Di(t) + δ +
Di(t) + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)t+ 2 + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)(t+ 1)

(2 + δ)t+ 1 + δ
. (8.2.4)

Using also that

E[Di(i) + δ] = 1 + δ +
1 + δ

(2 + δ)(i− 1) + 1 + δ
= (1 + δ)

(2 + δ)(i− 1) + 2 + δ

(2 + δ)(i− 1) + 1 + δ

= (1 + δ)
(2 + δ)i

(2 + δ)(i− 1) + 1 + δ
, (8.2.5)

we obtain that

Mi(t) =
Di(t) + δ

1 + δ

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)(s+ 1)
(8.2.6)

is a non-negative martingale with mean 1. As a consequence of the martingale convergence
theorem (Theorem 2.22), as t → ∞, Mi(t) converges almost surely to a limiting random
variable ξi.

We compute that

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)s+ 2 + δ
=

t−1∏
s=i−1

s+ 1+δ
2+δ

s+ 1
=

Γ(t+ 1+δ
2+δ

)Γ(i)

Γ(t+ 1)Γ(i− 1
2+δ

)
. (8.2.7)

It is not hard to see that, using Stirling’s formula,

Γ(t+ a)

Γ(t)
= ta(1 +O(1/t)). (8.2.8)
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Therefore, we have that Di(t)/t
1

2+δ converges in distribution to a random variable Mi

having expected value (1 + δ)
Γ(i− 1

2+δ
)

Γ(i)
. In particular, the degrees of the first i vertices

at time t is at most of order t
1

2+δ . Note, however, that we do not yet know whether
P(ξi = 0) = 0 or not!

Exercise 8.10 (Asymptotics for ratio Γ(t+a)/Γ(t)). Prove (8.2.8), using that [137, 8.327]

e−ttt+
1
2
√

2π ≤ Γ(t+ 1) ≤ e−ttt+
1
2
√

2πe
1

12t . (8.2.9)

Note that we can extend the above result to the case when m ≥ 1, by using the relation
between PAt(m, δ) and PAmt(1, δ/m). This implies in particular that

Eδm[Di(t)] =

m∑
s=1

Eδ/m1 [Dm(i−1)+s(mt)], (8.2.10)

where we have added a subscript m and a superscript δ to denote the values of m and δ
involved.

Exercise 8.11 (Mean degree for m ≥ 2). Prove (8.2.10) and use it to compute Eδm[Di(t)].

Exercise 8.12 (A.s. limit of degrees for m ≥ 2). Prove that, for m ≥ 2 and any i ≥ 1,

Di(t)(mt)
−1/(2+δ/m) a.s.−→ ξ′i, where

ξ′i =

mi∑
j=(i−1)m+1

ξj , (8.2.11)

and ξj is the almost sure limit of Dj(t) in {PAt(1, δ/m)}∞t=1.

Exercise 8.13 (Mean degree for model (b)). Prove that for PA(b)

t (1, δ), (8.2.3) is adapted
to

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1

2+δ
)Γ(i)

Γ(t)Γ(i+ 1
2+δ

)
. (8.2.12)

We close this section by giving a heuristic explanation for the occurrence of a power-
law degree sequence in preferential attachment models. Theorem 8.1 in conjunction with
Exercise 8.12 implies that there exists an am such that, for i, t large, and any m ≥ 1,

E[Di(t)] ∼ am
( t
i

)1/(2+δ/m)

. (8.2.13)

When the graph indeed has a power-law degree sequence, then the number of vertices with
degrees at least k will be close to ctk−(τ−1) for some τ > 1 and some c > 0. The number
of vertices with degree at least k at time t is equal to N≥k(t) =

∑t
i=1 1{Di(t)≥k}. Now,

assume that in the above formula, we are allowed to replace 1{Di(t)≥k} by 1{E[Di(t)]≥k}
(there is a big leap of faith here). Then we would obtain that

N≥k(t) ∼
t∑
i=1

1{E[Di(t)]≥k} ∼
t∑
i=1

1
{am
(
t
i

)1/(2+δ/m)
≥k}

=

t∑
i=1

1{i≤ta2+δ/m
m k−(2+δ/m)} = ta2+δ/m

m k−(2+δ/m), (8.2.14)

so that we obtain a power-law with exponent τ − 1 = 2 + δ/m, so that τ = 3 + δ/m. The
above heuristic shall be made precise in the following section, but the proof will be quite
a bit more subtle than the above heuristic!
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8.3 Degree sequences of preferential attachment models

The main result establishes the scale-free nature of preferential attachment graphs. In
order to state the result, we need some notation. We write

Pk(t) =
1

t

t∑
i=1

1{Di(t)=k} (8.3.1)

for the (random) proportion of vertices with degree k at time t. For m ≥ 1 and δ > −m,
we define {pk}∞k=0 to be the probability distribution given by pk = 0 for k = 0, . . . ,m− 1
and, for k ≥ m,

pk = (2 +
δ

m
)
Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
(8.3.2)

For m = 1, (8.3.2) reduces to

pk = (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
. (8.3.3)

Also, when δ = 0 and k ≥ m, (8.3.2) simplifies to

pk =
2Γ(k)Γ(m+ 2)

Γ(k + 3)Γ(m)
=

2m(m+ 1)

k(k + 1)(k + 2)
. (8.3.4)

We start by proving that {pk}∞k=1 is a probability distribution. For this, we note that, by
(8.2.2),

Γ(k + a)

Γ(k + b)
=

1

b− a− 1

( Γ(k + a)

Γ(k − 1 + b)
− Γ(k + 1 + a)

Γ(k + b)

)
. (8.3.5)

Applying (8.3.5) to a = δ, b = 3 + δ + δ
m

, we obtain that, for k ≥ m,

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

( Γ(k + δ)

Γ(k + 2 + δ + δ
m

)
− Γ(k + 1 + δ)

Γ(k + 3 + δ + δ
m

)

)
. (8.3.6)

Using that pk = 0 for k < m, and by a telescoping sum identity,

∑
k≥1

pk =
∑
k≥m

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

Γ(m+ δ)

Γ(m+ 2 + δ + δ
m

)
= 1. (8.3.7)

Thus, since also pk ≥ 0, we obtain that {pk}∞k=1 indeed is a probability distribution. We
shall see that {pk}∞k=1 arises as the limiting degree distribution for PAt(m, δ):

Theorem 8.2 (Degree sequence in preferential attachment model). Fix δ > −m and
m ≥ 1. Then, there exists a constant C = C(m, δ) > 0 such that, as t→∞,

P
(

max
k
|Pk(t)− pk| ≥ C

√
log t

t

)
= o(1). (8.3.8)

Theorem 8.2 identifies the asymptotic degree sequence of PAt(m, δ) as {pk}∞k=1. We
next show that, for k large, pk is close to a power-law distribution. For this, we first note
that from (8.3.2) and (8.2.8), as k →∞,

pk = cm,δk
−τ (1 +O(

1

k
)), (8.3.9)



8.3 Degree sequences of preferential attachment models 167

1 5 10 50 100 5001000
1

10

100

1000

10000

100000.

1 10 100 1000
1

10

100

1000

10000

100000.

Figure 8.3: The degree sequences of a preferential attachment random graph with m =
2, δ = 0 of sizes 300,000 and 1,000,000 in log-log scale.

where

τ = 3 +
δ

m
> 2, (8.3.10)

and

cm,δ =
(2 + δ

m
)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)
. (8.3.11)

Therefore, by Theorem 8.2 and (8.3.9), the asymptotic degree sequence of PAt(m, δ) is
close to a power law with exponent τ = 3 + δ/m. We note that any exponent τ > 2 is
possible by choosing δ > −m and m ≥ 1 appropriately. The power-law degree sequence
can clearly be observed in a simulation, see Figure 8.3, where a realization of the degree
sequence of PAt(m, δ) is shown for m = 2, δ = 0 and t = 300, 000 and t = 1, 000, 000.

The important feature of the preferential attachment model is that, unlike the configu-
ration model and the generalized random graph, the power law in PAt(m, δ) is explained
by giving a model for the growth of the graph that produces power-law degrees. There-
fore, preferential attachment offers a convincing explanation as to why power-law degree
sequences occur. As Barabási puts it [27]

“...the scale-free topology is evidence of organizing principles acting at each
stage of the network formation. (...) No matter how large and complex a
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network becomes, as long as preferential attachment and growth are present it
will maintain its hub-dominated scale-free topology.”.

Many more possible explanations have been given for why power laws occur in real networks,
and many adaptations of the above simple preferential attachment model have been studied
in the literature, all giving rise to power-law degrees. See Section 11.8 for an overview of
the literature.

The remainder of this chapter shall be primarily devoted to the proof of Theorem 8.2,
which is divided into two main parts. In Section 8.4, we prove that the degree sequence
is concentrated around its mean, and in Section 8.5, we identify the mean of the degree
sequence. In the course of the proof, we also prove results related to Theorem 8.2.

Exercise 8.14 (The degree of a uniform vertex). Prove that Theorem 8.2 implies that the
degree at time t of a uniform vertex in [t] converges in probability to a random variable
with probability mass function {pk}∞k=1.

Exercise 8.15 (Degree sequence uniform recursive tree [162]). In a uniform recursive tree
we attach each vertex to a uniformly chosen old vertex. This can be seen as the case where
m = 1 and δ =∞ of {PA(b)

t (m, δ)}t≥2. Show that Theorem 8.2 remains true, but now with

pk = 2−(k+1).

8.4 Concentration of the degree sequence

In this section, we prove that the (random) degree sequence is sufficiently concentrated
around its expected degree sequence. We use a martingale argument which first appeared
in [64], and has been used in basically all subsequent works proving power-law degree
sequences for preferential attachment models. The argument is very pretty and general,
and we spend some time explaining the details of it.

We start by stating the main result in this section. In its statement, we use the notation

Nk(t) =

t∑
i=1

1{Di(t)=k} = tPk(t) (8.4.1)

for the total number of vertices with degree k at time t.

Proposition 8.3 (Concentration of the degrees). Fix δ ≥ −m and m ≥ 1. Then, for any

C > m
√

8, as t→∞,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= o(1). (8.4.2)

We note that Theorem 8.2 predicts that Nk(t) ≈ tpk. Thus, at least for k for which pk
is not too small, i.e., tpk �

√
t log t, Proposition 8.3 suggests that the number of vertices

with degree equal to k is very close to its expected value. Needless to say, in order to
prove Theorem 8.2, we still need to investigate E[Nk(t)], and prove that it is quite close to
tpk. This is the second main ingredient in the proof of Theorem 8.2 and is formulated in
Proposition 8.4. We first prove Proposition 8.3.

Proof. We start by reducing the proof. First of all, Nk(t) = 0 when k > m(t + 1).
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Therefore,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= P

(
max

k≤m(t+1)
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
≤
m(t+1)∑
k=1

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
.

(8.4.3)

We shall prove that for any C > m
√

8, uniformly in k ≤ m(t+ 1),

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= o(t−1), (8.4.4)

which would complete the proof of Proposition 8.3.
For n = 0, . . . , t, we denote by

Mn = E
[
Nk(t)|PAn(m, δ)

]
(8.4.5)

the conditional expected number of vertices with degree k at time t, conditionally on the
graph PAn(m, δ) at time n ∈ {0, . . . , t}. We shall show that {Mn}tn=0 is a martingale.

Firstly, since Nk(t) is bounded by the total number of vertices at time t, we have
Nk(t) ≤ t, so that

E[|Mn|] = E[Mn] = E[Nk(t)] ≤ t <∞. (8.4.6)

Secondly, by the tower property of conditional expectations, and the fact that PAn(m, δ)
can be deduced from PAm,δ(n+ 1), we have that, for all n ≤ t− 1,

E[Mn+1|PAn(m, δ)] = E
[
E
[
Nk(t)|PAm,δ(n+ 1)

]∣∣∣PAn(m, δ)
]

= E
[
Nk(t)|PAn(m, δ)

]
= Mn, (8.4.7)

so that {Mn}tn=0 satisfies the conditional expectation requirement for a martingale. In
fact, {Mn}tn=0 is a so-called Doob martingale (see also Exercise 2.22).

Therefore, {Mn}tn=0 also satisfies the moment condition for martingales. We conclude
that {Mn}tn=0 is a martingale process with respect to {PAn(m, δ)}tn=0. This is the first
main ingredient of the martingale proof of (8.4.4).

For the second ingredient, we note that M0 is identified as

M0 = E
[
Nk(t)|PAm,δ(0)

]
= E[Nk(t)], (8.4.8)

Since PAm,δ(0) is the empty graph. Furthermore, Mt is trivially identified as

Mt = E
[
Nk(t)|PAt(m, δ)

]
= Nk(t), (8.4.9)

since one can determine Nk(t) from PAt(m, δ). Therefore, we have that

Nk(t)− E[Nk(t)] = Mt −M0. (8.4.10)

This completes the second key ingredient in the martingale proof of (8.4.4).
The third key ingredient is the Azuma-Hoeffding inequality, Theorem 2.24. For this, we

need to investigate the support of |Mn −Mn−1|. We claim that, for all n ∈ [t], a.s.,

|Mn −Mn−1| ≤ 2m. (8.4.11)
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In order to prove this, we note that

Mn = E[Nk(t)|PAn(m, δ)] =

t∑
i=1

P(Di(t) = k|PAn(m, δ)), (8.4.12)

and, similarly,

Mn−1 =

t∑
i=1

P(Di(t) = k|PAn−1(m, δ)), (8.4.13)

so that

Mn −Mn−1 =

t∑
i=1

P(Di(t) = k|PAn(m, δ))− P(Di(t) = k|PAn−1(m, δ)). (8.4.14)

Thus, we need to investigate the influence of the extra information contained in PAn(m, δ)
compared to the information contained in PAn−1(m, δ). For any s = 1, . . . , t, conditioning
on PAs(m, δ) is the same as conditioning to which vertices the first sm edges are attached.

Thus, in PAn−1(m, δ), we know where the edges of the vertices v(m)

1 , . . . , v(m)

n−1 are attached
to. In PAn(m, δ), we have the additional information of where the m edges originating
from the vertex v(m)

n are attached to. These m edges effect the degrees of at most m other
vertices, namely, the receiving ends of these m edges.

For the conditional expectations given PAs(m, δ), we need to take the expectation with
respect to all possible ways of attaching the remaining edges originating from the vertices
v(m)

s+1, . . . , v
(m)

t . As explained above, only the distribution of the degrees of the vertices in

PAt(m, δ) to which the m edges originating from v(m)
n are connected are effected by the

knowledge of PAn(m, δ) compared to PAn−1(m, δ). This number of vertices is at most
m, so that the distribution of the degrees of at most 2m vertices is different in the law of
PAt(m, δ) conditionally on PAn−1(m, δ) compared to the law of PAt(m, δ) conditionally
on PAn(m, δ). This implies (8.4.11).

The Azuma-Hoeffding’s Inequality (Theorem 2.24) then yields that, for any a > 0,

P
(
|Nk(t)− E[Nk(t)]| ≥ a

)
≤ 2e

− a2

8m2t . (8.4.15)

Taking a = C
√
t log t for any C with C2 > 8m2 then proves that

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
≤ 2e

−(log t) C
2

8m2 = o(t−1). (8.4.16)

This completes the proof of (8.4.4), and thus of Proposition 8.3.
The above proof is rather general, and can also be used to prove concentration around

the mean of other graph properties that are related to the degrees. An example is the
following. Denote by

N≥k(t) =

∞∑
l=k

Nl(t) (8.4.17)

the total number of vertices with degrees at least k. Then we can also prove that N≥k(t)

concentrates. Indeed, for C >
√

8m,

P
(
|N≥k(t)− E[N≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (8.4.18)

The proof uses the same ingredients as given above for N≥k(t), where now we can make
use of the martingale

M ′n = E[N≥k(t)|PAn(m, δ)]. (8.4.19)

Exercise 8.16 (Concentration of the number of vertex of degree at least k). Prove (8.4.18)
by adapting the proof of Proposition 8.3.
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8.5 Expected degree sequence

The main result in this section investigates the expected number of vertices with degree
equal to k. We denote the expected number of vertices of degree k in PAt(m, δ) by

N̄k(t) = E
[
tPk(t)

]
. (8.5.1)

The main aim is to prove that N̄k(t) is close to pkt, where pk is defined in (8.3.3). This is
the content of the following proposition:

Proposition 8.4 (Expected degree sequence). Fix δ > −m and m ≥ 1. Then, there exists
a constant C = C(δ,m) such that for all t ≥ 1 and all k ∈ N,

|N̄k(t)− pkt| ≤ C. (8.5.2)

The proof of Proposition 8.4 is split into two separate cases. We first prove the claim for
m = 1 in Section 8.5.1, and extend the proof to m > 1 in Section 8.5.2.

Exercise 8.17 (The total degree of high degree vertices). Use Propositions 8.4 and 8.3
to prove that for l = l(t) → ∞ as t → ∞ such that tl2−τ ≥ K

√
t log t for some K >

0 sufficiently large, there exists a constant B > 0 such that with probability exceeding
1− o(t−1), for all such l, ∑

i:Di(t)≥l

Di(t) ≥ Btl2−τ . (8.5.3)

Show further that, with probability exceeding 1− o(t−1), for all such l,

N≥l(t)�
√
t. (8.5.4)

8.5.1 Expected degree sequence for m = 1

In this section, we study the expected degree sequence when m = 1. We adapt the
argument in [59]. We start by writing

E
[
Nk(t+ 1)|PAt(1, δ)] = Nk(t) + E[Nk(t+ 1)−Nk(t)|PAt(1, δ)]. (8.5.5)

Conditionally on PAt(1, δ), there are four ways how Nk(t + 1) −Nk(t) can be unequal to
zero:

(a) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k−1, so that

its degree is increased to k, which happens with probability k−1+δ
t(2+δ)+(1+δ)

. Note that

there are Nk−1(t) end vertices with degree k − 1 at time t;

(b) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k, so that

its degree is increased to k + 1, which happens with probability k+δ
t(2+δ)+(1+δ)

. Note

that there are Nk(t) end vertices with degree k at time t;

(c) The degree of vertex v(1)

t+1 is one, so that N1(t) is increased by one, when the end

vertex of the (unique) edge incident to vertex v(1)

t+1 is not v(1)

t+1, which happens with

probability 1− 1+δ
t(2+δ)+(1+δ)

;

(d) The degree of vertex v(1)

t+1 is equal to two, so that N2(t) is increased by one, when

the end vertex of the (unique) edge incident to vertex v(1)

t+1 is equal to v(1)

t+1, which

happens with probability 1+δ
t(2+δ)+(1+δ)

.
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The changes in the degree sequence in cases (a) and (b) arise due to the attachment of

the edge (thus, the degree of one of the vertices v(1)

1 , . . . , v(1)

t is changed), whereas in cases

(c) and (d) we determine the degree of the added vertex v(1)

t+1.
Taking all these cases into account, we arrive at the key identity

E
[
Nk(t+ 1)−Nk(t)|PAt(1, δ)

]
=

k − 1 + δ

t(2 + δ) + (1 + δ)
Nk−1(t)

− k + δ

t(2 + δ) + (1 + δ)
Nk(t)

+ 1{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.5.6)

Here, k ≥ 1, and for k = 0, by convention, we define

N0(t) = 0. (8.5.7)

By taking the expectation on both sides of (8.5.6), obtain

E[Nk(t+ 1)] = E[Nk(t)] + E[Nk(t+ 1)−Nk(t)]

= E[Nk(t)] + E
[
E[Nk(t+ 1)−Nk(t)|PAt(1, δ)]

]
. (8.5.8)

Now using (8.5.6) gives us the explicit recurrence relation that, for k ≥ 1,

N̄k(t+ 1) = N̄k(t) +
k − 1 + δ

t(2 + δ) + (1 + δ)
N̄k−1(t)

− k + δ

t(2 + δ) + (1 + δ)
N̄k(t)

+ 1{k=1}
(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.5.9)

Equation (8.5.9) will the the key to the proof of Proposition 8.4 for m = 1. We start by
explaining its relation to (8.3.3). Indeed, when N̄k(t) ≈ tpk, then one might expect that
N̄k(t+1)−N̄k(t) ≈ pk. Substituting these approximations into (8.5.9), and approximating
t/(t(2 + δ) + (1 + δ)) ≈ 1/(2 + δ) and 1+δ

t(2+δ)+(1+δ)
≈ 0, we arrive at the fact that pk must

satisfy the recurrence relation, for k ≥ 1,

pk =
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1{k=1}, (8.5.10)

where we define p0 = 0. We now show that the unique solution to (8.5.10) is (8.3.3). We
can rewrite

pk =
k − 1 + δ

k + 2 + 2δ
pk−1 +

2 + δ

k + 2 + 2δ
1{k=1}. (8.5.11)

When k = 1, using that p0 = 0, we obtain

p1 =
2 + δ

3 + 2δ
. (8.5.12)
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On the other hand, when k > 1, we arrive at

pk =
k − 1 + δ

k + 2 + 2δ
pk−1. (8.5.13)

Therefore, using (8.2.2) repeatedly,

pk =
Γ(k + δ)Γ(4 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
p1 =

(2 + δ)Γ(k + δ)Γ(4 + 2δ)

(3 + 2δ)Γ(k + 3 + 2δ)Γ(1 + δ)

=
(2 + δ)Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
, (8.5.14)

and we see that the unique solution of (8.5.10) is pk in (8.3.3).
The next step is to use (8.5.9) and (8.5.10) to prove Proposition 8.4 for m = 1. To this

end, we define
εk(t) = N̄k(t)− tpk. (8.5.15)

Then, in order to prove Proposition 8.4 for m = 1, we are left to prove that there exists a
constant C = C(δ) such that

max
k
|εk(t)| ≤ C. (8.5.16)

The value of C will be determined in the course of the proof.
Now we deviate from the proof in [59]. In [59], induction in k was performed. Instead,

we use induction in t. First of all, we note that we can rewrite (8.5.10) as

(t+ 1)pk = tpk + pk

= tpk +
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1{k=1}

= tpk +
k − 1 + δ

t(2 + δ) + (1 + δ)
tpk−1 −

k + δ

t(2 + δ) + (1 + δ)
tpk + 1{k=1}

+
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1

−
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk. (8.5.17)

We abbreviate

κk(t) = −
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k + δ)pk − (k − 1 + δ)pk−1

)
, (8.5.18)

γk(t) =
1 + δ

t(2 + δ) + (1 + δ)

(
1{k=2} − 1{k=1}

)
. (8.5.19)

Then, (8.5.9) and (8.5.17) can be combined to yield that

εk(t+ 1) =
(

1− k + δ

t(2 + δ) + (1 + δ)

)
εk(t) +

k − 1 + δ

t(2 + δ) + (1 + δ)
εk−1(t) + κk(t) + γk(t).

(8.5.20)

We prove the bounds on εk(t) in (8.5.16) by induction on t ≥ 1. We start by initializing
the induction hypothesis. When t = 1, we have that PA1,δ(1) consists of a vertex with a
single self-loop. Thus,

N̄k(1) = 1{k=2}. (8.5.21)
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Therefore, since also pk ≤ 1, we arrive at the estimate that, uniformly in k ≥ 1,

|εk(1)| = |N̄k(1)− pk| ≤ max{N̄k(1), pk} ≤ 1. (8.5.22)

We have initialized the induction hypothesis for t = 1 in (8.5.16) for any C ≥ 1.
We next advance the induction hypothesis. We start with k = 1. In this case, we have

that ε0(t) = N0(t)− p0 = 0 by convention, so that (8.5.20) reduces to

ε1(t+ 1) =
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
ε1(t) + κ1(t) + γ1(t). (8.5.23)

We note that

1− 1 + δ

t(2 + δ) + (1 + δ)
≥ 0, (8.5.24)

so that

|ε1(t+ 1)| ≤
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
|ε1(t)|+ |κ1(t)|+ |γ1(t)|. (8.5.25)

Using the explicit forms in (8.5.18) and (8.5.19), it is not hard to see that there are universal
constants Cκ = Cκ(δ) and Cγ = Cγ(δ) such that, uniformly in k ≥ 1,

|κk(t)| ≤ Cκ(t+ 1)−1, |γk(t)| ≤ Cγ(t+ 1)−1. (8.5.26)

Exercise 8.18 (Formulas for Cγ and Cκ). Show that Cγ = 1 does the job, and Cκ =

supk≥1(k + δ)pk = (1 + δ)p1 = (1+δ)(2+δ)
3+2δ

.

Using the induction hypothesis (8.5.16), as well as (8.5.26), we arrive at

|ε1(t+ 1)| ≤ C
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ (Cκ + Cγ)(t+ 1)−1. (8.5.27)

Next, we use that t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), so that

|ε1(t+ 1)| ≤ C − (t+ 1)−1
(
C

1 + δ

2 + δ
− (Cκ + Cγ)

)
≤ C, (8.5.28)

whenever

C ≥ 2 + δ

1 + δ
(Cκ + Cγ). (8.5.29)

This advances the induction hypothesis for k = 1.
We now extend the argument to k ≥ 2. We again use (8.5.20). We note that

1− k + δ

t(2 + δ) + (1 + δ)
≥ 0 (8.5.30)

as long as
k ≤ t(2 + δ) + 1. (8.5.31)

We will assume (8.5.31) for the time being, and deal with k ≥ t(2 + δ) + 2 later.
By (8.5.20) and (8.5.31), we obtain that, for k ≥ 2 and δ > −1, so that k − 1 + δ ≥ 0,

|εk(t+ 1)| ≤
(

1− k + δ

t(2 + δ) + (1 + δ)

)
|εk(t)|+ k − 1 + δ

t(2 + δ) + (1 + δ)
|εk−1(t)|+ |κk(t)|+ |γk(t)|.

(8.5.32)
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Again using the induction hypothesis (8.5.16), as well as (8.5.26), we arrive at

|εk(t+ 1)| ≤ C
(

1− k + δ

t(2 + δ) + (1 + δ)

)
+ C

k − 1 + δ

t(2 + δ) + (1 + δ)
+ (Cκ + Cγ)(t+ 1)−1

= C
(

1− 1

t(2 + δ) + (1 + δ)

)
+ (Cκ + Cγ)(t+ 1)−1. (8.5.33)

As before,
t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), (8.5.34)

so that

|εk(t+ 1)| ≤ C − (t+ 1)−1
( C

2 + δ
− (Cκ + Cγ)

)
≤ C, (8.5.35)

whenever
C ≥ (2 + δ)(Cκ + Cγ). (8.5.36)

Finally, we deal with the case that k ≥ t(2 + δ) + 2. Note that k ≥ t(2 + δ) + 2 > t+ 2
when δ > −1. Since the maximal degree of PAt(1, δ) is t+2 (which happens precisely when
all edges are connected to the initial vertex), we have that N̄k(t+1) = 0 for k ≥ t(2+δ)+2.
Therefore, for k ≥ t(2 + δ) + 2,

|εk(t+ 1)| = (t+ 1)pk. (8.5.37)

By (8.3.9) and (8.3.10), uniformly for k ≥ t(2 + δ) + 2 ≥ t+ 2 for δ ≥ −1, there exists
a Cp = Cp(δ) such that

pk ≤ Cp(t+ 1)−(3+δ). (8.5.38)

For δ > −1, and again uniformly for k ≥ t+ 2,

(t+ 1)pk ≤ Cp(t+ 1)−(2+δ) ≤ Cp. (8.5.39)

Therefore, if C ≥ Cp, then also the claim follows for k ≥ t(2+δ)+2. Comparing to (8.5.29)
and (8.5.29), we choose

C = max
{

(2 + δ)(Cκ + Cγ),
(2 + δ)(Cκ + Cγ)

1 + δ
, Cp

}
. (8.5.40)

This advances the induction hypothesis for k ≥ 2, and completes the proof of Proposition
8.4 when m = 1 and δ > −1.

8.5.2 Expected degree sequence for m > 1∗

In this section, we prove Proposition 8.4 for m > 1. We adapt the argument in Section
8.5.1 above. In Section 8.5.1, we have been rather explicit in the derivation of the recursion
relation in (8.5.9), which in turn gives the explicit recursion relation on the errors εk(t) in
(8.5.20). In this section, we make the derivation more abstract, since the explicit derivations
become too involved when m > 1. The current argument is rather flexible, and can, e.g.,
be extended to different preferential attachment models.

We make use of the fact that to go from PAt(m, δ) to PAt+1(m, δ), we add precisely m
edges in a preferential way. This process can be described in terms of certain operators.
For a sequence of numbers Q = {Qk}∞k=1, we define the operator Tt+1 : R∞ 7→ R∞ by

(Tt+1Q)k =
(

1− k + δ

t(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1, (8.5.41)
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where we recall that δ′ = δ/m. Then, writing N̄(t) = {N̄k(t)}∞k=1, we can rewrite (8.5.9)
when m = 1 so that δ′ = δ,

N̄k(t+ 1) = (Tt+1N̄(t))k + 1{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
.

(8.5.42)

Thus, as remarked above (8.5.6), the operator Tt+1 describes the effect to the degree
sequence of a single addition of the (t + 1)st edge, apart from the degree of the newly
added vertex. The latter degree is equal to 1 with probability 1− 1+δ

t(2+δ)+(1+δ)
, and equal

to 2 with probability 1+δ
t(2+δ)+(1+δ)

. This explains the origin of each of the terms appearing

in (8.5.9).
In the case when m > 1, every vertex has m edges that are each connected in a prefer-

ential way. Therefore, we need to investigate the effect of attaching m edges in sequel. Due
to the fact that we update the degrees after attaching an edge, the effect of attaching the
(j + 1)st edge is described by applying the operator Tj to N̄(j). When we add the edges
incident to the tth vertex, this corresponds to attaching the edges m(t − 1) + 1, . . . ,mt
in sequel with intermediate updating. The effect on the degrees of vertices v1, . . . , vt is
described precisely by applying first Tmt+1 to describe the effect of the addition of the
first edge, followed by Tmt+2 to describe the effect of the addition of the second edge,
etc. Therefore, the recurrence relation of the expected number of vertices with degree k is
changed to

N̄k(t+ 1) = (T (m)

t+1 N̄(t))k + αk(t), (8.5.43)

where
T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.5.44)

and where, for k = m, . . . , 2m, we have that αk(t) is equal to the probability that the
degree of the (t + 1)st added vertex is precisely equal to n. Indeed, when t changes to
t+ 1, then the graph grows by one vertex. Its degree is equal to n with probability qn(t),
so that the contribution of this vertex is equal to αk(t). On the other hand, the edges
that are connected from the (t + 1)st vertex also change the degrees of the other ver-
tices. The expected number of vertices with degree k among vertices v1, . . . , vt is precisely
given by (T (m)

t+1 N̄(t))k. Thus, the operator T (m)

t+1 describes the effect to the degrees of ver-
tices v1, . . . , vt of the attachment of the edges emanating from vertex vt+1. This explains
(8.5.43).

When t grows large, then the probability distribution k 7→ αk(t) is such that αm(t) is
very close to 1, while αk(t) is close to zero when k > m. Indeed, for k > m, at least one
of the m edges should be connected to its brother half-edge, so that

2m∑
k=m+1

αk(t) ≤ m2(1 + δ)

mt(2 + δ′) + (1 + δ′)
. (8.5.45)

We define
γk(t) = αk(t)− 1{k=m}, (8.5.46)

then we obtain from (8.5.45) that there exists a constant Cγ = Cγ(δ,m) such that

|γk(t)| ≤ Cγ(t+ 1)−1. (8.5.47)

The bound in (8.5.47) replaces the bound on |γk(t)| for m = 1 in (8.5.26).
Denote the operator S(m) on sequences of numbers Q = {Qk}∞k=1 by

(S(m)Q)k = m
k − 1 + δ

2m+ δ
Qk−1 −m

k + δ

2m+ δ
Qk. (8.5.48)
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Then, for m = 1, we have that (8.5.10) is equivalent to

pk = (S(1)p)k + 1{k=1}. (8.5.49)

For m > 1, we replace the above recursion on p by pk = 0 for k < m and, for k ≥ m,

pk = (S(m)p)k + 1{k=m}. (8.5.50)

Again, we can explicitly solve for p = {pk}∞k=1. The solution is given in the following
lemma:

Lemma 8.5 (Solution recursion for m > 1). Fix δ > −1 and m ≥ 1. Then, the solution
to (8.5.50) is given by (8.3.2).

Proof. We start by noting that pk = 0 for k < m, and identify pm as

pm = −m m+ δ

2m+ δ
pm + 1, (8.5.51)

so that

pm =
2m+ δ

m(m+ δ) + 2m+ δ
=

2 + δ
m

(m+ δ) + 2 + δ
m

. (8.5.52)

For k > m, the recursion relation in (8.5.50) becomes

pk =
m(k − 1 + δ)

m(k + δ) + 2m+ δ
pk−1 =

k − 1 + δ

k + δ + 2 + δ
m

pk−1. (8.5.53)

As a result, we obtain that, again repeatedly using (8.2.2),

pk =
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
pm

=
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)

(2 + δ
m

)

(m+ δ + 2 + δ
m

)

=
(2 + δ

m
)Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
. (8.5.54)

Similarly to (8.5.17), we can rewrite (8.5.50) as

(t+ 1)pk = tpk + pk = tpk + (S(m)p)k + 1{k=m}

= (T (m)

t+1 tp)k + 1{k=m} − κk(t), (8.5.55)

where, writing I for the identity operator,

κk(t) = −
([
S(m) + t(I − T (m)

t+1 )
]
p
)
k
. (8.5.56)

While (8.5.56) is not very explicit, a similar argument as the ones leading to (8.5.26)
can be used to deduce an identical bound. That is the content of the following lemma:

Lemma 8.6 (A bound on κk(t)). Fix δ ≥ −1 and m ≥ 1. Then there exists a constant
Cκ = Cκ(δ,m) such that

|κk(t)| ≤ Cκ(t+ 1)−1. (8.5.57)
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We defer the proof of Lemma 8.6 to the end of this section, and continue with the proof
of Proposition 8.4 for m > 1.

We define, for k ≥ m,
εk(t) = N̄k(t)− tpk. (8.5.58)

Subtracting (8.5.55) from (8.5.43) and writing ε(t) = {εk(t)}∞k=1 leads to

εk(t+ 1) = (T (m)

t+1ε(t))k + κk(t) + γk(t). (8.5.59)

In order to study the recurrence relation (8.5.59) in more detail, we investigate the prop-

erties of the operator T (m)

t . To state the result, we introduce some notation. We let
Q = {Qk}∞k=1 be a sequence of real numbers, and we let Q = R∞ denote the set of all such
sequences. For Q ∈ Q, we define the supremum-norm to be

‖Q‖∞ =
∞

sup
k=1
|Qk|. (8.5.60)

Thus, in functional analytic terms, we consider the `∞ norm on Q = R∞.
Furthermore, we let Qm(t) ⊆ Q be the subset of sequences for which Qk = 0 for

k > m(t+ 1), i.e.,
Qm(t) = {Q ∈ Q : Qk = 0 ∀k > m(t+ 1)}. (8.5.61)

Clearly, N̄(t) ∈ Qm(t).

We regard T (m)

t+1 in (8.5.44) as an operator on Q. We now derive its functional analytic
properties:

Lemma 8.7 (A contraction property). Fix δ ≥ −1 and m ≥ 1. Then T (m)

t+1 maps Qm(t)
into Qm(t+ 1) and, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞. (8.5.62)

Lemma 8.7 implies that T (m)

t+1 acts as a contraction on elements of Qm(t). Using Lemmas
8.6 and 8.7, as well as (8.5.47) allows us to complete the proof of Proposition 8.4:

Proof of Proposition 8.4. We use (8.5.59). We define the sequence ε′(t) = {ε′k(t)}∞k=1 by

ε′k(t) = εk(t)1{k≤m(t+1)}. (8.5.63)

Then, by construction, ε′(t) ∈ Qm(t). Therefore, by Lemma 8.7,

‖ε(t+ 1)‖∞ ≤ ‖T (m)

t+1ε
′(t)‖∞ + ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞

≤
(

1− 1

(2m+ δ) + (m+ δ)

)
‖ε′(t)‖∞

+ ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞. (8.5.64)

Equation (8.5.47) is equivalent to the statement that

‖γ(t)‖∞ ≤
Cγ
t+ 1

. (8.5.65)

Lemma 8.6 implies that

‖κ(t)‖∞ ≤
Cκ
t+ 1

. (8.5.66)
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It is not hard to see that

‖ε′(t+ 1)− ε(t+ 1)‖∞ ≤ Cε′(t+ 1)−(τ−1), (8.5.67)

where τ > 2 is defined in (8.3.10). See (8.5.38)–(8.5.39) for the analogous proof for m = 1.
Therefore,

‖ε(t+ 1)‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 2
. (8.5.68)

Using further that, for m ≥ 1 and δ > −m,

t(2m+ δ) + (m+ δ) ≤ (2m+ δ)(t+ 1) (8.5.69)

we arrive at

‖ε(t+ 1)‖∞ ≤
(

1− 1

(t+ 1)(2m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 1
. (8.5.70)

Now we can advance the induction hypothesis

‖ε(t)‖∞ ≤ C. (8.5.71)

For some C > 0 sufficiently large, this statement trivially holds for t = 1. To advance it,
we use (8.5.70), to see that

‖ε(t+ 1)‖∞ ≤
(

1− 1

(2m+ δ)(t+ 1)

)
C +

(Cγ + Cκ + Cε′)

t+ 1
≤ C, (8.5.72)

whenever
C ≥ (2m+ δ)(Cγ + Cκ + Cε′). (8.5.73)

This advances the induction hypothesis, and completes the proof that |N̄k(t) − pkt| ≤ C
for m ≥ 2.

Proof of Lemmas 8.6 and 8.7. We first prove Lemma 8.7, and then Lemma 8.6.

Proof of Lemma 8.7. We recall that

T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.5.74)

Thus, the fact that T (m)

t+1 maps Qm(t) into Qm(t+ 1) follows from the fact that Tt+1 maps
Q1(t) into Q1(t+ 1). This proves the first claim in Lemma 8.7.

To prove that the contraction property of T (m)

t+1 in (8.5.62), we shall first prove that, for

all Q ∈ Q1(mt+ a− 1), a = 1, . . . ,m, δ > −m and δ′ = δ/m > −1, we have

‖(Tmt+aQ)‖∞ ≤
(

1− 1

t(2 + δ) + (1 + δ)

)
‖Q‖∞. (8.5.75)

For this, we recall from (8.5.41) that

(Tmt+aQ)k =
(

1− k + δ

(mt+ a)(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ

(mt+ a)(2 + δ′) + (1 + δ′)
Qk−1.

(8.5.76)
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When Q ∈ Q1(mt+ a), then, for all k for which Qk 6= 0,

1− k + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1], (8.5.77)

and, for k ≥ 2, also
k − 1 + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1]. (8.5.78)

As a consequence, we have that

‖Tmt+aQ‖∞ ≤ sup
k

[(
1− k + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞

+
k − 1 + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
‖Q‖∞

]
=
(

1− 1

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞. (8.5.79)

Now, by (8.5.79), the application of Tmt+a to an element Q of Q1(mt+ a− 1) reduces its
norm. By (8.5.74), we therefore conclude that, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤ ‖Tmt+1Q‖∞ ≤
(

1− 1

mt(2 + δ′) + (1 + δ′)

)
‖Q‖∞

=
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞, (8.5.80)

since δ′ = δ/m. This completes the proof of Lemma 8.7.
Proof of Lemma 8.6. We recall

κk(t) =
([
S(m) + t(I − T (m)

t+1 )
]
p
)
k
. (8.5.81)

We start with

T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1 =
(
I + (Tm(t+1) − I)

)
◦ · · · ◦

(
I + (Tmt+1 − I)

)
. (8.5.82)

Clearly,(
(Tt+1 − I)Q)k = − k + δ

t(2 + δ′) + (1 + δ′)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1. (8.5.83)

When supk k|Qk| ≤ K, then there exists a constant C such that

sup
k

∣∣∣((Tt+1 − I)Q)k

∣∣∣ ≤ C

t+ 1
. (8.5.84)

Moreover, when supk k
2|Qk| ≤ K, then there exists a constant C = CK such that, when

u, v ≥ t,
sup
k

∣∣((Tu+1 − I) ◦ (Tv+1 − I)Q)k
∣∣ ≤ C

(t+ 1)2
. (8.5.85)

We expand out the brackets in (8.5.82), and note that, by (8.5.85) and the fact that the
operators Tu are contractions that the terms where we have at least two factors Tu − I
lead to error terms. More precisely, we conclude that, when supk k

2|Qk| ≤ K,

(T (m)

t+1Q)k = Qk +

m∑
a=1

(
(Tmt+a − I)Q

)
k

+ Ek(t, Q), (8.5.86)
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where, uniformly in k and Q for which supk k
2|Qk| ≤ K,

|Ek(t, Q)| ≤ CK
(t+ 1)2

. (8.5.87)

As a result, we obtain that

(
(I − T (m)

t+1 )Q)k = −
m∑
a=1

(
(Tmt+a − I)Q

)
k
− Ek(t, Q). (8.5.88)

Furthermore, for every a = 1, . . . ,m,

(
(Tmt+a − I)Q

)
k

=
1

mt
(S(m)Q)k + Fk,a(t, Q), (8.5.89)

where, uniformly in k, Q for which supk k|Qk| ≤ K and a = 1, . . . ,m,

|Fk,a(t, Q)| ≤ C′K
(t+ 1)2

. (8.5.90)

Therefore, we also obtain that

m∑
a=1

(
(Tmt+a − I)Q

)
k

=
1

t
(S(m)Q)k + Fk(t, Q), (8.5.91)

where

Fk(t, Q) =

m∑
a=1

Fk,a(t, Q). (8.5.92)

We summarize from (8.5.88) and (8.5.91) that(
[S(m) + t(I − T (m)

t+1 )]Q
)
k

= −tFk(t, Q)− tEk(t, Q), (8.5.93)

so that

κk(t) =
(
[S(m) + t(I − T (m)

t+1 )]p
)
k

= −tFk(t, p)− tEk(t, p). (8.5.94)

We note that by (8.3.9) and (8.3.10), p satisfies that

sup
k
k2pk ≤ Cp, (8.5.95)

so that we conclude that

‖κ(t)‖∞ = sup
k

∣∣∣([S(m) + t(I − T (m)

t+1 )p]
)
k

∣∣∣ ≤ sup
k
t
(
|Ek(t, p)|+ |Fk(t, p)|

)
≤ t(CK + C′K)

(t+ 1)2
≤ CK + C′K

t+ 1
. (8.5.96)
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8.5.3 Degree sequence: completion proof of Theorem 8.2

We only prove the result for m = 1, the proof for m > 1 being identical. By Proposition
8.4, we obtain that

max
k
|E[Nk(t)]− pkt| ≤ C. (8.5.97)

Therefore, by Proposition 8.3 we obtain

P
(

max
k
|Nk(t)− pkt| ≥ C(1 +

√
t log t)

)
= o(1), (8.5.98)

which, since Pk(t) = Nk(t)/t, implies that

P
(

max
k
|Pk(t)− pk| ≥

C

t
(1 +

√
t log t)

)
= o(1). (8.5.99)

Equation (8.5.99) in turn implies Theorem 8.2.

8.6 Maximal degree in preferential attachment models

In this section, we shall investigate the maximal degree and the clustering of the graph
PAt(m, δ). In order to state the results on the maximal degree, we denote

Mt =
t

max
i=1

Di(t). (8.6.1)

The main result on the maximal degree is the following theorem:

Theorem 8.8 (Maximal degree of PAt(m, δ)). Fix m ≥ 1 and δ > −m. Then,

Mtt
− 1
τ−1

a.s.−→ µ, (8.6.2)

with P(µ = 0) = 0.

Below, we shall be able to compute all moments of the limiting random variables ξi
of Di(t)t

−1/(2+δ). We do not recognize these moments as the moments of a continuous
random variable.

Exercise 8.19 ([108]). Fix m = 1 and δ > −1. Then, prove that for all t ≥ i

P(Di(t) = j) ≤ Cj
Γ(t)Γ(i+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(i)
, (8.6.3)

where C1 = 1 and

Cj =
j − 1 + δ

j − 1
Cj−1. (8.6.4)

Mori [212] studied various martingales related to degrees, and used them to prove that
the maximal degree of {PAt(m, δ)}∞t=1 converges a.s. We shall reproduce his argument
here, applied to a slightly different model. See also [111, Section 4.3]. We fix m = 1 for
the time being, and extend the results to m ≥ 2 at the end of this section.

In [212], the graph at time 1 consists of two vertices, 0 and 1, connected by a single
edge. In the attachment scheme, no self-loops are created, so that the resulting graph is
a tree. The proof generalizes easily to other initial configurations and attachment rules,
and we shall adapt the argument here to the usual preferential attachment model in which
self-loops do occur and PA1(1, δ) consists of one vertex with a single self-loop. At the tth
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step, a new vertex is added and connected to an existing vertex. A vertex of degree k is
chosen with probability (k + δ)/n(t) where δ > −1 and n(t) = t(2 + δ) + 1 + δ is the sum
of the weights for the random graph with t edges and t vertices.

Let Xj(t) = Dj(t)+δ be the weight of vertex j at time t, let ∆j(t+1) = Xj(t+1)−Xj(t).
If j ≤ t, then

P (∆j(t+ 1) = 1|PAt(1, δ)) = Xj(t)/n(t). (8.6.5)

From this, we get

E (Xj(t+ 1)|PAt(1, δ)) = Xj(t)

(
1 +

1

n(t)

)
(8.6.6)

so ctXj(t) will be a martingale if and only if ct/ct+1 = n(t)/(1 + n(t)).
Anticipating the definition of a larger collection of martingales we let

ck(t) =
Γ(t+ 1+δ

2+δ
)

Γ(t+ k+1+δ
2+δ

)
, t ≥ 1, k ≥ 0, (8.6.7)

For fixed k ≥ 0, by (8.2.8),

ck(t) = t−k/(2+δ)(1 + o(1)) as t→∞ (8.6.8)

Using the recursion Γ(r) = (r − 1)Γ(r − 1) we have

ck(t+ 1)

ck(t)
=

t+ 1+δ
2+δ

t+ k+1+δ
2+δ

=
n(t)

n(t) + k
. (8.6.9)

In particular, it follows that c1(t)Xj(t) is a martingale for t ≥ j. Being a positive martingale
it will converge a.s. to a random variable ξj , as discussed in full detail in Theorem 8.1. To
study the joint distribution of the Xj(t) we make use of a whole class of martingales. We
first introduce some notation. For a, b > −1 with a−b > −1, where a, b are not necessarily
integers, we write (

a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
. (8.6.10)

The restriction on a, b is such that the arguments of the Gamma-function are all strictly
positive. Then the following proposition identifies a whole class of useful martingales
related to the degrees of the vertices:

Proposition 8.9 (A rich class of degree martingales). Let r ≥ 0 be a non-negative integer,
k1, k2, . . . , kr > −max{1, 1 + δ}, and 0 ≤ j1 < . . . < jr be non-negative integers. Then,
with k =

∑
i ki,

Z~j,~k(t) = ck(t)

r∏
i=1

(
Xji(t) + ki − 1

ki

)
(8.6.11)

is a martingale for t ≥ max{jr, 1}.

The restriction ki > −max{1, 1 + δ} is to satisfy the restrictions a, b, a − b > −1 in
(8.6.10), since Xj(t) ≥ 1 + δ. Since δ > −1, this means that Proposition 8.9 also holds for
certain ki < 0.

Exercise 8.20 (Martingale mean). Use Proposition 8.9 to show that, for all t ≥ max{jr, 1},

E[Z~j,~k(t)] =

r∏
i=1

cKi(ji)

cKi−1
(ji)

(
ki + δ

ki

)
, (8.6.12)

where Ki =
∑i
a=1 ka.
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Proof. By considering the two cases ∆j(t) = 0 or ∆j(t) = 1, and using (8.6.10) and
Γ(r) = (r − 1)Γ(r − 1), it is easy to check that, for all k,(

Xj(t+ 1) + k − 1

k

)
=

(
Xj(t) + k − 1

k

)
Γ(Xj(t+ 1) + k)

Γ(Xj(t) + k)

=

(
Xj(t) + k − 1

k

)(
1 +

k∆j(t)

Xj(t)

)
. (8.6.13)

At most one Xj(t) can change, so that

r∏
i=1

(
1 +

ki∆ji(t)

Xji(t)

)
=

(
1 +

r∑
i=1

ki∆ji(t)

Xji(t)

)
. (8.6.14)

Together, (8.6.13) and (8.6.14) imply that

r∏
i=1

(
Xji(t+ 1) + ki − 1

ki

)
=

(
1 +

r∑
i=1

ki∆ji(t)

Xji(t)

)
r∏
i=1

(
Xji(t) + ki − 1

ki

)
. (8.6.15)

Since P
(
∆j(t + 1) = 1|PAt(1, δ)

)
= Xj(t)/n(t), using the definition of Z~j,~k(t) and taking

expected value,

E
(
Z~j,~k(t+ 1)|PAt(1, δ)

)
= Z~j,~k(t) · ck(t+ 1)

ck(t)

(
1 +

∑
i ki

n(t)

)
= Z~j,~k(t), (8.6.16)

where k =
∑
i ki and the last equality follows from (8.6.9).

Being a non-negative martingale, Z~j,~k(t) converges. From the form of the martingale, the
convergence result for the factors, and the asymptotics for the normalizing constants in

(8.6.8), the limit must be
∏r
i=1 ξ

ki
i /Γ(ki + 1), where we recall that ξi is the almost sure

limit of Di(t)t
−1/(2+δ). Here we make use of (8.2.8), which implies that(

Xj(t) + k − 1

k

)
= Xj(t)

k(1 +O(1/Xj(t))), (8.6.17)

together with the fact that Di(t)
a.s.−→∞ (see Exercise 8.8).

Our next step is to check that the martingale converges in L1. To do this we begin by
observing that (8.6.8) implies cm(t)2/c2m(t)→ 1 and we have(

x+ k − 1

k

)2

=

(
Γ(x+ k)

Γ(x)Γ(k + 1)

)2

=
Γ(x+ k)

Γ(x)

Γ(x+ k)

Γ(x)Γ(k + 1)2
. (8.6.18)

Now we use that x 7→ Γ(x+ k)/Γ(x) is increasing for k ≥ 0, so that(
x+ k − 1

k

)2

≤ Γ(x+ 2k)

Γ(x+ k)

Γ(x+ k)

Γ(x)Γ(k + 1)2
=

(
x+ 2k − 1

2k

)
·

(
2k

k

)
. (8.6.19)

From this it follows that
Z~j,~k(t)2 ≤ C~kZ~j,2~k(t), (8.6.20)



8.6 Maximal degree in preferential attachment models 185

where

C~k =

r∏
i=1

(
2ki
ki

)
. (8.6.21)

Therefore, Z~j,~k(t) is an L2−bounded martingale, and hence converge in L1.
Taking r = 1 we have, for all j ≥ 1 integer and k ∈ R with k ≥ 0,

E[ξkj /Γ(k + 1)] = lim
t→∞

E[Zj,k(t)] = E[Zj,k(j)] = ck(j)

(
k + δ

k

)
. (8.6.22)

Recalling that ck(j) =
Γ(j+ 1+δ

2+δ
)

Γ(j+ k+1+δ
2+δ

)
, we thus arrive at the fact that, for all j non-negative

integers, and all k non-negative,

E[ξkj ] =
Γ(j + 1+δ

2+δ
)

Γ(j + k+1+δ
2+δ

)

Γ(k + 1 + δ)

Γ(1 + δ)
. (8.6.23)

It is, as far as we know, unknown which random variable has these moments, but we can
see that the above moments identify the distribution:

Exercise 8.21 (Uniqueness of limit). Prove that the moments in (8.6.23) identify the
distribution of ξj uniquely. Prove also that P(ξj > x) > 0 for every x > 0, so that ξj has
unbounded support.

Exercise 8.22 (A.s. limit of Dj(t) in terms of limit D1(t)). Show that ξj has the same
distribution as

ξ1

j∏
k=1

Bk, (8.6.24)

where Bk has a Beta(1, (2 + δ)k − 1)-distribution.

Exercise 8.23 (Martingales for alternative construction PA model [212]). Prove that when
the graph at time 0 is given by two vertices with a single edge between them, and we do not
allow for self-loops, then (8.6.22) remains valid when we instead define

ck(t) =
Γ(t+ δ

2+δ
)

Γ(t+ k+δ
2+δ

)
t ≥ 1, k ≥ 0. (8.6.25)

We complete this discussion by showing that P(ξj = 0) = 0 for all j ≥ 1. For this, we
use (8.2.8), which implies that, for k > −max{1, 1 + δ},

lim sup
t→∞

E
[( Xj(t)

t1/(2+δ)

)k]
≤ Ak lim sup

t→∞
E[Zj,k(t)] <∞. (8.6.26)

Since δ > −1, we have −1 − δ < 0, so that the a negative moment of Xj(t)/t
1/(2+δ)

remains uniformly bounded. This implies that P(ξj = 0) = 0. Indeed, we use that

Xj(t)/t
1/(2+δ) a.s.−→ ξj , which implies that Xj(t)/t

1/(2+δ) d−→ ξj , so that, using the Markov
property (Theorem 2.15), for every ε > 0 and k ∈ (−max{1, 1 + δ}, 0),

P(ξj ≤ ε) = lim sup
t→∞

P
(
Xj(t)/t

1/(2+δ) ≤ ε) ≤ lim sup
t→∞

ε−kE
[( Xj(t)

t1/(2+δ)

)k]
= O(ε−k).

(8.6.27)
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Letting ε ↓ 0, we obtain that P(ξj = 0) = 0.
We next move on to study the maximal degree Mt. Let Mt denote the maximal degree

in our random graph after t steps, and, for t ≥ j, let

Mj(t) = max
0≤i≤j

Zi,1(t). (8.6.28)

Note that Mt(t) = c1(t)(Mt + δ). We shall now prove that Mt(t)
a.s.−→ sup∞j=1 ξj :

Proof of Theorem 8.8 for m = 1. We start by proving Theorem 8.8 for m = 1. Being a max-

imum of martingales, {Mt(t)}∞t=1 is a non-negative submartingale. Therefore, Mt(t)
a.s.−→ µ

for some limiting random variable µ, and we are left to prove that µ = supj≥0 ξj .

Since Zj,1(t)k is a submartingale for every k ≥ 1, and Zj,1(t)k converges in L1 to ξkj ,
we further have that

E[Zj,1(t)k] ≤ E[ξkj ]. (8.6.29)

Then, using the trivial inequality

Mt(t)
k = max

0≤i≤t
Zi,1(t)k ≤

t∑
j=0

Zj,1(t)k, (8.6.30)

and (8.6.29), we obtain

E[Mt(t)
k] ≤

t∑
j=0

E[Zj,1(t)k] ≤
∞∑
j=0

E[ξkj ] = Γ(k + 1)

(
k + δ

k

)
∞∑
j=0

ck(j), (8.6.31)

which is finite by (8.6.8) if k > 2 + δ. Thus Mt(t) is bounded in Lk for every integer
k > 2 + δ, and hence bounded and convergent in Lp for any p ≥ 1. Therefore, to prove
that µ = supj≥0 ξj , we are left to prove that Mt(t) converges to supj≥0 ξj in Lk for some
k.

Let k > 2 + δ be fixed. Then, by a similar inequality as in (8.6.30),

E
[
(Mt(t)−Mj(t))

k] ≤ t∑
i=j+1

E[Zi,1(t)k] (8.6.32)

Since Mj(t) is a finite maximum of martingales, it is again a non-negative submartingale
which each converge almost surely and in Lk for any k > 2 + δ, its almost sure limit is
equal to max0≤i≤j ξi = µj , Therefore, the limit of the left-hand side of (8.6.32) is

E
[ (

lim
t→∞

t−1/(2+δ)Mt − µj
)k ]

(8.6.33)

while the right-hand side of (8.6.32) increases to (compare to (8.6.29))

∞∑
i=j+1

E[ξki ] = k!

(
k + δ

k

)
∞∑

i=j+1

ck(i), (8.6.34)

which is small if j is large by (8.6.8). Recall that t−1/(2+δ)Mt
a.s.−→ µ. Therefore, we obtain

that

lim
j→∞

E
[

(µ− µj)k
]

= 0. (8.6.35)
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Hence limt→∞ t
−1/(2+δ)Mt = µ as claimed.

When m ≥ 2, then the above can be used as well. Indeed, in this case, we have that by

Exercise 8.12, Di(t)(mt)
−1/(2+δ/m) a.s.−→ ξ′i, where

ξ′i =

mi∑
j=(i−1)m+1

ξj , (8.6.36)

and ξj is the almost sure limit of Dj(t) in {PA1,δ/m(t)}∞t=1. This implies that Mt
a.s.−→ µ =

sup∞j=1 ξ
′
j . We omit the details.

Since P(ξ1 = 0) = 0, we have that P(µ = 0) = P(sup∞j=1 ξj = 0) ≤ P(ξ1 = 0) = 0. Thus,

we see that Mt really is of order t1/(2+δ), and is not smaller.

8.7 Notes and discussion

Notes on Section 8.1. There are various ways of modeling the Rich-get-Richer or
preferential attachment phenomenon, and in these notes, we shall describe some related
models. The most general model is studied in [93], the main result being that the degrees
obey a power law. A model where the added edges are conditionally independent given
the degrees is given in [181]. A directed preferential attachment model is presented in [35].

Notes on Section 8.2. The degrees of fixed vertices plays a crucial role in the analysis
of preferential attachment models, see e.g. [64]. In [261], several moments of the degrees are
computed for the Albert-Barabási model, including the result in Theorem 8.1 and several
extensions.

Notes on Section 8.3. Most papers on specific preferential attachment models prove
that the degree sequences obey a power law. We shall refer in more detail to the various
papers on the topic when we discuss the various different ways of proving Proposition 8.4.
General results in this direction can be found for example in [39].

Notes on Section 8.4. The proof of Theorem 8.2 relies on two key propositions, namely,
Propositions 8.3 and 8.4. Proposition 8.3 is a key ingredient in the investigation of the
degrees in preferential attachment models, and is used in many related results for other
models. The first version, as far as we know, of this proof is in [64].

Notes on Section 8.5. The proof of the expected empirical degree sequence in Propo-
sition 8.4 is new, and proves a stronger result than the one for δ = 0 appearing in [64].
The proof of Proposition 8.4 is also quite flexible. For example, instead of the growth rule
in (8.1.1), we could attach the m edges of the newly added vertex v(m)

t+1 each independently
and with equal probability to a vertex i ∈ [t] with probability proportional to Di(t) + δ.
More precisely, this means that, for t ≥ 3,

P
(
v(m)

t+1 → v(1)

i

∣∣PAt(m, δ)
)

=
Di(t) + δ

t(2m+ δ)
for i ∈ [t], (8.7.1)

and, conditionally on PAt(m, δ), the attachment of the edges are independent. We can
define PA2(m, δ) to consist of 2 vertices connected by m edges.

It is not hard to see that the proof of Proposition 8.3 applies verbatim:

Exercise 8.24 (Adaptation concentration degree sequence). Adapt the proof of Propo-
sition 8.3 showing the concentration of the degrees to the preferential attachment model
defined in (8.7.1).
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It is not hard to see that also the proof of Proposition 8.4 applies by making the obvious
changes. In fact, the limiting degree sequence remains unaltered. A second slightly different
model, in which edges are added independently without intermediate updating, is studied
by Jordan in [175].

The original proof in [64] of the asymptotics of the expected empirical degree sequence
for δ = 0 makes use of an interesting relation between this model and so-called n-pairings.
An n-pairing is a partition of the set {1, . . . , 2n} into pairs. We can think about the pairs
as being points on the x-axis, and the pairs as chords joining them. This allows us to speak
of the left- and right-endpoints of the pairs.

The link between an n-pairing and the preferential attachment model with δ = 0 and
m = 1 is obtained as follows. We start from the left, and merge all left-endpoints up to
and including the first right endpoint into the single vertex v1. Then, we merge all further
left-endpoints up to the next right endpoint into vertex v2, etc. For the edges, we replace
each pair by a directed edge from the vertex corresponding to its right endpoint to the
vertex corresponding to its left endpoint. Then, as noted in [62], the resulting graph has
the same distribution as G1(t). The proof in [64] then uses explicit computations to prove

that for k ≤ t1/15,
E[Nk(t)] = tpk(1 + o(1)). (8.7.2)

The advantage of the current proof is that the restriction on k in k ≤ t1/15 is absent, that
the error term in (8.7.2) is bounded uniformly by a constant, and that the proof applies
to δ = 0 and δ 6= 0.

The approach of Hagberg and Wiuf in [141] is closest to ours. In it, the authors assume
that the model is a preferential attachment model, where the expected number of vertices
of degree k in the graph at time t+ 1, conditionally on the graph at time t solves

E[Nk(t+ 1)|N(t)] = (1− ak
t

)Nk(t)− ak−1

t
Nk−1(t) + ck, (8.7.3)

where Nk(t) is the number of vertices of degree k at time t, N(t) = {Nk(t)}∞k=0 and it
is assumed that a−1 = 0, and where ck ≥ 0 and ak ≥ ak−1. Also, it is assumed that
|Nk(t)−Nk(t− 1)| is uniformly bounded. This is almost true for the model considered in
this chapter. Finally, {N(t)}∞t=0 is assumed to be a Markov process, starting at some time
t0 in a configuration N(t0). Then, with

αk =

k∑
j=0

cj
1 + aj

∞∏
i=j+1

ai−1

1 + ai
, (8.7.4)

it is shown that Nt(k)/t converges to αk.

Exercise 8.25 (Monotonicity error [141]). Show that

k
max
j=1
|E[Nt(j)]− αjt| (8.7.5)

is non-increasing.

Notes on Section 8.6. The beautiful martingale description in Proposition 8.9 is due
to Mori [212] (see also [213]). We largely follow the presentation in [111, Section 4.3],
adapting it to the setting of preferential attachment models in Section 8.1. The fact that
Proposition 8.9 also holds for non-integer ki is, as far as we know, new. This is relevant,
since it identifies all moments of the limiting random variables ξj , which might prove useful
in order to identify their distribution, which, however, has not been done yet.



Intermezzo: Back to real networks II...

In the previous sections, we have discussed various models having flexible degree sequences.
The generalized random graph and the configuration model give us static flexible models
for random graphs with various degree sequences. Preferential attachment models give
us a convincing explanation of the abundance of power-law degree sequences in various
applications. In Chapters 6–8, we have focussed on the properties of the degrees of such
graphs. However, we have noted in Chapter 1 that many real networks not only have
degree sequences that are rather different from the ones of the Erdős-Rényi random graph,
also many examples are small worlds and have a giant connected component.

In the Chapters 9–11, we shall return to the models discussed in Chapters 6–8, and
focus on their critical behavior as well as on the distances in these random graph mod-
els. Interestingly, a large chunk of the non-rigorous physics literature suggests that the
behavior in various different random graph models can be described by only a few essential
parameters. The key parameter of each of these models in the power-law degree exponent,
and the physics literature predicts that the behavior in random graph models with similar
degree sequences is similar. This is an example of the notion of universality, a notion
which is central in statistical physics. Despite its importance, there are only few example
of universality that can be rigorously proved. In Chapters 9–11, we shall investigate the
level of universality present in random graph models.
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Chapter 9

Inhomogeneous random graphs revisited

In this chapter, we discuss the phase transition and distances in inhomogeneous random
graphs, which can be viewed as generalizations of the generalized random graph investi-
gated in Chapter 6. For technical reasons, we primarily work with the Norros-Reittu model
NRn(w), all our results also apply to the generalized random graph GRGn(w) and the
Chung-Lu model CLn(w).

This chapter is organized as follows. In Section 9.1, we investigate the connectivity
structure of generalized random graphs, by investigating the phase transition of its largest
connected component and its small-world properties. The results in Section 9.1 are all
proved. In Section 9.2, we give the proofs of the lower bounds on the distances, in Sections
9.3– 9.4, we prove the corresponding upper bounds. The proof of the phase transition for
generalized random graphs is deferred to Chapter 10, where the phase transition is proved
for the configuration model. In Section 9.5, we discuss the general setting of inhomogeneous
random graphs from [61] with its detailed and deep results. In Section 9.6, we state some
recent related results, and in Section 9.8, we close this chapter with notes and discussion.

9.1 Connectivity structure of generalized random graphs

9.1.1 The phase transition in generalized random graphs

In this section, we investigate the size of the largest connected component in generalized
random graphs.

Example 9.1 (Population of two types (Cont.)). Recall Example 6.1, where we assumed
that two distinct types of vertices are present. The first type has on average m1 neighbors,
the second type m2, where m1 6= m2. We have modeled this with a GRGn(w) where n1

vertices have weight m1 and n2 vertices have weight m2, and write n = n1 + n2. Assume
that n1/n → p. Under what conditions does GRGn(w) have a giant component? When
we compare with Theorem 4.8, we may suspect that a giant component exists whenever a
uniform vertex has on average more than 1 neighbor. The latter is true when

pm1 + (1− p)m2 > 1. (9.1.1)

In this section, we examine whether this intuition is correct.

Exercise 9.1 (Average degree in two populations). Show that the average degree is close
to pm1 + (1− p)m2 in the setting of Example 9.1.

In order to state the main result in this section, we recall the limiting degree distribution
in the generalized random graph given in (6.3.2)

pk = E
[
e−W

W k

k!

]
, k ≥ 0. (9.1.2)

Then, Theorem 6.9 shows that the degree sequence in GRGn(w) is close to (pk)k≥0. The
main result is as follows:

Theorem 9.2 (Phase transition in generalized random graphs). Suppose that Condition
6.4(a)-(b) hold and consider the random graph NRn(w), letting n→∞. Let Cmax and C(2)

be the largest and second largest components of NRn(w).
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(a) If ν = E[W 2]/E[W ] > 1, then there exist ξ ∈ (0, 1), ζ ∈ (0, 1) such that

|Cmax|/n
P−→ ζ,

vk(Cmax)/n
P−→ pk(1− ξk), for every k ≥ 0,

|E(Cmax)|/n P−→ 1
2
E[W ](1− ξ2).

while |C(2)|/n
P−→ 0 and |E(C(2))|/n

P−→ 0.

(b) If ν = E[W 2]/E[W ] ≤ 1, then |Cmax|/n
P−→ 0 and |E(Cmax)|/n P−→ 0.

The above results apply to GRGn(w) and CLn(w) under the same conditions.

The proof of Theorem 9.2 is deferred to Section 10.1.2 in Chapter 10, where a similar
result is proved for the configuration model. By the strong relation between the configu-
ration model and the generalized random graph, this result can be seen to imply Theorem
9.2.

Exercise 9.2 (The phase transition for two populations). Show that the ζ > 0 precisely
when [pm2

1 + (1 − p)m2
2]/[pm1 + (1 − p)m2] > 1 in the setting of Example 9.1. Find an

example of p,m1,m2 where the average degree is less than one, yet there exists a giant
component.

Reformulation in terms of branching processes. We start by reformulating the
results in Theorem 9.2 in terms of branching processes. We can interpret ξ as the extinction
probability of a branching process, and ζ as the survival probability of a related two-stage
branching process.

We start by introducing two-stage branching processes with a mixed Poisson offspring.
We define the branching process (Zl)l≥0 as starting from Z0 = 1, where in the first gener-
ation the offspring distribution is equal to (pk)k≥0 given in (9.1.2), whereas in the second
and further generations the offspring is chosen in accordance to

gk =
(k + 1)pk+1

E[W ]
=

1

E[W ]
E
[
e−W

W k+1

k!

]
, k ≥ 0, (9.1.3)

where W is the mixing distribution. The expected number of offspring in the second and
further generations is given by

∞∑
k=1

kgk =
1

E[W ]
E
[ ∞∑
k=1

k(k + 1)e−W
W k+1

(k + 1)!

]
= E[W 2]/E[W ] = ν. (9.1.4)

In particular, a branching process with mixed Poisson offspring distribution is supercritical
when E[W 2] > E[W ]. In Section 9.3.1, we relate the neighborhoods of NRn(W ) to an or-
dinary branching process having asymptotic expected offspring equal to ν = E[W 2]/E[W ].
Therefore, ν > 1 is equivalent to the branching process being supercritical.

We now heuristically explain this relation to branching processes by describing the
exploration of a vertex U chosen uniformly from the vertex set [n]. By Theorem 6.9, the
probability that its degree is k converges to pk, for every k ≥ 1. This explains the offspring
of the root of our branching process approximation.

To describe the offspring of the direct neighbors of the root, we need to examine the
forward degree of a uniform neighbor of the root. Here, by forward degree, we mean
the number of vertices unequal to the root to which a neighbor of the root is connected.
Intuitively, this forward degree is not much different from the degree minus one of a vertex
contained in a uniform edge. We apply Theorem 6.5, which states that the total number
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of edges in GRGn(w) and NRn(w) is well approximated by its mean `n. We also use that

the probability that an edge is occupied is close to wiwj/`n, so that the probability g(n)

k
that the forward degree equals k is close to

g(n)

k ≈ 1

`n

∑
i,j∈[n]

P(ij occupied, Dj = k + 1) (9.1.5)

=
1

`n

∑
i,j∈[n]

wiwj
`n

P(Xj = k)

=
1

`n

∑
j∈[n]

wjP(Xj = k),

where Xj =
∑
s∈[n] : s 6=i,j Isj , where (Isj) are independent Bernoulli variables with P(Isj =

1) = wswj/`n. By Theorem 2.10, Xj is close to a Poisson random variable with mean∑
s∈[n] wswj/`n = wj , so that

g(n)

k ≈ 1

`n

∑
j∈[n]

wjP(Poi(wj) = k) = P(Poi(W ∗n) = k), (9.1.6)

where W ∗n is the size-biased distribution of Wn. Here, for a non-negative random variable
X with E[X] > 0, we let X∗ denote its size-biased distribution given by

P(X∗ ≤ x) =
E[X1{X≤x}]

E[X]
. (9.1.7)

When Condition 6.4(a)-(b) holds, we have that W ∗n
d−→ W ∗, which is the size-biased

distribution of W . We arrive at

g(n)

k ≈ P(Poi(W ∗) = k) =
1

E[W ]
E
[
e−W

W k+1

k!

]
= gk, (9.1.8)

which explains (9.1.3). It turns out that the steps in the above heuristic explanation can
be made precise. See Section 9.3.1, where we relate the neighborhood of a uniform vertex
in NRn(w) to a mixed Poisson random variable.

The above heuristically argues that the number of vertices unequal to the root connected
to any neighbor of the root has asymptotic law (gk)k≥0. However, every time we find a
vertex in the cluster of the root, the number of available vertices decreases, in a similar way
as the depletion-of-points effect in the exploration of clusters for the Erdős-Rényi random
graph ERn(λ/n). Since the number of vertices is originally n, we can grow the cluster of
the root for a long time before we note this effect.

As a result, the degrees of different vertices in the exploration process is close to being
i.i.d., leading to a branching process approximation. In terms of this branching process, we
can interpret ζ in Theorem 9.2 as the survival probability of the above two-stage branching
process, so that ζ satisfies

ζ =

∞∑
k=1

pk(1− ξk), (9.1.9)

where ξ is the extinction probability of the branching process with offspring distribution
(gk)k≥0. Clearly, ξ = 1 precisely when

ν =
∑
k≥0

kgk ≤ 1, (9.1.10)
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which explains the condition on ν in Theorem 9.2(a). Further, by Theorem 6.9, there are
approximately npk vertices with degree k. Assuming approximate independence of each of
these k neighbors, each of them survives with probability 1−ξ, so that the probability that
at least one survives equals 1−ξk. When one of the neighbors survive, the vertex itself will

be part of the giant component, which explains why vk(Cmax)/n
P−→ pk(1−ξk). Finally, an

edge consists of two half-edges, and an edge is part of the giant component precisely when
one of the vertices incident to it is, which occurs with probability 1−ξ2. There are in total

approximately `n/2 ≈ nE[W ]/2 edges, which explains why |E(Cmax)|/n P−→ 1
2
E[W ](1−ξ2).

Therefore, all results in Theorem 9.2 have a simple explanation in terms of the branching
process approximation of the connected component of a uniform vertex in [n] for NRn(w).

Exercise 9.3 (Degree sequence of giant component). Show that the proportion of vertices
of the giant component Cmax having degree k is close to pk(1− ξk)/ζ.

Exercise 9.4 (Degree sequence of complement of giant component). Show that when
ξ < 1, the proportion of vertices outside the giant component Cmax having degree k is
close to pkξ

k/(1 − ζ). Conclude that the degree sequence of the complement of the giant
component never satisfies a power law. Can you give an intuitive explanation for this?

We close this section by discussing the consequences of the phase transition for the
attack vulnerability of CLn(w):

Attack vulnerability of CLn(w). Suppose an adversary attacks a network by removing
some of its vertices. A clever adversary would remove the vertices in a clever way, this
is often referred to as a deliberate attack. On the other hand, the vertices might also be
exposed to random failures, which is often referred to as a random attack. The results as
stated above do not specifically apply to these settings, but do have intuitive consequences.
We model a deliberate attack as the removal of a proportion of the vertices with highest
weights, whereas a random attack is modeled by random removal of the vertices with a
given probability. One of the aims is to quantify the effect of such attacks, and in particular
the difference in random and deliberate attacks. We shall denote the proportion of removed
vertices by p. We shall always assume that ν > 1, so that a giant component exists, and
we investigate under what conditions on p and the graph CLn(w), the giant component
remains to exist.

We start by addressing the case of random attack for the CLn(w) model under Condition
6.4(a)-(c), where E[W 2] <∞. One of the difficulties of the above set-up is that we remove
vertices rather than edges, so that the resulting graph is no longer an IRG. In percolation
jargon, we deal with site percolation rather than with edge percolation. We start by
relating the obtained graph to an IRG.

Note that when we explore a cluster of a vertex after an attack, then the vertex may not
have been affected by the attack, which has probability p. After this, in the exploration,
we shall always inspect an edge between a vertex which is unaffected by the attack and
a vertex of which we do not yet know whether it has been attacked or not. As a result,
for random attacks, the probability that it is affected is precisely equal to p. Therefore, it
is similar to the random graph where pij is replaced with (1 − p) × pij . For a branching
process, this identification is exact, and we have that ζκ,p = (1 − p)ζ(1−p)κ, where ζκ,p
denotes the survival probability of the branching process where each individual is killed
with probability p independently of all other randomness. For CLn(w), this equality is only
asymptotic. In the case where E[W 2] < ∞, so that ν < ∞, this means that there exists
a critical value pc = 1− 1/ν, such that if p < pc, the CLn(w) where vertices are removed
with probability p, the giant component persists, while if p > pc, then the giant component
is destroyed. Thus, when E[W 2] < ∞, the CLn(w) is sensitive to random attacks. When
E[W 2] = ∞, on the other hand, ν = ∞, so that the giant component persists for every
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p ∈ [0, 1), and the graph is called robust to random attacks. Here we must note that the
size of the giant component does decrease, since ζκ,p < pζκ!

For a deliberate attack, we remove the proportion p of vertices with highest weight.
This means that w is replaced with w(p), which is equal to wi(p) = wi1{i>np}, and we
denote the resulting edge probabilities by

pij(p) = max{1, wi(p)wj(p)/`n}. (9.1.11)

In this case, the resulting graph on [n] \ [np] is again a Chung-Lu model, for which ν is
replaced with ν(p) given by

ν(p) = E[[1− F ]−1(U)2
1{U>p}]/E[W ], (9.1.12)

where U is uniform on [0, 1]. Now, for any distribution function F , E[[1−F ]−1(U)2
1{U>p}] <

∞, so that, for p sufficiently close to 1, ν(p) < 1. Thus, the CLn(w) model is always sen-
sitive to deliberate attacks.

Exercise 9.5 (Finiteness of ν(p)). Prove that ν(p) < ∞ for every p ∈ (0, 1] and any
distribution function F .

Exercise 9.6 (Connectivity of uniformly chosen vertices). Suppose we draw two vertices
uniformly at random from [n]. Prove that Theorem 9.2 implies that the probability that the
vertices are connected converges to ζ2.

9.1.2 The small-world phenomenon in generalized random graphs

In this section, we discuss typical distances in NRn(w). We define Hn to be the graph
distance between two vertices chosen uniformly at random from [n], where the graph dis-
tance between two vertices is the minimal number of edges in all paths connecting the
vertices. It is possible that no path connecting the vertices exists, in which case, we define
Hn = +∞. By Theorem 9.2, P(H−n = +∞)→ 1− ζ2 > 0, since ζ < 1 (see Exercise 9.6).
In particular, when ζ = 0, which is equivalent to ν ≤ 1, P(H − n = +∞)→ 1. Therefore,
in our main results, we shall condition on Hn <∞.

Distances in inhomogeneous random graphs with finite variance weights. We
start by investigating the behavior of Hn for NRn(w) in the case where the weights have
finite variance:

Theorem 9.3 (Typical distances in NRn(w) for finite-variance weights). In the Norros-
Reittu model NRn(w), where the weights w = (wi)i∈[n] satisfy Condition 6.4(a)-(c) and
where ν > 1, conditionally on Hn <∞,

Hn/ logn
P−→ 1/ log ν. (9.1.13)

The same result applies, under the same conditions, to CLn(w) and GRGn(w).

We give a complete proof of Theorem 9.3 in Sections 9.2-9.4 below. The intuition behind
Theorem 9.3 is as follows. In Section 9.1.1, we have argued that the neighborhood of a
uniform vertex in NRn(w) is well-approximated by a two-stage branching process, where
the second and all later generations have offspring distribution (gk)k≥0 in (9.1.3). When

ν =
∑
k≥0 kgk <∞, then the number of vertices at distance k is close to Mνk, where M is

the martingale limit of Zk/νk. To know what Hn is, we need to grow the neighborhoods
from the first uniform vertex until we find the second uniform vertex. The latter happens
with reasonable probability when Zk ≈ n, which suggests that the relevant k is such that
νk ≈ n, so that k ≈ logν n.
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While the above heuristic is quite convincing, the argument is fatally flawed. Indeed,
as argued in Section 9.1.1, the neighborhoods of a uniform vertex are well-approximated
by a branching process as long as the number of vertices found is much smaller than n.
When the number of vertices found becomes of order n, the depletion-of-points effect has
already started to kick in. Therefore, the above approach is doomed to fail. Our proof
instead, is divided in a lower and and upper bound on the typical distance Hn. For the
proof of the lower bound in Section 9.2.1, we show that the expected number of paths of k
edges between two uniform vertices is approximately νk/`n, so that such a path whpdoes
not exist when k ≤ (1− ε) logν n. For the proof of the upper bound in Section 9.4, we use
a second moment method to show that, conditionally on the two uniformly chosen vertices
being in the giant component, whpthere exists a path of (1 + ε) logν n edges.

Exercise 9.7 (Typical distances in ERn(λ/n)). Prove that Hn/ logn
P−→ 1/ log λ in

ERn(λ/n).

Theorem 9.3 leaves open what happens when ν =∞. We can use Theorem 9.3 to show
that Hn = oP(logn):

Exercise 9.8 (Typical distances when ν =∞). Prove that Hn/ logn
P−→ 0 when ν =∞.

Distances in inhomogeneous random graphs with infinite variance weights. In
this section, we study typical distances in the Norros-Reittu random graph NRn(w), in the
case where the degrees obey a power-law with degree exponent τ satisfying that τ ∈ (2, 3).
In this case, ν =∞, so that Hn = oP(logn) (recall Exercise 9.8).

Many of our arguments also apply to the generalized random graph GRGn(w) and the
Chung-Lu model CLn(w). In this section, we discuss the setting where the weights w
are heavy tailed. Recall that Fn(x) denotes the proportion of vertices i for which wi ≤ x.
Then, we assume that there exists a τ ∈ (2, 3) such that for all δ > 0, there exists c1 = c1(δ)
and c2 = c2(δ) such that, uniformly in n,

c1x
−(τ−1+δ) ≤ [1− Fn](x) ≤ c2x−(τ−1−δ), (9.1.14)

where the upper bound is expected to hold for every x ≥ 1, while the lower bound is only
required to hold for 1 ≤ x ≤ nα for some α > 1/2.

The assumption in (9.1.14) is what we need precisely, and it states that [1 − Fn](x)
obeys power-law bounds for appropriate values of x. Note that the lower bound in (9.1.14)
cannot be valid for all x, since Fn(x) > 0 implies that Fn(x) ≥ 1/n, so that the lower and

upper bound in (9.1.14) are contradicting when x� n1/(τ−1). Thus, the lower bound can

hold only for x = O(n1/(τ−1)). When τ ∈ (2, 3), we have that 1/(τ − 1) ∈ (1/2, 1), and we
only need the lower bound to hold for x ≤ nα for some α ∈ (1/2, 1).

We now give simpler conditions for (9.1.14) in special cases:

Exercise 9.9 (Power-law tails in key example of deterministic weights). Let w be defined
as in (6.1.10), and assume that F satisfies

1− F (x) = x−(τ−1)L(x), (9.1.15)

where the exponent satisfies τ ∈ (2, 3), and where x 7→ L(x) is slowly varying. Prove that
(9.1.14) holds.

Exercise 9.10 (Power-law tails for i.i.d. weights). For i.i.d. weights w = (wi)i∈[n] with
distribution F satisfying that (9.1.15) with τ ∈ (2, 3), and where x 7→ L(x) is slowly
varying. Prove that (9.1.14) holds with probability converging to 1.

Our main result is as follows:
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Theorem 9.4 (Typical distances in NRn(w) for τ ∈ (2, 3)). Fix the Norros-Reittu model
NRn(w), where the weights w = (wi)i∈[n] satisfy Condition 6.4(a)-(b) and (9.1.14). Then,
conditionally on Hn <∞,

Hn
log logn

P−→ 2

| log (τ − 2)| . (9.1.16)

The same results apply, under the same conditions, to CLn(w) and GRGn(w).

Theorem 9.4 implies that NRn(w) with w as in (6.1.10), for τ ∈ (2, 3), is an ultra-small
world when (9.2.14) is satisfied.

The main tool to study distances in NRn(w) is a comparison to branching processes,
which is particularly pretty for NRn(w). In the next two sections, we prove Theorems
9.3–9.4. When τ > 3, then the branching process approximation has finite mean, and we
can make use of the martingale limit results of the number of individuals in generation k
as k → ∞. When τ ∈ (2, 3), on the other hand, the branching process has infinite mean.
In this case, the number of individuals in generation k, conditionally on survival, grows
superexponentially, which explains why distances grow doubly logarithmically. See Section
10.6, where this is explained in more detail in the context of the configuration model. The
superexponential growth implies that a path between two vertices typically passes through
vertices with growing weights as we move away from the two vertices. Thus, starting from
the first vertex U1 ∈ [n], the path connecting U1 to U2 uses vertices that first grow until
the midpoint of the path is reached, and then decrease again to reach U2. This can be
understood by noting that the probability that vertex with weight w is not connected to
any vertex with weight larger than y > w in NRn(w) is

e
−

∑
i : wi>y

wwi/`n = e−w[1−F∗n ](y), (9.1.17)

where F ∗n(y) =
∑
i : wi≤y wi/`n is the distribution function of W ∗n introduced in (9.1.6).

When (9.1.14) holds, it follows that [1−F ∗n ](y) is close to y−(τ−2), the size-biasing increasing
the power by one. Therefore, the probability that vertex with weight w is not connected to

any vertex with weight larger than y > w in NRn(w) is approximately e−wy
−(τ−2)

. Take

w large, then this probability is small when y � w1/(τ−2). Thus, a vertex of weight w is
whp connected to a vertex of weight w1/(τ−2). Since 1/(τ − 2) > 1 when τ ∈ (2, 3), we
obtain that vertices with large weights w are whp connected to vertices with weight at
least w1/(τ−2).

The proof of Theorems 9.3–9.4 are organized as follows. In Section 9.2, we prove the
lower bounds on the typical distance in NRn(w), both when τ > 3 and when τ ∈ (2, 3). In
Section 9.3, we describe a stochastic domination of the neighborhoods in NRn(w) in terms
of a marked Poisson branching process and prove the log logn upper bound for τ ∈ (2, 3).
In Section 9.4, we investigate the number of paths between sets of vertices in NRn(w), and
use this to prove the logn upper bound when τ > 3. In each of our proofs, we formulate
the precise results as separate theorems, and prove them under conditions that are slightly
weaker than those in Theorems 9.3–9.4.

9.2 Lower bounds on typical distances

In this section, we prove lower bounds on typical graph distances. In Section 9.2.1, we
prove the lower bound in Theorem 9.32(i) in the setting of Theorem 9.3.

9.2.1 Logarithmic lower bound graph distance in finite variance case

In this section, we prove a logarithmic lower bound on the graph distance in NRn(w).
The main result is as follows:
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π0 = i π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 = j

π

Figure 9.1: A 12-step self-avoiding path connecting vertices i and j.

Theorem 9.5 (Logarithmic lower bound graph distances NRn(w)). Assume that

lim sup
n→∞

νn = ν, (9.2.1)

where ν ∈ (1,∞) and

νn = E[W 2
n ]/E[Wn] =

∑
i∈[n]

w2
i /
∑
i∈[n]

wi. (9.2.2)

Then, for any ε > 0,
P(Hn ≤ (1− ε) logν n) = o(1). (9.2.3)

The same results hold for CLn(w) and GRGn(w) under the same conditions.

Proof. We recall that Hn is the graph distance in NRn(w) between two vertices drawn
uniformly at random from [n]. The idea behind the proof of Theorem 9.5 is that it is
quite unlikely that a path exists that is much shorter than logν n edges. In order to show
this, we use a first moment bound and show that the expected number of occupied paths
connecting the two vertices chosen uniformly at random from [n] having length at most k
is o(1). We now fill in the details.

We denote the graph distance between i, j ∈ [n] in NRn(w) by distNRn(w)(i, j) and
abbreviate kn = d(1 − ε) logν ne. Then, conditioning on the uniform vertices chosen and
Boole’s inequality gives

P(Hn ≤ kn) =
1

n2

∑
i,j∈[n]

P(distNRn(w)(i, j) ≤ kn)

=
1

n2

∑
i,j∈[n]

kn∑
k=0

P(distNRn(w)(i, j) = k). (9.2.4)

We make use of path counting techniques. A path π = (π0, . . . , πk) of length k between
vertices i and j is a sequence of vertices connecting π0 = i to πk = j. We call a path π
self-avoiding when it visits every vertex at most once, i.e., πi 6= πj for every i 6= j. Let
Pk(i, j) denote the set of k-step self-avoiding paths between vertices i and j. See Figure
9.2.1 for an example of a 12-step self-avoiding path between i and j.

When distNRn(w)(i, j) = k, there must be path of length k such that all edges (πl, πl+1)
are occupied in NRn(w), for l = 0, . . . , k − 1. The probability in NRn(w) that the edge
(πl, πl+1) is occupied is equal to

1− e
−wπlwπl+1

/`n ≤ wπlwπl+1/`n. (9.2.5)
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For CLn(w) and GRGn(w), an identical upper bound holds.
We say that π is occupied when all edges in π are occupied in NRn(w). Then, by Boole’s

inequality,

P(distNRn(w)(i, j) = k) ≤ P(∃π ∈ Pk(i, j) : π occupied) ≤
∑

π∈Pk(i,j)

P(π occupied). (9.2.6)

For any path π ∈ Pk(i, j),

P(π occupied) =

k−1∏
s=0

P((πl, πl+1) occupied) ≤
k−1∏
l=0

wπlwπl+1/`n (9.2.7)

=
wπ0wπk
`n

k∏
l=1

w2
πl/`n =

wiwj
`n

k∏
l=1

w2
πl/`n.

Therefore,

P(distNRn(w)(i, j) = k) ≤ wiwj
`n

∑
π∈Pk(i,j)

k∏
l=1

w2
πl

`n
(9.2.8)

=
wiwj
`n

k∏
l=1

( ∑
πl∈[n]

w2
πl

`n

)
=
wiwj
`n

νkn,

where νn is defined in (9.2.2), so that

P(Hn ≤ kn) ≤ 1

n2

∑
i,j∈[n]

kn∑
k=0

wiwj
`n

νkn =
`n
n2

kn∑
k=0

νkn =
`n
n2

νkn+1
n − 1

νn − 1
. (9.2.9)

By (9.2.1), lim supn→∞ νn = ν ∈ (1,∞), so that, for n large enough, νn ≥ (ν − δ) > 1,
while `n/n = E[Wn] → E[W ] < ∞. Thus, since ν 7→ (νk+1 − 1)/(ν − 1) is increasing for
every integer k ≥ 0,

P(Hn ≤ kn) ≤ O((ν − δ)kn/n) = o(1), (9.2.10)

when δ = δ(ε) > 0 is chosen such that (1 − ε)/ log(ν − δ) < 1, and since kn = d(1 −
ε) logν ne.

The condition (9.2.1) is slightly weaker than Condition 6.4, which is assumed in Theorem
9.3:

Exercise 9.11 (Conditions (9.2.1) and Condition 6.4). Show that when there is precisely
one vertex with weight w1 =

√
n, whereas wi = λ > 1, then (9.2.1) holds, but Condition

6.4 does not. Argue that the upper bound derived in Theorem 9.5 is not sharp, since the
vertex 1 can occur at most once in a self-avoiding path.

Exercise 9.12 (Lower bound on fluctuations). Adapt the proof of Theorem 9.5 to show
that for every ε, we can find a constant K = K(ε) > 0 such that

P
(
Hn ≤

logn

log νn
−K

)
≤ ε. (9.2.11)

Conclude that if log νn = log ν + o(1/ logn), then the same statement holds with logν n

replacing logn
log νn

.
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We close this section by extending the above result to settings where νn is not necessarily
bounded:

Corollary 9.6 (Lower bound graph distances NRn(w) for τ = 3). Let νn be given in
(9.2.2). Then, for any ε > 0,

P
(
Hn ≤ (1− ε) logνn n

)
= o(1). (9.2.12)

The same results hold for CLn(w) and GRGn(w) under the same conditions.

The proof of Corollary 9.6 is left as an exercise:

Exercise 9.13 (Proof Corollary 9.6). Adapt the proof to Theorem 9.5 to prove Corollary
9.6.

Exercise 9.14 (Lower bound on typical distances for τ = 3). Let wi = c
√

(n/i), so that
τ = 3. Prove that νn/ logn→ c. Use Corollary 9.6 to obtain that for any ε > 0,

P
(
Hn ≤ (1− ε) logn

log logn

)
= o(1). (9.2.13)

Exercise 9.15 (Lower bound on typical distances for τ ∈ (2, 3)). Let wi = c/i1/(τ−1) with

τ ∈ (2, 3). Prove that there exists a constant c′ > 0 such that νn ≥ c′n(3−τ)/(τ−1). Show
that Corollary 9.6 implies that Hn ≥ (τ −1)/(τ −3) in this case. How useful is this bound?

9.2.2 A log log lower bound on typical distances in the infinite variance case

In this section, we prove a log log-lower bound on the typical distances of NRn(w) for
τ ∈ (2, 3). The main result we prove is the following theorem:

Theorem 9.7 (Loglog lower bound on typical distances in NRn(w)). Suppose that the
weights w = (wi)i∈[n] satisfy Condition 6.4(a) and that there exists a τ ∈ (2, 3) and c2
such that, for all x ≥ 1,

[1− Fn](x) ≤ c2x−(τ−1), (9.2.14)

Then, for every ε > 0,

P
(
Hn ≤ (1− ε) 2 log logn

| log (τ − 2)|

)
= o(1). (9.2.15)

We follow the proof of Theorem 9.5 as closely as possible. The problem with that proof
is that, under the condition in (9.2.14), νn is too large. Indeed, Exercise 9.15 shows that
the lower bound obtained in Corollary 9.6 is a constant, which is not very useful. What
fails is that there are too many vertices with too high weight. However, it is quite unlikely
that a vertex with a high weight is chosen. Indeed, as argued in (9.1.17), when starting
from a vertex with weight w, say, the probability that it is directly connected to a vertex
having weight an is at most ∑

j : wj≥y

wwj
`n

= w[1− F ∗n ](y), (9.2.16)

which is small when y is too large. On the other hand, the main contribution to νn
comes from vertices having maximal weight of the order n1/(τ−1). This problem is resolved
by a suitable truncation argument on the weights of the vertices in the occupied paths,
which effectively removes these high-weight vertices. Therefore, instead of obtaining νn =∑
s∈[n] w

2
s/`n, we obtain a partial sum of this restricted to vertices having a relatively small
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π0 = i:wπ0
≤ b0

π1:wπ1
≤ b1 π9:wπ9

≤ b1

π10 = j:wπ10
≤ b0

π2:wπ2
≤ b2 π8:wπ8

≤ b2

π3:wπ3
≤ b3 π7:wπ7

≤ b3

π4:wπ4
≤ b4 π6:wπ6

≤ b4

π5:wπ5
≤ b5

π

Figure 9.2: A 10-step good path connecting i and j and the upper bounds on the weight
of its vertices. The height of a vertex is high for vertices with large weights.

weight. Effectively, this means that we split the space of all paths into good paths, i.e.,
paths that avoid vertices with too large weight, and bad paths, which are paths that jump
to vertices with too high weight.

We now present the details for this argument. We again start from

P(Hn ≤ kn) =
1

n2

∑
i,j∈[n]

P(distNRn(w)(i, j) ≤ kn). (9.2.17)

When distNRn(w)(i, j) ≤ kn, there exists an occupied path π ∈ Pk(i, j) for some k ≤ kn.
We fix an increasing sequence of numbers (bl)

∞
l=0 that serve as truncation values for the

weights of vertices along our occupied path. We determine the precise values of (bl)
∞
l=0

below. We say that a path π ∈ Pk(i, j) is good when wπl ≤ bl ∧ bk−l for every l = 0, . . . , k,
and bad otherwise. The condition wπl ≤ bl ∧ bk−l for every l = 0, . . . , k is equivalent to
the statement that wπl ≤ bl for l ≤ dk/2e, while wπl ≤ bk−l for dk/2e < l ≤ k. Thus, bl
provides an upper bound on the weight of the lth vertex and the (k − l)th vertex of the
occupied path, ensuring that the weights occurring in the occupied path can not be too
large. See Figure 9.2.2 for a description of a good path and the bounds on the weight of
its vertices.

Let GPk(i, j) be the set of good paths in Pk(i, j). Let

Ek(i, j) = {∃π ∈ GPk(i, j) : π occupied} (9.2.18)

denote the event that there exists a good path of length k.
When distNRn(w)(i, j) ≤ kn, but there does not exist a k ≤ kn and a good occupied

path π ∈ GPk(i, j), then either there exists an l ≤ dk/2e such that wπs ≤ bs for every
s < l, while wπl > bl, or there exists an l ≤ dk/2e such that wπk−s ≤ bk−s for every s < l,
while wπk−l > bk−l. Let Pk(i) = ∪l∈[n]Pk(i, l) denote the set of all paths of length k from
i, and let

BPk(i) = {π ∈ Pk(i) : wπl > bl, wπs ≤ bs∀s < l} (9.2.19)
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denote the set of bad paths of length k, i.e., those π ∈ Pk(i) that are not in GPk(i, πk).
Let Fl(i) be the event that there exists a bad path of length l starting from i, i.e.,

Fl(i) = {∃π ∈ BP l(i) : π occupied}. (9.2.20)

Then, since distNRn(w)(i, j) ≤ kn implies that there either is a good path or a bad path,

{distNRn(w)(i, j) ≤ kn} ⊆
⋃
k≤kn

(
Fk(i) ∪ Fk(j) ∪ Ek(i, j)

)
, (9.2.21)

so that, by Boole’s inequality,

P(distNRn(w)(i, j) ≤ kn) ≤
kn∑
k=0

[
P(Fk(i)) + P(Fk(j)) + P(Ek(i, j))

]
. (9.2.22)

In order to estimate the probabilities P(Fk(i)) and P(Ek(i, j)), we introduce some notation.
For b ≥ 0, let

νn(b) =
1

`n

∑
i∈[n]

w2
i 1{wi≤b}, (9.2.23)

be the restriction of νn to vertices with weights at most b, and let

F ∗n(x) =
1

`n

∑
i∈[n]

wi1{wi≤x} (9.2.24)

be the distribution function of W ∗n , the size-biased version of Wn. The following lemma
gives bounds on P(Fk(i)) and P(Ek(i, j)):

Lemma 9.8 (Truncated path probabilities). For every k ≥ 1, (bl)l≥0 with bl ≥ 0 and
l 7→ bl non-decreasing,

P(Fk(i)) ≤ wi[1− F ∗n ](bk)

k−1∏
l=1

νn(bl), (9.2.25)

and

P(Ek(i, j)) ≤ wiwj
`n

k−1∏
l=1

νn(bl ∧ bk−l). (9.2.26)

When bl =∞ for each l, the bound in (9.2.26) equals that obtained in (9.2.8).

Proof. We start by proving (9.2.25). By Boole’s inequality,

P(Fk(i)) = P(∃π ∈ BP l(i) : π occupied) ≤
∑

π∈BPl(i)

P(π occupied). (9.2.27)

By (9.2.7), (9.2.23) and (9.2.24),

P(Fk(i)) ≤
∑

π∈BPl(i)

wiwπk
`n

k−1∏
l=1

w2
πl/`n (9.2.28)

≤ wi
∑

πk : wπk≥bk

wπk
`n
×
k−1∏
l=1

∑
πl : wπl≤bl

w2
πl/`n

= wi[1− F ∗n ](bk)

k∏
l=1

νn(bl).
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The proof of (9.2.26) is similar. Indeed, by (9.2.7),

P(Ek(i, j)) ≤
∑

π∈GPk(i,j)

wiwj
`n

k−1∏
l=1

w2
πl/`n ≤

wiwj
`n

k−1∏
l=1

ν(bl ∧ bk−l). (9.2.29)

Now follow the steps in the proof of (9.2.25).

Exercise 9.16 (Distance between fixed vertices). Show that (9.2.22) and Lemma 9.8 imply
that for all a, b ∈ [n] with a 6= b,

P(distNRn(w)(a, b) ≤ kn) ≤ wawb
`n

kn∑
k=1

k−1∏
l=1

νn(bl ∧ bk−l) (9.2.30)

+ (wa + wb)

k∗∑
k=1

[1− F ∗n ](bk)

k∏
l=1

νn(bl).

We continue by proving upper bounds on [1− F ∗n ](x) and νn(b):

Lemma 9.9 (Bounds on sums). Suppose that the weights w = (wi)i∈[n] satisfy Condition
6.4(a) and that there exist τ ∈ (2, 3) and c2 such that, for all x ≥ 1,

[1− Fn](x) ≤ c2x−(τ−1). (9.2.31)

Then, there exists a constant c∗2 > 0 such that, for all x ≥ 1,

[1− F ∗n ](x) ≤ c∗2x−(τ−2), (9.2.32)

and there exists a cν > 0 such that for all b ≥ 1,

νn(b) ≤ cνb3−τ . (9.2.33)

Proof. For (9.2.33), we bound

νn(b) = E[W ∗n1{W∗n≤b}] ≤=

∫ b

0

[1− F ∗n ](x)dx ≤ c∗2
∫ b

0

x−(τ−2)dx =
c∗2

3− τ b
3−τ , (9.2.34)

which implies (9.2.33) for cν = c∗2/(3− τ). Write out

[1− F ∗n ](x) =
1

`n

∑
i∈[n]

wi1{wi>x} =
E[Wn1{Wn>x}]

E[Wn]
. (9.2.35)

Now use the fact that, for any non-negative random variable X,

E[X] =

∫ ∞
0

P(X > x)dx. (9.2.36)

Applying this to X = Wn1{Wn>x} yields

[1− F ∗n ](x) =
1

E[Wn]

∫ ∞
x

[1− Fn(y)]dy. (9.2.37)

By (9.2.31),

[1− F ∗n ](x) ≤ 1

E[Wn]

∫ ∞
x

c2y
−(τ−1)dy =

c2
(τ − 2)E[Wn]

x−(τ−2) ≤ c∗2x−(τ−2), (9.2.38)



204 Inhomogeneous random graphs revisited

when c∗2 = c2/[(τ − 2)(E[W ]− ε) and n is sufficiently large.

With Lemmas 9.8 and 9.9 at hand, we are ready to choose (bl)l≥0 and to complete the
proof of Theorem 9.7:

Proof of Theorem 9.7. Take kn = 2(1− ε) log logn/| log (τ − 2)|. By (9.2.17) and (9.2.21),

P(Hn ≤ kn) ≤ 1

n
+

kn∑
k=1

[ 2

n

∑
i∈[n]

P(Fk(i)) +
1

n2

∑
i,j∈[n] : i6=j

P(Ek(i, j))
]
,

where the contribution 1/n is due to i = j for which distNRn(w)(i, i) = 0. We use Lemmas
9.8 and 9.9 to provide bounds on P(Fk(i)), P(Fk(j)) and P(Ek(i, j)). These bounds are
quite similar.

We first describe how we choose the truncation values (bl)
∞
l=0 so that [1 − F ∗n ](bk) is

so small that P(Fk(i)) is small, and, for this choice of (bl)
∞
l=0, we show that P(Ek(i, j)) is

small. Intuitively, this means that it is quite unlikely that i or j is connected to a vertex
at distance k with too high weight, i.e., having weight at least bk. At the same time, it is
also unlikely that there is a path π ∈ Pk(i, j) whose weights are all small, i.e., for which
wπk ≤ bk for every k ≤ kn, because kn is to small.

By Lemma 9.8, we wish to choose bk so that P(Fk(i)) = [1 − F ∗n ](bk)
∏k−1
l=0 νn(bl) is

small. Below (9.1.17), it is argued that bk ≈ b
1/(τ−2)
k−1 . In order to make this probability

small, we will take bk somewhat larger. We now present the details. We take δ ∈ (0, τ − 2)
sufficiently small and let

a = 1/(τ − 2− δ) > 1. (9.2.39)

Take b0 = eA for some constant A ≥ 0 sufficiently large and define (bl)l≥0 recursively by

bl = bal−1, so that bl = ba
l

0 = eA(τ−2−δ)−l . (9.2.40)

We start from (9.2.22). By Lemma 9.8, we obtain an upper bound on P(Fk(i)) in terms
of factors νn(bl) and [1−F ∗n ](bk), which are bounded in Lemma 9.9. We start by applying
the bound on νn(bl) to obtain

k−1∏
l=1

νn(bl) ≤
k−1∏
l=1

cνb
τ−3
l = ckνeK(3−τ)

∑k−1
l=1

al (9.2.41)

≤ ck−1
ν eK(3−τ)ak/(a−1) = c∗2wic

k−1
ν b

(3−τ)/(a−1)
k .

Combining (9.2.41) with the bound on [1− F ∗n ](bk) in Lemma 9.9 yields

P(Fk(i)) ≤ c∗2wickνb
−(τ−2)+(3−τ)/(a−1)
k . (9.2.42)

Since 3− τ + δ < 1 when τ ∈ (2, 3) and δ ∈ (0, τ − 2),

(τ − 2)− (3− τ)/(a− 1) = (τ − 2)− (3− τ)(τ − 2− δ)/(3− τ + δ) (9.2.43)

= δ/(3− τ + δ) > δ,

so that
P(Fk(i)) ≤ c∗2wickνb−δk . (9.2.44)

As a result, for each δ > 0

1

n

∑
i∈[n]

kn∑
k=0

P(Fk(i)) ≤ c∗2
1

n

∑
i∈[n]

wi1{wi>K} +
1

n

∑
i∈[n]

c∗2wi
∑
k≥1

ckνb
−δ
k ≤ ε, (9.2.45)
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when we take A = A(δ, ε) sufficiently large.
Similarly, since bl ≥ 1, by (9.2.41),

P(Ek(i, j)) ≤ wiwj
`n

k−1∏
l=1

νn(bl ∧ bk−l) ≤
wiwj
`n

ck−1
ν b

2(3−τ)/(a−1)

dk/2e , (9.2.46)

so that, using further that l 7→ bl is increasing,

kn∑
k=1

1

n2

∑
i,j∈[n]

P(Ek(i, j)) ≤ 1

n2

kn∑
k=1

∑
i,j∈[n]

wiwj
`n

ck−1
ν b

2(3−τ)/(a−1)

dk/2e (9.2.47)

≤ `n
n2
knc

kn−1
ν b

2(3−τ)/(a−1)

dkn/2e .

Recall that k ≤ kn = 2(1 − ε) log logn/| log(τ − 2)|. Take δ = δ(ε) > 0 so small that

(τ − 2− δ)−(kn+1)/2 ≤ (logn)1−ε/4. Then,

bdkn/2e ≤ eA(τ−2−δ)−(kn+1)/2

≤ eA(logn)1−ε/4 , (9.2.48)

and we conclude that

kn∑
k=1

1

n2

∑
i,j∈[n]

P(Ek(i, j)) ≤ `n
n2
knc

kn
ν exp

(
2A(3− τ)(logn)1−ε/4) = o(1), (9.2.49)

since kn = O(log logn) and `n/n
2 = Θ(1/n). This completes the proof of Theorem 9.7.

Exercise 9.17 (Lower bound on fluctuations∗). Adapt the proof of Theorem 9.7 to show
that for every ε, we can find a constant K = K(ε) > 0 such that

P
(
Hn ≤

2 log logn

| log (τ − 2)| −K
)
≤ ε. (9.2.50)

Hint: choose bk = Lb
1/(τ−2)
k−1 , where the constant L > is chosen sufficiently large.

9.3 Branching process comparisons and the log log upper bound

In this section, we prove the log log upper bound on typical graph distances in the infinite
variance case. In Section 9.3.1, we start by comparing the neighborhoods of vertices in
NRn(w) to branching processes, a technique that is crucial in the derivation of all our
lower bounds. In Section 9.3.2, we use this comparison to prove the log log upper bound
on typical distances when τ ∈ (2, 3).

9.3.1 Comparison to branching processes

In this section, we describe a beautiful comparison of the neighborhoods of a uniformly
chosen vertex in inhomogeneous random graphs, such as the generalized random graph,
the Chung-Lu model and the Norros-Reittu model, and a marked branching process. This
comparison is particularly pretty when considering the Norros-Reittu model, where there is
an explicit stochastic domination result of these neighborhoods are bounded by a so-called
two-stage branching process with a mixed Poisson offspring distribution. 1

1In [127], the two-stage branching process is called a delayed branching process.
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Stochastic domination of clusters by a branching process. We shall dominate
the cluster of a vertex in the Norros-Reittu model by the total progeny of a two-stage
branching processes with mixed Poisson offspring. This domination is such that we also
control the difference, and makes the heuristic argument below Theorem 9.2 precise.

We now describe the cluster exploration of a uniformly chosen vertex U ∈ [n]. Define
the mark distribution to be the random variable M with distribution

P(M = m) = wm/`n, m ∈ [n]. (9.3.1)

Let (Xw)w be a collection of independent random variables, where

(a) the number of children of the root X∅ has a mixed Poisson distribution with random
parameter wM∅ , where M∅ is uniformly chosen in [n];

(b) Xw has a mixed Poisson distribution with random parameter wMw , where (Mw)w 6=∅
are i.i.d. random marks with distribution (9.3.1) independently of M∅.

We call (Xw,Mw)w a marked mixed-Poisson branching process (MMPBP).
Clearly, wU = wM∅ has distribution Wn defined in (6.1.13), while the distribution of

wMw for each w with |w| ≥ 1 is i.i.d. with distribution wM given by

P(wM ≤ x) =

n∑
m=1

1{wm≤x}P(M = m) =
1

`n

n∑
m=1

wm1{wm≤x} = P(W ∗n ≤ x) = F ∗n(x),

(9.3.2)
where W ∗n is the size-biased distribution of Wn and F ∗n is defined in (9.2.24).

When we are only interested in numbers of individuals, then we obtain a two-stage
branching process since the random variables (Xw)w are independent, and the random
variables (Xw)w 6=∅ are i.i.d. However, in the sequel, we make explicit use of the marks
(Mw)w 6=∅, as the complete information (Xw,Mw)w gives us a way to retrieve the cluster
of the vertex M∅, something that would not be possible on the basis of (Xw)w only.

In order to define the cluster exploration in NRn(w), we introduce a thinning that
guarantees that we only inspect a vertex once. We think of Mw as being the vertex
label in NRn(w) of the tree vertex w, and Xw = Poi(wMw ) as its potential number of
children. These potential children effectively become children when their marks correspond
to vertices in NRn(w) that have not yet appeared. The thinning ensures this. To describe
the thinning, we set ∅ unthinned, and, for w with w 6= ∅, we thin w when either (i) one
of the tree vertices on the (unique) path between the root ∅ and w has been thinned, or
(ii) when Mw = Mw′ for some unthinned vertex w′ < w. We now make the connection
between the thinned marked mixed Poisson branching process and the cluster exploration
precise:

Proposition 9.10 (Clusters as thinned marked branching processes). The cluster of a
uniformly chosen vertex C(U) is equal in distribution to {Mw : w unthinned}, the marks of
unthinned vertices encountered in the marked mixed Poisson branching process up to the
end of the exploration. Similarly, the set of vertices at graph distance k from U has the
same distribution as (

{Mw : w unthinned, |w| = k}
)
k≥0

. (9.3.3)

Proof. We prove the two statements simultaneously. By construction, the distribution of
U is the same as that of M∅, the mark of the root of the marked mixed Poisson branching
process. We continue by proving that the direct neighbors of the root ∅ agree in both
constructions. In NRn(w), the direct neighbors are equal to {j ∈ [n] \ {l} : Ilj = 1}, where

(Ilj)j∈[n]\{l} are independent Be(plj) random variables with plj = 1− e−wlwk/`n .
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We now prove that the same is true for the marked mixed Poisson branching process.
Conditionally on M∅ = l, the root has a Poi(wl) number of children, where these Poi(wl)
offspring receive i.i.d. marks. We make use of the following fundamental property of the
Poisson distribution:

Lemma 9.11 (A Poisson number of multinomial trials). Let X have a Poisson distribution
with parameter λ. Perform X multinomial trials, where the ith outcome appears with
probability pi for some probabilities (pi)

k
i=1. Let (Xi)

k
i=1, where Xi denotes the total number

of outcomes i. Then (Xi)
k
i=1 is a sequence of independent Poisson random variables with

parameters (λpi)
k
i=1.

Proof. Let (xi)
k
i=1 denote a sequence of non-negative integers, denote x =

∑k
i=1 xi and

compute

P((Xi)
k
i=1 = (xi)

k
i=1) = P(X = x)P((Xi)

k
i=1 = (xi)

k
i=1 | X = x) (9.3.4)

= e−λ
λx

x!

(
x

x1, x2, . . . , xk

)
px1

1 · · · p
xk
k =

k∏
i=1

e−λxi
λxi

(xi)!
.

By Lemma 9.11, the random vector (X∅,j)j∈[n], where X∅,j is the number of offspring of
the root that receive mark j, is a vector of independent Poisson random variables with pa-
rameters wlwj/`n. Due to the thinning, a mark occurs precisely when X∅,j ≥ 1. Therefore,

the mark j occurs, independently for all j ∈ [n], with probability 1 − e−wlwj/`n = p(NR)

jk .
This proves that the set of marks of children of the root in the MMPBD has the same
distribution as the set of neighbors of the chosen vertex in NRn(w).

Next, we look at the number of new elements of C(U) neighboring the vertex which
has received word w. First, condition on Mw = l, and assume that w is not thinned.
Conditionally on Mw = l, the number of children of w in the MMPBP has distribution
Poi(wl). Each of these Poi(wl) children receives an i.i.d. mark. Let Xw,j denote the number
of children of w that receive mark j.

By Lemma 9.11, (Xw,j)j∈[n] is again a vector of independent Poisson random variables
with parameters wlwj/`n. Due to the thinning, a mark appears within the offspring of
individual w precisely when Xw,j ≥ 1, and these events are independent. In particular, for
each j that has not appeared as the mark of an unthinned vertex, the probability that it
occurs equals 1− e−wjwk/`n = p(NR)

jk , as required.

The law of the branching process. For given weights (wi)i∈[n], we now describe the
distribution of the marked mixed Poisson branching process (MMPBP). Since the marks
are mutually independent, the marked Poisson process is a branching process if we ignore
the information about the marks. The offspring distribution p(n) of Z1, i.e., the first
generation of (Zl)l≥0, is given by

p(n)

k = P
(
Poi(wV ) = k

)
=
∑
i∈[n]

P
(
Poi(wi) = k

∣∣V = i
)
P(V = i) =

1

n

∑
i∈[n]

e−wi
wki
k!
, (9.3.5)

for k ≥ 0, so that p(n) is a mixed Poisson distribution with mixing distribution Wn, i.e.,

p(n)

k = E
[
e−Wn

W k
n

k!

]
. (9.3.6)
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Recall that individuals in the second and further generations have a random mark
distributed as an independent copy of M given by (9.3.1). Hence, if we denote the offspring
distribution of the second and further generations by g(n), then we obtain, for all k ≥ 0,

g(n)

k = P
(
Poi(wM) = k

)
=
∑
i∈[n]

P
(
Poi(wi) = k

∣∣M = i
)
P(M = i) (9.3.7)

=
1

`n

∑
i∈[n]

e−wi
wk+1
i

k!
.

We recognize the offspring distribution in (9.3.7) as a mixed Poisson distribution, where
the mixing random variable now has distribution W ∗n :

g(n)

k = E
[
e−W

∗
n

(W ∗n)k

k!

]
. (9.3.8)

Together, (9.3.5) and (9.3.7) identify the distribution (Zl)l≥0 as a two-stage branching
process, where (1) the first generation has a mixed Poisson distribution with mixing random
variable wV , where V ∈ [n] is chosen uniformly at random, and where (2) the offspring
distribution of the second and further generations has a mixed Poisson distribution with
mixing random variable wM , where M ∈ [n] has distribution given by (9.3.1). This yields a
stochastic upper bound on the neighborhoods of a uniformly chosen V ∈ [n] in the Norros-
Reittu model NRn(w). In the case where w is constant, the above gives an interesting
direct upper bound of |C(U)| in terms of a Poisson branching process:

Exercise 9.18 (Erdős-Rényi random graph). Prove that NRn(w) = ERn(λ/n) when w
is constant with wi = −n log (1− λ/n).

Exercise 9.19 (Erdős-Rényi random graph (Cont.)). Show that Exercise 9.18 together
with Proposition 9.10 imply that |C(U)| � T ∗, where T ∗ is the total progeny of a Poisson
branching process with mean −n log (1− λ/n) offspring.

The limiting two-stage branching process. In the previous section, we have de-
scribed the neighborhood of a uniform in terms of a (thinned) two-stage branching process.
This leads to the definitions of the probability mass functions p(n) and g(n) in (9.3.5) and
(9.3.7). We now study what happens when n→∞.

Recall the two-stage branching processes with a mixed Poisson offspring introduced in
Section 9.1.1. We proceed by proving that (9.1.2) and (9.1.3) are the limits of (9.3.5) and
(9.3.7):

Lemma 9.12 (Weak convergence of MMPBP). Let the weights w = (wi)i∈[n] satisfy
Condition 6.4(a). Then, for every k ≥ 0,

lim
n→∞

p(n)

k = pk. (9.3.9)

When, instead, the weights w = (wi)i∈[n] satisfy Condition 6.4(a)-(b) with E[W ] < ∞,
where W has distribution function F , then, for all k ≥ 0,

lim
n→∞

g(n)

k = gk. (9.3.10)

Proof. By Condition 6.4(a), Wn
d−→W , where W has distribution function F . By (9.3.6),

and the fact that, for each k ≥ 0, the function w 7→ e−wwk/k! is a bounded continuous

function, we obtain from the continuous mapping theorem that p(n)

k → pk.
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For (9.3.10), we note that

g(n)

k =
(k + 1)p(n)

k+1

E[Wn]
. (9.3.11)

By Condition 6.4(b), E[Wn] → E[W ]. By (9.3.9), also p(n)

k+1 → pk+1, so that, indeed,

g(n)

k → (k+1)pk+1

E[W ]
= gk.

Branching process notation. We now define the generation sizes of our branching
process. We define Z0 = 1, and, for m ≥ 1,

Zm = #{w : |w| = m}. (9.3.12)

Since each individual in generation m has precisely one parent in generation m−1, we can
alternatively write

Zm =
∑

w : |w|=m−1

Xw. (9.3.13)

We see that (Zm)m≥0 has the same distribution as the generation sizes of a so-called
two-stage mixed Poisson branching process, in which the root has Z1 ∼ Poi(wU) children,
where U is chosen uniformly in [n], and all other individuals have offspring distribution
given by Poi(wM). Throughout the remainder of this chapter, we use (Zl)l≥0 denote the
n-dependent two-stage marked mixed-Poisson branching process (MMPBP) with offspring
distributions p(n) in (9.3.6) for the root, and offspring distributions g(n) in (9.3.7) for all
later generations. We also let (Zl)l≥0 denote the limiting two-stage MMPBP with offspring
distributions p in (9.1.2) for the root, and offspring distributions g in (9.1.3) for all later

generations. We write (Z̃m)m≥0 for the thinned MMPBP by Z̃0 = 1 and

Z̃m =
∑

w : |w|=m

(1− 1{w thinned}). (9.3.14)

Thus, Z̃m denotes the number of unthinned words w of generation |w| = m. Then, ob-
viously, by the coupling between the two processes and the fact that the thinning only
removes vertices,

Z̃m ≤ Zm a.s. (9.3.15)

We are interested in typical distances, which is the graph distance between the vertices
V1 and V2, where V1, V2 ∈ [n] are chosen uniformly at random. Therefore, we sometimes

use a superscript (1) or (2), and write, e.g., Z̃(1)
m , when we consider the constructions from

vertex V1 and V2, respectively. A straightforward adaptation of Proposition 9.10 implies
that, on the event that Hn ≥ 2m,

Z̃(1)
m ≤ Z(1)

m , and Z̃(2)
m ≤ Z(2)

m a.s. (9.3.16)

Indeed, when Hn ≥ 2m, and conditionally on Nm(V1), in the graph exploration from V2,
we must avoid the vertices in Nm(V1), as well as thin the vertices in (Nl(V2))ml=0. This
explains (9.3.16).

Corollary 9.13 (Weak convergence of neighborhoods of two vertices). Let the weights
w = (wi)i∈[n] satisfy Condition 6.4(a)-(b). Then, for each m ≥ 1,

P(Hn ≤ 2m) = o(1), (9.3.17)

and

(Z̃(1)
m , Z̃(2)

m )
d−→ (Z(1)

m ,Z(2)
m ), (9.3.18)

where (Z(1)

l ,Z(2)

l )l≥0 are two independent limiting two-stage marked mixed-Poisson branch-
ing processes.
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Proof. We start by proving that Z̃(1)
m

d−→ Z(1)
m . By Lemma 9.12, Z(1)

m
d−→ Z(1)

m , and, by

(9.3.16), Z̃(1)
m ≤ Z(1)

m . Further, by Proposition 9.10, Z̃(1)
m = Z(1)

m unless one of the vertices

in Z(1)
m has been thinned. Since Z(1)

m
d−→ Z(1)

m , which is a bounded random variable, whp
we draw at most Z(1)

m ≤ an marks for any an →∞. The probability that within these an
draws, the mark i appears twice, thus causing the second individual to be thinned, is at
most (wi

`n

)2
(
an
2

)
≤ (anwi)

2

`2n
, (9.3.19)

since there at most
(
an
2

)
pairs of times that mark i can be drawn. By Boole’s inequality,

the probability that an individual from the first an individuals is thinned is therefore at
most

a2
n

`2n

∑
i∈[n]

w2
i . (9.3.20)

By Exercise 6.3, Condition 6.4(a) and (b) imply that maxi∈[n] wi = o(n), so that the

probability that an individual from the first an individuals is thinned is at most o(1)a2
n.

Choosing an → ∞ sufficiently slowly proves that P(Z̃(1)
m 6= Z(1)

m ) = o(1), completing the

proof that Z̃(1)
m

d−→ Z(1)
m .

Further, let N≤m(U1) denote the vertices in NRn(w) that are at distance at most m

from U1. Similarly as in the proof of Z̃(1)
m

d−→ Z(1)
m , we can also show that N≤m(U1)

converges in distribution to the set of marks in the MMPBP up to generation m.

We continue show that Hn > 2m occurs whp. We know that Z̃(1)

2m
d−→ Z(1)

2m, which
is a finite random variable. Now, Hn ≤ 2m occurs precisely when U2 is one of the
Z(1)

2m individuals, which, conditionally on Z(1)

2m, has probability Z(1)

2m/n = oP(1). There-
fore, P(Hn ≤ 2m) = o(1), as required. We condition on N≤m(U1) and on Hn > 2m.
Then, the cluster of U2 up to graph distance m is again an inhomogeneous random
graph on [n] \ N≤m(U1) with edge probabilities given by pij = 1 − e−wiwj/`n . Since

|N≤m(U1)| = Z̃(1)
m

d−→ Z(2)
m , which is a finite random variable, it follows that, conditionally

on N≤m(U1), the number of vertices in [n] \ N≤m(U1) at distance m from U2 converges in
distribution to Z(2)

m . Since this is true conditionally on N≤m(U1), and the limit is indepen-
dent of N≤m(U1), also Z(1)

m and Z(2)
m ) are independent. This completes the proof.

Exercise 9.20 (The diameter tends to infinity). Let the weights satisfy Condition 6.4(a)-
(b). Use (9.3.17) to show that the diameter of NRn(w) tends to infinity in probability.

9.3.2 A log log upper bound for τ ∈ (2, 3)

In this section, we prove a log logn upper bound on the typical distance Hn using
the comparison to branching processes obtained in the previous section. Throughout this
section, we assume that there exist τ ∈ (2, 3), α > 1/2 and c1 such that, uniformly in n
and x ≤ nα,

[1− Fn](x) ≥ c1x−(τ−1). (9.3.21)

The bound in (9.3.21) corresponds to the lower bound in (9.1.14). The main result in this
section is the following theorem:

Theorem 9.14 (A log log upper bound on typical distance for τ ∈ (2, 3)). Suppose that
empirical distribution function Fn of the weights w = (wi)i∈[n] satisfies Condition 6.4(a)-
(b) and (9.3.21). Then, for every ε > 0,

lim
n→∞

P
(
Hn ≤

2(1 + ε) log logn

| log (τ − 2)| | Hn <∞
)

= 1. (9.3.22)
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Proof. The proof Theorem 9.14 is organized as follows. We start by showing that the
giant-weight vertices, i.e., the vertices with extremely high weight, are all connected to one
another. Thus, the giant-weight vertices form a complete graph. This is often referred to
as a clique in the random graph community. In the second step, we show that connections

from a vertex to the set of giant weight vertices occur at distance at most (1+ε) log logn
| log (τ−2)| . The

latter is only true when the vertex is in the giant component, a fact we need to carefully
into account. In the final step, we complete the proof of Theorem 9.14. We now start by
defining the set of giant-weight vertices.

The giant-weight vertices form a clique. Recall the definition of α > 1/2 in (9.3.21).
Let

Giantn = {i : wi ≥ nα} (9.3.23)

denote the set of vertices with giant weights. Let A ⊆ [n]. We say that A forms a clique
when the edges a1a2 are occupied for all a1, a2 ∈ A. We continue by proving that, whp,
Giantn forms a clique:

Lemma 9.15 (High-weight vertices form clique). Under the conditions of Theorem 9.14,

P(Giantn does not form clique) ≤ n2e−n
2α/`n (9.3.24)

Proof. Let g1, g2 ∈ Giantn, so that wg1 , wg2 ≥ nα. There are at most |Giantn|2 ≤ n2 pairs
of vertices in Giantn, so that

P(Giantn does not form clique) ≤ n2 max
g1,g2∈Giantn

P(g1g2 vacant). (9.3.25)

The edge g1g2 is vacant with probability

P(g1g2 vacant) = e−wg1wg2/`n ≤ e−n
2α/`n , (9.3.26)

since wg ≥ nα for every g ∈ Giantn. Multiplying out gives the result.

Connections to Giantn occur at log logn distances. We next show that vertices that
survive up to distance m have a high probability of connecting to Giantn using a path of
at most (1 + ε) log logn

| log (τ−2)| edges:

Proposition 9.16 (Connecting to Giantn). Let i ∈ [n] be such that wi > 1. Under the
conditions of Theorem 9.14, there exist c, c∗1 > 0 and η > 0 such that

P
(

distNRn(w)(i,Giantn) ≥ (1 + ε)
log log n

| log (τ − 2)|

)
≤ ce−c

∗
1w

η
i . (9.3.27)

Consequently, with Nm(i) denoting the vertices at graph distance m from i, N≤m(i) the
vertices at graph distance at most m from i, and Wm(i) =

∑
k∈Nm(i) wk denoting the

weight of vertices in Nm(i),

P
(

distNRn(w)(Nm(i),Giantn) ≥ (1 + ε)
log logn

| log (τ − 2)| | N≤m(i)
)
≤ ce−c

∗
1Wm(i)η . (9.3.28)

Proof. We start by proving (9.3.27). The bound in (9.3.27) is trivial unless wi is large.
We let x0 = i, and define, recursively,

x` = max{j ∈ [n] : x`−1j occupied}. (9.3.29)
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Thus, x` is maximal weight neighbor of x`−1. We stop the above recursion when wx` ≥ n
α,

since then x` ∈ Giantn. Recall the heuristic below (9.1.17), which shows that a vertex with

weight w is whp connected to a vertex with weight w1/(τ−2). We now make this precise.
We take a = 1/(τ − 2 + δ), where we choose δ > 0 so small that a > 1. By (9.2.24),

P(wx`+1 < wax` | (xs)s≤`) = e
−wx`

∑
l : wl≥wax`

wl/`n
= e
−wx` [1−F∗n ](wax`

)
. (9.3.30)

We split the argument depending on whether wax` ≤ nα or not. Firstly, when wax` ≤ nα,
by (9.3.21) and uniformly for x ≤ nα,

[1− F ∗n ](x) ≥ xn

`n
[1− Fn](x) ≥ c∗1x−(τ−2), (9.3.31)

where, for n large enough, we can take c∗1 = c1/(2E[W ]). Therefore,

P(wx`+1 < wax` | (xs)s≤`) ≤ e−c
∗
1w

1−(τ−2)a
x` ≤ e

−c∗1w
δ
x` , (9.3.32)

since a = 1/(τ − 2 + δ) > 1 so that 1− (τ − 2)a = aδ > δ.
Secondly, when wax` > nα, but wx` < nα, we can use (9.3.31) for x = nα to obtain

P(wx`+1 < nα | (xs)s≤`) ≤ e−c
∗
1wx`n

α(τ−2)

≤ e−c
∗
1n
α[1−(τ−2)]/a

≤ e−c
∗
1n
αδ/a

. (9.3.33)

Therefore, in both cases, and with η = αδ/a,

P(wx`+1 < (nα ∧ wax`) | (xs)s≤`)e
−c∗1w

η
x` . (9.3.34)

As a result, when x` is such that wx` is quite large, whp, wx`+1 ≥ wx` . This produces,
whp, a short path to Giantn. We now investigate the properties of this path.

Let the recursion stop at some integer time k. The key observation is that when this
occurs, we must have that wx`+1 > wax` for each ` ≤ k − 1 where k is such that wxk−1 ∈
[nα/a, nα], and at the same time wxk ≥ n

α. Then, the following holds:

(1) wx` ≥ w
a`

x0
= wa

`

i for every ` ≤ k − 1,

(2) distNRn(w)(i,Giantn) ≤ k.

By (1), wxk−1 ≥ wa
k−1

i , and wxk−1 ∈ [nα/a, nα]. Therefore, wa
k−1

i ≤ nα, which, in
turn, implies that

ak−1 ≤ α logn, or k − 1 ≤ (log log n+ logα)(log a). (9.3.35)

Let kn = (1 + ε) log logn
| log (τ−2)| . By (1) and (2), when distNRn(w)(i,Giantn) > kn occurs, then

there must exist an ` ≤ kn such that wx`+1 ≤ n
α ∧ wax` . We conclude that

P
(

distNRn(w)(i,Giantn) ≥ kn
)
≤

kn∑
`=0

P(wx`+1 ≤ w
a
x`) (9.3.36)

≤
kn∑
`=0

E[P(wx`+1 ≤ w
a
x` | (xs)s≤`)]

≤
kn∑
`=0

E[e
−c∗1w

η
x` ] ≤

kn∑
`=0

e−c
∗
1w

δa`

i ≤ ce−c
∗
1w

η
i .

The proof of (9.3.28) is similar, by conditioning on Nm(i) and by noting that we can
interpret Nm(i) as a single vertex having weight Wm(i) =

∑
k∈Nm(i) wk.
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Completion of the proof of Theorem 9.14. To prove the upper bound in Theorem
9.14, for ε ∈ (0, 1), we take

kn = (1 + ε)
log logn

| log (τ − 2)| , (9.3.37)

so that it suffices to show, for every ε > 0,

lim
n→∞

P(Hn ≤ 2kn| Hn <∞) = 1. (9.3.38)

Since

P(Hn ≤ 2kn| Hn <∞) =
P(Hn ≤ 2kn)

P(Hn <∞)
, (9.3.39)

this follows from the bounds

lim inf
n→∞

P(Hn <∞) ≤ ζ2, (9.3.40)

lim sup
n→∞

P(Hn ≤ 2kn) ≥ ζ2, (9.3.41)

with ζ > 0 the survival probability of the underlying branching process approximation to
the neighborhood shells of NRn(w). For (9.3.40), we split, for some m ≥ 1,

P(Hn <∞) ≤ P(Hn ≤ 2m) + P(Z̃(1)
m > 0, Z̃(2)

m > 0, Hn > 2m). (9.3.42)

By (9.3.17) in Corollary 9.13, P(Hn ≤ 2m) = o(1), and, by (9.3.18) in Corollary 9.13,

lim
n→∞

P(Z̃(1)
m > 0, Z̃(2)

m > 0, Hn > 2m) = P(Zm > 0)2, (9.3.43)

which converges to ζ2 when m→∞. This proves (9.3.40).
To prove (9.3.41), we fix m ≥ 1 and write

P(2m < Hn ≤ 2kn) ≥ P
(
distNRn(w)(Vi,Giantn) ≤ kn, i = 1, 2, Hn > 2m

)
(9.3.44)

≥ P(Z̃(1)
m > 0, Z̃(2)

m > 0, Hn > 2m)

− 2P
(
distNRn(w)(V1,Giantn) < kn, Z̃

(1)
m > 0

)
.

By (9.3.43), the first term converges to ζ2
m, which in turn converges to ζ2 when m→∞.

For the second term, we condition on N≤m(V1),N≤m(V2), and use that Z̃(1)
m is measur-

able w.r.t. N≤m(V1) to obtain

P
(
distNRn(w)(V1,Giantn) < kn, Z̃

(1)
m > 0

)
(9.3.45)

= E
[
P
(
distNRn(w)(V1,Giantn) > kn | N≤m(V1)

)
1{Z̃(1)

m >0}

]
.

By Proposition 9.16,

P
(
distNRn(w)(V1,Giantn) > kn | N≤m(V1)

)
≤ ce−c

∗
1Wm(V1)η . (9.3.46)

By Lemma 9.12 and the fact that (wk)k∈Nm(V1) are i.i.d. copies of the random variable
Wn, conditionally on being distinct and different from (wl)l∈N≤m−1(V1),

Wm(V1)
d−→
Z(1)
m∑
i=1

W (i), (9.3.47)
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where (W (i))i≥1 are i.i.d. random variables with distribution function F . Therefore,

Wm(V1)
P−→∞ (9.3.48)

when first n→∞ followed by m→∞, and we use that Z(1)
m

P−→ ∞ since Z(1)
m > 0. As a

result,

P
(
distNRn(w)(V1,Giantn) > kn | N≤m(V1)

)
1{Z̃(1)

m >0}
P−→ 0, (9.3.49)

which by Lebesgues Dominated Convergence Theorem (Theorem A.42) implies that

E
[
e−c
∗
1Wm(V1)η

1{Z̃(1)
m >0}

]
→ 0, (9.3.50)

when first n→∞ followed by m→∞. This proves (9.3.41), and thus completes the proof
of the upper bound in Theorem 9.4.

9.4 Path counting and the log upper bound for τ > 3

9.4.1 Path counting techniques

In this section, we study path counting techniques in the context of inhomogeneous
random graphs (IRGs). We generalize the setting somewhat, and consider an IRG on the
vertices I with edge probabilities pij = uiuj , for some weights (ui)i∈I . We obtain CLn(w)
by taking ui = wi/

√
`n and I = [n]. Since the NRn(w) random graph is closely related to

CLn(w), this suffices for our purposes.
For a, b ∈ I and k ≥ 1, let

Nk(a, b) = #{π ∈ Pk(a, b) : π occupied} (9.4.1)

denote the number of paths of length k between the vertices a and b. Let

nk(a, b) = E[Nk(a, b)] (9.4.2)

denote the expected number of occupied paths of length k connecting a and b. Define

n̄k(a, b) = uaub
( ∑
i∈I\{a,b}

u2
i

)k−1

, nk(a, b) = uaub
( ∑
i∈Ia,b,k

u2
i

)k−1

, (9.4.3)

where Ia,b,k is the subset of I in which a and b, as well as the k + 2 indexes with highest
weights have been removed. In Section 9.2, we have implicitly proved an upper bound on
E[Nk(a, b)] of the form

nk(a, b) ≤ n̄k(a, b). (9.4.4)

Exercise 9.21 (Upper bound on the expected number of paths). Prove (9.4.4) for an
inhomogeneous random graph with vertex set I and with edge probabilities pij = uiuj for
every i, j ∈ I.

Let
νI =

∑
i∈I

u2
i , γI =

∑
i∈I

u3
i (9.4.5)

denote the sums of squares and third powers of (ui)i∈I , respectively. Our aim is to show
that whp paths of length k exist between the vertices a and b. We do this by applying a
second moment method on Nk(a, b), for which we need a lower bound on E[Nk(a, b)] and an
upper bound on Var(Nk(a, b)), which are such that Var(Nk(a, b)) = o(E[Nk(a, b)]2) (recall
Theorem 2.16. We prove lower bounds on E[Nk(a, b)] and upper bounds on Var(Nk(a, b))
in the following proposition:



9.4 Path counting and the log upper bound for τ > 3 215

Proposition 9.17 (Variance of numbers of paths). For any k ≥ 1, a, b ∈ I and (ui)i∈I ,

E[Nk(a, b)] ≥ nk(a, b), (9.4.6)

while, assuming that νI > 1,

Var(Nk(a, b)) ≤ nk(a, b) + n̄k(a, b)2
( γIν

2
I

νI − 1

( 1

ua
+

1

ub

)
+

γ2
IνI

uaub(νI − 1)2
+ ek

)
, (9.4.7)

where
ek =

(
1 +

γI
uaνI

)(
1 +

γI
ubνI

) νI
νI − 1

(
e2k3γ2

I/ν
3
I − 1

)
.

We apply Proposition 9.17 in cases where E[Nk(a, b)] = nk(a, b)→∞, by taking I is a
large subset of [n] and ui = wi/

√
`n. In this case, νI ≈ νn ≈ ν > 1. In our applications of

Proposition 9.17, the ratio n̄k(a, b)/nk(a, b) will be bounded, and k3γ2
I/ν

3
I = o(1), so that

the last term is an error term. The starting and end vertices a, b ∈ I will correspond to
a union of vertices in [n] of quite large size. As a result, γI/ua and γI/ua are typically
small, so that

Var(Nk(a, b))

E[Nk(a, b)]2
≈ γIν

2
I

νI − 1

( 1

ua
+

1

ub

)
+

γ2
IνI

uaub(νI − 1)2
(9.4.8)

is small. The choice of a, b and I is quite delicate, which explains why we formulate
Proposition 9.17 in such generality.

Proof. We note that Nk(a, b) is a sum of indicators

Nk(a, b) =
∑

π∈Pk(a,b)

1{π occupied}. (9.4.9)

As a result,

E[Nk(a, b)] =
∑

π∈Pk(a,b)

P(π occupied) =
∑

π∈Pk(a,b)

k∏
l=0

uπluπl+1 (9.4.10)

= uπ0uπk
∑

π∈Pk(a,b)

k−1∏
l=1

u2
πl .

For π ∈ Pk(a, b), π0 = a, πk = b. Further,

∑
π∈Pk(a,b)

k−1∏
l=1

u2
πl =

∑∗

i1,...,ik−1∈I\{a,b}

k−1∏
l=1

u2
πl , (9.4.11)

where we recall that
∑∗
i1,...,ir∈I denotes a sum over distinct indices. Each sum over ij

yields a factor that is at least
∑
i∈Ia,b,k

u2
i , which proves (9.4.6).

To compute Var(Nk(a, b)), we again start from (9.4.9), which yields

Var(Nk(a, b)) =
∑

π,ρ∈Pk(a,b)

[
P(π, ρ occupied)− P(π occupied)P(ρ occupied)

]
. (9.4.12)

For π, ρ, we denote by π∩ ρ the edges the paths π and ρ have in common. The occupation
statuses of π and ρ are independent precisely when π ∩ ρ = ∅, so that

Var(Nk(a, b)) ≤
∑

π, ρ ∈ Pk(a, b)
π ∩ ρ 6= ∅

P(π, ρ occupied). (9.4.13)
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Define ρ \ π to be the edges in ρ that are not part of π, so that

P(π, ρ occupied) = P(π occupied)P(ρ occupied | π occupied) (9.4.14)

=

k∏
l=0

uπluπl+1

∏
e∈ρ\π

uēue,

where, for an edge e = {x, y}, we write ē = x, e = y. When π = ρ, then

P(π, ρ occupied) = P(π occupied), (9.4.15)

and this contributes nk(a, b) to Var(Nk(a, b)). From now on, we consider π 6= ρ.
The probability in (9.4.14) needs to be summed over all possible pairs of paths (π, ρ)

with π 6= ρ that share at least one edge. In order to do this effectively, we start by
introducing some notation.

Let l = |π ∩ ρ| denote the number of edges in π ∩ ρ, so that l ≥ 1 precisely when
π ∩ ρ 6= ∅. Since π 6= ρ, l ≤ k − 1. When π 6= ρ, we have that l ≤ k − 1, and since π and
ρ are self-avoiding paths between a and b, l cannot be equal to k − 1, so that we consider
l ≤ k − 2 from now on. Let k − l = |ρ \ π| be the number of edges in ρ that are not part
of π.

Let m denote the number of connected subpaths in ρ \ π, so that m ≥ 1 whenever
π 6= ρ. Since π0 = ρ0 = a and πk = ρk = b, these subpaths start and end in vertices
along the path π. We can view these subpaths as excursions of the path ρ from the walk
π. By construction, between two excursions, there is at least one edge that π and ρ have
in common.

Fix m. We define Shape(π, ρ), the shape of the pair (π, ρ), by

Shape(π, ρ) = (~xm+1, ~sm,~tm, ~om+1, ~rm+1), (9.4.16)

where

(1) ~xm+1 ∈ Nm+1
0 and xj ≥ 0 is the length of the subpath in ρ∩π in between the (j−1)st

and jth subpath of π \ ρ. Here x1 is the number of common edges in the subpath of
ρ∩ π that contains a, while xm+1 is the number of common edges in the subpath of
ρ ∩ π that contains b, so that x1 ≥ 0 and xm+1 ≥ 0. For j ∈ {2, . . . ,m}, xj ≥ 1;

(2) ~sm ∈ Nm and sj ≥ 1 is the number of edges in the jth subpath of π \ ρ;

(3) ~tm ∈ Nm and tj ≥ 1 is the number of edges in the jth subpath of ρ \ π;

(4) ~om+1 ∈ [m+1]m+1 and oj is the order of the jth common subpath in ρ∩π of the path
π in ρ, i.e., o2 = 5 means that the second subpath that π has in common with ρ is
the 5th subpath that ρ has in common with π. Note that o1 = 1 and om+1 = m+ 1,
since π and ρ start and end in a and b, respectively;

(5) ~rm+1 ∈ {0, 1}m+1 is such that rj describes the direction in which the jth common
subpath in ρ ∩ π of the path π is traversed by ρ, with rj = 1 when the direction is
the same for π and ρ and 0 otherwise. Thus, r1 = rm+1 = 1.

The information in Shape(π, ρ) is precisely that necessary to piece together the topology
of the two paths, except for the information of the vertices involved in π and ρ. See Figure
9.4.1 for an example of a pair of paths (π, ρ) and its corresponding shape.

With l = |π ∩ ρ|, we have

m+1∑
j=1

xj = l,
m∑
j=1

sj =
m∑
j=1

tj = k − l. (9.4.17)
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π

ρ

x1 x2 x3 x4 x5
r1 = 1 r2 = 1 r3 = 1 r4 = 0 r5 = 1

s1 s2 s3 s4

t1

t2

t3 t4

o1 = 1 o2 = 2 o3 = 4 o4 = 3 o5 = 5

Figure 9.3: An example of a pair of paths (π, ρ) and its corresponding shape.

Let Shapem,l denote the set of shapes corresponding to pairs of paths (π, ρ) with m excur-
sions and l common edges, so that (9.4.17) hold. Then,

Var(Nk(a, b)) ≤ n̄k(a, b) +

k−2∑
l=1

k−l∑
m=1

∑
σ∈Shapem,l

∑
π, ρ ∈ Pk(a, b)
Shape(π, ρ) = σ

P(π, ρ occupied). (9.4.18)

When Shape(π, ρ) = σ for some σ ∈ Shapem,l, and since π and ρ both start and end in
a and b, the union of paths π ∪ ρ visits k + 1 + l −m distinct vertices. The vertex a is
in 1 + δx1,0 edges, and b in 1 + δxm+1,0 edges. Of the other k − 1 vertices in π, precisely
2m − δx1,0 − δxm+1,0 are part of of three edges, and k − 1 − 2m + δx1,0 + δxm+1,0 are
part of in two edges. The remaining k − l − m vertices in ρ that are not part of π are
part of precisely 2 edges. By construction, the k + 1 vertices of both π and ρ are disjoint,
but the remaining k − l −m vertices in ρ may intersect those of π. Therefore, denoting
a1 = δx1,0, am+1 = δxm+1,0,

P(π, ρ occupied) = u1+a1
a u

1+am+1

b

2m−a1−am+1∏
s=1

u3
vs

2(k−1)−l−m∏
t=2m−a1−am+1+1

u2
vt , (9.4.19)

where {(v1, . . . , vk+1+l−m)} ∈ Ik−1+l−m.

For a fixed σ ∈ Shapem,l now bound the sum over π, ρ ∈ Pk(a, b) such that Shape(π, ρ) =

σ from above by summing (9.4.19) over all {(v1, . . . , vk−1+l−m)} ∈ Ik−1+l−m, to obtain
for any σ ∈ Shapem,l,

∑
π, ρ ∈ Pk(a, b)
Shape(π, ρ) = σ

P(π, ρ occupied) (9.4.20)

≤ uaubγ2m
I ν2k−1−3m−l

I

(uaνI
γI

)δx1,0
(ubνI
γI

)δxm+1,0

= n̄k(a, b)2γ
2(m+1)
I ν

−3(m−1)−l
I

( γI
uaνI

)1−δx1,0
( γI
ubνI

)1−δxm+1,0 .
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Therefore, we arrive at

Var(Nk(a, b)) ≤ nk(a, b) + n̄k(a, b)2
k−2∑
l=1

k−l∑
m=1

γ
2(m−1)
I ν

−3(m−1)−l
I (9.4.21)

×
∑

σ∈Shapem,l

( γI
uaνI

)1−δx1,0
( γI
ubνI

)1−δxm+1,0 .

We continue to compute the number of shapes in the following lemma:

Lemma 9.18 (The number of shapes). Fix m ≥ 1 and l ≤ k− 2. For m = 1, the number
of shapes in Shapem,l fixed a1 = δx1,0, am+1 = δxm+1,0 equals l when a1 = am+1 = 0, 1
when a1 + am+1 = 1 and 0 when a1 = am+1 = 1. For m ≥ 2, the number of shapes in
Shapem,l fixed a1 = δx1,0, am+1 = δxm+1,0 is bounded by

2m−1(m− 1)!

(
k − l − 1

m− 1

)2(
l

m− a1 − am+1

)
. (9.4.22)

Proof. Since r1 = rm+1 = 1, there are 2m−1 directions in which the common parts can be
traversed. Since there are m distinct parts, there are m+ 1 common parts. The first part
contains vertex a, the last part contains vertex b. Thus, there are (m− 1)! orders ~om+1 of
the common parts when we have fixed the directions the paths can be traversed.

In counting the number of ~xm+1, ~sm,~tm, we repeatedly use the fact that there are(
a−1
b−1

)
possible sequences (y1, . . . , yb) ∈ Nb0 such that

∑b
j=1 yj = a. This can be seen

by representing a as a sequence of a ones, separated by a − 1 zeros. We draw b zeros,
which we can do in

(
a−1
b−1

)
possible ways. Then, we note that a sequence (y1, . . . , yb) ∈ Nb0

such that
∑b
j=1 yj = a can be obtained uniquely by letting yi be the number of ones in

between the (i − 1)st and ith chosen zero. Similarly, there are
(
a+b−1
b−1

)
possible sequences

(y1, . . . , yb) ∈ Nb such that
∑b
j=1 yj = a, since we can apply the previous equality to

(y1 + 1, . . . , yb + 1) ∈ Nb.
Using the above, we continue to count the number of shapes. The number of (s1, . . . , sm) ∈

Nm such that sj ≥ 1 and
∑m
j=1 sj = k − l equals(

k − l − 1

m− 1

)
. (9.4.23)

The same applies to (t1, . . . , tm) ∈ Nm such that tj ≥ 1 and
∑m
j=1 tj = l. In counting

the number of possible ~xm+1 such that
∑m+1
j=1 xj = l, we need to count their numbers

separately for x1 = 0 and x1 ≥ 1, and for xm+1 = 0 and xm+1 ≥ 1. When m = 1, the
number is zero when x1 = x2 = 0, since x1 = x2 = 0 implies that the paths share no edges.
Denote a1 = δx1,0, am+1 = δxm+1,0, and suppose that m− a1 − am+1 ≥ 0. Then, there are(

l

m− a1 − am+1

)
(9.4.24)

possible choice of ~xm+1 with fixed a1 = δx1,0, am+1 = δxm+1,0. The claim follows by

multiplying these bounds on the number of choices for ~rm+1, ~om+1, ~sm, ~tm and ~xm+1.
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We complete the proof of Proposition 9.17. By (9.4.21) and applying Lemma 9.18, it
suffices to sum

2m−1(m− 1)!

(
k − l − 1

m− 1

)2(
l

m− a1 − am+1

)
(9.4.25)

×
(2γ2

I

ν3
I

)m−1
ν−lI
( γI
uaνI

)1−a1
( γI
ubνI

)1−am+1

over l ∈ [k − 2], m ∈ [k − l] and a1, am+1 ∈ {0, 1}, where, by convention,
(
l
−1

)
= 0.

We start with m = 1, for which we obtain that the sum of (9.4.25) over the other
variables equals

γI
( 1

ua
+

1

ub

) ∞∑
l=1

ν
−(l−1)
I +

γ2
I

uaubνI

∞∑
l=1

lν
−(l−1)
I

=
γIν

2
I

νI − 1

( 1

ua
+

1

ub

)
+

γ2
IνI

uaub(νI − 1)2
, (9.4.26)

where we use that, for a ∈ [0, 1),

∞∑
l=0

a−l = a/(1− a),

∞∑
l=0

la−(l−1) = a2/(1− a)2. (9.4.27)

The terms in (9.4.26) are the first two terms appearing on the right-hand side of (9.4.7).
This leaves us to bound the contribution when m ≥ 2. We continue by bounding(

k − l − 1

m− 1

)
(m− 1)! =

1

(m− 1)!

( (k − l − 1)!

(k − l −m)!

)2

≤ k2(m−1)

(m− 1)!
, (9.4.28)

and, using that
(
a
b

)
≤ ab/b! and l ≤ k,(

l

m− a1 − am+1

)
≤ lm−a1−am+1

(m− a1 − am+1)!
≤ km. (9.4.29)

Therefore, the number of shapes in Shapem,l is, for each l ≥ 1 and m ≥ 2, bounded by

2m−1 k
2(m−1)

(m− 1)!
km = k

(2k3)m−1

(m− 1)!
. (9.4.30)

Since the above is independent of l, we can start by summing (9.4.25) over l ≥ 1, and over
a1, am+1 ∈ {0, 1} to obtain a bound of the form

k
(
1 +

γI
uaνI

)(
1 +

γI
ubνI

) νI
νI − 1

∑
m≥2

(2k3)m−1

(m− 1)!

(γ2
I

ν3
I

)m−1

(9.4.31)

= k
(
1 +

γI
uaνI

)(
1 +

γI
ubνI

) νI
νI − 1

(
e2k3γ2

I/ν
3
I − 1

)
.

The term in (9.4.31) is the last term appearing on the right-hand side of (9.4.7). Summing
the bounds in (9.4.26) and (9.4.31) proves (9.4.7).
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Exercise 9.22 (Variance of two paths). Prove that Var(Nk(a, b)) ≤ E[Nk(a, b)] for k = 2.

Exercise 9.23 (Variance of three paths). Compute Var(N3(a, b)) explicitly, and compare
it to the bound in (9.4.7).

Exercise 9.24 (Variance on paths for ERn(λ/n)). Let A,B ⊆ [n], and let Nk(A,B)
denote the number of paths of length k connecting A to B (where a path connecting A and
B avoids A and B except for the starting and end point). Show that for k ≤ K logn,

E[Nk(A,B)] = λk|A||B|
(
1− |A|+ |B|

n

)k
(1 + o(1)). (9.4.32)

Use Proposition 9.17 to bound the variance of Nk(A,B), and prove that

Nk(A,B)/E[Nk(A,B)]
P−→ 1 (9.4.33)

when |A|, |B| → ∞ with |A|+ |B| = o(n/k).

9.4.2 Logarithmic upper bound on typical distances in finite variance case

In this section, we prove that two uniformly chosen vertices that are conditioned to be
connected are with high probability within distance (1 + ε) logν n, as formulated in the
following theorem:

Theorem 9.19 (Logarithmic upper bound graph distances NRn(w)). Assume that Con-
dition 6.4(a)-(c) hold, where ν = E[W 2]/E[W ] ∈ (1,∞). Then, for any ε > 0,

P(Hn ≤ (1 + ε) logν n | Hn <∞) = 1 + o(1). (9.4.34)

The same results hold for CLn(w) and GRGn(w) under the same conditions.

Organization of the proof of Theorem 9.19. We prove Theorem 9.19 by combining
the branching process comparison to a second moment method using Proposition 9.17 on
the number of paths of a given length. More precisely, we fix m ≥ 1 large, and recall
that N≤m(U1) and N≤m(U2) denote the vertices at distance at most m from V1 and V2

respectively, and let Nm(U1) and Nm(U2) denote the vertices at distance precisely equal to
m. We condition on N≤m(U1) and N≤m(U2) such that Nm(U1) 6= ∅ and Nm(U2) 6= ∅. By
Corollary 9.13, the probabilities of the latter event is close to ζ2

m, where ζm = P(Z(1)
m > 0)

is the probability that the branching process survives to generation m. Then, ζm → ζ
when m→∞, and, conditionally on Z(1)

m > 0, Z(1)
m ≥M whp, for any M and as m→∞.

This explains the branching process approximation. We take ui = wi/
√
`n,

a = Nm(U1), b = Nm(U2), (9.4.35)

so that

ua =
1√
`n

∑
i∈Nm(U1)

wi =Wm(U1)/
√
`n, ub =

1√
`n

∑
i∈Nm(U2)

wi =Wm(U2)/
√
`n.

(9.4.36)
We formalize the above ideas in the following lemma:

Lemma 9.20 (Branching process approximation). As n→∞,

(Wm(U1),Wm(U2))
d−→
(Z(1)

m∑
j=1

W (1)(j),

Z(2)
m∑
j=1

W (2)(j)
)
, (9.4.37)

where (Z(1)
m ,Z(2)

m ) are the generation sizes of two independent branching processes, and
(W (1)(j))j≥1 and (W (2)(j))j≥1 are two independent sequences of i.i.d. random variables
with distribution F .
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Proof. By Corollary 9.13, Z̃(1)
m = |Nm(U1)| and Z̃(2)

m = |Nm(U2)| jointly converge in dis-
tribution to (Z(1)

m ,Z(2)
m ), which are independent generation sizes of MMPBPs. Each of

the individuals in Nm(U1) and Nm(U2) receives a mark Mi, and its weight is wMi . By
Proposition 9.10, these marks are i.i.d. random variables conditioned to be distinct (if they
were not distinct, then the corresponding individuals would have been thinned). Since,
whp, the proof of Corollary 9.13 shows that no vertex is thinned, whp we can ignore the

thinning. Then, Wm(U1) =
∑Z̃

(1)
m

j=1 Wn(j), where (Wn(j))j≥1 are i.i.d. copies of Wn. By

Condition 6.4(a), Wn
d−→ W , so that Wm(U1)

d−→
∑Z(1)

m
j=1 W (1)(j). The joint convergence

follows in a similar fashion.

Second moment method and path counting. Fix k = kn = (1 + ε) logν n − 2m.
We next present the details of the second moment method that shows that whp, on the
event that Nm(U1) 6= ∅ and Nm(U2) 6= ∅, there exist a path of length kn−2m connecting
Nm(U1) and Nm(U2). This ensures that, on the event that Nm(U1) 6= ∅ and Nm(U2) 6= ∅,
the event Hn ≤ kn − 2m occurs whp. For this, we take ui = wi/

√
`n. We fix K ≥ 1

sufficiently large and take

I = {i ∈ [n] : wi ≤ K} \ (N≤m(U1) ∪N≤m(U2)). (9.4.38)

We investigate the constants appearing in Proposition 9.17 in the following lemma:

Lemma 9.21 (Parameters in path counting). Conditionally on N≤m(U1) and N≤m(U2),
and with a = Nm(U1), b = Nm(U2), for k = (1 + ε) logν n,

lim
n→∞

nk(a, b) =∞, lim
n→∞

n̄k(a, b)

nk(a, b)
= 1, (9.4.39)

and, as n→∞,

Var(Nk(a, b))

E[Nk(a, b)]2
≤ Kν2

ν − 1

( 1√
`nua

+
1√
`nub

)
+

K2ν2

(ν − 1)`nuaub
+ oP(1). (9.4.40)

Proof. By (9.4.3),

nk(a, b) = uaubν
k−1
Ia,b , (9.4.41)

and
n̄k(a, b)

nk(a, b)
=
(
νIa,b/νIa,b,k

)k−1
. (9.4.42)

We start by investigating νI. Denote

ν(K) =
E[W 2

1{W≤K}]

E[W ]
. (9.4.43)

Then, by (9.4.38) and the fact that N≤m(U1) and N≤m(U2) contain a finite number of
vertices,

lim
n→∞

νI = ν(K). (9.4.44)

The same applies to νIa,b and νIa,b,k . Then, withK > 0 chosen so large that ν(K) ≥ ν−ε/2
and with k = (1 + ε) logν n,

νk−1
Ia,b =Wm(U1)Wm(U2)

n

`n
n

(1+ε) log νIa,b/ log ν−1 →∞, (9.4.45)



222 Inhomogeneous random graphs revisited

where K and n are so large that (1+ε)νI/ν > 1. This proves the first property in (9.4.39).
To prove the second property in (9.4.39), we note that the set Ia,b,k is obtained from

Ia,b by removing the k vertices with highest weight. Since wi ≤ K for all i ∈ I (recall
(9.4.38)), νIa,b ≤ νIa,b,k + kK/`n. Since k ≤ A logn, we therefore arrive at

n̄k(a, b)

nk(a, b)
≤
(
1 + kK/(`nνIa,b,k )

)k−1
= e

k2K/(`nνIa,b,k ) → 1, (9.4.46)

as required.
To prove (9.4.40), we rely on Proposition 9.17. We have already shown that nk(a, b) =

E[Nk(a, b)]→∞, so that the first term on the right-hand side of (9.4.7) is o(E[Nk(a, b)]2).
Further, by (9.4.38),

γI ≤ νI(max
i∈I

ui) ≤
νIK√
`n
, (9.4.47)

so that, for k ≤ A logn with A > 1 fixed,

(1 +
γI
uaνI

)(1 +
γI
ubνI

)k(e2k3γ2
I/ν

3
I − 1) = oP(1). (9.4.48)

Substituting these bounds into (9.4.40) and using (9.4.39) yields the claim.

Completion of the proof of Theorem 9.19. Now we are are ready to complete the
proof of Theorem 9.19. We must show that

P(kn < Hn <∞) = o(1). (9.4.49)

Indeed, then P(Hn > kn | Hn < ∞) = o(1) since, P(Hn < ∞) → ζ2 > 0 by Theorem 9.2.
We rewrite

P(kn < Hn <∞) = P(kn < Hn <∞,Nm(U1) 6= ∅,Nm(U2) 6= ∅) (9.4.50)

≤ P(Nkn−2m(Nm(U1),Nm(U2)) = 0,Nm(U1) 6= ∅,Nm(U2) 6= ∅).

Recall that k = kn = (1 + ε) logν n. By the Chebychev inequality (Theorem 2.16), and
given N≤m(U1),N≤m(U2), the conditional probability on {Hn > kn} is at most

Var(Nk−2m(a, b))

E[Nk−2m(a, b)]2
≤ Kν2

ν − 1

( 1√
`nua

+
1√
`nub

)
+

K2ν2

(ν − 1)`nuaub
+ oP(1). (9.4.51)

When Nm(U1) 6= ∅ and Nm(U2) 6= ∅, by (9.4.36),

1√
`nua

+
1√
`nub

P−→
(Z(1)

m∑
j=1

W (1)(j)
)−1

+
(Z(2)

m∑
j=1

W (2)(j)
)−1 P−→ 0, (9.4.52)

when m→∞. Therefore,

P
(
Nk−2m(a, b) = 0 | Nm(U1) 6= ∅,Nm(U2) 6= ∅

)
P−→ 0, (9.4.53)

and, by Lebesgues Dominated Convergence Theorem (Theorem A.42),

P(Hn > kn,Nm(U1) 6= ∅,Nm(U2) 6= ∅)→ 0, (9.4.54)

which completes the proof.

We close this section by describing what happens when τ = 3, and there are no slowly
varying functions:
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Distances for the critical case τ = 3 When τ = 3, wi is approximately c(n/i)1/2. It
turns our that this changes the distances only by a doubly logarithmic factor:

Theorem 9.22 (Logarithmic upper bound graph distances NRn(w)). Assume that Con-
dition 6.4(a)-(b) hold, and that there exists constants c2 > c1 > 0 and α > 0 such that for
all x ≤ nα,

[1− Fn](x) ≥ c1/x2, (9.4.55)

and for all x ≥ 0,
[1− Fn](x) ≤ c2/x2. (9.4.56)

Then, conditionally on Hn <∞,

Hn log logn

logn

P−→ 1. (9.4.57)

The same results hold for CLn(w) and GRGn(w) under the same conditions.

The lower bound in Theorem 9.22 is already stated in Corollary 9.6. The upper bound
can be proved using the path counting techniques in Proposition 9.17 and adaptations of
it. We now sketch the proof.

Let η > 0 and let

αn = eν
1−η
n . (9.4.58)

Define the core of NRn(w) to be

Coren = {i : wi ≥ αn}. (9.4.59)

The proof of Theorem 9.22 follows from the following two propositions:

Proposition 9.23 (Typical distances in the core). Under the conditions of Theorem 9.22,
let V ′1 , V

′
2 ∈ Coren be chosen with probability proportional to their weight, i.e.,

P(V ′i = j) =
wj∑

v∈Coren
wv

, (9.4.60)

and let H ′n be the graph distance between V ′1 , V
′
2 in Coren. Then, for any ε > 0, there exists

an η > 0 such that

P
(
H ′n ≤

(1 + ε) logn

log log n

)
→ 1. (9.4.61)

Proposition 9.24 (From the periphery to the core). Under the conditions of Theorem
9.22, let V1, V2 be two vertices chosen uniformly at random from [n]. Then, for any η > 0,

P(dNRn(w)(V1,Coren) ≤ ν1−η
n , dNRn(w)(V2,Coren) ≤ ν1−η

n )→ ζ2. (9.4.62)

To see that Propositions 9.23–9.24 imply Theorem 9.22, we note that

Hn = dNRn(w)(V1, V2) (9.4.63)

≤ dNRn(w)(V1,Coren) + dNRn(w)(V2,Coren) + dNRn(w)(V
′
1 , V

′
2 ),

where V ′1 , V
′
2 ∈ Coren are the vertices in Coren found first in the breadth-first search.

Then, by Proposition 9.10, V ′1 , V
′
2 ∈ Coren are chosen with probability proportional to

their weight. Therefore, when n is so large that ν1−η
n ≤ ε logn/(4 log logn),

P(Hn ≤ (1 + ε)
logn

log log n
) (9.4.64)

≥ P
(
dNRn(w)(Vi,Coren) ≤ ν1−η

n , i = 1, 2, dNRn(w)(V
′
1 , V

′
2 ) ≤ (1 + ε/2)

logn

log log n

)
.
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By Proposition 9.24, the probability of the first event converges to ζ2, and by Proposition
9.24, the probability of the second event converges to 1. We conclude that

P
(
Hn ≤ (1 + ε)

logn

log log n

)
→ ζ2.

Since also P(Hn <∞)→ ζ2, this completes the proof.

The proofs of Propositions 9.23–9.24 follow from path counting techniques similar to
the ones carried out above. We now sketch their proofs, starting with Proposition 9.23.
For Proposition 9.23, we take

a = V ′1 , b = V ′2 , I = {wi : wi ∈ [K,
√
αn]}. (9.4.65)

The whole point is that there exists a constant c > 0 such that

νI ≥ c logαn = cν1−η
n , (9.4.66)

while ua ≥ αn/
√
`n, ub ≥ αn/

√
`n, so that

E[Nk(a, b)] ≈ α2
nc
kνk(1−η)
n /`n →∞ (9.4.67)

for k = logn/((1−η) log νn) ≤ (1+ε/2) logn/ log νn when η is such that 1/(1−η) ≤ 1+ε/2.
Further,

γI ≤
√
αn/
√
`n, (9.4.68)

so that Var(Nk(a, b))/E[Nk(a, b)]2 → 0 by Proposition 9.17.

Exercise 9.25 (νn bound for τ = 3). Prove that (9.4.55) and (9.4.56) imply that νI ≥
c logαn by using

1

n

∑
i∈I

w2
i = E[W 2

n1{Wn∈[K,
√
αn]}] = 2

∫ √αn
K

x[Fn(
√
αn)− Fn(x)]dx. (9.4.69)

Exercise 9.26 (Expected number of paths within Coren diverges). Prove that

E[Nk(a, b)]→∞

for a = V ′1 , b = V ′2 and k = logn/((1− η) log νn).

Exercise 9.27 (Concentration of number of paths within Coren). Prove that

Var(Nk(a, b))/E[Nk(a, b)]2 → 0

for a = V ′1 , b = V ′2 and k = logn/((1− η) log νn).

For Proposition 9.23, we again condition on Nm(U1) 6= ∅,Nm(U2) 6= ∅, the probability
of which converges to ζ2 when first n → ∞ followed by m → ∞. Then, we perform a
second moment method on the number of paths between Nm(Ui) and Coren. For this, we
take k = ν1−η

n and

a = Nm(U1), b = Coren, I = {i : wi ≤ K} \ (N≤m(U1) ∪N≤m(U2)). (9.4.70)

Then we follow the proof in (9.4.51)–(9.4.54) to show that

P(dNRn(w)(V1,Coren) > ν1−η
n ,Nm(U1) 6= ∅,Nm(U2) 6= ∅)→ 0, (9.4.71)
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as required. Note, for this, that, conditionally on N≤m(U1),N≤m(U2)

E[Nk(a, b)] ≈ ν(K)kWm(U1)
1

`n

∑
i∈Coren

wi, (9.4.72)

where ν(K)→∞ as K →∞, and where, by (9.4.55),

1

n

∑
i∈Coren

wi ≥ αn[1− Fn](αn) ≥ c/αn. (9.4.73)

Therefore, E[Nk(a, b)] → ∞ as soon as k ≥ 2 logαn/ log ν(K), which is satisfied for K
sufficiently large and k = ν1−η

n .

Exercise 9.28 (Completion proof Proposition 9.23). Complete the proof of Proposition
9.23 by adapting the arguments in (9.4.51)–(9.4.54).

9.5 General inhomogeneous random graphs

In this section, we introduce the general setting of inhomogeneous random graphs. The
inhomogeneous random graph is a generalization of the Erdős-Rényi random graph ERn(p)
as well as the inhomogeneous random graphs studied in Chapter 6. We start by motivating
its choice, which is inspired by Example 6.1.

Example 9.25 (Population of two types (Cont.)). Suppose that we have a complex net-
work in which there are n1 vertices of type 1 and n2 of type 2. Type 1 individuals have
on average m1 neighbors, type 2 individuals m2, where m1 6= m2. Further, suppose that
the probability that a type 1 individual is a friend of a type 2 individual is quite different
from the probability that a type 1 individual is a friend of a type 1 individual.

In the model proposed in Example 6.3, the probability that a type i individual is a
friend of a type j individual (where i, j,∈ {1, 2}) is equal to mimj/(`n+mimj), where `n =
n1m1 + n2m2. Approximating this probability by mimj/`n, we see that the probability
that a type 1 individual is friend of a type 2 individual is quite related to the probability
that a type 1 individual is friend of a type 1 individual. Indeed, take two type 1 and
two type 2 individuals. Then, the probability that the type 1 individuals are friends and
the type 2 individuals are friends is almost the same as the probability that first type 1
individual is friend with the first type 2 individual, and the second type 1 individual is
friend of the second type 2 individual. This relation seems quite artificial, and is in many
practical situations unwanted. The problem originates in the product structure of the edge
probabilities in the generalized random graph.

We assume that our individuals have types which are in a certain type space S. When
there are individuals of just 2 types, as in Example 9.25, then it suffices to take S = {1, 2}.
However, the model allows for rather general sets of types of the individuals, both finite as
well as (countably or uncountably) infinite. An example of an uncountably infinite type
space could be types related to the ages of the individuals in the population. We therefore
also need to know how many individuals there are of a given type. This is described in
terms of a measure µn, where, for A ⊆ S, µn(A) denotes the proportion of individuals
having a type in A.

In our general model, instead of vertex weights, the edge probabilities are moderated
by a kernel κ : S2 → [0,∞). The probability that two individuals of types x1 and x2 are
friends is approximately κ(x1, x2)/n. Since there are many choices for κ, we arrive at a
rather flexible model, where individuals have types and connection probabilities are related
to the types of the individuals involved.
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We start by making the above definitions formal, by defining what our ground space is
and what a kernel is:

Definition 9.26 (Kernel). (i) A ground space is a pair (S, µ), where S is a separable
metric space and µ is a Borel probability measure on S.

(ii) A vertex space V is a triple (S, µ, (xn)n≥1), where (S, µ) is a ground space and, for
each n ≥ 1, xn is a random sequence (x1, x2, . . . , xn) of n points of S, such that

µn(A) = #{i : xi ∈ A}/n→ µ(A) (9.5.1)

for every µ-continuity set A ⊆ S. The convergence in (9.5.1) is denoted by µn
p−→ µ.

(iii) A kernel κ is a symmetric non-negative (Borel) measurable function on S2. By a
kernel on a vertex space (S, µ, (xn)n≥1) we mean a kernel on (S, µ).

Before defining the precise random graph model, we state the necessary conditions on
our kernels. We write E(G) for the number of edges in a graph G. Note that

E[E(IRGn(p))] =
∑
i<j

pij , (9.5.2)

so that our model has bounded degree in expectation precisely when 1
n

∑
i<j pij remains

bounded. In our applications, we wish that the average degree per vertex in fact converges.
This explains the main conditions we pose on the kernel κ

Definition 9.27 (Graphical and irreducible kernels). (i) A kernel κ is graphical if the
following conditions hold:

(a) κ is continuous a.e. on S2;

(b) ∫∫
S2

κ(x, y)µ(dx)µ(dy) <∞; (9.5.3)

(c)
1

n
E[E(IRGn(p(κ)))]→ 1

2

∫∫
S2

κ(x, y)µ(dx)µ(dy). (9.5.4)

Similarly, a sequence (κn) of kernels is called graphical with limit κ when

yn → y and zn → z imply that κn(yn, zn)→ κ(y, z), (9.5.5)

where κ satisfies conditions (a) and (b) above, and

1

n
E[E(IRGn(p(κn)))]→ 1

2

∫∫
S2

κ(x, y)µ(dx)µ(dy). (9.5.6)

(ii) A kernel κ is called reducible if

∃A ⊆ S with 0 < µ(A) < 1 such that κ = 0 a.e. on A× (S\A);

otherwise κ is irreducible.
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We now discuss the above definitions. The assumptions in (9.5.3), (9.5.4), (9.5.6) imply
that the expected number of edges is proportional to n, and that the proportionality
constant is precisely equal to

∫∫
S2 κ(x, y)µ(dx)µ(dy). Thus, in the terminology of Chapter

1, IRGn(p(κ)) is sparse.
Roughly speaking, κ is reducible if the vertex set of IRGn(p(κ)) can be split in two

parts so that the probability of an edge from one part to the other is zero, and irreducible
otherwise. When κ is reducible, then the random graph splits into two independent random
graphs on the two disjoint subsets A and S \A. Therefore, we could have equally started
with each of them separately, explaining why the notion of irreducibility is quite natural.

In many cases, we shall take S = [0, 1], xi = i/n and µ the Lebesgue-measure on [0, 1].
Then, clearly, (9.5.1) is satisfied. In fact, in [165], it is shown that we can always restrict
to S = [0, 1] by suitably adapting the other choices of our model. However, for notational
purposes, it is more convenient to work with general S. For example, where S = {1} is
just a single type, the model reduces to the Erdős-Rényi random graph, and in the setting
where S = [0, 1], this is slightly more cumbersome:

Exercise 9.29 (Erdős-Rényi random graph). Show that when S = [0, 1] and pij =
κ(i/n, j/n)/n with κ : [0, 1]2 → [0,∞) being continuous, then the model is the Erdős-Rényi
random graph with edge probability λ/n precisely when κ(x, y) = λ. Is this also true when
κ : [0, 1]2 → [0,∞) is not continuous?

Now we come to the definition of our random graph. Given a kernel κ, for n ∈ N, we let
IRGn(p(κ)) be the random graph on [n], each possible edge ij, i, j ∈ [n], is present with
probability

pij(κ) = pij =
1

n
[κ(xi, xj) ∧ n], (9.5.7)

and the events that different edges are present are independent. Similarly, IRGn(p(κn)) is
defined with κn replacing κ in (9.5.7).

For CLn(w) with w = (wi)i∈[n] as in (6.1.10), we take S = [0, 1], xi = i/n and

κn(x, y) = [1− F ]−1(x)[1− F ]−1(y)n/`n. (9.5.8)

For CLn(w) with w = (wi)i∈[n] satisfying Condition 6.4, instead, we take S = [0, 1],
xi = i/n and

κn(i/n, j/n) = wiwj/E[Wn]. (9.5.9)

We next study the Chung-Lu random graph:

Exercise 9.30 (The Chung-Lu model). Prove that when κ is given by

κ(x, y) = [1− F ]−1(x)[1− F ]−1(y)/E[W ], (9.5.10)

then κ is graphical precisely when E[W ] <∞, where W has distribution function F . Fur-
ther, κ is always irreducible.

Exercise 9.31 (The Chung-Lu model repeated). Let w̃i = [1 − F ]−1(i/n)
√
nE[W ]/`n

and wi = [1 − F ]−1(i/n) as in (6.1.10). Then CLn(w̃) and CLn(w) are asymptotically

equivalent whenever (E[Wn]
`n
− 1)2 = o(n).

In [61], also the choices

p(NR)

ij (κn) = 1− e−κn(xi,xj)/n, (9.5.11)

or

p(GRG)

ij (κn) = pij =
κ(xi, xj)

n+ κ(xi, xj)
(9.5.12)
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are investigated. All results in [61] remain valid for the choices in (9.5.11) and (9.5.12).
When ∑

i,j∈[n]

κn(xi, xj)
3 = o(n3/2), (9.5.13)

this follows immediately from Theorem 6.17:

Exercise 9.32 (Asymptotic equivalence for general IRGs). Prove that the random graphs

IRGn(p) with pij as in (9.5.7) is asymptotically equivalent to IRGn(p) with pij = p(NR)

ij (κn)

and to IRGn(p) with pij = p(GRG)

ij (κn) when (9.5.13) holds.

In the next section, we discuss some examples of inhomogeneous random graphs.

9.5.1 Examples of inhomogeneous random graphs

The Erdős-Rényi random graph. If S is general and κ(x, y) = λ for every x, y ∈ S,
then the edge probabilities pij given by (9.5.7) are all equal to λ/n (for n > λ). Then
IRGn(p(κ)) = ERn(λ/n). The simplest choice here is to take S = {1}.

The homogeneous bipartite random graph. Let n be even, ket S = {0, 1}, let xi = 0
for i ∈ [n/2] and xi = 1 for i ∈ [n] \ [n/2]. Further, let κ be defined by κ(x, y) = 0 when
x 6= y and κ(x, y) = λ when x = y. Then IRGn(p(κ)) is the random bipartite graph
with n/2 vertices in each class, where each possible edge between classes is present with
probability λ/n, independently of the other edges.

Exercise 9.33 (Definitions 9.26-9.27 for homogeneous bipartite graph). Prove that Defi-
nitions 9.26-9.27 hold for the homogeneous bipartite graph.

The finite-type case. Fix r ≥ 2 and suppose we have a graph with r different types
of vertices. Let S = {1, . . . , r}. Let ni denote the number of vertices of type i, and let
µn(i) = ni/n. Let IRGn(p(κ)) be the random graph where two vertices of types i and
j, respectively, joined by an edge with probability n−1κ(i, j) (for n ≥ maxκ). Then κ is
equivalent to an r×r matrix, and the random graph IRGn(p(κ)) has vertices of r different
types (or colors). The finite-types case has been studied by Söderberg [251, 252, 253, 254].
We conclude that our general IRG covers the cases of a finite (or even countably infinite)
number of types.

Exercise 9.34 (Homogeneous bipartite graph). Prove that the homogeneous bipartite ran-
dom graph is a special case of the finite-types case.

Exercise 9.35 (Irreducibility for the finite-types case). Prove that, in the finite-type
case, irreducibility follows when there exists an m such that the mth power of the matrix
(κ(i, j))i,j∈[r] contains no zeros.

Exercise 9.36 (Graphical limit in the finite-types case). Prove that, in the finite-type
case, (9.5.1) holds precisely when

lim
n→∞

ni/n = pi. (9.5.14)
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9.5.2 Degree sequence of IRG

We next turn to the degrees of the vertices of IRGn(p(κn)). As we shall see, the degree
of a vertex of a given type x is asymptotically Poisson with a mean

λ(x) =

∫
S
κ(x, y)µ(dy) (9.5.15)

that depends on x. This leads to a mixed Poisson distribution for the degree D of a
(uniformly chosen) random vertex of IRGn(p(κ)). We recall that Nk denotes the number
of vertices of IRGn(p(κ)) with degree k.

Theorem 9.28 (The degree sequence of IRGn(p(κ))). Let (κn) be a graphical sequence of
kernels with limit κ. For any fixed k ≥ 0,

Nk/n
P−→
∫
S

λ(x)k

k!
e−λ(x)µ(dx) (9.5.16)

where x 7→ λ(x) is defined by

λ(x) =

∫
S
κ(x, y)µ(dy). (9.5.17)

Equivalently,

Nk/n
P−→ P(Ξ = k), (9.5.18)

where Ξ has the mixed Poisson distribution with distribution Wλ given by

P(Wλ ≤ x) =

∫ x

0

λ(y)µ(dy). (9.5.19)

In the remainder of this section, we shall give a proof of Theorem 9.28. We start by
proving Theorem 9.28 for the finite-types case, which is substantially easier. After this, we
give a proof in the general case, for which we shall need to prove results on approximations
of sequences of graphical kernels.

Proof of Theorem 9.28 in the finite-types case. Consider first the finite-type case. Take
a vertex v of type i, let Dv be its degree, and let Dv,j be the number of edges from v to
vertices of type j ∈ [r]. Then, clearly, Dv =

∑
j Dv,j .

Recall that, in the finite-types case, the edge probability between vertices of types i and
j is denoted by (κ(i, j)∧ n)/n. Assume that n ≥ maxκ. The random variables (Dv,j)j∈[r]

are independent, and Dv,j ∼ Bin(nj − δij , κ(i, j)/n)
d−→ Poi(µjκ(i, j)), where nj are the

number of vertices with type j and µj = limn→∞ nj/n. Hence,

Dv
d−→ Poi

(∑
j

µjκ(i, j)

)
= Poi(λ(i)), (9.5.20)

where λ(i) =
∫
κ(i, j)dµ(j) =

∑
j κ(i, j)µj . Consequently,

P(Dv = k)→ P(Poi(λ(i)) = k) =
λ(i)k

k!
e−λ(i). (9.5.21)

Let Nk,i be the number of vertices in GV(n, k) of type i with degree k. Then, for fixed
n1, . . . , nr,

1

n
E[Nk,i] =

1

n
niP(Dv = k)→ µiP(Poi(λ(i)) = k). (9.5.22)
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It is easily checked that Var(Nk,i) = O(n). Hence,

1

n
Nk,i

P−→ P(Poi(λ(i)) = k)µi = P(Ξ = k), (9.5.23)

and thus, summing over i,

1

n
Nk =

∑
i

1

n
Nk,i

P−→
∑
i

P(Poi(λ(i)) = k)µi = P(Ξ = k). (9.5.24)

This proves Theorem 9.28 in the regular finitary case.

In order to prove Theorem 9.28 in the general case, we shall be approximating a sequence
of graphical kernels (κn) by appropriate regular finite kernels:

Approximations of sequences of graphical kernels. Recall that S is a separable
metric space, and that µ is a Borel measure on S with 0 < µ(S) <∞. We usually assume
that µ(S) = 1; in this section, this makes no difference. Here the metric and topological
structure of S will be important.

Given a sequence of finite partitions Pm = {Am1, . . . , AmMm}, m ≥ 1, of S and an
x ∈ S, we define im(x) by requiring that

x ∈ Am,im(x). (9.5.25)

As usual, for A ⊂ S we write diam(A) for sup{|x − y| : x, y ∈ A}. By taking Pm as the
dyadic partition into intervals of length 2−m in S, we easily see the following:

Lemma 9.29 (Approximating partition). There exists a sequence of finite partitions Pm =
{Am1, . . . , AmMm}, m ≥ 1, of S such that

(i) each Ami is measurable and µ(∂Ami) = 0;

(ii) for each m, Pm+1 refines Pm, i.e., each Ami is a union
⋃
j∈Jmi Am+1,j for some set

Jmi;

(iii) for a.e. x ∈ S, diam(Am,im(x))→ 0 as m→∞, where im(x) is defined by (9.5.25)

Recall that a kernel κ is a symmetric measurable function on S ×S. Fixing a sequence
of partitions with the properties described in Lemma 9.29, we can define sequences of lower
and upper approximations to κ by

κ−m(x, y) = inf{κ(x′, y′) : x′ ∈ Am,im(x), y
′ ∈ Am,im(y)}, (9.5.26)

κ+
m(x, y) = sup{κ(x′, y′) : x′ ∈ Am,im(x), y

′ ∈ Am,im(y)}. (9.5.27)

We thus replace κ by its infimum or supremum on each Ami×Amj . As κ+
m might be +∞,

we shall use it only for bounded κ.
By Lemma 9.29(ii),

κ−m ≤ κ−m+1 and κ+
m ≥ κ+

m+1. (9.5.28)

Furthermore, if κ is continuous a.e. then, by Lemma 9.29(iii),

κ−m(x, y)→ κ(x, y) and κ+
m(x, y)→ κ(x, y) for a.e. (x, y) ∈ S2. (9.5.29)

Since k−m ≤ κ, we can obviously construct our random graph so that IRGn(κ−m) ⊆ IRGn(κ),
and in the sequel we shall assume this. Similarly, we shall assume that IRGn(κ+

m) ⊇
IRGn(κ) when κ is bounded.
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If (κn) is a graphical sequence of kernels with limit κ, we define instead

κ−m(x, y) := inf{(κ ∧ κn)(x′, y′) : x′ ∈ Am,im(x), y
′ ∈ Am,im(y), n ≥ m}, (9.5.30)

κ+
m(x, y) := sup{(κ ∨ κn)(x′, y′) : x′ ∈ Am,im(x), y

′ ∈ Am,im(y), n ≥ m}. (9.5.31)

By Lemma 9.29, we have κ−m ≤ κ−m+1, and from Lemma 9.29(iii) and 9.27(ii) we see
that

κ−m(x, y)↗ κ(x, y) as m→∞, for a.e. (x, y) ∈ S2. (9.5.32)

Moreover, when n ≥ m, we have
κn ≥ κ−m, (9.5.33)

and we may assume that IRGn(κ−m) ⊆ IRGn(κn). By the convergence of the sequence of
kernels (κn), we further obtain that also the number of edges converges:

Now we are ready to complete the proof of Theorem 9.28 for general sequences of
graphical kernels (κn). Define κ−m by (9.5.30). Let ε > 0 be given. From (9.5.6) and
monotone convergence, there is an m such that∫∫

S2

κ−m(x, y)µ(dx)µ(dy) >

∫∫
S2

κ(x, y)µ(dx)µ(dy)− ε. (9.5.34)

For n ≥ m, we have κ−m ≤ κn by (9.5.33), so we may assume that IRGn(p(κ−m)) ⊆
IRGn(p(κn)). Then, by (9.5.6) and (9.5.34),

1

n
E(IRGn(p(κn)) \ IRGn(p(κ−m))) (9.5.35)

=
1

n
E(G(n, κn))− 1

n
E(IRGn(p(κ−m)))

P−→ 1

2

∫∫
S2

κ(x, y)µ(dx)µ(dy)− 1

2

∫∫
S2

κ−m(x, y)µ(dx)µ(dy) <
ε

2
,

so that, whp E(IRGn(p(κn)) \ IRGn(p(κ−m))) < εn. Let us write N (m)

k for the number of
vertices of degree k in IRGn(p(κ−m)). It follows that whp

|N (m)

k −Nk| < 2εn (9.5.36)

Writing Ξ(m) for the equivalent of Ξ defined using κ−m in place of κ, by the proof for the

regular finitary case, N (m)

k /n
P−→ P(Ξ(m) = k). Thus, whp,

|N (m)

k /n− P(Ξ(m) = k)| < ε. (9.5.37)

Finally, we have E[Ξ] =
∫
S λ(x)µ(dx) =

∫∫
S2 κ(x, y)µ(dx)µ(dy). Since λ(m)(x) ≤ λ(x),

we can assume that Ξ(m) ≤ Ξ, and thus

P(Ξ 6= Ξ(m)) = P(Ξ− Ξ(m) ≥ 1)

≤ E[Ξ− Ξ(m)] =

∫∫
S2

κ(x, y)µ(dx)µ(dy)−
∫∫
S2

κ−m(x, y)µ(dx)µ(dy) < ε.

(9.5.38)

Combining (9.5.36), (9.5.37) and (9.5.38), we see that |Nk/n−P(Ξ = k))| < 4εwhp.

Let Λ be the random variable λ(U), where U is a random variable on S having distri-
bution µ. Then we can also describe the mixed Poisson distribution of Ξ as Poi(Λ). Under
mild conditions, the tail probabilities P(Ξ > t) and P(Λ > t) are similar for large t. We
state this for the case of power-law tails; the result generalizes to regularly varying tails.
As above, let D be the degree of a random vertex in IRGn(p(κn)). Let N≥k be the number
of vertices with degree at least k.
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Corollary 9.30 (Power-law tails for the degree sequence). Let (κn) be a graphical sequence

of kernels with limit κ. Suppose that P(Λ > t) = µ{x : λ(x) > t} ∼ at−(τ−1) as t→∞, for
some a > 0 and τ > 2. Then

N≥k/n
P−→ P(Ξ ≥ k) ∼ ak−(τ−1), (9.5.39)

where the first limit is for k fixed and n → ∞, and the second for k → ∞. In particular,
limn→∞ P(D ≥ k) ∼ ak−(τ−1) as k →∞.

Proof. It suffices to show that P(Ξ ≥ k) ∼ ak−(τ−1); the remaining conclusions then follow
from Theorem 9.28. For any ε > 0, P(Poi(Λ) > t|Λ > (1 + ε)t)→ 1 and P(Poi(Λ) > t|Λ <

(1 − ε)t) = o(t−(τ−1)) as t → ∞. It follows that P(Ξ > t) = P(Poi(Λ) > t) ∼ at−(τ−1) as
t→∞.

This result shows that the general IRG does include natural cases with power-law degree
distributions. Naturally, we have already observed in Theorem 6.6 that this is the case for
the GRGn(w) when the weights sequence w is chosen appropriately.

9.5.3 Multitype branching processes

In order to study further properties of IRGn(p(κ)), we need to understand the neigh-
borhood structure of vertices. For simplicity, let us restrict ourselves to the finite types
case. Then, for a vertex of type i, the number of neighbors of type j is close to Poisson
distributed with approximate mean κ(i, j). Even when we assume independence of the
neighborhood structures of different vertices, we still do not arrive at a classical branching
process as discussed in Chapter 3. Instead, we can describe the neighborhood structure
with a branching process in which we keep track of the type of each of the vertices. For
general κ and µ, we can even have a continuum of types. Such branching processes are
called multitype branching processes. See e.g. [22, Chapter V] or [145, Chapter III] for more
background on multitype branching processes. In this section, we shall only discuss the
basics and we shall quickly go to the special case of multitype branching processes where
every offspring has a Poisson distribution.

Multitype branching processes with finitely many types. Multitype branching
process can be analyzed using linear algebra. In order to do so, we first introduce some
notation. We first assume that we are in the finite types case, and denote the number of
types by r. We let j = (j1, . . . , jr) ∈ Nr0 be a vector of non-negative integers, and denote by

p(i)

j the probability that an individual of type i gives rise to an offspring j, i.e., j1 children
of type 1, j2 children of type 2, etc. The offsprings of the different individuals are all
mutually independent. Denote by Z(i)

n,j the number of individuals of type j in generation

n when starting from a single particle of type i and Z(i)
n = (Z(i)

n,1, . . . , Z
(i)

n,j). We shall be
interested in the survival or extinction of multitype branching processes, and in the growth
of the generation sizes. In the multitype case, we are naturally lead to a matrix setup. We
now discuss the survival versus extinction of multitype branching processes. We denote
the survival probability of the multitype branching process when starting from a single
individual of type i by

q(i) = P(Z(i)
n 6= 0 for all n), (9.5.40)

and we let q = (q(1), . . . , q(r)). Our first aim is to investigate when q = 0.

Multitype branching processes and generating functions. We write p(j) = (p(1)

j , . . . , p(r)

j )
and we let

G(i)(s) =
∑
j

p(i)

j

r∏
a=1

sjaa (9.5.41)
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be the joint moment generating function of the offspring of an individual of type i. We write
G(s) = (G(1)(s), . . . , G(r)(s)) for the vector of generating functions. We now generalize
Theorem 3.1 to the multitype case. Let q satisfy q = 1 − G(1 − q). By convexity of
s 7→ G(s), there is at most one non-zero solution to the equation s = G(s) which is not
equal to 0. Define

G(i)
n (s) = E[

r∏
a=1

s
Z

(i)
n,a

a ], (9.5.42)

and Gn(s) = (G(1)
n (s), . . . , G(r)

n (s). Then, we have that Gn+1(s) = Gn(G(s)) = G(Gn(s))
and q = 1 − limn→∞Gn(0). Naturally, the extinction probability depends sensitively on
the type of the ancestor of the branching process. On the other hand, under reasonable
assumptions, the positivity of the survival probability is independent of the initial type.
A necessary and sufficient condition for this property is that, with positive probability, a
particle of type i arises as a descendent of of a particle of type j for each type i and j.

We note that when G(s) = Ms for some matrix M, then each individual in the Markov
chain has precisely one offspring, and we call this case singular. When each particle has
precisely one offspring, the multitype branching process is equivalent to a Markov chain,
and the process a.s. survives. Thus, in this case, there is no survival vs. extinction phase
transition. We shall assume throughout the remainder that the multitype branching pro-
cess is non-singular.

Survival vs. extinction and mean offspring. We continue to describe the survival
versus extinction of multitype branching processes in terms of the mean offspring. Let
κij denote the expected offspring of type j of a single individual of type i, and let Tκ =
{κij}ri,j=1 be the matrix of offsprings. We shall assume that there exists an l such that

the matrix Ml has only strictly positive entries. This is sometimes called irreducibility, as
it implies that the Markov chain of the number of individuals of the various types is an
irreducible Markov chain. By the Perron-Frobenius theorem, the matrix M has a unique
largest eigenvalue ‖Tκ‖ with non-negative left-eigenvector xκ, and the eigenvalue ‖Tκ‖
can be computed as

‖Tκ‖ = sup
x : ‖x‖2≤1

‖Tκx‖2, where ‖x‖2 =

√√√√ r∑
i=1

x2
i . (9.5.43)

We note that
E[Z(i)

n+1|Z
(i)
n = z] = Tκz, (9.5.44)

so that
E[Z(i)

n+1] = Tn
κe(i). (9.5.45)

where Tn
κ denotes the n-fold application of the matrix Tκ, and e(i) is the vector which

has on the ith position a 1, and further only zeroes. The identifications in (9.5.44) and
(9.5.45) have several important consequences concerning the phase transition of multitype
branching processes, as we shall now discuss in more detail.

First, when ‖Tκ‖ < 1, we have that

E[Z(i)

n+1] ≤ ‖Tκ‖n‖e(i)‖2, (9.5.46)

which converges to 0 exponentially fast. Therefore, by the Markov inequality (Theorem
2.15), the multitype branching process dies out a.s. When ‖Tκ‖ > 1, on the other hand,
the sequence

Mn = xκZ
(i)

n+1‖Tκ‖−n (9.5.47)
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is a non-negative martingale, by (9.5.44) and the fact that xκ is a left-eigenvector with
eigenvalue ‖Tκ‖, since xκTκ = ‖Tκ‖xκ. By the Martingale convergence theorem (The-
orem 2.22), the martingale Mn converges a.s. When we further assume some further
restrictions on Mn, for example that Mn has finite second moment, then we obtain that

Mn
a.s.−→ M∞ and E[Mn] → E[M∞]. More precisely, there is a multitype analog of the

Kesten-Stigum Theorem (Theorem 3.10). Since E[Mn] = E[M0] = xκe
(i) > 0, we thus

have that Z(i)

n+1 grows exponentially with a strictly positive probability, which implies that

the survival probability is positive. Theorem 3.1 can be adapted to show that Z(i)

n+1
P−→ 0

when ‖Tκ‖ = 1. See e.g. [145, Sections II.6-II.7]. We conclude that, for non-singular and
irreducible multitype branching processes, we have that q > 0 precisely when ‖Tκ‖ > 1.

Poisson multitype branching processes. We call a multitype branching processes
Poisson when all the number of children of each type are independent Poisson random
variables. Thus, Z(i) = (Z(i)

1,1, . . . , Z
(i)

1,r) is a vector of independent Poisson random variables
with means (κ1,i, . . . , κr,i). As we shall see later, Poisson multitype branching processes
arise naturally when exploring a component of IRGn(p(κ)) starting at a vertex of type x.
This is directly analogous to the use of the single-type Poisson branching process in the
analysis of the Erdős-Rényi graph ERn(λ/n) as discussed in detail in Chapters 4 and 5.

For Poisson multitype branching processes, we obtain that

G(i)(s) = E[

r∏
a=1

s
Z

(i)
1,a

a ] = e
∑r
a=1 κa,i(sa−1) = e(Tκ(s−1))i . (9.5.48)

Thus, the vector of survival probabilities q satisfies

q = 1− e−Tκq. (9.5.49)

This leads us to the investigation of eigenfunctions of non-linear operators of the form
f 7→ 1−e−Tκf . We now extend the above setting of finite-type Poisson multitype branching
processes to the infinite type case.

Poisson multitype branching processes with infinitely many types. Let κ be
a kernel. We define the Poisson multitype branching processes with kernel κ as follows.
Each individual of type x ∈ S is replaced in the next generation by a set of individuals
distributed as a Poisson process on S with intensity κ(x, y)µ(dy). Thus, the number of
children with types in a subset A ⊆ S has a Poisson distribution with mean

∫
A
κ(x, y)µ(dy),

and these numbers are independent for disjoint sets A and for different particles; see e.g.,
Kallenberg [178].

Let ζκ(x) be the survival probability of the Poisson multitype branching process with
kernel κ, starting from an ancestor of type x ∈ S. Set

ζκ =

∫
S
ζκ(x)µ(dx). (9.5.50)

Again, it can be seen in a similar way as above that ζκ > 0 if and only if ‖Tκ‖ > 1, where
now the linear operator Tκ is defined, for f : S → R,

(Tκf)(x) =

∫
S
κ(x, y)f(y)µ(dy), (9.5.51)

for any (measurable) function f such that this integral is defined (finite or +∞) for a.e.
x ∈ S.
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Note that Tκf is defined for every f ≥ 0, with 0 ≤ Tκf ≤ ∞. If κ ∈ L1(S × S), as
we shall assume throughout, then Tκf is also defined for every bounded f . In this case
Tκf ∈ L1(S) and thus Tκf is finite a.e.

As we shall see, the analysis of multitype branching processes with a possibly uncount-
able number of types is a bit more functional analytic. Similarly to the finite-type case in
(9.5.43), we define

‖Tκ‖ = sup
{
‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1

}
≤ ∞. (9.5.52)

When finite, ‖Tκ‖ is the norm of Tκ as an operator on L2(S); it is infinite if Tκ does not
define a bounded operator on L2. The norm ‖Tκ‖ is at most the Hilbert-Schmidt norm of
Tκ:

‖Tκ‖ ≤ ‖Tκ‖HS = ‖κ‖L2(S×S) =

(∫∫
S2

κ(x, y)2µ(dx)µ(dy)

)1/2

. (9.5.53)

We also define the non-linear operator Φκ by(
Φκf

)
(x) = 1− e−(Tκf)(x), x ∈ S, (9.5.54)

for f ≥ 0. Note that for such f we have 0 ≤ Tκf ≤ ∞, and thus 0 ≤ Φκf ≤ 1. We
shall characterize the survival probability ζκ(x), and thus ζκ, in terms of the non-linear
operator Φκ, showing essentially that the function x 7→ ζκ(x) is the maximal fixed point of
the non-linear operator Φκ (recall (9.5.49)). Again, the survival probability satisfies that
ζκ > 0 precisely when ‖Tκ‖ > 1, recall the finite-types case discussed in detail above.

We call a multitype branching process supercritical when ‖Tκ‖ > 1, critical when
‖Tκ‖ < 1, and subcritical when ‖Tκ‖ < 1. Then, the above discussion can be summarized
by saying that a multitype branching process survives with positive probability precisely
when it is supercritical.

9.5.4 The phase transition for inhomogeneous random graphs

In this section, we discuss the phase transition in IRGn(p(κ)). The main result shows
that there is a giant component when the associated multitype branching process is super-
critical, while otherwise there is not:

Theorem 9.31 (Giant component of IRG). Let (κn) be a sequence of irreducible graphical
kernels with limit κ, and let Cmax denote the largest connected component of IRGn(p(κn)).
Then,

|Cmax|/n
P−→ ζκ. (9.5.55)

In all cases ζκ < 1, while ζκ > 0 precisely when ‖Tκ‖ > 1.

Theorem 9.31 is a generalization of the law of large numbers for the largest connected
component in Theorem 4.8 for ERn(λ/n):

Exercise 9.37 (LLN for Cmax for ERn(λ/n)). Prove that, for the Erdős-Rényi random

graph, Theorem 9.31 implies that |Cmax|/n
P−→ ζλ, where ζλ is the survival probability of a

Poisson branching process with mean λ offspring.

We close this section by discussing a few examples of Theorem 9.31.
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The bipartite random graph. We let n be even and take S = {1, 2} and

κn(x, y) = κ(x, y) = λ1{x 6=y}/2. (9.5.56)

Thus, for i < j, the edge probabilities pij given by (9.5.7) are equal to λ/(2n) (for 2n > λ)
when i ∈ [n/2] and j ∈ [n] \ [n/2].

In this case, ‖Tκ‖ = λ with corresponding eigenfunction f(x) = 1 for all x ∈ S.
Thus, Theorem 9.31 proves that there is a phase transition at λ = 2. Furthermore, the
function ζλ(x) reduces to the single value ζλ/2, which is the survival probability of a Poisson
branching process with mean offspring λ/2. This is not surprising, since the degree of each
vertex is Bin(n/2, λ/n), so the bipartite random graph of size n is quite closely related the
Erdős-Rényi random graph of size n/2.

The finite-type case. The bipartite random graph can also be viewed as a random
graph with two types of vertices (i.e., the vertices [n/2] and [n]\ [n/2]). We now generalize
the results to the finite-type case, in which we have seen that κn is equivalent to an r× r-
matrix (κn(i, j))i,j∈[r], where r denotes the number of types. In this case, IRGn(p(κ)) has
vertices of r different types (or colors), say ni vertices of type i, with two vertices of type i
and j joined by an edge with probability n−1κn(i, j) (for n ≥ maxκn). This case has been
studied by Söderberg [251, 252, 254, 253], who noted Theorem 9.31 in this case.

Exercise 9.38 (Phase transition for r = 2). Compute ζκ in the case of two types, and
give necessary and sufficient conditions for ζκ > 0.

Exercise 9.39 (The size of small components in the finite-types case). Prove that, in the
finite-types case, when (κn) converges, then supx,y,n κn(x, y) <∞ holds, so that the results
of Theorem 9.33 apply in the sub- and supercritical cases.

The random graph with prescribed expected degrees. We next consider the
Chung-Lu model or expected degree random graph, where κn is given by (9.5.9), i.e.,
κn(i/n, j/n) = wiwj/E[Wn].

We first assume that Condition 6.4(a)-(c) hold, so that in particular E[W 2] < ∞,
where W has distribution function F . A particular instance of this case is the choice
wi = [1− F ]−1(i/n) in (6.1.10). In this case, the sequence (κn) converges to κ, where the
limit κ is given by (recall (9.5.10))

κ(x, y) = ψ(x)ψ(y)/E[W ], (9.5.57)

where ψ(x) = [1− F ]−1(x) Then, we note that for each f ≥ 0 with ‖f‖2 = 1,

(Tκf)(x) = ψ(x)

∫
S ψ(x)f(x)µ(dx)∫
S ψ(x)µ(dx)

, (9.5.58)

so that ‖Tκf‖2 =
∫
S ψ(x)f(x)µ(dx)/

∫
S ψ(x)µ(dx), which is maximal when f(x) = ψ(x)/‖ψ‖2.

We conclude that ‖Tκ‖ = ‖ψ‖22/
∫
S ψ(x)µ(dx) = E[W 2]/E[W ]. Thus,

‖Tκ‖ = E[W 2]/E[W ], (9.5.59)

and we recover the results in [86, 89] in the case where E[W 2] < ∞. In the case where
E[W 2] =∞, on the other hand, we see that ‖Tκf‖2 =∞ for every f with ‖f‖2 = 1 such
that

∫
S ψ(x)f(x)µ(dx) 6= 0, so that ‖Tκ‖ = ∞, so that CLn(w) is always supercritical in

this regime.

Exercise 9.40 (The size of small components for CLn(w)). Prove that, for CLn(w)
with weights given by (6.1.10) and with 1 < ν < ∞, the second largest cluster has size
|C(2)| = OP(logn) when W has bounded support or is a.s. bounded below by ε > 0, while if
ν < 1, |Cmax| = O(logn) when W has bounded support. Here W is a random variable with
distribution function F .
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9.5.5 Small-world effect in inhomogeneous random graphs

In this section, we consider the distances between vertices of IRGn(p(κn)) where, as
usual, (κn) is a graphical sequence of kernels with limit κ.

Let us write distG(i, j) for the graph distance between the vertices i, j ∈ [n] in a graph
G, where the graph distance is the minimum number of edges in the graph G that form
a path from i to j, and, by convention, we let distG(i, j) = ∞ when i, j are in different
connected components.

We define the typical graph distance to be Hn, where Hn = distG(V1, V2) is the graph
distance between two vertices V1, V2 which are chosen uniformly at random from [n].

We start by discussing logarithmic asymptotics of the typical graph distance in the
case where ν = ‖Tκ‖ ∈ (1,∞). When ‖Tκ‖ = ∞, then our results also prove that
Hn = oP(logn), but they do not tell us much about their exact asymptotics.

Logarithmic asymptotics of typical graph distance in IRGn(p(κn)). The main
result on typical graph distances in IRGn(p(κn)) is as follows:

Theorem 9.32 (Typical distances in IRGn(p(κn))). Let (κn) be graphical sequence of ker-
nels with limit κ, and with ν = ‖Tκ‖ ∈ (1,∞). Let ε > 0 be fixed. Then, for IRGn(p(κn)),

(i) If supx,y,n κn(x, y) <∞, then

P(Hn ≤ (1− ε) logν n) = o(1). (9.5.60)

(ii) If κ is irreducible, then

P(Hn ≤ (1 + ε) logν n) = ζ2
κ + o(1). (9.5.61)

In the terminology of Section 1.2, Theorem 9.32(ii) implies that IRGn(p(κ)) is a small
world when κ is irreducible and ν = ‖Tκ‖ < ∞. Theorem 9.32(i) shows that the graph
distances are of order Θ(logn) when supx,y,n κn(x, y) <∞, so that IRGn(p(κn)) is not an
ultra-small world. The intuition behind Theorem 9.32 is that, by (9.5.45) and (9.5.47), a
Poisson multitype branching process with kernel κ has neighborhoods that grow exponen-
tially, i.e., the number of vertices at distance k grows like ‖Tκ‖k. Thus, if we examine the
distance between two vertices V1 and V2 chosen uniformly at random from [n], then we
need to explore the neighborhood of vertex V1 up to the moment that it ‘catches’ vertex V2.
In this case, the neighborhood must be of size ∼ n, so that we need that ‖Tκ‖k = νk ∼ n,
i.e., k = kn ∼ logν n. However, proving of such a fact is quite tricky, since there are far
fewer possible further vertices to explore when the neighborhood has size ∼ n. The proof
overcomes this fact by exploring from the two vertices V1 and V2 simultaneously up to the
first moment that these neighborhoods share a common vertex. At this moment, we have
found the shortest path.

Discussion of the proof of Theorem 9.32(i). Theorem 9.32(i) is closely related to
Theorem 9.5. The proof of Theorem 9.5 can be extended to IRGn(p(κn)) for certain (κn)
by noting that

P(distIRGn(p(κ))(i, j) = k) ≤
∑

i1,...,ik−1∈[n]

k−1∏
l=0

κn(xil , xil+1)

n
, (9.5.62)

where i0 = i, ik = j, so that

P(Hn = k) ≤ 1

nk

∑
i0,i1,...,ik−1,ik∈[n]

k−1∏
l=0

κn(xil , xil+1). (9.5.63)
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If the above (k + 1)-dimensional discrete integrals could be replaced by the continuous
integral, then we would arrive at

1

n

∫
S
· · ·
∫
S

k∏
l=0

κ(xl, xl+1)

k∏
i=0

µ(dxi) =
1

n
‖Tk+1

κ 1‖1, (9.5.64)

which is bounded from above by 1
n
‖Tκ‖k+1. Repeating the bound in (9.2.10) would then

prove that, when ν = ‖Tκ‖ > 1,

P(Hn ≤ (1− ε) logν n) = o(1). (9.5.65)

However, in the general case, it is not so easy to replace the (k + 1)-fold discrete sum
in (9.5.63) by a (k + 1)-fold integral. In the exercises below, we show how we can carry
through the above argument:

Exercise 9.41 (Logarithmic lower bound graph distances IRGn(p(κn)) of finite-types).
Suppose that IRGn(p(κn)) is of finite type, and assume that ni/n → pi, where ni is the
number of vertices of type i. Suppose further that the probability that a vertex of type i is
directly connected to one of type j is equal to [κij ∧ n]/n for some matrix (κij)i,j∈[r] with
largest eigenvalue ν = ‖Tκ‖ > 1. Prove that

P(Hn ≤ (1− ε) logν n) = o(1). (9.5.66)

Exercise 9.42 (Extension to the setting of Theorem 9.32). Assume that the conditions
in Theorem 9.32 hold. Recall the bound in (9.5.31), which bounds κn from above by κ+

m,
which is of finite-type. Then, use the fact that ‖T

κ+
m
‖ ↓ ‖Tκ‖ = ν > 1 to conclude that

P(Hn ≤ (1− ε) logν n) = o(1) holds under the conditions of Theorem 9.32.

Note that

|{{v, w} : distG(v, w) <∞}| =
∑
i

(
|C(i)|

2

)
, (9.5.67)

where {v, w} denotes an unordered pair of distinct vertices of G and where C(i) denote the
connected components of G arranged in decreasing order, so that C(1) = Cmax. Thus, by
Theorem 9.31, if κ is irreducible, then

P(Hn <∞) = ζ2
κ + o(1). (9.5.68)

Thus, Theorem 9.32(i–ii) can be reformulated by saying that if supx,y,n κn(x, y) <∞ and
if ν = ‖Tκ‖ > 1, then

P
(

1− ε ≤ Hn
logν n

≤ 1 + ε
∣∣Hn <∞)→ 1. (9.5.69)

As a result, conditionally on Hn <∞, we have that Hn/ logn
P−→ 1/ log ν:

Exercise 9.43 (Convergence in probability of typical distance in IRGn(p(κn))). Suppose
that the graphical sequence of kernels (κn) satisfies supx,y,n κn(x, y) <∞, where the limit
κ is irreducible and ν = ‖Tκ‖ > 1. Prove that Theorem 9.31 together with Theorem
9.32(i–ii) imply that, conditionally on Hn <∞,

Hn/ logn
P−→ 1/ log ν. (9.5.70)
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Theorem 9.32 leaves open the case when ‖Tκ‖ = ∞, which, for example for CLn(w),
is the case when F has infinite second moment. [61, Theorem 3.14(iv)] states that when
‖Tκ‖ =∞, the typical graph distance is smaller than logn. More precisely, [61, Theorem
3.14(iv)] states that if κ is irreducible and ‖Tκ‖ = ∞, then there is a function f(n) =
o(logn) such that

P(Hn ≤ f(n)) = ζ2
κ + o(1). (9.5.71)

Exercise 9.44 (Convergence in probability of typical distance in IRGn(p(κn))). Suppose
that the graphical sequence of kernels (κn) converges to κ, where κ is irreducible and ‖Tκ‖ =
∞. Prove that Theorem 9.31 together with Theorem 9.32(iii) imply, conditionally on Hn <
∞,

Hn/ logn
P−→ 0. (9.5.72)

9.6 Related results for inhomogeneous random graphs

In this section, we discuss some related results for inhomogeneous random graphs. While
we give intuition about their proofs, we shall not include them in full detail.

The largest subcritical cluster. For the classical random graph ERn(λ/n), it is well-
known that in the subcritical case for which λ < 1, the stronger bound |Cmax| = Θ(logn)
holds (see Theorems 4.4–4.5), and that in the supercritical case for which λ > 1, |C(2)| =
Θ(logn). These bounds do not always hold in the general framework we are considering
here, but if we add some conditions, then we can improve the estimates in Theorem 9.31
for the subcritical case to O(logn):

Theorem 9.33 (Subcritical phase and duality principle of the IRG). Consider the inho-
mogeneous random graph IRGn(p(κn)), where (κn) is a graphical sequence of kernels with
limit κ. Then,

(i) if κ is subcritical and supx,y,n κn(x, y) <∞, then |Cmax| = OP(logn).

(ii) if κ is supercritical, κ is irreducible, and either infx,y,n κn(x, y) > 0 or supx,y,n κn(x, y) <
∞, then |C(2)| = OP(logn).

When limn→∞ supx,y κn(x, y) = ∞, the largest subcritical clusters can have rather
different behavior, as we now show for the rank-1 case. Note that, by Theorem 9.31 as well
as the fact that ‖Tκ‖ = ν = E[W 2]/E[W ], a rank-1 model can only be subcritical when
E[W 2] <∞, i.e., in the case of finite variance degrees. However, when W has a power-law

tail, i.e., when P(W ≥ w) ∼ w−(τ−1), then the highest weight can be much larger than
logn. When this is the case, then also the largest subcritical cluster is much larger than
logn, as proved in the following theorem:

Theorem 9.34 (Subcritical phase for rank-1 IRG). Let w satisfy Condition 6.4(a)-(c)
with ν = E[W 2]/E[W ] < 1, and, further, that there exist τ > 3 and c2 > 0 such that

[1− Fn](x) ≤ c2x−(τ−1). (9.6.1)

Then, for NRn(w) with ∆ = maxj∈[n] wj,

|Cmax| =
∆

1− ν + oP(n
1/(τ−1)). (9.6.2)
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Theorem 9.34 is most interesting in the case where the limiting distribution function F
in Condition 6.4 has a power-law tail. For example, for w as in (6.1.10), let F satisfy

[1− F ](x) = cx−(τ−1)(1 + o(1)). (9.6.3)

Then, ∆ = w1 = [1−F ]−1(1/n) = (cn)1/(τ−1)(1+o(1)). Therefore, |Cmax| = (cn)1/(τ−1)/(1−
ν) + o(n1/(τ−1). Thus, the largest connected component is much larger than for ERn(λ/n)
with λ < 1.

Theorem 9.34 can be intuitively understood as follows. The connected component of a
typical vertex is close to a branching process, so that it is with high probability bounded
since the expected value of its cluster will be close to 1/(1−ν). Thus, the best way to obtain
a large connected component is to start with a vertex with high weight wi, and let all of its
roughly wi children be independent branching processes. Therefore, in expectation, each
of these children is connected to another 1/(1 − ν) different vertices, leading to a cluster
size of roughly wi/(1− ν). This is clearly largest when wi = maxj∈[n] wj = ∆, leading to
an intuitive explanation of Theorem 9.34.

Theorems 9.33 and 9.34 raise the question what the precise conditions for |Cmax| to
be of order logn are. Intuitively, when ∆ � logn, then |Cmax| = ∆/(1 − ν)(1 + oP(1)),
whereas if ∆ = Θ(logn), then |Cmax| = ΘP(logn) as well. In [264], it was proved that
|Cmax|/ logn converges in probability to a finite constant when ν < 1 and the weights are
i.i.d. with distribution function F with E[eαW ] <∞ for some α > 0, i.e., exponential tails
are sufficient.

The critical behavior of rank-1 random graphs. We next discuss the effect of
inhomogeneity on the size of the largest connected components in the critical case. As it
turns out, the behavior is rather different depending on whether E[W 3] <∞ or not.

Theorem 9.35 (The critical behavior with finite third moments). Fix the Norros-Reittu

random graph with weights w(t) = w(1+tn(τ−3)(τ−1)). Assume that ν = 1, that the weight
sequence w satisfies Condition 6.4(a)-(c), and further assume that

E[Wn] = E[W ] + o(n−1/3), E[W 2
n ] = E[W 2] + o(n−1/3), E[W 3

n ] = E[W 3] + o(1)
(9.6.4)

Let (|C(i)(t)|)i≥1 denote the clusters of NRn(w(t)) with w(t) = (1 + tn−1/3)w, ordered in
size. Then, as n→∞, for all t ∈ R,(

n−2/3|C(i)(t)|
)
i≥1

d−→
(
γ∗i (t)

)
i≥1

, (9.6.5)

in the product topology, for some limiting random variables
(
γ∗i (t)

)
i≥1

.

The limiting random variables
(
γ∗i (t)

)
i≥1

are, apart from a multiplication by a constant

and a time-rescaling, equal to those for ERn(λ/n) in the scaling window (see Theorem
5.4).

When E[W 3−ε] =∞ for some ε > 0, it turns out that the scaling of the largest critical
cluster is rather different:

Theorem 9.36 (Weak convergence of the ordered critical clusters for τ ∈ (3, 4)). Fix the

Norros-Reittu random graph with weights w(t) = w(1 + tn(τ−3)(τ−1)) defined in (6.1.10).
Assume that ν = 1 and that there exists a τ ∈ (3, 4) and 0 < cF <∞ such that

lim
x→∞

xτ−1[1− F (x)] = cF . (9.6.6)



9.6 Related results for inhomogeneous random graphs 241

Let (|C(i)(t)|)i≥1 denote the clusters of NRn(w(t)), ordered in size. Then, as n → ∞, for
all t ∈ R, (

n−(τ−2)/(τ−1)|C(i)(t)|
)
i≥1

d−→ (γi(t))i≥1, (9.6.7)

in the product topology, for some non-degenerate limit (γi(t))i≥1.

In this chapter, we have already seen that distances depend sensitively on the finiteness
of E[W 2]. Now we see that the critical behavior is rather different when E[W 3] < ∞ or
E[W 3] = ∞. Interestingly, in the power-law case as described in (9.6.6), the size of the

largest clusters grows like n(τ−2)/(τ−1), which is much smaller than the n2/3 scaling when
E[W 3] <∞. The proof of Theorems 9.35 and 9.36 also reveals that the structure of large
critical clusters is quite different. When E[W 3] < ∞, then the vertex with largest weight
is in the largest connected component with vanishing probability. Therefore, the largest
connected component arises by many attempts to create a large cluster, and each trial has
roughly the same probability. This can be formulated as power to the masses. In the other
hand, for weights w as in (6.1.10) for which (9.6.6) holds, the vertices with largest weight
are with probability bounded away from 0 and 1 in the largest cluster, while a vertex with
small weight is in the largest cluster with vanishing probability. Thus, to find the largest
clusters, it suffices to explore the clusters of the high-weight vertices: power to the wealthy!

Fluctuations of distances in the finite variance case. We continue by studying the
fluctuations of the typical graph distance when E[W 2] < ∞. We shall impose a slightly
stronger condition on the distribution function F of W , namely, that there exists a τ > 3
and c > 0 such that

1− F (x) ≤ cx−(τ−1). (9.6.8)

Equation (9.6.8) implies that the degrees have finite variance:

Exercise 9.45 (Finite variance degrees when (9.6.8) holds). Prove that (9.6.8) implies
that E[W 2] <∞. Use this to prove that the degrees have uniformly bounded variance when
(9.6.8) holds.

Theorem 9.37 (Limit law for the typical graph distance in CLn(w)). Assume that (9.6.8)
is satisfied, and let ν = E[W 2]/E[W ] > 1. For k ≥ 1, define ak = blogν kc−logν k ∈ (−1, 0].
Then, for CLn(w) with w as in (6.1.10), there exist random variables (Ra)a∈(−1,0] with
lim supK→∞ supa∈(−1,0] P(|Ra| < K) = 1 such that, as n→∞,

P
(
Hn − blogν nc = k | Hn <∞

)
= P(Ran = k) + o(1), k ∈ Z. (9.6.9)

While Theorem 9.32 implies that, conditionally on Hn < ∞, Hn/ logn
P−→ 1/ log ν,

Theorem 9.37 implies that the fluctuations of Hn around logν n remain uniformly bounded
in probability.

The random variables (Ra)a∈(−1,0] can be determined in terms of the limit law in a
branching process approximation of the neighborhoods of CLn(w), and depend sensitively
on a, which implies that although {Hn − blogν nc}∞n=2 is a tight sequence of random vari-
ables, it does not weakly converges.

Exercise 9.46 (Tightness of centered typical graph distances in CLn(w)). Prove that,
under the conditions of Theorem 9.37, and conditionally on Hn <∞, the sequence {Hn −
blogν nc}∞n=2 is tight.

Exercise 9.47 (Non-convergence of centered typical graph distances in CLn(w)). Prove
that, under the conditions of Theorem 9.37, and conditionally on Hn < ∞, the sequence
Hn − blogν nc does not weakly converge when the distribution of Ra depends continuously
on a and when there are a, b ∈ (−1, 0] such that the distribution of Ra is not equal to the
one of Rb.
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Exercise 9.48 (Extension Theorem 9.37 to GRGn(w) and NRn(w)). Use Theorem 6.17
to prove that Theorem 9.37 holds verbatim for GRGn(w) and NRn(w) when (9.6.8) holds.

The diameter in inhomogeneous random graphs. We shall also be interested in
the diameter of IRGn(p(κn)), which is defined to be the maximal finite graph distance
between any pair of vertices, i.e., the diameter diam(G) of the graph G equals

diam(G) = max
u,v : distG(u,v)<∞

distG(u, v). (9.6.10)

We shall see that for IRGn(p(κ)), the diameter tends to be much larger than the typi-
cal graph distances, which is due to long thin lines which are distributed as subcritical
IRGn(p(κ)) with a subcritical κ by a duality principle for IRGn(p(κ)). Before we state
the results, we introduce the notion of the dual kernel :

Definition 9.38 (Dual kernel for IRGn(p(κ))). Let (κn) be a sequence of supercritical
kernels with limit κ. The dual kernel is the kernel κ̂ defined by κ̂(x, y) = κ(x, y), with
reference measure dµ̂(x) = (1− ζκ(x))µ(dx).

The dual kernel shall describe the graph after the removal of the giant component.
Here, the reference measure µ̂ measures the size of the graph. In this case, a vertex x
is in the giant component with probability 1 − ζκ(x), in which case it must be removed.
Thus, µ̂ describes the proportion of vertices of the various types which are outside the
giant component. As before, we define the operator Tκ̂ by the equality

(Tκ̂f)(x) =

∫
S
κ̂(x, y)f(y)dµ̂(y) =

∫
S
κ(x, y)f(y)[1− ζκ(x)]µ(dy), (9.6.11)

and we write ‖Tκ̂‖ for

‖Tκ̂‖ = sup
{
‖Tκ̂f‖2 : f ≥ 0, ‖f‖µ̂,2 = 1

}
, (9.6.12)

where

‖f‖2µ̂,2 =

∫
S
f2(x)µ̂(dx). (9.6.13)

Theorem 9.39 (The diameter of IRGn(p(κ)) in the finite-types case). Let (κn) be a
sequence of kernels with limit κ, which has finitely many types. If 0 < ‖Tκ‖ < 1, then

diam(IRGn(p(κn)))

logn

P−→ 1

log ‖Tκ‖−1
(9.6.14)

as n→∞. If ‖Tκ‖ > 1 and κ irreducible, then

diam(IRGn(p(κn)))

logn

P−→ 2

log ‖Tκ̂‖−1
+

1

log ‖Tκ‖
, (9.6.15)

where κ̂ is the dual kernel to κ.

If we compare Theorem 9.39 to Theorem 9.37, we see that the diameter has the same
scaling as the typical graph distance, but that the limit in probability of diam(IRGn(p(κ)))/ logn
is strictly larger than the one for Hn/ logn conditioned on Hn <∞. This effect is particu-
larly noticeable in the case when τ ∈ (2, 3), where Hn/ log log n, conditionally on Hn <∞,
converges in probability to a finite limit, while diam(IRGn(p(κ)))/ logn converges to a
non-zero limit. This can be explained by noticing that the diameter in IRGn(p(κ)) arises
due to very this lines of length of order logn. Since these this lines involve only very few
vertices, they will not contribute to Hn, but they do to diam(IRGn(p(κ))). This is another
argument why we prefer to work with typical graph distances than with the diameter.
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9.7 Related models

Clustered inhomogeneous random graphs. General inhomogeneous random graphs
have rather low clustering. Indeed, assuming that κn(x, y ≤ n, we can compute that the
expected number of triangles in an IRGn(p(κ)) is equal to

E[# triangles in IRGn(p(κ))] =
1

n3

∑
i,j,k∈[n]

κn(xi, xj)κn(xj , xk)κn(xk, xi). (9.7.1)

Under relatively weak conditions on the kernel κn, it follows that

E[# triangles in IRGn(p(κ))]→
∫
S3

κ(x1, x2)κ(x2, x3)κ(x3, x1)µ(dx1)µ(dx2)µ(dx3).

(9.7.2)
Therefore, the clustering coefficient converges to zero as 1/n. In many real-world net-
works, particularly in social networks, the clustering coefficient is strictly positive. In this
section, we discuss a model similar to the inhomogeneous random graph IRGn(p(κ)) that
incorporates clustering.

The idea behind this model is that instead of only adding edges independently, we
can also add other graphs on r vertices in an independent way. For example, we could
study a graph where each pair of vertices is independently connected with probability
λ/n, as for ERn(λ/n), but also each collection of triples forms a triangle with probability
µ/n2, independently for all triplets and independently of the status of the edges. Here the
exponent n−2 is chosen to as to make the expected number of triangles containing a vertex
bounded.

Exercise 9.49 (Clustering in model with edges and triangles). Show that the cluster-
ing coefficient in the model where each pair of vertices is independently connected with
probability λ/n, as for ERn(λ/n) and each triples forms a triangle with probability µ/n2,
independently for all triplets and independently of the status of the edges, converges to
µ/(µ+ λ2).

In social networks, also complete graphs of size four, five, etc., are present more often
than in usual random graph. Therefore, we also wish to add those independently. In order
to formulate this general version of the model, we start by introducing some notation.

Let F consist of one representative of each isomorphism class of finite connected graphs,
chosen so that if F ∈ F has r vertices then V (F ) = [r] = {1, 2, . . . , r}. Simple examples of
such F are the complete graphs on r vertices, but also other examples are possible. Recall
that S denotes the type space. Given F ∈ F with r vertices, let κF be a measurable
function from Sr to [0,∞). The function κF is called the kernel corresponding to F . A
sequence κ̃ = (κF )F∈F is a kernel family.

Let κ̃ be a kernel family and n an integer. We define a random graph IRGn(κ̃) with
vertex set [n] = {1, . . . , n}. First let x1, x2, . . . , xn ∈ S be i.i.d. (independent and identically
distributed) with the distribution µ. Given x = (x1, . . . , xn), construct IRGn(κ̃) as follows,
starting with the empty graph. For each r and each F ∈ F with |F | = r, and for every
r-tuple of distinct vertices (v1, . . . , vr) ∈ [n]r, add a copy of F on the vertices v1, . . . , vr
(with vertex i of F mapped to vi) with probability

p = p(v1, . . . , vr;F ) =
κF (xv1 , . . . , xvr )

nr−1
, (9.7.3)

all these choices being independent. Here, if p > 1, by convention we simply add a copy
with probability 1. We shall often call the added copies of the various F that together
form IRGn(κ̃) atoms as they may be viewed as indivisible building blocks. Sometimes we
refer to them as small graphs, although there is in general no bound on their sizes.
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The reason for dividing by nr−1 in (9.7.3) is that we wish to consider sparse graphs;
indeed, our main interest is the case when IRGn(κ̃) has O(n) edges. As it turns out, we can
be slightly more general; however, when κF is integrable (which we shall always assume),
the expected number of added copies of each graph F is O(n). Note that all incompletely
specified integrals are with respect to the appropriate r-fold product measure µr on Sr.

There are several plausible choices for the normalization in (9.7.3). The one we have
chosen means that if κF = c is constant, then (asymptotically) there are on average cn
copies of F in total, and each vertex is on average in rc copies of F . An alternative is to
divide the expression in (9.7.3) by r; then (asymptotically) each vertex would on average
be in c copies of F . Another alternative, natural when adding cliques only but less so in
the general case, would be to divide by r!; this is equivalent to considering unordered sets
of r vertices instead of ordered r-tuples. When there is only one kernel, corresponding to
adding edges, this would correspond to the normalization used in [61], and in particular to
that of the classical model ERn(λ/n); the normalization we use here differs from this by a
factor of 2.

In the special case where all κF are zero apart from κK2 , the kernel corresponding to an
edge, we recover (essentially) a special case of the model of [61]; we call this the edge-only
case, since we add only edges, not larger graphs. We write κ2 for κK2 . Note that in the
edge-only case, given x, two vertices i and j are joined with probability

κ2(xi, xj) + κ2(xj , xj)

n
+O

(
(κ2(xi, xj) + κ2(xj , xi))

2

n2

)
. (9.7.4)

The correction term will never matter, so we may as well replace κ2 by its symmetrized
version. In fact, we shall always assume that κF is invariant under permutations of the
vertices of the graph F .

For any kernel family κ̃, let κe be the corresponding edge kernel, defined by

κe(x, y) =
∑
F

∑
ij∈E(F )

∫
SV (F )\{i,j}

κF (x1, . . . , xi−1, x, xi+1, . . . , xj−1, y, xj+1, . . . , x|F |),

(9.7.5)
where the second sum runs over all 2E(F ) ordered pairs (i, j) with ij ∈ Edges(F ), and
we integrate over all variables apart from x and y. Note that the sum need not always
converge; since every term is positive this causes no problems: we simply allow κe(x, y) =∞
for some x, y. Given xi and xj , the probability that i and j are joined in G(n, κ̃) is at most
κe(xi, xj)/n+O(1/n2). In other words, κe captures the edge probabilities in G(n, κ̃), but
not the correlations.

Before proceeding to deeper properties, let us note that the expected number of added
copies of F is (1 + O(n−1))n

∫
S|F | κF . Unsurprisingly, the actual number turns out to be

concentrated about this mean. Let

ξ(κ̃) =
∑
F∈F

E(F )

∫
S|F |

κF =
1

2

∫
S2

κe ≤ ∞ (9.7.6)

be the asymptotic edge density of κ̃. Since every copy of F contributes E(F ) edges, the
following theorem is almost obvious, provided we can ignore overlapping edges.

Theorem 9.40 (The edge density in IRGn(κ̃)). As n→∞, E[E(IRGn(κ̃))/n]→ ξ(κ̃) ≤
∞ Moreover, E(IRGn(κ̃))/n converges in probability to the asymptotic edge density ξ(κ̃).
In other words, if ξ(κ̃) < ∞ then E(IRGn(κ̃)) = ξ(κ̃)n + op(n), and if ξ(κ̃) = ∞ then
E(IRGn(κ̃)) > Cn for every constant C, whp.

The main focus is the emergence of the giant component. By the component structure
of a graph G, we mean the set of vertex sets of its components, i.e., the structure encoding
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only which vertices are in the same component, not the internal structure of the compo-
nents themselves. When studying the component structure of IRGn(κ̃), the model can be
simplified somewhat. Recalling that the atoms F ∈ F are connected by definition, when
we add an atom F to a graph G, the effect on the component structure is simply to unite
all components of G that meet the vertex set of F , so only the vertex set of F matters, not
its graph structure. We say that κ̃ is a clique kernel family if the only non-zero kernels are
those corresponding to complete graphs; the corresponding random graph model IRGn(κ̃)
is a clique model. For questions corresponding component structure, it suffices to study
clique models. For clique kernels we write κr for κKr ; as above, we always assume that
κr is symmetric, here meaning invariant under all permutations of the coordinates of Sr.
Given a general kernel family κ̃, the corresponding (symmetrized) clique kernel family is
given by κ̃ = (κr)r≥2 with

κr(x1, . . . , xr) =
∑

F∈F : |F |=r

1

r!

∑
π∈Gr

κF (xπ(1), . . . , xπ(r)), (9.7.7)

where Gr denotes the symmetric group of permutations of [r]. (This is consistent with
our notation κ2 = κKr .) When considering the size (meaning number of vertices) of the
giant component in IRGn(κ̃), we may always replace κ̃ by the corresponding clique kernel
family.

It is often convenient to think of a clique model as a random hypergraph, with the cliques
as the hyperedges; for this reason we call a clique kernel family a hyperkernel. Note that
each unordered set of r vertices corresponds to r! r-tuples, so the probability that we add
a Kr on a given set of r vertices is r!κr(xv1 , . . . , xvr )/nr−1. (More precisely, this is the
expected number of Krs added with this vertex set.)

In our analysis we also consider the linear operator Tκe defined by

Tκe(f)(x) =

∫
S
κe(x, y)f(y)dµ(y), (9.7.8)

where κe is defined by (9.7.5). We need to impose some sort of integrability condition on
our kernel family:

Definition 9.41. (i) A kernel family κ̃ = (κF )F∈F is integrable if∫
κ̃ =

∑
F∈F

|F |
∫
S|F |

κF <∞. (9.7.9)

This means that the expected number of atoms containing a given vertex is bounded.

(ii) A kernel family κ̃ = (κF )F∈F is edge integrable if∑
F∈F

E(F )

∫
S|F |

κF <∞; (9.7.10)

equivalently, ξ(κ) < ∞ or
∫
S2 κe < ∞. This means that the expected number of edges

in G(n, κ̃) is O(n), see Theorem 9.40, and thus the expected degree of a given vertex is
bounded.

Note that a hyperkernel (κr) is integrable if and only if
∑
r≥2 r

∫
Sr κr < ∞, and edge

integrable
The main results concerning the phase transition on IRGn(κ̃) is that if κ̃ is an integrable

kernel family satisfying a certain extra assumption, then the normalized size of the giant
component in IRGn(κ̃) is simply ζ(κ̃) + op(1). The extra assumption is an irreducibility
assumption similar to Definition 9.27(ii) that essentially guarantees that the graph does
not split into two pieces: we say that a symmetric kernel κe : S2 → [0,∞) is reducible if
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∃A ⊂ S with 0 < µ(A) < 1 such that κe = 0 a.e. on A× (S \A);

otherwise κe is irreducible. Thus, κe is irreducible if

A ⊆ S and κe = 0 a.e. on A× (S \A) implies µ(A) = 0 or µ(S \A) = 0.

We are now ready to formulate the main result in this section involving the phase
transition in IRGn(κ̃). Recall that |Cmax| denotes the number of vertices in the largest
connected component of the graph under consideration, and |C(2)| the number of vertices
in its second largest component.

Theorem 9.42 (The phase transition on clustered inhomogeneous random graphs). Let
κ̃′ = (κ′F )F∈F be an irreducible, integrable kernel family, and let κ̃ = (κr)r≥2 be the
corresponding hyperkernel, given by (9.7.7). Then, there exists a ζ(κ̃) ∈ [0, 1) such that

|Cmax| = ζ(κ̃)n+ op(n), (9.7.11)

and |C(2)| = op(n).

Theorem 9.42 is proved by showing that (in the hyperkernel case) the branching process
that captures the ‘local structure’ of IRGn(κ̃). For Theorem 9.42 to be useful we would
like to know something about ζ(κ̃), which can be calculated from ζκ̃, which is in turn the
largest solution to the functional equation:

f = 1− e−Sκ̃(f)(x). (9.7.12)

The question when ζ(κ̃) > 0 is settled in the following theorem:

Theorem 9.43 (Condition for existence giant component). Let κ̃ be an integrable hyper-
kernel. Then, ζ(κ̃) > 0 if and only if ||Tκe || > 1. Furthermore, if κ̃ is irreducible and
||Tκe || > 1, then ζκ̃(x) is the unique non-zero solution to the functional equation (9.7.12),
and ζκ̃(x) > 0 holds for a.e. x.

In general, ||Tκe || may be rather hard to calculate. When we suppose that each κr
is constant, however, this can be done. Indeed, say that κr = cr. Then κe(x, y) =∑
r r(r − 1)cr = 2ξ(κ) for all x and y, so

||Tκe || = 2ξ(κ). (9.7.13)

This is perhaps surprising: it tells us that for such uniform hyperkernels, the critical point
where a giant component emerges is determined only by the total number of edges added;
it does not matter what size cliques they lie in, even though, for example, the third edge
in every triangle is ‘wasted’. This turns out not to be true for arbitrary kernel families,
where, rather each atom needs to be replaced by a clique.

Random intersection graph. The most studied model is when there are n vertices,
m = m(n) groups and each vertex is independently connected to each group with proba-

bility p(n) (often m = nα and p = cn−(1+α)/2 which gives different behavior depending on
the value of α). This model was introduced in:

[249] and further studied in:
[133] [180] [259]
Willemien and I studied a version where the vertices have random weights and the edge

probabilities are determined by these weights (which gives a graph where both the degree
distribution and the clustering can be controlled):

[101]
In the above model the number of groups that a vertex belongs to is Bin(m,p)-distributed.

The model has also been investigated for more general distributions of groups per vertex:
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[136]
[173]
Mindaugas Bloznelis has studied this more general model in quite a few papers that

you can have a look at at his webpage (http://www.mif.vu.lt/ bloznelis) - distances and
component sizes among other things. [51, 52, 53]

9.8 Notes and discussion

Notes on Section 9.1. Theorem 9.2 is taken from [170], where the giant component is
investigated for the configuration model. We explain its proof in detail in Section 10.1,
where we also prove how the result for the configuration model in Theorem 10.1 can be
used to prove Theorem 9.2.

Theorem 9.3 has a long history, and many versions of it have been proven in the litera-
ture. We refer the reader to [83, 85] for the Chung-Lu model, and [127] for its extensions
to the Norros-Reittu model and the generalized random graph. Theorem 9.4 has also been
proved in many versions, both fully as well as in partial forms, see [225], [83, 85], as well
as the recent paper [103].

Notes on Section 9.2. As far as we are aware, the proof of Theorem 9.5 is new in the
present context. Similar arguments have been used often though to prove lower bounds on
distances in various situations.

Notes on Section 9.3. Proposition 9.10 appears first as [225, Proposition 3.1], where
the connection between NRn(w) and Poisson branching processes were first exploited to
prove versions of Theorem 9.4.

Notes on Section 9.4. The path counting techniques in Proposition 9.17 are novel.
Related proofs for the upper bound on Hn when ν < ∞ often rely on branching process
comparisons up to a generation m = mn →∞.

Notes on Section 9.5. Theorem 9.28 is a special case of [61, Theorem 3.13]. Theorem
9.31 is a special case of [61, Theorem 3.1]. Earlier versions for random graphs with given
expected degrees or Chung-Lu model appeared in [84, 89] (see also the monograph [87]).

The seminal paper [61] studies inhomogeneous random graph in an even more general
setting, where the number of vertices in the graph need not be equal to n. In this case,
the vertex space is called a generalized vertex space. We simplify the discussion here by
assuming that the number of vertices is always equal to n. An example where the extension
to a random number of vertices is crucially used is in [266], which studies an interpolation
between percolation and ERn(p).

In [61], there are various other results concerning the giant component of IRGn(p(κ)).
For example, [61, Theorem 3.9] proves that the giant component of IRGn(p(κ)) is stable
in the sense that its size does not change much if we add or delete a few edges. Note that
the edges added or deleted do not have to be random or independent of the existing graph,
rather, they can be chosen by a adversary after inspecting the whole of IRGn(p(κ)). More
precisely, [61, Theorem 3.9] shows that, for small enough δ > 0, the giant component of
IRGn(p(κ)) in the supercritical regime does change by more than εn vertices if we remove
any collection of δn edges.

Theorem 9.32 is a simplified version of [61, Theorem 3.14]. A first version of Theorem
9.32 was proved in [83, 85] for the expected degree random graph, in the case of admissible
deterministic weights. We refer to [85, p. 94] for the definition of admissible degree
sequences.
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Theorem 9.4 for the expected degree random graph or Chung-Lu model is first proved
in [83, 85], in the case of deterministic weights wi = c ·(i/n)−1/(τ−1), having average degree
strictly greater than 1 and maximum degree m satisfying logm � logn/ log log n. These
restrictions were lifted in [111, Theorem 4.5.2]. Indeed, the bound on the average distance
is not necessary, since, for τ ∈ (2, 3), ν =∞ and therefore the IRG is always supercritical.
An upper bound as in Theorem 9.4 for the Norros-Reittu model with i.i.d. weights is proved
in [225].

Notes on Section 9.6. Theorem 9.34 is [164, Corollary 4.4]. Theorem 9.35 is proved
in [44], a related version with a different proof can be found in [265]. Theorem 9.36 is
proved in [45]. Theorem 9.37 is proved in [127], both in the case of i.i.d. degrees as well
as for deterministic weights under a mild further condition on the distribution function.
Theorem 9.39 is a special case of [61, Theorem 3.16]. Even in the special case of ERn(λ/n),
it is new, and it negatively answers a question of Chung and Lu [82]. Related results for
the configuration model, which also imply results for the generalized random graph, can
be found in [132].



Chapter 10

Configuration model revisited

In this chapter, we investigate the connectivity structure of the configuration model by
investigating its largest connected component and its typical distances. This chapter is
organized as follows. In Section 10.1, we study when a giant component exists for the
configuration model. In Section 10.2, we study when the configuration model is connected.
In Section 10.3, we study the typical graph distance in the configuration model. In Section
10.4, we prove these distance results, using path counting techniques and comparisons to
branching processes. In Section 10.5, we identify the diameter of the configuration model
when it has infinite-variance degrees. In Section 10.6, we study infinite-mean branching
processes, as these arise in the configuration model with infinite-variance degrees. In
Section 10.7, we state further results in the configuration model, and in Section 10.8 we
discuss some related models.

10.1 Phase transition in the configuration model

In this section, we investigate the connected components in the configuration model.
Alike for the Erdős-Rényi random graph, we shall identify when the configuration model
with high probability has a giant component. Again, this condition has the interpretation
that an underlying branching process describing the exploration of a cluster has a strictly
positive survival probability.

We start by recalling some notation from Chapter 7. We investigate the configuration
model CMn(d), where in most cases, the degrees d = (di)i∈[n] are assumed to satisfy
Condition 7.5(a)-(b), and sometimes also Condition 7.5(c). We recall that Dn is the degree
of a uniformly chosen vertex in [n], i.e., Dn = dU , where U is uniformly chosen from [n].
Equivalently,

P(Dn = k) = nk/n, (10.1.1)

where nk denotes the number of vertices of degree k. For a graph G, we write vk(G) for
the number of vertices of degree k in G, and |E(G)| for the number of edges. The main
result concerning the size and structure of the largest connected components of CMn(d) is
the following:

Theorem 10.1 (Phase transition in CMn(d)). Suppose that Condition 7.5(a)-(b) hold
and consider the random graph CMn(d), letting n→∞. Assume that p2 = P(D = 2) < 1.
Let Cmax and C(2) be the largest and second largest components of CMn(d).

(a) If ν = E[D(D − 1)]/E[D] > 1, then there exist ξ ∈ [0, 1), ζ ∈ (0, 1] such that

|Cmax|/n
P−→ ζ,

vk(Cmax)/n
P−→ pk(1− ξk), for every k ≥ 0,

|E(Cmax)|/n P−→ 1

2
E[D](1− ξ2).

while |C(2)|/n
P−→ 0 and |E(C(2))|/n

P−→ 0.

(b) If ν = E[D(D − 1)]/E[D] ≤ 1, then |Cmax|/n
P−→ 0 and |E(Cmax)|/n P−→ 0.

249



250 Configuration model revisited

Reformulation in terms of branching processes. We start by interpreting the results
in Theorem 10.1 in terms of branching processes. As it turns out, we can interpret ξ as the
extinction probability of a branching process, and ζ as the survival probability of a related
branching process. Similarly to the cluster exploration for NRn(w), we shall see that the
root of the branching process plays a special role. Indeed, the offspring distribution at the
root is equal to (pk)k≥0, where pk = P(D = k) is the asymptotic degree distribution. The
offspring distribution of the individuals in the first and later generations is given by

gk =
(k + 1)pk+1

E[D]
. (10.1.2)

We now heuristically explain this relation to branching processes by intuitively describing
the exploration of a vertex chosen uniformly from the vertex set [n]. By definition, the
probability that its degree is k equals P(Dn = k), which, by Condition 7.5(a), converges to
pk = P(D = k), for every k ≥ 1. This explains the offspring of the root of our branching
process approximation.

To describe the offspring of the direct neighbors of the root, we examine the degree
of the vertex to which the first half-edge incident to the root is paired. By the uniform
matching of half-edges, the probability that a vertex of degree k is chosen is proportional
to k. Ignoring the fact that the root and one half-edge have already been chosen (which
does have an effect on the number of available or free half-edges), the degree of the vertex

incident to the chosen half-edge equals k with probability equal to kp(n)

k /E[Dn], where

p(n)

k = nk/n is the proportion of vertices with degree k, and

E[Dn] =
1

n

∑
i∈[n]

di =
1

n

∑
i∈[n]

∞∑
k=0

k1{di=k} =

∞∑
k=0

kp(n)

k (10.1.3)

is the average degree in CMn(d). Thus, (kp(n)

k /E[Dn])k≥0 is a probability mass function.
However, one of the half-edges is used up to connect to the root, so that, for a vertex
incident to the root to have k offspring, it needs to connect its half-edge to a vertex having
degree k + 1. Therefore, the probability that the offspring of any of the direct neighbors
of the root is equal to k equals

g(n)

k =
(k + 1)p(n)

k+1

E[Dn]
. (10.1.4)

Thus, (g(n)

k )k≥0 can be interpreted as the forward degree of vertices in the cluster explo-

ration. When Condition 7.5(a)-(b) hold, then also g(n)

k → gk, where (gk)k≥0 is defined in
(10.1.2). As a result, we often refer to (gk)k≥0 as the asymptotic forward degree distribution.

The above heuristically argues that the number of vertices unequal to the root connected
to any direct neighbor of the root has asymptotic law (gk)k≥0. However, every time we
pair two half-edges, the number of free or available half-edges decreases by 2. Similarly
to the depletion of points effect in the exploration of clusters for the Erdős-Rényi random
graph ERn(λ/n), the configuration model CMn(d) suffers from a depletion of points and
half-edges effect. Thus, by iteratively connecting half-edges in a breadth-first way, the
offspring distribution changes along the way, which gives potential trouble. Luckily, the
number of available half-edges that we start with equals `n − 1, which is very large when
Condition 7.5(a)-(b) hold, since then `n/n = E[Dn]/n → E[D] > 0. Thus, we can pair
many half-edges before we start noticing that their number decreases. As a result, the
degrees of different vertices in the exploration process is close to being i.i.d., leading to a
branching process approximation. In terms of this branching process, we can interpret ζ
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in Theorem 10.1 as the survival probability of the above two-stage branching process, so
that ζ satisfies

ζ =

∞∑
k=1

pk(1− ξk), (10.1.5)

where ξ is the extinction probability of the branching process with offspring distribution
(gk)k≥0, which satisfies

ξ =

∞∑
k=0

gkξ
k. (10.1.6)

Clearly, ξ = 1 precisely when

ν =
∑
k≥0

kgk ≤ 1. (10.1.7)

By (10.1.2), we can rewrite

ν =
1

E[D]

∑
k≥0

k(k + 1)pk+1 = E[D(D − 1)]/E[D], (10.1.8)

which explains the condition on ν in Theorem 10.1(a). Further, to understand the asymp-

totics of vk(Cmax), we note that there are nk = np(n)

k ≈ npk vertices with degree k. Each
of the k direct neighbors of a vertex of degree k survives with probability close to 1− ξ, so
that the probability that at least one of them survives is close to 1− ξk. When one of the
neighbors of the vertex of degree k survives, the vertex itself is part of the giant component,

which explains why vk(Cmax)/n
P−→ pk(1− ξk). Finally, an edge consists of two half-edges,

and an edge is part of the giant component precisely when one of the vertices incident to
it is, which occurs with probability 1− ξ2. There are in total `n/2 = nE[Dn]/2 ≈ nE[D]/2

edges, which explains why |E(Cmax)|/n P−→ 1
2
E[D](1 − ξ2). Therefore, all results in The-

orem 10.1 have a simple explanation in terms of the branching process approximation of
the connected component for CMn(d) of a uniform vertex in [n].

Reformulation in terms of generating functions. We next reformulate the results
in terms of generating functions, which play a crucial role throughout our proof. Let

GD(x) =

∞∑
k=0

pkx
k = E[xD] (10.1.9)

be the probability generating function of the probability distribution (pk)k≥1. Recall that,
for a non-negative random variable D, the random variable D∗ denotes its size-biased
distribution. Define further

G?D(x) = E[xD
∗
] =

∞∑
k=1

gkx
k = G′D(x)/G′D(1), (10.1.10)

H(x) = E[D]x
(
x−G?D(x)

)
. (10.1.11)

Note that G?D(1) = 1, and thus H(0) = H(1) = 0. Note also that

H ′(1) = 2E[D]−
∑
k

k2pk = E[2D −D2] = −E[D(D − 2)] (10.1.12)

For further properties of x 7→ H(x), see Lemma 10.6 below. We conclude that if E[D(D−
2)] =

∑
k k(k−2)pk > 0 and if g1 > 0, then there is a unique ξ ∈ (0, 1) such that H(ξ) = 0,
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or equivalently G?D(ξ) = ξ, so that indeed ξ is the extinction probability of the branching
process with offspring distribution (gk)k≥0. When g1 = 0, instead, ξ = 0 is the unique
solution in [0, 1) of H(ξ) = 0. The functions x 7→ H(x) and x 7→ G?D(x) play a crucial role
in our analysis of the problem.

We prove Theorem 10.1 in Section 10.1.2 below. We now remark upon the result.

The condition P(D = 2) = p2 < 1. Because isolated vertices do not matter, without
loss of generality, we may assume that p0 = 0. The case p2 = 1, for which ν = 1 is quite
exceptional. In this case, H(x) = 0 for all x. We give three examples showing that then
quite different behaviors are possible.

Our first example is when di = 2 for all i ∈ [n], so we are studying a random 2-regular
graph. In this case, the components are cycles and the distribution of cycle lengths in
CMn(d) is given by the Ewen’s sampling formula ESF(1/2), see e.g. [20]. This implies
that |Cmax|/n converges in distribution to a non-degenerate distribution on [0, 1] and not to
any constant [20, Lemma 5.7]. Moreover, the same is true for |C(2)|/n (and for |C(3)|/n,...),
so in this case there are several large components. To intuitively see this result, we note
that in the exploration of a cluster we start with one vertex with two half-edges. When
pairing a half-edge, it connects to a vertex that again has two half-edges. Therefore, the
number of half-edges to be paired is always equal to 2, up to the moment when the cycle
is closed, and the cluster is completed. When there are m = αn free half-edges left, the
probability of closing up the cycle equals 1/m = 1/(αn), and, thus, the time this takes is
of order n. A slight extension of this reasoning shows that the time it takes to close a cycle
is nTn, where Tn converges to a limiting non-degenerate random variable:

Exercise 10.1 (Cluster size of vertex 1 in a 2-regular graph). Let n2 = n, and let C(1)
denote the cluster size of vertex 1. Show that

|C(1)|/n d−→ T, (10.1.13)

where P(T > x) = 1/
√

1− x.

Our second example with p2 = 1 is obtained by adding a small number of vertices of
degree 1. More precisely, we let n1 →∞ be such that n1/n→ 0, and n2 = n− n1. In this
case, components can either be cycles, or strings of vertices with degree 2 terminated with
two vertices with degree 1. When n1 → ∞, it is more likely to terminate a long string of
vertices of degree 2 by a vertex of degree 1 than by closing the cycle, as for the latter we
need to pair to a unique half-edge, while for the former, we have n1 choices. Therefore, it
is easy to s ee that this implies that |Cmax| = oP(n):

Exercise 10.2 (Cluster size in a 2-regular graph with some degree-1 vertices). Let n1 →∞
with n1/n→ 0, and n2 = n− n1. Let C(1) denote the cluster size of vertex 1. Show that

|C(1)|/n P−→ 0. (10.1.14)

Our third example with p2 = 1 is obtained by instead adding a small number of vertices
of degree 4 (i.e., n4 → ∞ such that n4/n → 0, and n2 = n − n4.) We can regard each
vertex of degree 4 as two vertices of degree 2 that have been identified. Therefore, to
obtain CMn(d) with this degree distribution, we can start from a configuration model
having N = n + n4 vertices, and uniformly identifying n4 pairs of vertices of degree 2.
Since the configuration model with N = n+ n4 vertices of degree 2 has many components
having size of order n, most of these will merge into one giant component. As a result,
|Cmax| = n− oP(n), so there is a giant component containing almost everything:
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Exercise 10.3 (Cluster size in a 2-regular graph with some degree-4 vertices). Let n4 →∞
with n4/n→ 0, and n2 = n− n4. Let C(1) denote the cluster size of vertex 1. Show that

|C(1)|/n P−→ 1. (10.1.15)

We conclude that the case where p2 = P(D = 2) = 1 is quite sensitive to the precise
properties of the degree structure that are not captured by the limiting distribution (pk)k≥1

only. In the sequel, we shall ignore the case where p2 = 1.

Reduction to the case where P(D = 1) = p1 > 0. In our proof, it is convenient
to assume that p1 = P(D = 1) > 0. The extinction probability ξ = 0 and the survival
probability ζ = 1 when p1 = 0, which causes technical difficulties in the proof. We now
explain how we can reduce the case where p1 = 0 to the case where p1 > 0.

Let dmin = min{k : pk > 0} be the minimum of the support of the asymptotic degree
distribution D. Fix ε > 0, and assume that ε < pk. Consider the configuration model
with ñ = n + 2dminεn, and degree sequence d̃ = (d̃i)i∈[n] with ñk = nk for all k > dmin,
ñdmin = ndmin−εn, ñ1 = 2dminεn. This configuration model can be obtained from CMn(d)
by replacing εn vertices of degree dmin by dmin vertices having degree 1, as if we have
‘forgotten’ that these vertices are actually equal.

Clearly, CMn(d) can be retrieved by identifying εn collections of dmin vertices of degree
1 to a single vertex of degree dmin. When d satisfies Condition 7.5(a)-(b), then so does

d̃ with limiting degree distribution p̃1 = 2dminε/, p̃dmin = (pdmin − ε)/(1 + 2dminε), p̃k =
pk/(1 + 2dminε) for all k > dmin. The above procedure clearly makes |Cmax| smaller.

Further, with ζε denoting the limit of |Cmax|/ñ for d̃, we have that ζε → 1 as ε ↓ 0. As a
result, Theorem 10.1 for ζ = 1, ξ = 0 follows from Theorem 10.1 with p1 > 0, for which
ζ < 1 and ξ > 0. In the remainder of the proof, we therefore without loss of generality
assume that ξ > 0 and ζ < 1.

Organization of the proof of Theorem 10.1. Theorem 10.1 is proved using a clever
randomization scheme to explore the connected components one by one. This construction
is explained terms of a simple continuous-time algorithm in Section 10.1.1 below. The
algorithm describes the number of vertices of given degrees that have been found, as well
as the total number of unpaired half-edges, at time t > 0. It is proved that, when n→∞,
these quantities all converge in probability to deterministic functions described in terms
of the functions x 7→ H(x) and x 7→ G?D(x) above. In particular, the number of unpaired
half-edges is given in terms of x 7→ H(x), so that the first zero of this function gives the
size of the giant component. In Section 10.1.2, the algorithm is analyzed by showing that
when ζ > 0, after a short initial period of exploring small clusters, the giant component is
found, and the exploration explores it completely, after which no large component is left.
When ζ = 0, instead, only small clusters are found. A crucial aspect in the proof resides
in how to deal with the depletion of points and half-edges effect.

10.1.1 Finding the largest component

The components of an arbitrary finite graph or multigraph can be found by the following
standard procedure. Pick an arbitrary vertex v and determine the component of v as
follows: include all the neighbors of v in an arbitrary order; then add in the neighbors
of the neighbors, and so on, until no more vertices can be added. The vertices included
until this moment form the component of v. If there are still vertices left in the graph,
then pick any such vertex w, and repeat the above to determine the second component
(the component of vertex w). Carry on in this manner until all the components have been
found.



254 Configuration model revisited

The same result can be more conveniently obtained in the following way. Regard each
edge as consisting of two half-edges, each half-edge having one endpoint. We will label
the vertices as sleeping or awake (= used) and the half-edges as sleeping, active or dead;
the sleeping and active half-edges are also called living. We start with all vertices and
half-edges sleeping. Pick a vertex and label its half-edges as active. Then take any active
half-edge, say x and find its partner y in the graph; label these two half-edges as dead.
Further, if the endpoint of y is sleeping, label it as awake and all other half-edges of the
vertex incident to y as active. Repeat as long as there are active half-edge. When there
is no active half-edge left, we have obtained the first component. Then start again with
another vertex until all components are found.

We apply this algorithm to CMn(d) with a given degree sequence, revealing its edges
during the process. We thus initially only observe the vertex degrees and the half-edges,
but not how they are joined to form edges. Hence, each time we need a partner of an half-
edge, it is uniformly distributed over all other living half-edges, with the understanding
that the dead half-edges are the ones that are already paired into edges. It is here that
we are using the specific structure of the configuration model, which simplifies the analysis
substantially.

We make the random choices of finding a partner to the edges by associating i.i.d.
random maximal lifetimes τx to the half-edge x, where τx has an Exp(1) distribution. We
interpret these lifetimes as clocks, and changes in our exploration process only occur when
a clock of a half-edge rings. In other words, each half-edge dies spontaneously at rate 1
(unless killed earlier). Each time we need to find the partner of a half-edge x, we then wait
until the next living half-edge 6= x dies and take that one. This process in continuous-time
can be formulated as an algorithm, constructing CMn(d) and exploring its components
simultaneously, as follows. Recall that we start with all vertices and half-edges sleeping.
The exploration is then formalized in the following three steps:

Step 1 When there is no active half-edge (as in the beginning), select a sleeping vertex and
declare it awake and all its half-edges active. For definiteness, we choose the vertex
by choosing a half-edge uniformly at random among all sleeping half-edges. When
there is no sleeping half-edge left, the process stops; the remaining sleeping vertices
are all isolated and we have explored all other components.

Step 2 Pick an active half-edge (which one does not matter) and kill it, i.e., change its status
to dead.

Step 3 Wait until the next half-edge dies (spontaneously, as a result of its clock ringing).
This half-edge is joined to the one killed in the previous step Step 2 to form an edge
of the graph. When the vertex incident to it is sleeping, we change this vertex to
awake and all other half-edges incident to it to active. Repeat from Step 1.

The above randomized algorithm is such that components are created between the
successive times Step 1 is performed, where we say that Step 1 is performed when there is
no active half-edge and, as a result, a new vertex is chosen.

The vertices in the component created during one of these intervals between the succes-
sive times Step 1 is performed are the vertices that are awakened during the interval. Note
also that a component is completed and Step 1 is performed exactly when the number of
active half-edges is 0 and a half-edge dies at a vertex where all other half-edges (if any)
are dead. In the next section, we investigate the behavior of the key characteristics of the
algorithm, such as the number of sleeping half-edges and the number of sleeping vertices
of a given degree.
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10.1.2 Analysis of the algorithm for CMn(d)

We start by introducing the key characteristics of the exploration algorithm. Let S(t)
and A(t) be the numbers of sleeping and active half-edges, respectively, at time t, and let

L(t) = S(t) +A(t) (10.1.16)

be the number of living half-edges. For definiteness, we define these random functions to
be right-continuous.

Let us first look at L(t). We start with `n half-edges, all sleeping and thus living, but
we immediately perform Step 1 and Step 2 and kill one of them. Thus, L(0) = `n − 1.
In the sequel, as soon as a living half-edge dies, we perform Step 3 and then (instantly)
either Step 2 or both Step 1 and Step 2. Since Step 1 does not change the number of living
half-edges while Step 2 and Step 3 each decrease it by 1, the total result is that L(t) is
decreased by 2 each time one of the living half-edges dies, except when the last living one
dies and the process terminates. Because of this simple dynamics of t 7→ L(t), we can give
sharp asymptotics of L(t) when n→∞:

Proposition 10.2 (The number of sleeping half-edges). As n→∞, for any t0 ≥ 0 fixed,

sup
0≤t≤t0

|n−1L(t)− E[Dn]e−2t| P−→ 0. (10.1.17)

Proof. The process t 7→ L(t) satisfies L(0) = `n− 1, and it degreases by 2 at rate L(t). As
a result, it is closely related to a death process. We study such processes in the following
lemma:

Lemma 10.3 (Asymptotics of death processes). Let d, γ > 0 be given and let (N (x)(t))t≥0

be a Markov process such that N (x)(t) = x a.s., and the dynamics of t 7→ (N (x)(t))t≥0 is
such that when it is in position y, then it jumps down by d at rate γy. In other words,
the waiting time until the next event is Exp(1/γy) and each jump is of size d downwards.
Then, for every t0 ≥ 0,

E
[

sup
t≤t0

∣∣N (x)(t)− e−γdtx
∣∣2] ≤ 8d(eγdt0 − 1)x+ 8d2. (10.1.18)

Proof. The proof follows by distinguishing several cases. First assume that d = 1 and
that x is an integer. In this case, the process is a standard pure death process taking the
values x, x− 1, x− 2, . . . , 0, describing the number of particles alive when the particles die
independently at rate γ > 0. As is well-known, and easily seen by regarding N (x)(t) as
the sum of x independent copies of the process N (1)(t), the process (eγtN (x)(t))t≥0, is a
martingale starting in x. Furthermore, for every t ≥ 0, the random variable N (x)(t) has
a Bin(x, e−γt) distribution, since each of the x particles has a probability of dying before
time t of e−γt, and the different particles die independently. Hence, by Doob’s inequality,

E
[

sup
t≤t0

∣∣N (x)(t)− e−γtx
∣∣2] ≤ E

[
sup
t≤t0

∣∣eγtN (x)(t)− x
∣∣2] ≤ 4E

[(
eγtN (x)(t0)− x

)2]
= 4e2γtVar(N (x)(t0)) ≤ 4(eγt0 − 1)x. (10.1.19)

This proves the claim for x being integer.
Next, still assume d = 1, but let x > 0 be arbitrary. We can couple the two processes(

N (x)(t)
)
t≥0

and
(
N (bxc)(t))t≥0 with different initial values such that whenever the smaller

one jumps by 1, so does the other. This coupling keeps

|N (x)(t)−N (bxc)(t)| < 1 (10.1.20)
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for all t ≥ 0, and thus,

sup
t≤t0

∣∣N (bxc)(t)− e−γtbxc
∣∣ ≤ sup

t≤t0

∣∣N (x)(t)− e−γtx
∣∣+ 2, (10.1.21)

so that by (10.1.19), in turn,

E
[

sup
t≤t0

∣∣N (x)(t)− e−γtx
∣∣2] ≤ 8(eγt0 − 1)x+ 8. (10.1.22)

Finally, for a general d > 0, we observe that N (x)(t)/d is a process of the same type with the
parameters (γ, d, x) replaced by (γd, 1, x/d), and the general result follows from (10.1.22)
and (10.1.19).

The proof of Proposition 10.2 follows from Lemma 10.3 with d = 2, x = (`n − 1) =
nE[Dn]− 1 and γ = 1.

We continue by considering the sleeping half-edges S(t). Let Vk(t) be the number of
sleeping vertices of degree k at time t, so that

S(t) =

∞∑
k=1

kVk(t). (10.1.23)

Note that Step 2 does not affect sleeping half-edges, and that Step 3 implies that each
sleeping vertex of degree k is eliminated (i.e., awakened) with intensity k, independently
of all other vertices. There are also some sleeping vertices eliminated by Step 1, though,
which complicates the dynamics of t 7→ Vk(t). It is here that the depletion of points and
half-edges effect enters the analysis of the component structure of CMn(d).

We first ignore the effect of Step 1 by letting Ṽk(t) be the number of vertices of degree
k such that all its half-edges have maximal lifetimes τx > t. Thus, none of its k half-
edges would have died spontaneously up to time t, assuming they all escaped Step 1. It is
reasonable to ignore the effect of Step 1 in the leading order, as we perform Step 1 until we
hit the giant component, and then it takes a long time to find the entire giant component.
When ζ > 0, the number of times we perform Step 1 until we find the giant component
will be small, as each time we have a strictly positive probability of choosing a vertex in

the giant component. Thus, intuitively, we expect the difference between Vk(t) and Ṽk(t)
to be insignificant.

For a given half-edge, we call the half-edges incident to the same vertex its brother
half-edges. Let further

S̃(t) =
∑
k

kṼk(t) (10.1.24)

denote the number of half-edges whose brother half-edges have escaped spontaneous death
up to time t.

Recall the functions GD, G?D from (10.1.9)–(10.1.10), and define

h(x) = xE[D]G?D(x). (10.1.25)

Then, we can identify the asymptotics of (Ṽk(t))t≥0 in a similar way as in Proposition 10.2:

Lemma 10.4 (The number of sleeping vertices). Assume that Condition 7.5(a)-(b) hold.
Then, as n→∞, for any t0 ≥ 0 fixed

sup
t≤t0
|n−1Ṽk(t)− pke−kt| P−→ 0 (10.1.26)
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for every k ≥ 0 and

sup
t≤t0
|n−1

∞∑
k=0

Ṽk(t)−GD(e−t)| P−→ 0, (10.1.27)

sup
t≤t0
|n−1S̃(t)− h(e−t)| P−→ 0. (10.1.28)

Proof. The statement (10.1.26) again follows from Lemma 10.3, now with γ = k, x = nk
and d = 1. The case k = 0 is trivial, with Ṽ0(t) = n0 for all t. We can replace p(n)

k by pk
by Condition 7.5(a).

By Condition 7.5(b), the sequence of random variables (Dn)n≥1 is uniformly integrable,
which means that for every ε > 0 there exists K <∞ such that for all n,

∑
k>K knk/n =

E[Dn|Dn > k] < ε. We may further assume (or deduce from Fatou’s inequality) that∑
k>K kpk < ε, and obtain by (10.1.26) that, whp,

sup
t≤t0
|n−1S̃(t)− h(e−t)| = sup

t≤t0

∣∣∣∣∣
∞∑
k=1

k(n−1Ṽk(t)− pke−kt)

∣∣∣∣∣
≤

K∑
k=1

k sup
t≤t0
|n−1Ṽk(t)− pke−kt|+

∑
k>K

k
(nk
n

+ pk
)

≤ ε+ ε+ ε,

proving (10.1.28). An almost identical argument yields (10.1.27).

Remarkably, the difference between S(t) and S̃(t) is easily estimated. The following
result can be viewed as the key to why this approach works. Indeed, it gives a uniform
upper bound on the difference due to the application of Step 1:

Lemma 10.5 (Effect of Step 1). If ∆ := maxi∈[n] di is the maximum degree of CMn(d),
then

0 ≤ S̃(t)− S(t) < sup
0≤s≤t

(S̃(s)− L(s)) + ∆. (10.1.29)

Proof. Clearly, Vk(t) ≤ Ṽk(t), and thus S(t) ≤ S̃(t). Furthermore, S̃(t) − S(t) increases
only as a result of Step 1. Indeed, Step 1 acts to guarantee that A(t) = L(t) − S(t) ≥ 0,
and is only performed when A(t) = 0.

If Step 1 is performed at time t and a vertex of degree j > 0 is awakened, then Step 2
applies instantly and we have A(t) = j − 1 < ∆, and consequently

S̃(t)− S(t) = S̃(t)− L(t) +A(t) < S̃(t)− L(t) + ∆. (10.1.30)

Furthermore, S̃(t) − S(t) is never changed by Step 2 and either unchanged or decreased

by Step 3. Hence, S̃(t) − S(t) does not increase until the next time Step 1 is performed.
Consequently, for any time t, if s was the last time before (or equal to) t that Step 1 was

performed, then S̃(t)− S(t) ≤ S̃(s)− S(s), and the result follows by (10.1.30).

Recall that A(t) = L(t)− S(t) denotes the number of awakened vertices and let

Ã(t) = L(t)− S̃(t) = A(t)− (S̃(t)− S(t)) (10.1.31)

denote the number of awakened vertices ignoring the effect of Step 1. Thus, Ã(t) ≤ A(t)

since S(t) ≤ S̃(t).
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Then, by Lemmas 10.2 and 10.4 (and (10.1.11)), for any t0 ≥ 0,

sup
t≤t0
|n−1Ã(t)−H(e−t)| P−→ 0. (10.1.32)

Lemma 10.5 can be rewritten as

0 ≤ S̃(t)− S(t) < − inf
s≤t

Ã(s) + ∆. (10.1.33)

By (10.1.31) and (10.1.33),

Ã(t) ≤ A(t) < Ã(t)− inf
s≤t

Ã(s) + ∆, (10.1.34)

which, perhaps, illuminates the relation between A(t) and Ã(t). Now, the function t 7→
H(e−t), which acts as the limit of Ã(t), is strictly positive in (0,− log ξ) and H(1) = H(ξ) =

0. Therefore, we expect Ã(t) to be positive for t ∈ (0,− log ξ), and, if so, infs≤t Ã(s) = 0.
The idea is to continue our algorithm in Step 1-Step 3 until the giant component has been
found, which implies that A(t) > 0 for the time of exploration of the giant component, and
A(t) = 0 for the first time when we have completed the exploration of the giant component,

which is t = − log ξ. Thus, the term infs≤t Ã(s) in (10.1.34) ought to be negligible. When

Condition 7.5(a)-(b) hold, we further have that ∆ = o(n), so that one can expect Ã(t) to
be a good approximation of A(t). The remainder of the proof makes this intuition precise.
We start by summarizing the properties of x 7→ H(x) that we rely upon:

Lemma 10.6 (Properties of x 7→ H(x)). Suppose that Condition 7.5(a)-(b) hold and let
H(x) be given by (10.1.11).

(i) If ν = E[D(D − 1)]/E[D] > 1 and p1 > 0, then there is a unique ξ ∈ (0, 1) such that
H(ξ) = 0. Moreover, H(x) < 0 for all x ∈ (0, ξ) and H(x) > 0 for all x ∈ (ξ, 1).

(ii) If ν = E[D(D − 1)]/E[D] ≤ 1, then H(x) < 0 for all x ∈ (0, 1).

Proof. As remarked earlier, H(0) = H(1) = 0 and H ′(1) = −E[D(D − 2)]. Furthermore,
if we define φ(x) := H(x)/x, then φ(x) = E[D](x−G?D(x)) is a concave function on (0, 1],
and it is strictly concave unless pk = 0 for all k ≥ 3, in which case H ′(1) = −E[D(D−2)] =
p1 > 0. Indeed, p1 + p2 = 1 when pk = 0 for all k ≥ 3. Since we assume that p2 < 1, we
thus obtain that p1 > 0 in this case.

In case (ii), we thus have that φ is concave and φ′(1) = H ′(1) − H(1) ≥ 0, with
either the concavity or the inequality strict, and thus φ′(x) > 0 for all x ∈ (0, 1), whence
φ(x) < φ(1) = 0 for x ∈ (0, 1).

In case (i), H ′(1) < 0, and thus H(x) > 0 for x close to 1. Further, when p1 > 0,
H ′(0) = −h′(0) = −p1 < 0, and thus H(x) ≤ 0 for x close to 0. Hence, there is at least
one ξ ∈ (0, 1) with H(ξ) = 0, and since H(x)/x is strictly concave and also H(1) = 0,
there is at most one such ξ and the result follows.

Now we are in the position to complete the proof of Theorem 10.1 in the following
section.

10.1.3 Proof of Theorem 10.1

We start with the proof of Theorem 10.1(i). Let ξ be the zero of H given by Lemma
10.6(i) and let θ = − log ξ. Then, by Lemma 10.6, H(e−t) > 0 for 0 < t < θ, and thus
inft≤θH(e−t) = 0. Consequently, (10.1.32) implies

n−1 inf
t≤θ

Ã(t) = inf
t≤θ

n−1Ã(t)− inf
t≤θ

H(e−t)
P−→ 0 (10.1.35)
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Further, by Condition 7.5(b), ∆ = o(n), and thus n−1∆ → 0. Consequently, (10.1.33)
and (10.1.35) yield

sup
t≤θ

n−1|A(t)− Ã(t)| = sup
t≤θ

n−1|S̃(t)− S(t)| P−→ 0. (10.1.36)

Thus, by (10.1.32),

sup
t≤θ
|n−1A(t)−H(e−t)| P−→ 0. (10.1.37)

Let 0 < ε < θ/2. Since H(e−t) > 0 on the compact interval [ε, θ − ε], (10.1.37) implies
that A(t) remains whp positive on [ε, θ− ε], and thus no new component is started during
this interval.

On the other hand, again by Lemma 10.6(i), H(e−(θ+ε)) < 0 and (10.1.32) implies that

n−1Ã(θ + ε)
P−→ H(e−(θ+ε)), while A(θ + ε) ≥ 0. Thus, with δ = |H(e−θ−ε)|/2 > 0, whp

S̃(θ + ε)− S(θ + ε) = A(θ + ε)− Ã(θ + ε) ≥ −Ã(θ + ε) > nδ, (10.1.38)

while (10.1.36) yields that S̃(θ)−S(θ) < nδ whp. Consequently, whp S̃(θ+ε)−S(θ+ε) >

S̃(θ)− S(θ), so whp Step 1 is performed between the times θ and θ + ε.
Let T1 be the last time Step 1 was performed before time θ/2. Let T2 be the next time

Step 1 is performed (by convention, T2 =∞ if such a time does not exist). We have shown

that for any ε > 0, and whp 0 ≤ T1 ≤ ε and θ − ε ≤ T2 ≤ θ + ε. In other words, T1
P−→ 0

and T2
P−→ θ. We conclude that we have found one component that is explored between

time T1
P−→ 0 and time T2

P−→ θ. This is our candidate for the giant component, and we
continue to study its properties, i.e., its size, its number of edges and its number of vertices
of degree k. These properties are stated separately in the next lemma, so that we are able
to reuse them later on:

Proposition 10.7 (Cluster properties). Let T ∗1 and T ∗2 be two random times when Step

1 is performed, with T ∗1 ≤ T ∗2 , and assume that T ∗1
P−→ t1 and T ∗2

P−→ t2 where 0 ≤ t1 ≤
t2 ≤ θ <∞. If C∗ is the union of all components explored between T ∗1 and T ∗2 , then

vk(C∗)/n P−→ pk(e−kt1 − e−kt2), k ≥ 0, (10.1.39)

|C∗|/n P−→ GD(e−t1)−GD(e−t2), (10.1.40)

|E(C∗)|/n P−→ 1

2
h(e−t1)− 1

2
h(e−t2). (10.1.41)

In particular, if t1 = t2, then |C∗|/n P−→ 0 and |E(C∗)| P−→ 0.

We apply Proposition 10.7 to T1 = oP(1) and T2, where T2 = θ+ oP(1). We can identify
the values of the above constants:

Exercise 10.4 (Limiting constants). Prove that for t1 = 0 and t2 = θ, e−kt1 = 1, e−kt2 =
ξ, GD(e−t1) = 1, GD(e−t2) = 1− ζ, h(e−t1) = 2E[D], h(e−t2) = 2E[D]ξ2.

By Proposition 10.7 and Exercise 10.4, Theorem 10.1(i) follows when we prove that the
cluster found between times T1 and T2 is indeed the giant component. We now first prove
Proposition 10.7, after which we show that cluster found between times T1 and T2 is indeed
the giant component.
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Proof. The set of vertices C∗ contains all vertices awakened in the interval [T ∗1 , T
∗
2 ) and no

others, and thus
vk(C∗) = Vk(T ∗1−)− Vk(T ∗2−), k ≥ 1. (10.1.42)

Since T ∗2
P−→ t2 ≤ θ andH is continuous, we obtain that inft≤T∗2 H(e−t)

P−→ inft≤t2 H(e−t) =

0, where the latter equality follows since H(1) = 0. Now, (10.1.32) and (10.1.33) imply, in

analogy with (10.1.35) and (10.1.36), that n−1 inft≤T∗2 Ã(t)
P−→ 0 and

sup
t≤T∗2

n−1|S̃(t)− S(t)| P−→ 0. (10.1.43)

Since Ṽj(t) ≥ Vj(t) for every j and t ≥ 0,

Ṽk(t)− Vk(t) ≤ k−1
∞∑
j=1

j(Ṽj(t)− Vj(t)) = k−1(S̃(t)− S(t)), k ≥ 1. (10.1.44)

Hence (10.1.43) implies, for every k ≥ 1, supt≤T∗2
|Ṽk(t) − Vk(t)| = oP(n). Consequently,

using Lemma 10.4, for j = 1, 2,

Vk(T ∗j −) = Ṽk(T ∗j −) + oP(n) = npke−kT
∗
j + oP(n) = npke−ktj + oP(n), (10.1.45)

and (10.1.39) follows by (10.1.42). Similarly, using
∑∞
k=0(Ṽk(t)− Vk(t)) ≤ S̃(t)− S(t),

|C∗| =
∞∑
k=1

(Vk(T ∗1−)− Vk(T ∗2−)) =

∞∑
k=1

(Ṽk(T ∗1−)− Ṽk(T ∗2 )) + oP(n) (10.1.46)

= nGD(e−T
∗
1 )− nGD(e−T

∗
2 ) + oP(n), (10.1.47)

and

2|E(C∗)| =
∞∑
k=1

k(Vk(T ∗1−)− Vk(T ∗2 )) =

∞∑
k=1

k(Ṽk(T ∗1−)− Ṽk(T ∗2 )) + oP(n) (10.1.48)

= nh(e−T
∗
1 )− nh(e−T

∗
2 ) + oP(n), (10.1.49)

and (10.1.40) and (10.1.41) follow from the convergence T ∗i
P−→ ti and the continuity of

t 7→ GD(e−t) and t 7→ h(e−t).

Let C′max be the component created at time T1 and explored until time T2, where we
recall that T1 is the last time Step 1 was performed before time θ/2 and let T2 be the next

time it is performed if this occurs and T2 = ∞ otherwise. Then, T1
P−→ 0 and T2

P−→ θ.
The cluster C′max is our candidate for the giant component Cmax, and we next prove that
indeed it is, whp, the largest connected component.

By Proposition 10.7, with t1 = 0 and t2 = θ,

|vk(C′max)|/n P−→ pk(1− e−kt), (10.1.50)

|C′max|/n
P−→ GD(1)−GD(e−θ) = 1−GD(ξ), (10.1.51)

|E(C′max)|/n P−→ 1

2
(h(1)− h(e−θ)) =

1

2
(h(1)− h(ξ)) =

E[D]

2
(1− ξ2), (10.1.52)

using Exercise 10.4. We have found one large component C′max with the claimed numbers
of vertices and edges. It remains to show that whp there is no other large component.
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For this, let η > 0, and apply Proposition 10.7 to T0 = 0 and T1. Then, since T1
P−→ 0,

the total number of vertices and edges in all components found before C′max, i.e., before
time T1, is oP(n). Hence, recalling that `n = Θ(n) by Condition 7.5(b),

P(a component C with |E(C)| ≥ η`n is found before C′max)→ 0. (10.1.53)

We conclude that whp no component containing at least η`n half-edges is found before
C′max is found.

In order to study the probability of finding a component containing at least η`n edges
after C′max is found, we start by letting T3 be the first time after time T2 that Step 1 is

performed. Since S̃(t)−S(t) increases by at most ∆ = o(n) each time Step 1 is performed,
we obtain from (10.1.43) that

sup
t≤T3

(S̃(t)− S(t)) ≤ sup
t≤T2

(S̃(t)− S(t)) + ∆ = oP(n). (10.1.54)

Comparing this to (10.1.38), for every ε > 0 and whp, we have that θ+ ε > T3. Since also

T3 > T2
P−→ θ, it follows that T3

P−→ θ. If C′ is the component created between T2 and T3,

then Proposition 10.7 applied to T2 and T3 yields |C′|/n P−→ 0 and |E(C′)| P−→ 0.
On the other hand, if there would exist a component C 6= C′max in CMn(d) with at

least η`n edges that has not been found before C′max, then with probability at least η, the
vertex chosen at random by Step 1 at time T2 starting the component C′ would belong to
C. When this occurs, we clearly have that C = C′. Consequently,

P(a component C with |E(C)| ≥ η`n is found after C′max) ≤ η−1P(|E(C′)| ≥ η`n)→ 0,
(10.1.55)

since |E(C′)| P−→ 0.
Combining (10.1.53) and (10.1.55), we see that whp there is no component except C′max

that has at least η`n edges. As a result, we must have that C′max = Cmax, where Cmax is
the largest component. Further, again whp, |E(C(2))| < η`n. Consequently, the results

for Cmax follow from (10.1.50)-(10.1.52). We have further shown |E(C(2)|/`n
P−→ 0, which

implies |E(C(2))|/n
P−→ 0 and |C(2)|/n

P−→ 0 because `n = Θ(n) and |C(2)| ≤ |E(C(2))| + 1.
This completes the proof of Theorem 10.1(i).

The proof of Theorem 10.1(ii) is very similar to the last step in the proof for Theorem
10.1(i). Indeed, let T1 = 0 and let T2 be the next time Step 1 is performed, or T2 = ∞
when this does not occur. Then,

sup
t≤T2

|A(t)− Ã(t)| = sup
t≤T2

|S̃(t)− S(t)| ≤ 2∆ = o(n). (10.1.56)

For every ε > 0, n−1Ã(ε)
P−→ H(e−ε) < 0 by (10.1.32) and Lemma 10.6(ii), while A(ε) ≥ 0,

and it follows from (10.1.56) that whp T2 < ε. Hence, T2
P−→ 0. We apply Proposition

10.7 (which holds in this case too, with θ = 0) and find that if C is the first component

found, then |E(C)|/n P−→ 0.
Let η > 0. If |E(Cmax)| ≥ η`n, then the probability that the first half-edge chosen by

Step 1 belongs to Cmax, and thus C̃ = Cmax, is 2|E(Cmax)|/(2`n) ≥ η, and hence,

P(|E(Cmax)| ≥ η`n) ≤ η−1P(|E(C)| ≥ η`n)→ 0. (10.1.57)

The results follows since `n = Θ(n) by Condition 7.5(b) and |Cmax| ≤ |E(Cmax)|+ 1. This
completes the proof of Theorem 10.1(ii), and thus that of Theorem 10.1.
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10.1.4 The giant component of related random graphs

In this section, we extend the results of Theorem 10.1 to some related models, such as
uniform simple random graphs with a given degree sequence, as well as generalized random
graphs.

Recall that UGn(d) denotes a uniform simple random graph with degrees d (see Section
7.4). The results in Theorem 10.1 also hold for UGn(d) when we assume that Condition
7.5(a)-(c) holds:

Theorem 10.8 (Phase transition in UGn(d)). Let d satisfy Condition 7.5(a)-(c). Then,
the results in Theorem 10.1 also hold for a uniform simple graph with degree sequence d.

Proof. By Corollary 7.12, and since d = (di)i∈[n] satisfies Condition 7.5(a)-(c), any event
En that occurs whp for CMn(d), also occurs whp for UGn(d). By Theorem 10.1, the event
En that {

∣∣|Cmax|/n − ζ
∣∣ ≤ ε} occurs whp for CMn(d), so it also holds whp for UGn(d).

The proof for the other limits is identical.

We next prove Theorem 9.31 for GRGn(w):

Theorem 10.9 (Phase transition in GRGn(w)). Let w satisfy Condition 6.4(a)-(c).
Then, the results in Theorem 10.1 also hold for GRGn(w), CLn(w) and NRn(w).

Proof. Let di be the degree of vertex i in GRGn(w) defined in (6.2.1), where we use
a small letter to avoid confusion with Dn, which is the degree of a uniform vertex in
[n]. By Theorem 7.13, the law of GRGn(w) conditionally on the degrees d and CMn(d)
conditionally on being simple agree. Assume that (di)i∈[n] satisfies that Condition 7.5(a)-
(c) hold in probability. Then, by Theorems 7.13 and 10.1, the results in Theorem 10.1 also
hold for GRGn(w). By Theorem 6.19, the same result applies to CLn(w), and by Exercise
6.36, also to NRn(w). Thus, we are left to prove that Condition 6.4(a)-(c) implies that
Condition 7.5(a)-(c) holds for GRGn(w), which is the content of the next proposition:

Proposition 10.10 (Relating the assumptions on weights and degrees). Let d = (di)i∈[n]

be the (random) degrees in GRGn(w). Let w satisfy Condition 6.4(a)-(c). Then, Condition
7.5(a)-(c) holds for d, where the convergence holds in probability, and the limit law D equals
a mixed Poisson random variable with mixing distribution W .

Proof. Condition 7.5(a) follows from Theorem 6.9. To avoid confusion, we denote by En the
conditional expectation given the graph GRGn(w), so that En[Dn] denotes the degree in
GRGn(w) of a vertex chosen uniformly from [n] given the realization of GRGn(w). Thus,

for Condition 7.5(b)-(c), we need to show that En[Dn]
P−→ E[D] = E[W ], En[D2

n]
P−→

E[D2] = E[W (W + 1)], where the latter equalities hold since W has a Poisson distribution
with (random) parameter W .

We perform the proofs of Condition 7.5(b)-(c) simultaneously. Let p ∈ {1, 2}. Then,
we compute

En[Dp
n] =

∞∑
k=1

kpP (n)

k , (10.1.58)

where we recall that P (n)

k = 1
n

∑
i∈[n] 1{di=k} denotes the proportion of vertices with degree

k. Let K ≥ 1 be a large constant, and split

En[D2
n] =

K∑
k=1

kpP (n)

k +

∞∑
k=K+1

kpP (n)

k . (10.1.59)
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By Theorem 6.9,
K∑
k=1

kpP (n)

k

P−→
K∑
k=1

kppk = E[Dp
1{D≤K}]. (10.1.60)

By the Dominated Convergence Theorem (Theorem A.42), E[Dp
1{D≤K}] → E[Dp] when

K →∞. Therefore, we are left to show that, when first n→∞ followed by K →∞,

∞∑
k=K+1

kpP (n)

k

P−→ 1. (10.1.61)

We rewrite
∞∑

k=K+1

kpP (n)

k =
1

n

∑
i∈[n] : di≥K+1

dpi . (10.1.62)

We split the above sum, depending on whether wi ≥ di/2 or not, to obtain

∞∑
k=K+1

kpP (n)

k ≤ 1

n

∑
i∈[n]

dpi 1{di≥K+1,wi<di/2} +
1

n

∑
i∈[n]

dpi 1{di≥K+1,wi≥di/2}. (10.1.63)

We bound each of these contributions separately. We start by bounding

1

n

∑
i∈[n]

dpi 1{di≥K+1,wi≥di/2} ≤
2p

n

∑
i∈[n]

wpi 1{wi≥K/2} = 2dE[W p
n1{Wn≥K/2}], (10.1.64)

the right-hand side being deterministic. By Condition 7.5(b)-(c), for p ∈ {1, 2},

E[W p
n1{Wn≥K/2}]→ E[W p

1{W≥K/2}] ≤ ε/2, (10.1.65)

when we take K = K(ε) sufficiently large. This bounds the second term in (10.1.63).
To bound the first term in (10.1.63), we continue to bound the expectation

1

n
E
[ ∑
i∈[n]

dpi 1{di≥K+1,wi<di/2}

]
=

1

n

∑
i∈[n]

E[dpi 1{di>(2wi∨K)}]. (10.1.66)

For NRn(w), the random degree di is stochastically bounded by a Poi(wi) random variable
(recall Proposition 9.10). Further, by Corollary 6.19 and Exercise 6.36, GRGn(w),CLn(w)
and NRn(w) are asymptotically equivalent when Condition 6.4(a)-(c) holds. Therefore,

E[dpi 1{di>(2wi∨K)}] ≤ E[Poi(wi)
p
1{Poi(wi)>(2wi∨K)}]. (10.1.67)

Let Y ∼ Poi(λ). Then, for each k ≥ 2p,

E[Y p1{Y≥k}] ≤ 2pE[Y (Y − 1) · · · (Y − p+ 1)1{Y≥k}]

= 2p
∞∑
y=k

y(y − 1) · · · (y − p+ 1)P(Y = y)

= 2p
∞∑
y=k

y(y − 1) · · · (y − p+ 1)
λye−λ

y!
= 2pλpP(Y ≥ k − p). (10.1.68)

Therefore,

E[Poi(wi)
p
1{Poi(wi)>(2wi∨K)}] ≤ 2pwpi P(Poi(wi) > (2wi ∨K)), (10.1.69)
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and we arrive at

1

n
E
[ ∑
i∈[n]

dpi 1{di≥K+1,wi<di/2}

]
≤ 2p

n

∑
i∈[n]

wpi P(Poi(wi) > (2wi ∨K)) (10.1.70)

= 2pE[W p
n1{Poi(Wn)≥(2Wn∨K)}].

Again by Condition 7.5(b)-(c), for p ∈ {1, 2},

E[W p
n1{Poi(Wn)≥(2Wn∨K)}]→ E[W p

1{Poi(W )≥(2W∨K)}], (10.1.71)

which converges to zero when K → ∞. Therefore, for each ε > 0, we choose first K and
then n sufficiently large, so that

1

n
E
[ ∑
i∈[n]

dpi 1{di≥K+1,wi<di/2}

]
≤ ε2/2. (10.1.72)

By the Markov inequality (Theorem 2.15),

P
( 1

n

∑
i∈[n]

dpi 1{di≥K+1,wi<di/2} ≥ ε
)
≤ 1

nε
E
[ ∑
i∈[n]

dpi 1{di≥K+1,wi<di/2}

]
≤ ε/2. (10.1.73)

Combining (10.1.65) and (10.1.73), we see that,

P(
∑

k≥K+1

P (n)

k ≤ ε) ≥ 1− ε. (10.1.74)

As a result, together with (10.1.60), for p ∈ {1, 2},∑
k≥0

kp|P (n)

k − pk|
P−→ 1, (10.1.75)

as required. This completes the proof of Proposition 10.10, and thus also that of Theorem
10.9.

Unfortunately, when ν =∞, we cannot rely on the fact that by Theorem 7.13, the law
of GRGn(w) conditionally on the degrees d and CMn(d) conditionally on being simple
agree. Indeed, when ν = ∞, the probability that CMn(d) is simple vanishes. Therefore,
we instead rely on a truncation argument to extend Theorem 10.9 to the case where ν =∞:

Theorem 10.11 (Phase transition in GRGn(w)). Let w satisfy Condition 6.4(a)-(b).
Then, the results in Theorem 10.1 also hold for GRGn(w), CLn(w) and NRn(w).

Proof. We only prove that |Cmax|/n
P−→ ζ, the other statements in Theorem 10.1 can be

proved in a similar fashion. We prove Theorem 10.11 only for NRn(w), the proof for
GRGn(w) and CLn(w) being similar. Recall that Nm(i) denotes the set of vertices at
graph distance m from i ∈ [n], and let

|C′max| = #{i : Nm(i) 6= ∅} (10.1.76)

denote the number of vertices that survive to graph distance m. Then, by Corollary 9.13,
E[|C′max|/n]→ ζm = P(Zm > 0), and

Var(|C′max|/n)→ 0. (10.1.77)
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Therefore, |C′max|/n
P−→ ζm. Since Cmax has a diameter that tends to infinity (recall

Exercise 9.20), |Cmax| ≤ |C′max|, so that |Cmax|/n ≤ ζm + oP(1). This proves the required
upper bound.

For the lower bound, we bound NRn(w) from below by a random graph with edge
probabilities

p(K)

ij = 1− e−(wi∧K)(wj∧K)/`n . (10.1.78)

Therefore, also |Cmax| � |C(K)
max|, where C(K)

max is the largest connected component in the

inhomogeneous random graph with edge probabilities (p(K)

ij )i,j∈[n]. Let

w(K)

i = (wi ∧K)
1

`n

∑
j∈[n]

(wj ∧K), (10.1.79)

so that the edge probabilities in (10.1.78) correspond to the Norros-Reittu model with

weights (w(K)

i )i∈[n]. It is not hard to see that when Condition 6.4(a) holds for (wi)i∈[n], then

Condition 6.4(a)-(c) hold for (w(K)

i )i∈[n], where the limiting random variable equals (W ∧
K). Therefore, Theorem 10.9 applies to (w(K)

i )i∈[n]. We deduce that |C(K)
max|/n

P−→ ζ(K),
which is the survival probability of the two-stage mixed-Poisson branching process with

mixing variable (W ∧K). Since ζ(K) → ζ when K → ∞, we conclude that |Cmax|/n
P−→

ζ.

Exercise 10.5 (Number of vertices with degree k). Let w satisfy Condition 6.4(a)-(b).

Adapt the above proof to show that also vk(Cmax)/n
P−→ pk(1− ξk) for NRn(w).

10.2 Connectivity of CMn(d)

Assume that P(D = 2) < 1. By Theorem 10.1, we see that |Cmax|/n
P−→ 1 when P(D ≥

2) = 1, as in this case the survival probability equals 1. In this section, we investigate
conditions under which CMn(d) is whpconnected, i.e., Cmax = [n] and |Cmax| = n.

We first show that CMn(d) is with positive probability disconnected when either n1 �
n1/2, or when P(D ≥ 2) > 1. The main result in this section is Theorem 10.14, which
states that for all possible degree sequences with n1 = n2 = 0, CMn(d) is whp connected.
Remarkably, we do not even need Condition 7.5(a) for this result.

Proposition 10.12 (Disconnectivity of CMn(d) when n1 � n1/2). Let Condition 7.5(a)-

(b) hold, and assume that n1 � n1/2. Then,

lim
n→∞

P(CMn(d) connected) = 0. (10.2.1)

Proof. We note that CMn(d) is disconnected when there are two vertices of degree 1 whose
half-edges are paired to each other. When the half-edges of two vertices of degree 1 are
paired to each other, we say that a 2-pair is created. Then,

P(CMn(d) contains no 2-pair) =

n1∏
i=1

`n − n1 − 2i+ 1

`n − 2i+ 1
=

n1∏
i=1

(
1− n1

`n − 2i+ 1

)
. (10.2.2)

Since, for each i ≥ 1,

1− n1

`n − 2i+ 1
≤ 1− n1

`n
≤ e−n1/`n , (10.2.3)

we arrive at
P(CMn(d) contains no 2-pair) ≤ e−n

2
1/`n = o(1), (10.2.4)
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since `n = Θ(n) and n1 � n1/2.

Proposition 10.13 (Disconnectivity of CMn(d) when p2 > 0). Let Condition 7.5(a)-(b)
hold, and assume that p2 > 0. Then,

lim sup
n→∞

P(CMn(d) connected) < 1. (10.2.5)

Proof. We perform a second moment method on the number P (2) of connected components
consisting of two vertices of degree 2. The expected number of such components equals

E[P (2)] =
2n2(n2 − 1)

2(`n − 1)(`n − 3)
, (10.2.6)

since there are n2(n2 − 1)/2 pairs of vertices of degree 2, and the probability that a fixed
pair forms a connected component is equal to 2/(`n− 1)(`n− 3). By Condition 7.5(a)-(b),
which implies that n2/n→ p2,

E[P (2)]→ p2
2/E[D]2 ≡ λ2. (10.2.7)

By assumption, p2 > 0, so that also λ2 > 0. We can use Theorem 2.6 to show that

P (2)
d−→ Poi(λ2), so that

P(CMn(d) disconnected) ≥ P(P (2) > 0)→ 1− e−λ2 > 0, (10.2.8)

as required. The proof that Theorem 2.6 can be applied is left as an exercise below.

Exercise 10.6 (Factorial moments of P (2)). Let Condition 7.5(a)-(b) hold, and assume
that p2 > 0. Prove that, for every k ≥ 1 and with λ2 = p2

2/E[D]2,

E[(P (2))k]→ λk2 . (10.2.9)

Conclude that P (2)
d−→ Poi(λ2).

We continue to investigate when the configuration model yields a connected graph:

Theorem 10.14 (Connectivity of CMn(d)). Assume that di ≥ 3 for every i ∈ [n]. Then
CMn(d) is connected whp. More precisely, there exists a constant C > 0 such that for
every d,

P(CMn(d) disconnected) = O(1/n). (10.2.10)

When Condition 7.5(a) holds with p1 = p2 = 0, then ν ≥ 2 > 1 is immediate, so we
are always in the supercritical regime. Also, ζ = 1 when p1 = p2 = 0, since survival of the
two-stage branching process occurs with probability 1. Therefore, Theorem 10.1 implies
that the largest connected component has size n(1 + oP(1)) when Condition 7.5(a)-(b)
hold. Theorem 10.14 extends this to the statement that CMn(d) is with high probability
connected. However, we do not assume that Condition 7.5 holds here.

We note that Theorem 10.14 yields an important difference between the generalized
random graph and the configuration model, also from a practical point of view. Indeed,
for the generalized random graph to be whp connected, the degrees must tend to infinity.
This can be observed already for ERn(p) in Theorem 5.5. For the configuration model, it is
possible that the graph is connected while the average degree is bounded. Many real-world
networks are connected, which makes the configuration model often more suitable than
inhomogeneous random graphs.
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Proof. We recall that a configuration denotes a pairing of all the half-edges. We note
that the probability of a configuration equals 1/(`n − 1)!!. On the event that CMn(d) is
disconnected, there exists a set of indices I ⊂ [n] with |I| ≤ bn/2c such that all half-edges
incident to vertices in I are only paired to other half-edges incident to other vertices in I.
For I ⊆ [n], we let

`n(I) =
∑
i∈I

di. (10.2.11)

Clearly, in order for the half-edges incident to vertices in I to be paired only to other
half-edges incident to vertices in I, `n(I) needs to be even. The number of configurations
for which this happens is bounded above by

(`n(I)− 1)!!(`n(Ic)− 1)!!. (10.2.12)

As a result,

P(CMn(d) disconnected) ≤
∑
I⊂[n]

(`n(I)− 1)!!(`n(Ic)− 1)!!

(`n − 1)!!
(10.2.13)

=
∑
I⊂[n]

`n(I)/2∏
j=1

`n(I)− 2j + 1

`n − 2j + 1
,

where the sum over I ⊂ [n] is restricted to I for which |I| ≤ bn/2c.

Exercise 10.7 (Isolated vertex). Use the above bound to show that, when di ≥ 3 for all
i ∈ [n],

P(there exists an isolated vertex) ≤ 3n

(2`n − 1)(2`n − 3)
. (10.2.14)

Define

f(x) =

x∏
j=1

2x− 2j + 1

`n − 2j + 1
. (10.2.15)

We can rewrite

f(x) =

∏x
j=1(2x− 2j + 1)∏x
j=1(`n − 2j − 1)

=

∏x−1
i=0 (2i+ 1)∏x−1

k=0(`n − 2k + 1)
=

x−1∏
j=0

2i+ 1

`n − 2i− 1
, (10.2.16)

where we write i = x−j and k = j−1 in the second equality. Thus, for x ≤ `n/4, x 7→ f(x)
is decreasing, since

f(x+ 1)

f(x)
=

2x+ 1

`n − 2x− 1
≤ 1. (10.2.17)

Now, for every I, since di ≥ 3 for every i ∈ [n] and since `n(I) is even,

`n(I) ≥ 2d3|I|/2e, (10.2.18)

which only depends on the number of vertices in I. Since there are precisely
(
n
m

)
ways of

choosing m vertices out of [n], we conclude that

P(CMn(d) disconnected) ≤
∑
I⊂[n]

f(d3|I|/2e) =

bn/2c∑
m=1

(
n

m

)
f(d3m/2e), (10.2.19)

with m = |I|.
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Exercise 10.8 (Isolated vertex). Use (10.2.19) to reprove Exercise 10.8. Hence, the above
bound is quite sharp.

Exercise 10.9 (A cluster of size two). Use (10.2.19) to prove that

P(there exists a cluster of size 2) ≤ 15n(n− 1)

(2`n − 1)(2`n − 3)(2`n − 5)
. (10.2.20)

Note that, for m odd,

f(2d3(m+ 1)/2e)
f(2d3m/2e) =

f((3m+ 1)/2 + 1)

f((3m+ 1)/2)
=

3m+ 3

`n − 3m− 2
. (10.2.21)

while, for m even,

f(d3(m+ 1)/2e)
f(d3m/2e) =

f(3m/2 + 2)

f(3m/2)
=

3m+ 5

`n − 3m− 5

3m+ 3

`n − 3m− 3
, (10.2.22)

Define

hn(m) =

(
n

m

)
f(d3m/2e), (10.2.23)

so that

P(CMn(d) disconnected) ≤
bn/2c∑
m=1

hn(m). (10.2.24)

Then,
hn(m+ 1)

hn(m)
=
n−m
m+ 1

f(d3(m+ 1)/2e)
f(d3m/2e) , (10.2.25)

so that, for m odd and using `n ≥ 3n,

hn(m+ 1)

hn(m)
=

3(n−m)

`n − 3m− 3
≤ n−m
n−m− 1

, (10.2.26)

while, for m even and using `n ≥ 3n,

hn(m+ 1)

hn(m)
=

3(n−m)

`n − 3m− 5

3m+ 5

`n − 3m− 3
≤ n−m
n−m− 1

m+ 2

n−m− 2
. (10.2.27)

Thus, we obtain that, for m ≤ n/2, there exists a c > 0 such that

hn(m+ 1)

hn(m)
≤ 1 +

c

n
. (10.2.28)

We conclude that, for m ≤ n/2 such that m ≥ 3,

hn(m) = hn(3)

m∏
j=3

hn(j + 1)

hn(j)
≤ hn(3)

bn/2c∏
j=3

(1 + c/n) (10.2.29)

≤ hn(3)(1 + c/n)bn/2c ≤ hn(3)ec/2,
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so that

P(CMn(d) disconnected) ≤
εn∑
m=1

hn(m) ≤ hn(1) + hn(2) +

bn/2c∑
m=3

hn(m) (10.2.30)

≤ hn(1) + hn(2) + nhn(3)ec/2/2.

By Exercises 10.7 and 10.9, hn(1), hn(2) = O(1/n), so we are left to compute hn(3). For
this, we note that d3m/2e = 5 when m = 3, so that

hn(3) =

(
n

3

)
f(5) =

9!!n(n− 1)(n− 2)

6(`n − 1)(`n − 3)(`n − 5)(`n − 7)(`n − 9)
= O(1/n2), (10.2.31)

so that nhn(3) = O(1/n). We conclude that

P(CMn(d) disconnected) = O(1/n), (10.2.32)

as required.

10.3 The small-world phenomenon in CMn(d)

In this section, we study distances in the configuration model, both in the case of
finite-variance degrees as well as in the case of infinite variance degrees.

Finite-variance degrees. We start by analyzing the typical graph distance in the case
where the configuration model CMn(d) when Condition 6.4(a)-(c) holds:

Theorem 10.15 (Typical distances in CMn(d) for finite-variance degrees). In the con-
figuration model CMn(d), where the degrees d = (di)i∈[n] satisfy Condition 6.4(a)-(c) and
where ν > 1, conditionally on Hn <∞,

Hn/ logn
P−→ 1/ log ν. (10.3.1)

Theorem 10.15 shows that the typical distances in CMn(d) are of order logν n, and is
thus similar in spirit as Theorem 9.3. We shall see that also its proof is quite similar.

We continue the discussion of distances in the configuration model by investigating the
diameter in the model. Before stating the main result, we introduce some notation. Recall
that G?D(x) is defined in (10.1.9) as the probability generating function of g = (gk)k≥0

defined in (10.1.2). We recall that ξ is the extinction probability of the branching process
with offspring distribution g defined in (10.1.6) and further define

µ = G?D(ξ) =
∞∑
k=1

kξk−1gk. (10.3.2)

When ξ < 1, we also have that µ ≤ 1. Then, the main result is as follows:

Theorem 10.16 (Diameter of the configuration model). Let Condition 7.5(a)-(b) hold.
Assume that n1 = 0 when p1 = 0, and that n2 = 0 when p2 = 0. Then,

diam(CMn(d))

logn

P−→ 1

log ν
+

(2− 1{p1=0} − 1{p2=0})

| logµ| . (10.3.3)
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We note that, by Theorem 10.15 and Theorem 10.16, the diameter of the configuration
model is strictly larger than the typical graph distance, except when p1 = p2 = 0. In
the latter case, the degrees are at least three, so that thin lines are not possible, and
the configuration model is whp connected (recall Theorem 10.14). We also remark that
Theorem 10.16 applies not only to the finite variance case, but also to the finite mean and
infinite variance case. In the latter case, the diameter is of order logn unless p1 = p2 = 0,
in which case Theorem 10.16 implies that the diameter is oP(logn). By Corollary 7.12,
Theorem 10.16 also applies to uniform random graphs with a given degree sequence. This
shall be used in the examples below:

Random regular graphs. Let r be the degree of the random regular graph, where r ≥ 3.
By Corollary 7.12, the diameter of a random regular r-graph has with high probability the
same asymptotics as the diameter of CMn(d), where di = r with probability 1. Thus,
pr = 1 and pi = 0 for any i 6= r. We assume that nr is even, so that the degree sequence is
feasible. It is not hard to see that all assumptions of Theorem 10.16 are satisfied. Moreover,
ν = r − 1. When r ≥ 3, we thus obtain that

diam(CMn(d))

logn

P−→ 1

log (r − 1)
. (10.3.4)

When r = 2, on the other hand, the graph is critical, so that there is no giant component.
Since ν = 1, we have that µ = ν = 1, so that diam(CMn(d)) � logn. This is quite
reasonable, since the graph will consist of a collection of cycles. The diameter of such a
graph is equal to half the longest cycle.

Exercise 10.10 (Diameter of soup of cycles). Prove that in a graph consisting solely of
cycles, the diameter is equal to the longest cycle divided by 2.

Exercise 10.11 (Longest cycle 2-regular graph). What is the size of the longest cycle of
the 2-regular graph?

Erdős-Rényi random graph. We next study the diameter of ERn(λ/n). We let λ > 1.

By Proposition 10.10, Condition 7.5(a)-(b) holds with pk = e−λ λ
k

k!
. Also, µ = µλ, the dual

parameter in (3.6.7).

Exercise 10.12 (Parameters for ERn(λ/n)). Prove that ν = λ and µ = µλ.

We again make essential use of Theorem 7.13, which relates the configuration model
and the generalized random graph. We note that ERn(λ/n) is the same as GRGn(w),
where (recall Exercise 6.1)

wi =
nλ

n− λ . (10.3.5)

Clearly, w = (nλ/(n − λ))i∈[n] satisfies Conditions 6.4(a)-(c), so that also the degree
sequence of ERn(λ/n) satisfies Conditions 7.5(a)-(c), where the convergence holds in prob-
ability (recall Proposition 10.10). From the above identifications and using Theorem 7.13,
we find that

diam(ERn(λ/n))

logn

P−→ 1

log λ
+

2

| logµλ|
. (10.3.6)

This identifies the diameter of the Erdős-Rényi random graph.
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Finite mean, infinite variance degrees. We next study the typical distance of the
configuration model with degrees having finite mean and infinite variance. We start by
formulating the precise condition on the degrees that we shall work with. This condition
is identical to the condition on Fn for NRn(w) formulated in (9.1.14). Recall that Fn(x)
denotes the proportion of vertices having degree at most x. Then, we assume that there
exists a τ ∈ (2, 3) and for all δ > 0, there exist c1 = c1(δ) and c2 = c2(δ) such that,
uniformly in n,

c1x
−(τ−1+δ) ≤ [1− Fn](x) ≤ c2x−(τ−1−δ), (10.3.7)

where the upper bound holds for every x ≥ 1, while the lower bound is only required to
hold for 1 ≤ x ≤ nα for some α > 1/2. The typical distance of CMn(d) is identified in the
following theorem:

Theorem 10.17 (Typical distances in CMn(d) for τ ∈ (2, 3)). Let the degrees d = (di)i∈[n]

in the configuration model CMn(d) satisfy Condition 7.5(a)-(b) and (10.3.7). Then, con-
ditionally on Hn <∞,

Hn
log logn

P−→ 2

| log (τ − 2)| . (10.3.8)

Theorem 10.17 is similar in spirit to Theorem 9.4 for NRn(w).

10.4 Proofs of small-world results CMn(d)

In this section, we give the proofs of Theorems 10.15 and 10.17 describing the small-
world properties in CMn(d). These proofs are adaptations of the proofs of Theorems 9.3
and 9.4, and we focus on the differences in the proofs. This section is organized as follows.
In Section 10.4.1 we give a branching process approximation for the neighborhoods of a
pair of uniform vertices in CMn(d). In Section 10.4.2 we perform similar path counting
techniques as in Section 9.4.1.

10.4.1 Branching process approximation

In this section, we give a convenient description of the breadth-first exploration in
CMn(d), and relate this to a branching process. We start by describing the algorithm.

Breadth-first search in CMn(d). Suppose we start in a vertex i having degree di,
so that there are i half-edges incident to vertex i. Set S0 = di. In the course of our
exploration, St will denote the number of unpaired half-edges incident to the vertices
found in the exploration after having paired t half-edges.

At a time step t ≥ 1 in our exploration, we pair one half-edge, say xt, to its brother,
which we denote by yt. For a half-edge x, we let Vx denote the vertex to which x is incident.
Let this half-edge be incident to vertex Vyt . Let Xt + 1 denote the change in the number
of unpaired half-edges incident to the vertices found in the exploration after pairing xt, so
that, for t ≥ 1, {

Xt = dVyt − 1 when Vyt 6∈ {i, Vy1 , . . . , Vyt−1},
Xt = −1 otherwise.

(10.4.1)

Then, the number St of unpaired half-edges incident to {i, Vy1 , . . . , Vyt} satisfies

St = St−1 +Xt − 1. (10.4.2)

We perform this exploration in a breadth-first way, so that the half-edge xt that is paired at
time t is chosen from that half-edges that are incident to vertices that minimize the graph
distance between i and the vertices in {Vy1 , . . . , Vyt−1} that still have unpaired half-edges
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incident to it. In our breadth-first exploration, it will be convenient to identify the graph
distance between a half-edge x and a vertex j ∈ [n] by the graph distance between j and
the vertex Vx to which x is incident. The precise order in which the half-edges at the same
graph distance from the root vertex i are paired is arbitrary.

Let, by convention, Z0(i) = 1 and, for m ≥ 1, let Zm(i) denote the number of unpaired
half-edges incident to vertices at graph distance m − 1, so that Z1(i) = di = S0. Thus,
Z2(i) is obtained after pairing all the Z1(i) half-edges at distance 1 from the root. Then,
Zm(i) equals STm(i), where Tm(i) is the time where all the Zm−1(i) half-edges at distance
m − 2 from vertex i have been paired. The above describes the breadth-first exploration
from a single vertex i. Let, as usual, V1 and V2 be two vertices chosen uniformly at random
from [n], and denote Z(i)

m = Zm(Vi), so that Z(i)
m is the number of unpaired half-edges at

distance m − 1 from vertex Vi. The following proposition shows that, for some mn → ∞
sufficiently slowly, the processes (Z(1)

l , Z(2)

l )mnk=0 are close to two independent two-stage
branching processes:

Proposition 10.18 (Coupling of neighborhoods of two vertices). Let the degrees d =

(di)i∈[n] satisfy Condition 7.5(a)-(b). Let (Z(1)

l ,Z(2)

l )l≥0 be two independent branching
processes with offspring distribution D in the first generation, and offspring distribution
D∗ − 1 in all further generations. Then, there exists mn →∞ such that

P(Hn ≤ 2mn) = o(1), (10.4.3)

and a coupling
(
(Ẑ(1)

l , Ẑ(2)

l )mnl=0, (Ẑ
(1)

l , Ẑ(2)

l )mnl=0

)
of (Z(1)

l , Z(2)

l )mnl=0 and (Z(1)

l ,Z(2)

l )mnl=0, such
that

P
(
(Ẑ(1)

l , Ẑ(2)

l )mnl=0 6= (Ẑ(1)

l , Ẑ(2)

l )mnl=0

)
= o(1). (10.4.4)

In words, (10.4.4) states that, whp, we can perfectly couple the neighborhoods of V1

and V2 up to distance at most mn to two independent two-stage branching processes. As
explained below Theorem 10.1 (see (10.1.4)), when pairing a single half-edge, the proba-
bility that it connects to a vertex of degree k + 1, this adding k unpaired half-edges to
the exploration process, is close to gk = (k + 1)pk+1/E[D] (recall (10.1.2)). Here we recall
that (pk)k≥0 is the probability mass function of D, so that pk = P(D = k), and note that
(gk)k≥0 is the probability mass function of D∗ − 1 in (10.1.2).

When we pair only a few half-edges, most half-edges are incident to vertices that are
have not been found in the exploration process so far, and thus this distribution hardly
changes. When this distribution would be unchanged, then (Xt)t≥2 in (10.4.1) would be
an i.i.d. sequence, thus leading us to a two-stage branching process. However, the random
variables (Xt)t≥2 are not i.i.d., since the half-edges are being used up in the process of
their pairing.

There are three effects that make the exploration in CMn(d) different from the limiting
two-stage branching process: (a) the fact that the number of unpaired half-edges decreases,
which is similar to the depletion-of-points effect for ERn(λ/n); (b) sometimes we pair to a
half-edge that is already incident to a vertex in the exploration process, so that Xt = −1
and we have created a cycle; and (c) the degree distribution in CMn(d) is not equal to
the limiting degree distribution (pk)k≥0. The above intuition argues that these effects are
negligible in the first few generations. To make this intuition precise, we need to investigate
the cluster exploration in more detail. In order to describe the degrees of vertices that occur
during our exploration, the notion of a size-biased reordering is crucial:

Definition 10.19 (Size-biased reordering). Given an index set I containing N elements,
and a sequence d = (di)i∈I , so that element i has weight di, the size-biased re-ordering of
I is the random order of the elements (v(1), v(2), . . . , v(N)) where we choose vertex v(1)
randomly from [N ] with

P(v(1) = l) =
dl∑
j∈I dj

, (10.4.5)
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and then select v(2) from the set I\{v(1)} again with probability proportional to the weights
of the remaining elements and so on.

The connection to the exploration of the neighborhood of a vertex in CMn(d) is made
in the following lemma. In its statement, we consider the exploration in (10.4.1)–(10.4.2),
where, if St−1 = 0, we draw an unpaired half-edge x uniformly at random, take Xt = dVx−1
and St = St−1 +Xt + 1 instead of (10.4.2). Then, the recursions (10.4.1)–(10.4.2) can be
continued as long as there are unpaired half-edges available, and we explore the connected
components one by one, the first being special as it starts in vertex i.

Make notation
consistent with
Chapter ??!

Lemma 10.20 (Size-biased reordering in CMn(d)). Let Bj be the jth non-zero value of
(Xt + 1)t≥1. Then,
(a) (Bj)j∈[n−1] is a size-biased reordering of [n− 1] with weight sequence (dj)j∈[n]\{i}.

(b) (Bj)j∈[n−1] can be coupled to an i.i.d. sequence (B̃j)j∈[n−1], where B̃j has distribution
D∗n, the size-biased version of Dn, such that

P(∃j ≤ l : Bj 6= B̃j) ≤ ldi/`n + l2E[D∗n]/`n. (10.4.6)

Proof. Since Bj is the jth non-zero value of (Xt + 1)t≥1, it means that Bj = dVxtj
where

xtj is incident to the jth vertex found in the exploration process and tj is the time this
occurs. Each time we choose a new vertex, we do so with probability proportional to its
degree, since we choose a half-edge uniformly at random from the unpaired ones. This
proves the claim for all j for which Stj ≥ 1. However, by construction, when Stj = 0,
Xtj + 1 = dVx , where the half-edge x is chosen uniformly at random from all unpaired
half-edges. Since Stj = 0 implies that there are no half-edges incident to vertices found
already, this means that we find a new vertex, which completes the proof of the first part.

For the second part, we let (B̃j)j∈[n−1] be an i.i.d. sequence of random variables with
distribution D∗n. Then, the sequence (Bj)j∈[n−1] corresponds to drawing from the distri-

bution in (10.4.5) without replacement from [n], while (B̃j)j∈[n−1] corresponds to drawing

with replacement from [n] \ {i}. Therefore, the distribution of (Bj)
l
j=1 is equal to that of

(B̃j)
l
j=1 conditioned on v(s) 6= i for all s ∈ [l] and v(s) 6= v(t) for every s, t ∈ [l] with s 6= t.

Take (ṽ(s))s∈[n−1] an i.i.d. sequence of random variables with distribution

P(ṽ(1) = j) = dj/`n, (10.4.7)

and let B̃j = dṽ(j). Thus, we can couple (Bj)
l
j=1 and (B̃j)

l
j=1 by taking Bj = dṽ(sj), where

sj is the jth distinct element in (ṽ(s))s∈[n−1] that is unequal to i.

The above provides a perfect coupling between (Bj)
l
j=1 and (B̃j)

l
j=1 as long as i is not

drawn and no repetition occurs before time l. Now, for every s, t ∈ [l] with s 6= t, the
probability that ṽ(s) = i is equal to

P(ṽ(s) = i) = di/`n, (10.4.8)

while the probability that ṽ(s) = ṽ(t) is at most

P(ṽ(s) = ṽ(t)) =
∑
j∈[n]

P(ṽ(s) = j)P(ṽ(s) = j) =
∑
j∈[n]

P(v(1) = j)2 (10.4.9)

=
∑
j∈[n]

d2
j

`2n
= E[D∗n]/`n.

Boole’s inequality yields the result.
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In the following lemma, we couple the sequence (Xt)t≥1 in (10.4.1) to a sequence of
i.i.d. random variables (Yt)t≥1 with distribution D∗ − 1. In order to state the result, and
for each l ≥ 1, we define the stopping time

TXl = inf{t : St + t ≥ l} = inf{t : dV1 +

t∑
s=1

(Xs + 1) ≥ l}, (10.4.10)

so that for all t < TXl , the number of half-edges found in the exploration process is at most
l.

Lemma 10.21 (Coupling to a branching process for CMn(d)). Assume that Condition

7.5(a)-(b) holds. Take an = (`n/E[D∗n])1/3∧(dTV(g(n), g))−1/2 →∞. The random variables

(Xt)
TXan
t=0 in (10.4.1) can be coupled to a sequence of i.i.d. random variables (Yt)

TYan
t=1 with

distribution D? − 1, such that

P
(

(Xt)
TXan
t=0 6= (Yt)

TYan
t=1

)
= o(1). (10.4.11)

Proof. We note that St ≤ l for all t < TXl , and the number of unpaired half-edges at time
t < TXl is at least `n − l, so that

P(Xt = −1, t < TXl ) ≤ l/(`n − l). (10.4.12)

We let an →∞ in a way to be determined later on. Then,

P(∃t < TXan : Xt = −1) ≤ a2
n/(`n − an), (10.4.13)

which converges to zero as long as an = o(
√
n). As a result, whp, no cycles are formed up

to the time where the number of edges in the cluster of a vertex is of the order an = o(
√
n).

Denote the stopping time T by

T = inf{t : St = 0}, (10.4.14)

so that T equals the number of edges in C(i). By (10.4.13), whp,

(Xt)
T∧TXan
t=1 = (dVxt − 1)

T∧TXan
t=1 = (Bt − 1)

T∧TXan
t=1 . (10.4.15)

By Lemma 10.20, when i is chosen uniformly from [n],

P(∃j ≤ l : Bj 6= B̃j) ≤
l

n

∑
i∈[n]

di
`n

+
l2E[D∗n]

`n
=

l

n
+
l2E[D∗n]

`n
. (10.4.16)

Note that Condition 7.5(a)-(b) implies that E[D∗n]/`n = o(1), so that, when an ≤ (`n/E[D∗n])1/3,

the probability that the coupling between (Xt)
T∧TXan
t=1 and the i.i.d. sequence (Bt−1)

T∧TXan
t=1

fails is bounded from above by

P(∃t ≤ an : Xt 6= Bt − 1) ≤ (`n/E[D∗n])1/3/n+ (E[D∗n]/`n)−1/3 = o(1). (10.4.17)

Recall that (B̃t − 1)t≥1 is an i.i.d. sequence of random variables with distribution D∗n − 1.

By Condition 7.5(a)-(b), D∗n − 1
d−→ D∗ − 1. The probability mass function of D∗n − 1 is

equal to g(n) as defined in (10.1.4). Since D∗n−1 is an integer-valued random variable, also
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dTV(g(n), g)→ 0. By Theorem 2.9, there exists a coupling (D̂∗n − 1, D̂∗ − 1) of D∗n − 1 and
D∗ − 1 such that

P(D̂∗n − 1 6= D̂∗ − 1) = dTV(g(n), g). (10.4.18)

As a result, there exists a coupling
(
(X̂t)

an
t=1, (Ŷt)

an
t=1

)
of random variables with distribution

D∗ − 1 such that

P((X̂t)
an
t=1 6= (Ŷt)

an
t=1) ≤ (`n/E[D∗n])1/3/n+ (E[D∗n]/`n)−1/3 + andTV(g(n), g) = o(1).

(10.4.19)
This completes the proof.

Proof of Proposition 10.18. We start by showing that there exists mn →∞ such that and

a coupling
(
(Ẑ(1)

l )mnl=0, (Ẑ
(1)

l )mnl=0

)
of (Z(1)

l )mnl=0 and (Z(1)

l )mnl=0 such that

P
(
(Ẑ(1)

l )2mn
l=0 6= (Ẑ(1)

l )mnl=0

)
= o(1). (10.4.20)

By construction S0 = dV , where V ∈ [n] is chosen uniformly at random from [n], so

that dV has the same distribution as Dn. By Condition 7.5(a), Dn
d−→ D, so that also

dTV(p(n), p) = o(1). By Lemma 10.21, (St)
an
t=0 in (10.4.2) can be whp perfectly coupled to

(SYt )
TXan
t=0 , where

SYt = D +

t∑
s=1

(Ys − 1). (10.4.21)

Define
T Y = 1 + inf{t : SYt = 0}, (10.4.22)

so that T Y is the total progeny of a two-stage branching process where the root has offspring
D, and each other individual has offspring D∗ − 1. This gives a perfect coupling of the
breadth-first exploration of the neighborhood of a uniform vertex in the random graph to
a branching process up to the moment that the branching process tree has size at most an.
Pick an such that an = (`n/E[D∗n])1/3 ∧ (dTV(g(n), g))−1/2 →∞ and take mn such that

P(

2mn∑
l=0

Z(1)

l > an) = o(1). (10.4.23)

Then, (10.4.20) follows.
To prove (10.4.3), we apply the above to 2mn, and note that whp, we can perfectly

couple (Z(1)

l )2mn
l=0 to (Z(1)

l )2mn
l=0 . Note that Hn ≤ 2mn implies that V2 equals one of the

vertices found in the exploration of (Z(1)

l )2mn
l=0 . By (10.4.23) and an = o(n) and since

V2 ∈ [n] is chosen uniformly, this has conditional probability given (Z(1)

l )2mn
l=0 equal to

1

n

2mn∑
l=0

Z(1)

l

P−→ 0. (10.4.24)

As a result, P(Hn ≤ 2mn) = o(1), as required.
To prove (10.4.4), we note that P(Hn ≤ 2mn) = o(1), so that, whp, Hn > 2mn. By

(10.4.20), we can whp perfectly couple (Z(1)

l )mnl=0 and (Z(1)

l )mnl=0. Conditionally on (Z(1)

l )mnl=0

and on Hn > 2mn, (Z(2)

l )mnl=0 describes the exploration of a uniform vertex in [n]\N≤mn(V1)
with degrees (di)i∈[n]\N≤mn (V1). The degree sequence (di)i∈[n]\N≤mn (V1) satisfies Condition

7.5(a)-(b) precisely when (di)i∈[n] does. As a result, all the arguments used in the proof of
(10.4.20) apply to this setting as well, so that we obtain

P
(

(Z(2)

l )mnl=0 6= (Z(2)

l )mnl=0 | (Z
(1)

l )mnl=0

)
P−→ 0. (10.4.25)
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Since (Z(2)

l )mnl=0 is independent of (Z(1)

l )mnl=0, also (Z(1)

l )mnl=0 and (Z(2)

l )mnl=0 are independent,
which completes the proof of (10.4.4), and thus that of Proposition 10.18.

With Proposition 10.18 at hand, we can show that Z(1)
mn

P−→ ∞ when Z(1)
mn ≥ 1 and

(Z(1)

l )l≥0 is supercritical :

Corollary 10.22 (Coupling to a branching process for CMn(d)). Assume that Condition
7.5(a)-(b) holds. Take mn as in Proposition 10.18, and assume that E[D∗− 1] > 1. Then,

P(Z(1)
mn ≥ 1, Z(2)

mn ≥ 1)→ ζ2, (10.4.26)

and, conditionally on Z(1)
mn ≥ 1, Z(2)

mn ≥ 1,

Z(1)
mn

P−→∞, Z(2)
mn

P−→∞. (10.4.27)

Proof. Equation (10.4.26) immediately follows from the fact that (10.4.4) in Proposition
10.18, as well as the fact that

P(Z(1)
mn ≥ 1,Z(2)

mn ≥ 1) = P(Z(1)
mn ≥ 1)P(Z(2)

mn ≥ 1)→ ζ2. (10.4.28)

We prove (10.4.27) when E[D∗ − 1] < ∞, the case where E[D∗ − 1] = ∞ is left as an

exercise. By Proposition 10.18, (Z(1)

l , Z(2)

l )mnl=0 and (Z(1)

l ,Z(2)

l )mnl=0 can be coupled such that

whp these vectors are equal. Therefore, (10.4.27) follows when Z(1)
mn

P−→∞ conditionally on
Z(1)
mn ≥ 1. By Theorems 3.9 and 3.10 and the fact that the branching process is supercritical

when E[D∗ − 1] > 1, on the event of survival, Z(1)
m grows exponentially in m. Further,

P(Z(1)
mn ≥ 1) converges to the survival probability ζ since mn → ∞ when n → ∞ by

Proposition 10.18. This completes the proof.

Exercise 10.13 (Infinite variance degrees). Complete the proof of (10.4.27) in Corollary
10.22 in the case where E[D∗ − 1] =∞.

Exercise 10.14 (Random regular graph). Fix r ≥ 2 and consider the r-regular graph on
n vertices, where nr is even. Show that dTV(g(n), g) = 0, and conclude that we can take
mn = a logr−1(n) for any a < 1/6 in Proposition 10.18. Is this optimal?

10.4.2 Path counting techniques

In this section, we present path counting techniques similar to those in Section 9.4.1.
Since CMn(d) is a multigraph, and not a simple graph as NRn(w), we need to be precise
what a path in CMn(d) is. We start by introducing some notation.

A path π of length k in CMn(d) means a sequence

π = {(π0, s0), (π1, s1, t1), . . . , (πk−1, sk−1, tk−1), (πk, tk)}, (10.4.29)

where πi ∈ [n] denotes the ith vertex along the path, and si ∈ [dπi ] denotes the label of
the half-edge incident to πi and ti+1 ∈ [dπi+1 ] denotes the label of the half-edge incident to
πi+1. In particular, multiple edges between πi and πi+1 give rise to distinct paths through
the same vertices. For a path π, we write π ⊂ CMn(d) when the path π in (10.4.29) is
present in CMn(d), so that the half-edge corresponding to si is paired with the half-edge
corresponding to ti+1 for i = 0, . . . , k−1. We assume throughout that the path π is simple,
i.e., π0, . . . , πk are distinct vertices.

In this section, we perform first and second moment computations on the number of
paths present in CMn(d). We start by proving upper bounds on the expected number of
paths.



10.4 Proofs of small-world results CMn(d) 277

Upper bounds on the expected number of paths in CMn(d). For a, b ∈ [n], I ⊆ [n]
and k ≥ 1, we let Pk(a, b) = Pk(a, b; I) denote the set of k-paths that only use vertices in
I, and we let

Nk(a, b) = Nk(a, b; I) = #{π ∈ Pk(a, b) : π ⊆ CMn(d)} (10.4.30)

denote the number of paths of length k between the vertices a and b. Then, we prove the
following upper bound on the expected number of paths connecting a and b:

Proposition 10.23 (Expected numbers of paths). For any k ≥ 1, a, b ∈ [n] and (di)i∈[n],

E[Nk(a, b)] ≤ dadb`n
(`n − 2k + 1)(`n − 2k)

νk−1
I , (10.4.31)

where

νI =
∑

i∈I\{a,b}

di(di − 1)

`n
. (10.4.32)

Proof. The probability that the path π in (10.4.29) is present in CMn(d) is equal to

k∏
i=1

1

`n − 2i+ 1
, (10.4.33)

and the number of paths with fixed vertices π0, . . . , πk is equal to

dπ0

( k−1∏
i=1

dπi(dπi − 1)
)
dπk . (10.4.34)

Substituting π0 = a, πk = b, we arrive at

E[Nk(a, b)] =
dadb

`n − 2k + 1

∑∗

π1,...,πk−1

k−1∏
i=1

dπi(dπi − 1)

`n − 2i+ 1
, (10.4.35)

where the sum is over distinct elements of I \ {a, b}. Let R denote the subset of vertices
of I \ {a, b} for which di ≥ 2. Then,

E[Nk(a, b)] =
dadb

`n − 2k + 1

∑∗

π1,...,πk−1∈R

k−1∏
i=1

dπi(dπi − 1)

`n − 2i+ 1
, (10.4.36)

By an inequality of Maclaurin [144, Theorem 52], for r = |R|, 2 ≤ k ≤ r + 1 and any
(ai)i∈R with ai ≥ 0,

(r − k + 1)!

r!

∑∗

π1,...,πk−1∈R

k−1∏
i=1

ai ≤
(1

r

∑
i∈R

ai
)k−1

. (10.4.37)

Let ai = di(di − 1), so that ∑
i∈R

ai = `nνI. (10.4.38)
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We arrive at

E[Nk(a, b)] =
dadb

`n − 2k + 1
(`nνI/r)

k−1
k−1∏
i=1

(r − i+ 1)

(`n − 2i+ 1)
(10.4.39)

≤ dadb
`n − 2k + 1

`n
`n − 2k

νk−1
I

k−2∏
i=0

(1− i
r
)

(1− 2i
`n

)
.

Further, `n =
∑
i∈[n] di ≥ 2r, so that 1 − i

r
≤ 1 − 2i

`n
. Substitution yields the required

bound.

Logarithmic lower bound typical distances CMn(d). With Proposition 10.23 at
hand, we can immediately prove the lower bound on the typical graph distance in the case
where the degrees have finite second moment (as in Theorem 9.5):

Theorem 10.24 (Logarithmic lower bound typical distances CMn(d)). Assume that

lim sup
n→∞

νn > 1, (10.4.40)

where
νn = E[Dn(Dn − 1)]/E[Dn]. (10.4.41)

Then, for any ε > 0,
P(Hn ≤ (1− ε) logνn n) = o(1). (10.4.42)

We leave the proof of Theorem 10.24, which similar to that of Theorem 9.5, as an
exercise:

Exercise 10.15 (Proof Theorem 10.24). Let V1, V2 be two independent vertices chosen
uniformly at random from [n]. Use Proposition 10.23 with a = V1, b = V2, I = [n] to prove
Theorem 10.24.

Truncated first moment method and log log lower bound for τ ∈ (2, 3). We
next extend the above upper bounds on the expected number of paths to deal with the
case where τ ∈ (2, 3), where similarly to the setting in Section 9.2.2 where NRn(w) was
investigated, we need to truncate the degrees occurring in the arising paths. Our main
result is as follows:

Theorem 10.25 (Loglog lower bound on typical distances in CMn(d)). Suppose that the
weights d = (di)i∈[n] satisfy Condition 7.5(a) and that there exists a τ ∈ (2, 3) and c2 such
that, for all x ≥ 1,

[1− Fn](x) ≤ c2x−(τ−1), (10.4.43)

Then, for every ε > 0,

P
(
Hn ≤ (1− ε) 2 log logn

| log (τ − 2)|

)
= o(1). (10.4.44)

The proof of Theorem 10.25 is identical to that of Theorem 9.7, and we discuss the
changes only. For a fixed set of distinct vertices (π0, . . . , πk), (10.4.33)-(10.4.34) yield that
the probability that there exists edges between πi−1 and πi for all i = 1, . . . , k in CMn(d)
is bounded above by

dπ0dπk
`n − 2k + 1

( k−1∏
i=1

dπi(dπi − 1)

`n − 2i+ 1

)
. (10.4.45)
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Equation (10.4.45) replaces the similar identity (9.2.7) for NRn(w). We see that wπ0 and
wπk in (9.2.7) are replaced with dπ0 and dπk in (10.4.45), and, for i = 1, . . . , k − 1, the
factors w2

πi in (9.2.7) are replaced with dπi(dπi − 1) in (10.4.45), while the factors `n in
(9.2.7) is replaced with (`n − 2i+ 1) in (10.4.45).

Define, as in (9.2.23),

νn(b) =
1

`n

∑
i∈[n]

di(di − 1)1{di≤b}. (10.4.46)

Then, we can adapt the arguments in Section 9.2.2 to obtain that (see in particular Exercise
9.16),

P(distCMn(d)(a, b) ≤ kn) ≤ dadb
`n

kn∑
k=1

`kn(`n − 2k − 1)!!

(`n − 1)!!

k−1∏
l=1

νn(bl ∧ bk−l) (10.4.47)

+ (da + db)

k∗∑
k=1

`kn(`n − 2k − 1)!!

(`n − 1)!!
[1− F ∗n ](bk)

k∏
l=1

νn(bl),

i.e., the bound in (9.2.30) is changed by factors
`kn(`n−2k−1)!!

(`n−1)!!
in the sum. For k =

O(log log n) and when Condition 7.5(a)-(b) holds,

`kn(`n − 2k − 1)!!

(`n − 1)!!
=

k∏
i=1

`n
`n − 2i+ i

= 1 +O(k2/`n) = 1 + o(1), (10.4.48)

so this change has only minor effect. Since Lemma 9.9 applies under the conditions of
Theorem 10.25, we can follow the proof of Theorem 9.7 verbatim. This completes the
proof of Theorem 10.25.

Second moment method for the number of paths in CMn(d). We next extend the
above first moment bounds on the number of paths in CMn(d) to second moment methods.
Define

n̄k(a, b) =
`kn(`n − 2k − 1)!!

(`n − 1)!!

dadb
`n

( ∑
i∈I\{a,b}

di(di − 1)

`n

)k−1

, (10.4.49)

nk(a, b) =
dadb
`n

( ∑
i∈Ia,b,k

di(di − 1)

`n

)k−1

, (10.4.50)

where Ia,b,k is the subset of I in which a and b, as well as the k − 1 indices with highest
degrees have been removed. Let

νI =
1

`n

∑
i∈I

di(di − 1), γI =
1

`
3/2
n

∑
i∈I

di(di − 1)(di − 2). (10.4.51)

Proposition 10.26 (Variance of number of paths). For any k ≥ 1, a, b ∈ I and (ui)i∈I ,

E[Nk(a, b)] ≥ nk(a, b), (10.4.52)

while, assuming that νI > 1,

Var(Nk(a, b)) ≤ nk(a, b) + n̄k(a, b)2( γIν2
I

νI − 1

( 1

da
+

1

db

)
+

γ2
IνI

dadb(νI − 1)2
+ e′k

)
, (10.4.53)
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where

e′k =
( k∏
i=1

`n − 2i+ 1

`n − 2i− 2k + 1
− 1
)

(10.4.54)

+ k
`2kn (`n − 4k − 1)!!

(`n − 1)!!

(
1 +

γI
daνI

)(
1 +

γI
dbνI

) νI
νI − 1

(
e2k3γ2

I/ν
3
I − 1

)
.

Proof. The proof of (10.4.52) follows immediately from (10.4.35), together with the fact
that 1/(`n − 2i+ 1) ≥ 1/`n.

For the proof of (10.4.53), we follow the proof of (9.4.7), and discuss the differences
only. We recall that

Nk(a, b) =
∑

π∈Pk(a,b)

1{π⊆CMn(d)} (10.4.55)

is the number of paths π of length k between the vertices a and b, where a path is defined
in (10.4.29). Since Nk(a, b) is a sum of indicators, its variance can be written as

Var(Nk(a, b)) =
∑

π,ρ∈Pk(a,b)

[
P(π, ρ ⊆ CMn(d))−P(π ⊆ CMn(d))P(ρ ⊆ CMn(d))

]
. (10.4.56)

Equation (10.4.56) replaces (9.4.12) for NRn(w). We say that two paths π and ρ are
disjoint when they use distinct sets of half-edges. Thus, it is possible that the vertex sets
{π1, . . . , πk−1} and {ρ1, . . . , ρk−1} have a non-empty intersection, but then the half-edges
leading in and out of the joint vertices for π and ρ must be distinct. For NRn(w), pairs
of paths using different edges are independent, so that these pairs do not contribute to
Var(Nk(a, b)). For CMn(d), instead,

P(π, ρ ⊆ CMn(d)) =

k∏
i=1

`n − 2i+ 1

`n − 2i− 2k + 1
P(π ⊆ CMn(d))P(ρ ⊆ CMn(d)), (10.4.57)

which explains the first contribution to e′k. For the other contributions, we follow the proof
of (9.4.12) for NRn(w), and omit further details.

With Proposition 10.26 at hand, we can adapt the proof of Theorem 9.19 to CMn(d):

Theorem 10.27 (Logarithmic upper bound graph distances CMn(d)). Assume that Con-
dition 7.5(a)-(c) hold, where ν = E[D(D − 1)]/E[D] ∈ (1,∞). Then, for any ε > 0,

P(Hn ≤ (1 + ε) logν n | Hn <∞) = 1 + o(1). (10.4.58)

We leave the proof of Theorem 10.27 as an exercise:

Exercise 10.16 (Proof Theorem 10.27). Use Proposition 10.26 to prove Theorem 10.27
by adapting the proof of Theorem 9.19.

10.4.3 A log log upper bound on the diameter core τ ∈ (2, 3)

In order to prove the upper bound on the typical distance for CMn(d) in Theorem 10.17,
we use a different approach compared to the one in the proof of Theorem 9.14. Our proof
for the upper bound on the typical distance for CMn(d) in Theorem 10.17 is organized
as follows. We first prove an upper bound on the core of CMn(d), which consists of all
vertices of degree at least (logn)σ for some σ > 0. This is the content of Theorem 10.28
below. Followed by the proof of Theorem 10.28, we use a second moment method to prove
that any vertex that survives to sufficient large graphs distance is whp quickly connected
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to the core. The bound on the diameter of the core is also useful in studying the diameter
of CMn(d) when τ ∈ (2, 3) and dmin ≥ 3, which we perform in Section 10.5 below.

We take σ > 1/(3− τ) and define the core Coren of the configuration model to be

Coren = {i : di ≥ (logn)σ}, (10.4.59)

i.e., the set of vertices with degree at least (logn)σ. Then, the diameter of the core is
bounded in the following theorem:

Theorem 10.28 (Diameter of the core). Fix τ ∈ (2, 3) and assume that (10.3.7) holds.
For any σ > 1

3−τ , the diameter of Coren is with high probability bounded above by

2 log logn

| log (τ − 2)| + 1. (10.4.60)

Proof. We note that (10.3.7) implies that, for some α ∈ (1/2, 1/(τ − 1)),

max
i∈[n]

di ≥ u1, where u1 = nα. (10.4.61)

Define
Γ1 = {i : di ≥ u1}, (10.4.62)

so that Γ1 6= ∅. For some constant C > 0 to be determined later on, and for k ≥ 2, we
recursively define

uk = C logn
(
uk−1

)τ−2
. (10.4.63)

Then, we define
Γk = {i : di ≥ uk}. (10.4.64)

We identify uk in the following lemma:

Lemma 10.29 (Identification (uk)k≥1). For every k ≥ 1,

uk = Cak (logn)bknck , (10.4.65)

where

ck = α(τ − 2)k−1, ak = bk =
1

3− τ [1− (τ − 2)k−1]. (10.4.66)

Proof. We note that ck, bk, ak satisfy the recursions, for k ≥ 2,

ck = (τ − 2)ck−1, bk = 1 + (τ − 2)bk−1, ak = 1 + (τ − 2)ak−1, (10.4.67)

with initial conditions c1 = α, a1 = b1 = 0. Solving the recursions yields our claim.

In order to study connectivity of sets in CMn(d), we rely on the following lemma, which
is of independent interest:

Lemma 10.30 (Connectivity sets in CMn(d)). For any two sets of vertices A,B ⊆ [n],

P(A not directly connected to B) ≤ e−dAdB/(2`n), (10.4.68)

where, for any A ⊆ [n],

dA =
∑
i∈A

di (10.4.69)

denotes the total degree of vertices in A.
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Proof. There are dA half-edges incident to the set A, which we pair one by one. After
having paired k half-edges, all to half-edges that are not incident to B, the probability to
pair the next half-edge to a half-edge that is not incident to B equals

1− dB
`n − 2k + 1

≤ 1− dB
`n
. (10.4.70)

Some half-edges incident to A may attach to other half-edges incident to A, so that possibly
fewer than dA half-edges need to be paired to pair all half-edges incident to A. However,
since each pairing uses up at most 2 half-edges incident to A, we need to pair at least dA/2
half-edges, so that

P(A not directly connected to B) ≤
(

1− dB
`n

)dA/2
≤ e−dAdB/(2`n), (10.4.71)

where we use that 1− x ≤ e−x.

Exercise 10.17 (Γ1 is a complete graph). Use Lemma 10.30 and α > 1/2 to show that,
whp, Γ1 in (10.4.62) forms a complete graph, i.e., whp, every i, j ∈ Γ1 are direct neighbors
in CMn(d).

The key step in the proof of Theorem 10.28 is the following proposition showing that whp
every vertex in Γk is connected to a vertex in Γk−1:

Proposition 10.31 (Connectivity between Γk−1 and Γk). Fix τ ∈ (2, 3) and assume that
Condition 7.5(a)-(b) and (10.3.7) hold. Fix k ≥ 2, and take C > 2E[D]/c. Then, the
probability that there exists an i ∈ Γk that is not directly connected to Γk−1 is o(n−δ), for
some δ > 0 independent of k.

Proof. We note that, by definition,∑
i∈Γk−1

di ≥ uk−1|Γk−1| = uk−1n[1− Fn](uk−1). (10.4.72)

By (10.3.7), and since k 7→ uk is decreasing with u1 = nα,

[1− Fn](uk−1) ≥ c(uk−1)1−τ . (10.4.73)

As a result, we obtain that for every k ≥ 2,∑
i∈Γk−1

di ≥ cn(uk−1)2−τ . (10.4.74)

By (10.4.74) and Lemma 10.30, using Boole’s inequality, the probability that there exists
an i ∈ Γk that is not directly connected to Γk−1 is bounded by

ne
−
uknuk−1[1−F (uk−1)]

2`n ≤ ne
−
cuk(uk−1)2−τ

2E[Dn] = n
1− cC

2E[Dn] . (10.4.75)

By Condition 7.5(a)-(b), E[Dn] → E[D], so that, as n → ∞ and taking C > 2E[D]/c, we
obtain the claim for any δ < cC

2E[D]
− 1.

We now complete the proof of Theorem 10.28.
Proof of Theorem 10.28. Fix

k∗ =
log logn

| log (τ − 2)| . (10.4.76)
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As a result of Proposition 10.31, whp, the diameter of Γk∗ is at most 2k∗ + 1, because
the distance between any vertex in Γk∗ and Γ1 is at most k∗, while, by Exercise 10.17, Γ1

forms a complete graph. Therefore, it suffices to prove that

Coren ⊆ Γk∗ . (10.4.77)

By (10.4.63), in turn, this is equivalent to uk∗ ≥ (logn)σ, for any σ > 1/(3−τ). According
to Lemma 10.29,

uk∗ = Cak∗ (logn)bk∗nck∗ . (10.4.78)

We note that nck∗ = elogn(τ−2)k
∗

. Since, for 2 < τ < 3,

x(τ − 2)
log x

| log (τ−2)| = x · x−1 = 1, (10.4.79)

we find with x = logn that nck∗ = e. Further, bk → 1/(τ − 3) as k → ∞, so that

(logn)bk∗ = (logn)1/(3−τ)+o(1), and ak = bk, so that also Cak∗ = C1/(τ−3)+o(1). We
conclude that

uk∗ = (logn)1/(3−τ)+o(1), (10.4.80)

so that, by picking n sufficiently large, we can make 1/(3− τ) + o(1) ≤ σ. This completes
the proof of Theorem 10.28.

We continue to use Theorem 10.28 to prove a log logn upper bound on Hn in the case
where τ ∈ (2, 3). We start by describing the setting. We assume that there exist τ ∈ (2, 3),
α > 1/2 and c1 such that, uniformly in n and x ≤ nα,

[1− Fn](x) ≥ c1x−(τ−1). (10.4.81)

Theorem 10.32 (A log log upper bound on typical distance for τ ∈ (2, 3)). Suppose
that the empirical distribution function Fn of the degrees d = (di)i∈[n] satisfies Condition
7.5(a)-(b) and (10.4.81). Then, for every ε > 0,

lim
n→∞

P
(
Hn ≤

2(1 + ε) log logn

| log (τ − 2)| | Hn <∞
)

= 1. (10.4.82)

Proof. We make crucial use of the branching process approximation in Section 10.4.1. We
let V1, V2 denote two vertices chosen uniformly at random from [n], and we recall that
Z(i)
m denote the number of unpaired or free half edges incident to vertices in Nm(Vi). By

Proposition 10.18, (Z(1)

l , Z(2)

l )mnl=0 can be whp perfectly coupled to (Z(1)

l ,Z(2)

l )mnl=0, which are
two independent two-stage branching processes where the root has offspring distribution
D, and individuals in all further generations have offspring distribution D∗ − 1.

We condition on N≤mn(V1),N≤mn(V2) which are such that Z(1)
mn ≥ 1, Z(2)

mn ≥ 1. Further,

ny Corollary 9.13, conditionally on Z(1)
mn ≥ 1, Z(2)

mn ≥ 1, Z(1)
mn

P−→∞, Z(2)
mn

P−→∞ occurs.
We will condition on N≤mn(V1),N≤mn(V2), and denote the conditional distribution

by P̃mn , and the expectation and variance under the measure P̃mn by Ẽmn and Ṽarmn ,
respectively. We collapse Nmn(V1) to a single vertex a1 and Nmn(V2) to a single vertex
a2. The distribution of the resulting random graph is again a configuration model, with
degrees da1 = Z(1)

mn , da2 = Z(2)
mn and vertex set R = [n]∪{a1, a2}\ (N≤mn(V1)∪N≤mn(V2)).

We apply Proposition 10.26 with k = ε log log n, a1, b = Coren and with I = {i ∈
R : di ≤ K}. Then, Proposition 10.26 gives that, conditionally on N≤mn(V1),N≤m(V2)
such that Z(1)

mn ≥ 1, Z(2)
mn ≥ 1,

P̃mn(Nk(ai, b) = 0) ≤ Ṽarmn(Nk(ai, b))/Ẽmn [Nk(ai, b)]
2 ≤ O(K)

(
1/Z(1)

mn + 1/Z(2)
mn

) P−→ 0,
(10.4.83)
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where convergence in probability follows from (10.4.27) in Corollary 10.22. As a result,
conditionally on N≤mn(V1),N≤mn(V2) such that Z(1)

mn ≥ 1, Z(2)
mn ≥ 1, with probability at

least 1− o(1), Nk(ai, b) ≥ 1, so that, on this event,

Hn ≤ diamCMn(d)(Coren) + 2k ≤ 2(1 + ε) log logn

| log (τ − 2)| . (10.4.84)

We further use that, by Theorem 10.1,

P(Hn <∞)→ ζ2, (10.4.85)

while, (10.4.26) in Corollary 10.22,

P(Z(1)
mn ≥ 1, Z(2)

mn ≥ 1)→ ζ2. (10.4.86)

As a result,

P
(
Hn ≤

2(1 + ε) log logn

| log (τ − 2)| | Hn <∞
)

(10.4.87)

≥
P(Hn ≤ 2(1+ε) log logn

| log (τ−2)| , Z(1)
mn ≥ 1, Z(2)

mn ≥ 1)

P(Hn <∞)

=
P(Z(1)

mn ≥ 1, Z(2)
mn ≥ 1)− o(1)

P(Hn <∞)
= 1− o(1),

as required. This completes the proof of Theorem 10.32.

Exercise 10.18 (Alternative proof Theorem 10.32). Give an alternative proof of Theorem
10.32 by adapting the proof of Theorem 9.14.

10.5 Diameter of CMn(d) for τ ∈ (2, 3)

In this section, we use Theorem 10.28 to study the diameter of CMn(d) when τ ∈ (2, 3).
Note that the diameter is equal to a positive constant times logn by Theorem 10.16 when
p1 + p2 > 0. Therefore, we turn to the case where p1 = p2 = 0. When dmin ≥ 3, we know
by Theorem 10.14 that CMn(d) is whp connected. The main result is as follows:

Theorem 10.33 (Diameter of CMn(d) for τ ∈ (2, 3)). Suppose that the empirical dis-
tribution function Fn of the degrees d = (di)i∈[n] satisfies Condition 7.5(a)-(b) and that
(10.3.7) holds. Assume further that dmin = mini∈[n] di ≥ 3 and pdmin = P(D = dmin) > 0.
Then,

diam(CMn(d))

log log n

P−→ 2

| log (τ − 2)| +
2

log (dmin − 1)
. (10.5.1)

When comparing Theorem 10.33 to Theorem 10.17, we see that for dmin ≥ 3, the
diameter is of the same order log logn as the typical distance, but that the constant differs.
The diameter is due to pairs of vertices that have small local neighborhoods. Indeed, by
assumption, there is a positive proportion of vertices of degree dmin. As a result, we will see
that the expected number of vertices whose (1 − ε) log logn/ log (dmin − 1) neighborhood
only contains vertices with degree dmin tends to infinity. The minimal path between two
such vertices then consists of three parts: the two paths from the two vertices to leave
their minimally connected neighborhood, and then the path between the boundaries of
these minimally connected neighborhoods. These minimal neighborhoods are at the typical
distance 2 log logn/| log (τ − 2)|, as in Theorem 10.17. This explains Theorem 10.33.

We prove Theorem 10.33 by proving an upper and a lower bound on the diameter. We
start with the lower bound, which is the easier part:
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Lower bound on the diameter. We call a vertex v minimally-k-connected when all
i ∈ N≤k(v) satisfy di = dmin, so that all vertices at distance at most k have the minimal
degree. Let Mk denote the number of minimally-k-connected vertices. To prove the lower

bound in on the diameter, we show that Mk
P−→∞ for k = (1− ε) log logn/ log (dmin − 1).

Followed by this, we show that two minimally k-connected vertices v1, v2 are such that whp
the distance between Nk(v1) and Nk(v2) is at least 2 log logn/| log (τ − 2)|. For this,w e
start by computing the first and second moment of Mk in the following lemma:

Lemma 10.34 (Moments of number of minimally-k-connected vertices). Let CMn(d)
satisfy that dmin ≥ 3, ndmin ≥ dmin(dmin − 1)k−1 and there exists at least one v with
dv > dmin. Then, for all k ≥ 1,

E[Mk] = ndmin

dmin(dmin−1)k−1∏
i=1

dmin(ndmin − (i− 1))

`n − 2i+ 1
, (10.5.2)

and, for k such that dmin(dmin − 1)k−1 ≤ `n/8,

E[M2
k ] ≤ E[Mk]2 + E[Mk]

[ dmin

dmin − 2
(dmin − 1)k +

2ndmind
2
min(dmin − 1)2k

(dmin − 2)`n

]
. (10.5.3)

Proof. We start by proving (10.5.2). We note that each vertex of degree dmin has the same
probability of being minimally-k connected, and that there are precisely ndmin vertices of
degree dmin, so that

E[Mk] = ndminP(v with dv = dmin is minimally-k-connected). (10.5.4)

Vertex v with dv = dmin is minimally-k-connected when all its half-edges at distance at
most k are paired to half-edges incident to a distinct vertex having minimal degree dmin,
and no cycles occur in N≤k(v). When i − 1 half-edges are paired to distinct vertices of
degree dmin, then the probability that the ith half-edge is again paired to a distinct vertex
of degree dmin equals

dmin(ndmin − (i− 1))

`n − 2i+ 1
. (10.5.5)

Since for v to be minimally-k-connected, there are dmin(dmin − 1)k−1 half-edges that need
to be paired to distinct vertices of degree dmin, this proves (10.5.2).

To prove (10.5.3), we note that

E[M2
k ] =

∑
v1,v2∈[n]

P(v1, v2 with dv1 , dv2 = dmin are minimally-k-connected). (10.5.6)

We split the above probability depending on whether N≤k(v1)∩N≤k(v2) = ∅ or not. The
contribution to E[M2

k ] due to N≤k(v1)∩N≤k(v2) = ∅ is, similarly to the proof of (10.5.2),
equal to

ndmin(ndmin − ik−1)

i2k∏
i=1

dmin(ndmin − (i− 1))

`n − 2i+ 1
, (10.5.7)

where we abbreviate ik = dmin(dmin − 1)k−1 and note that ndmin − ik−1 > 0, since, by

assumption, ndmin > dmin(dmin − 1)k−1.
We use that i 7→ dmin(ndmin − (i− 1))/(`n − 2i+ 1) is decreasing since

(ndmin − (i− 1))

`n − 2i+ 1
≥ ndmin − i
`n − 2i− 1

(10.5.8)
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precisely when `n ≥ 2ndmin + 1, and which is true since by assumption there exists at least
one v with dv > dmin. Therefore, the contribution to E[M2

k ] from v1 and v2 satisfying
N≤k(v1) ∩N≤k(v2) = ∅ is at most

n2
dmin

( ik∏
i=1

dmin(ndmin − (i− 1))

`n − 2i+ 1

)2

= E[M2
k ], (10.5.9)

which is the first contribution to the r.h.s. of (10.5.3).
We are left to deal with the contribution to E[M2

k ] from v1 and v2 such that N≤k(v1)∩
N≤k(v2) 6= ∅. When v1 is k-minimally connected,

|N≤k(v1)| = 1 +
k∑
l=1

dmin(dmin − 1)l−1 (10.5.10)

= 1 + dmin
(dmin − 1)k − 1

dmin − 2
≤ dmin

(dmin − 1)k

dmin − 2
.

Therefore, the contribution due to v2 ∈ N≤k(v1) is bounded by

E[Mk]
dmin

dmin − 2
(dmin − 1)k, (10.5.11)

which is the second contribution to the r.h.s. of (10.5.3).
Finally, we study the case where N≤k(v1) ∩ N≤k(v2) 6= ∅, but v2 6∈ N≤k(v1). When

N≤k(v1) ∩ N≤k(v2) 6= ∅, but v2 6∈ N≤k(v1), then one of the dmin(dmin − 1)k half-edges in
Nk(v1) needs to be connected to one of the dmin(dmin−1)l−k half-edges in Nl−k(v2), where
l = distCMn(d)(v1, v2) ∈ [2k] \ [k]. Conditionally on v1 being k-minimally connected and
v2 being l − k-minimally connected, the probability that this occurs is at most

dmin(dmin − 1)kdmin(dmin − 1)l−k

`n − 2ik − 2il−k + 1
≤ 2dmin(dmin − 1)kdmin(dmin − 1)l−k−1

`n
, (10.5.12)

where, in the last inequality, we used that dmin(dmin − 1)k−1 ≤ `n/8. Therefore, this
contribution is bounded by

E[Mk]

2k∑
l=k+1

E[Ml−k]
2dmin(dmin − 1)kdmin(dmin − 1)l−k−1

`n
. (10.5.13)

We bound E[Ml−k] ≤ ndmin and sum

2k∑
l=k+1

(dmin − 1)l−k−1 ≤ (dmin − 1)2k

dmin − 2
, (10.5.14)

to arrive at the third and final contribution to the r.h.s. of (10.5.3).

To complete the proof of the lower bound on the diameter, we fix ε > 0 sufficiently
small, and take k∗ = (1− ε) log logn

log (dmin−1)
. Clearly,

dmin(dmin − 1)k
∗−1 ≤ (logn)1−ε ≤ `n/8, (10.5.15)

so that, in particular, we may use Lemma 10.34.
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We note that ndmin/n → pdmin by Condition 7.5(a) and pdmin > 0 by assumption.
Therefore, by Condition 7.5(a)-(b), dminndmin/`n → λdmin , where we define λdmin =
dminpdmin/E[D]. By (10.5.2) in Lemma 10.34,

E[Mk] ≥ n(pdmin − δ)(λdmin − δ)
dmin(dmin−1)k−1

. (10.5.16)

As a result, E[Mk∗ ] ≥ n(pdmin − δ)(λdmin − δ)
(logn)1−ε . Further, by (10.5.3) in Lemma

10.34,
Var(Mk∗) = o(E[Mk∗ ]

2), (10.5.17)

so that
Mk∗/E[Mk∗ ]

P−→ 1. (10.5.18)

We conclude that, whp, Mk∗ ≥ n1−o(1). Since each minimally-k∗-connected vertex uses up
at most

1 +

k∗∑
l=1

dmin(dmin − 1)l−1 = no(1) (10.5.19)

vertices of degree dmin, whp there must be at least two minimally-k∗-connected vertices
whose k∗-neighborhoods are disjoint. We fix two such vertices and denote them by v1

and v2. We note that v1 and v2 have precisely dmin(dmin − 1)k
∗−1 unpaired half-edges in

Nk∗(v1) and Nk∗(v2). Let A12 denote the event that v1, v2 are minimally-k∗-connected
with their k∗-neighborhoods being disjoint.

Conditionally onA12, the random graph obtained by collapsing the half-edges inNk∗(v1)
to a single vertex a and the half-edges in Nk∗(v1) to a single vertex b is a configuration

model on the vertex set {a, b} ∪ [n] \ (N≤k∗(v1) ∪ N≤k∗(v1)), having degrees d̃ given by

d̃a = d̃b = dmin(dmin − 1)k
∗−1 and d̃i = di for every i ∈ [n] \ (N≤k∗(v1) ∪N≤k∗(v1)).

By the truncated first moment method on paths, performed in the proof of Theorem
10.25 (recall (10.4.47)), it follows that, for any ε > 0,

P
(

distCMn(d)(Nk∗(v1),Nk∗(v2)) ≤ (1− ε) 2 log logn

| log (τ − 2)| | A12

)
= o(1). (10.5.20)

Therefore, whp,

diam(CMn(d)) ≥ (1− ε) 2 log logn

| log (τ − 2)| + 2k∗ (10.5.21)

= (1− ε) log logn
[ 2

| log (τ − 2)| +
2

log (dmin − 1)

]
.

Since ε > 0 is arbitrary, this proves the lower bound on diam(CMn(d)) in Theorem 10.33.

Upper bound on the diameter. For the upper bound, it is convenient to explore the
neighborhood of a vertex v by only pairing up the first dmin half-edges incident to v and
the dmin − 1 half-edges incident to any other vertex appearing in the tree. We call this
exploration graph the k-exploration tree. Our main result is the following proposition that
shows that, for k = (1 + ε) log logn/ log (dmin − 1) and whp, the k-exploration tree quickly
connects to Coren:

Proposition 10.35 (Connecting the exploration tree to the core). Let k∗ = (1+ε) log logn
log (dmin−1)

.

Then, for each ε > 0 and under the conditions in Theorem 10.33, the probability that there
exists a vertex at distance at least k∗ to the core is o(1).
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By Proposition 10.35 and Theorem 10.28, for each ε > 0 and whp,

diam(CMn(d)) ≤ 2(1 + ε)
log logn

log (dmin − 1)
+ diam(Coren) (10.5.22)

≤ 2(1 + ε)
log logn

log (dmin − 1)
+ 2(1 + ε)

log log n

| log (τ − 2)|

= 2(1 + ε) log logn
[ 1

log (dmin − 1)
+

1

| log (τ − 2)|

]
.

Since ε > 0 is arbitrary, this proves the upper bound on diam(CMn(d)) in Theorem
10.33.

The proof of Proposition 10.35 is organized as follows. We start by showing that whp
the k∗-exploration tree does not contain more than one collisions. Here, by a collision,
we mean a cycle in the k∗-exploration tree, so that one of the half-edges that is paired to
form the k∗-exploration tree is paired to a half-edge incident to it as well. Thus, whp, the
k-exploration trees incident to all vertices have at least (dmin − 2)(dmin − 1)k half-edges
incident to it. Secondly, we show that when we do not pair too many half-edges, the
probability of connecting to a sleeping vertex remains on being substantial. Thirdly, we
use that bound to show that each half-edge has a reasonable probability of connecting to
Coren within o(log log n) steps. We complete the proof of Proposition 10.35 by shoing that
whp at least one of the at least (dmin−2)(dmin−1)k half-edges incident to the k-exploration
tree succeeds in connecting to Coren quickly.

For k of order log logn, the probability that more than one collisions occur in the
k-exploration tree before hitting Coren is small, as we prove now:

Lemma 10.36 (At most one collision). Let k = (1+ε/2) log logn
log (dmin−1)

. Then, under the con-

ditions in Theorem 10.33, the probability that there exists a vertex whose k-exploration tree
has at least two collisions before hitting the core Coren, is bounded by (dmin)4(logn)d`−2

n ,
where d = (1 + ε) + 2σ.

Proof. In this proof, we abbreviate m = dmin. For any half-edge in the k-exploration
tree, the probability that it create a collision before hitting the core is bounded above by
(m + 1)mk−1(logn)σ`−1

n . The probability that two half-edges both create a collision is,

by similar arguments, bounded above by
[
(m+ 1)mk−1(logn)σ`−1

n

]2
. The total number of

possible pairs of half-edges in the k-exploration tree is bounded by

[(m+ 1)(1 +m+ . . .+mk−1)]2 ≤ [(m+ 1)mk]2,

so that, by Boole’s inequality, the probability that the k-exploration tree has at least two
collisions is bounded by [

(m+ 1)mk]4(logn)2σ`−2
n . (10.5.23)

When k ≤ (1 + ε) log logn
logm

, this is bounded by
[
(m + 1)mk

]4
(logn)2σ ≤ (m + 1)4(logn)d,

where d = (1 + ε) + 2σ.

In our proof, we often rely on the following lemma that shows that the probability that
we pair a half-edge to a half-edge incident to a vertex of high degree does not decrease too
fast throughout the pairing procedure:

Lemma 10.37 (Finding fresh vertices of high degree). Let Fl be the σ-algebra generated
by the pairing of the first l half-edges, and denote by xj the jth half-edge, yj the half-edge
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to which xj is paired and Vyj the vertex to which yj is incident. Then, for all z such that
l ≤ n[1− Fn](z)/4,

P(dVyl+1
> z, Vyl+1 6∈ {Vx1 , Vy1 , . . . , Vxl , Vyl} | Fl) ≥ z[1− Fn](z)

n

2`n
. (10.5.24)

Proof. Let Al denote the awake vertices given Fl, i.e., those vertices for which at least one
of its incident half-edges have been paired in the pairing of the first k half-edges. Clearly,
|Al| ≤ 2l. Then, for each l,

P(dVyl+1
> z, Vyl+1 6∈ {Vx1 , Vy1 , . . . , Vxl , Vyl} | Fk) =

1

`n − 2l + 1

∑
v∈[n]\Ak

dv1{dv>z}

(10.5.25)

≥ z n
`n

(
[1− Fn](z)− |Al|/n).

By assumption, |Al| ≤ 2l ≤ n[1− Fn](z)/2, so that

P(dVyl+1
> z, Vyl+1 6∈ {Vx1 , Vy1 , . . . , Vxl , Vyl} | Fl) ≥ z[1− Fn](z)

n

2`n
. (10.5.26)

Denote the different half-edges incident to the kth layer of the k-exploration tree by
x1, . . . , xN , where N ∈ (logn)1+ε/2[(dmin− 1)/dmin, (dmin + 1)/dmin]. We call a half-edge a
success when it reaches Coren in at most h = A log log logn steps. Denote the event that
xj is a success by Sxj . Let F ′k denote the σ-algebra generated by the k-exploration tree.
We start by giving a lower bound on the probability of Sxj :

Lemma 10.38 (Substantial probability of connecting to Coren quickly). For k− = (1 +
ε/2) log logn/ log (dmin − 1), there exists η > 0 such that, uniformly in n ≥ 1,

P(Sx1 | F
′
k) ≥ η (10.5.27)

and, for each j = 1, . . . , N = (logn)a,

P(Sxj | F
′
k,Scx1

, . . . ,Scxj−1
) ≥ η. (10.5.28)

Proof. We first prove (10.5.27), and start by defining some notation. We pair x1 to y1, say,
and let v0 be the vertex incident to y1. We recall that h = A log log logn, and recursively
define v0, . . . , vh. Let vl ∈ [n] denote the vertex (if any) with maximal degree that is paired
to a half-edge incident to vl−1. Let ε > 0 be so small that (1 − ε)/(τ − 2) > 1 and let
A ≥ 1 be a large constant. Denote p = (1 − ε)/(τ − 2 + δ), and pick ε > 0 and δ > 0 so

small that p > 1. If dvj ≥ Ap
j

for each j = 1, . . . , h, then

dvh ≥ A
pA log log logn

= elogA(log logn)A log p

, (10.5.29)

which is much larger than (logn)σ when A > 1/ log p. Therefore, vh ∈ Coren, so that the
half-edge xi is a success and Sx1 occurs. As a result,

P(Sx1 | F
′
k) ≥ P(dvj ≥ A

pj ∀j = 0, . . . , h, dvj ≤ (logn)σ ∀j = 1, . . . , h−1 | F ′k
)
. (10.5.30)

In order to study the probability to pair a half-edge to a half-edge incident to a sleeping
vertex having large degree, we use Lemma 10.37.
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To apply Lemma 10.37, we rely on the lower bound on the empirical distribution function
Fn in (10.3.7), which states that for all δ > 0, there exists c1 = c1(δ) such that, uniformly
in n and for all z ≤ nα for some α > 1/2,

[1− Fn](z) ≥ c1z−(τ−1+δ). (10.5.31)

As a result, we may apply Lemma 10.37 as long as l, z and n satisfy l ≤ c1nz
−(τ−1+δ)/4.

By Condition 7.5(a)-(b), `n/n → E[D], so, for n sufficiently large, `n/n ≤ 2E[D]. We

conclude that, with c′1 = c1/(4E[D]) and for any l, z and n satisfying l ≤ c1nz−(τ−1+δ)/4

P(dVyl+1
> z, Vyl+1 6∈ {Vx1 , Vy1 , . . . , Vxl , Vyl} | Fl) ≥ c

′
1z
−(τ−2+δ). (10.5.32)

In the construction of the k-exploration tree, at most l1 = dmin(dmin − 1)k−1 half-edges
have been paired. Therefore, in particular, for any A ≥ 1 fixed,

P(dv0 ≥ A | F
′
k) ≥ c′1A−(τ−2+δ). (10.5.33)

Further, let F ′k,j denote the σ-algebra generated by F ′k and the pairing of the half-edges
incident to v0, . . . , vj . Then, as long as dv0 , . . . , dvj ≤ (logn)σ, the number of pairings

involved in F ′k,j is at most l1 + l2, where l1 = dmin(dmin − 1)k−1 and l2 = (j + 1)(logn)σ.
For t = 1, . . . , dvj , let xj,t be the half-edge that needs to be paired, and let yj,t be the

half-edge to which xj,t is paired. Then, by Lemma 10.37 and uniformly for z ≤ (logn)σ,
and on the event that dv0 , . . . , dvj ≤ (logn)σ,

P(dVyj,t > z | F ′k,j) ≥ c′1z−(τ−2+δ). (10.5.34)

Therefore, on the event that dvj ≥ Ap
j

and dv0 , . . . , dvj ≤ (logn)σ, we conclude that, for
j ≤ h− 1,

P(dvj+1 ≤ z | F
′
k−,j) ≤

Ap
j∏

t=1

(1− c′1z−(τ−2+δ)) ≤ e−cz
−(τ−2+δ)Ap

j

. (10.5.35)

Taking z = Ap
j+1

and recalling that p = (1− ε)/(τ − 2 + δ), we see that

P(dvj+1 > z | F ′k,j) = 1− P(dvj+1 ≤ x | F
′
k,j) (10.5.36)

≥ 1− e−cA
−(τ−2+δ)pj+1

Ap
j

= 1− e−cA
εpj

.

Therefore,

P(Sx1 | F
′
k) = E

[ h∏
j=0

P(dvi,j+1 > Ap
j

| F ′k,j) | F ′k
]

(10.5.37)

≥ c′1A−(τ−2+δ)
h∏
j=1

[1− e−c
′
1A

εpj

] ≥ c′1A−(τ−2+δ)/2,

where we have used (10.5.33) and (10.5.36), and we assume that A = A(ε) is sufficiently

large. Denoting η = c′1A
−(τ−2+δ)/2 > 0 completes the proof of (10.5.27).

To prove (10.5.28), we note that in the proof of (10.5.27), we only relied on an upper
bound on the number of pairings that have been performed. This was necessary to apply
Lemma 10.37. When Scx1

, . . . ,Scxj−1
occur, then the number of pairings is at most l =



10.6 Branching processes with infinite mean 291

l1 + l2, where l1 = dmin(dmin − 1)k−1 and l2 = Nh(logn)σ. This number is bounded
by A(logn)a+σ log log logn. Therefore, (10.5.33) and (10.5.36) still apply, and we obtain

(10.5.28) with η = c′1A
−(τ−2+δ)/2 > 0. This completes the proof of Lemma 10.38.

Now we are ready to complete the proof of Proposition 10.35:
Proof of Proposition 10.35. By Lemma 10.36, the probability that there exists a vertex
i ∈ [n] whose k-exploration tree has at least 2 collisions before hitting the core is o(1).

Fix i ∈ [n], and assume that its k-exploration tree has at most 2 collisions. Let N
denote the number of half-edges in the kth layer of the k-exploration tree. Then N ≥
(m−1)mk−1, where we recall that m = dmin−1. For k = (1+ε/2) log logn/ log (dmin − 1),

N ≥ (logn)1+ε/2/2. Throughout this proof, A denotes a large but finite constant.

By Lemma 10.38, the probability that none of the N = (logn)1+ε/2/2 half-edges in the
kth layer of the k-exploration tree is a success is at most

P(Scx1
∩ . . . ∩ ScxN | F

′
k) = P(Scx1

| F ′k)

N∏
j=2

P(Scxj | F
′
k,Scx1

∩ . . . ∩ Scxj−1
) (10.5.38)

≤ (1− η)N = o(1/n),

since N ≥ (logn)1+ε/2/2. The distance between vertex i and Coren is at most h + k =
A log log logn + (1 + ε/2) log logn/ log (dmin − 1) ≤ (1 + ε) log logn/ log (dmin − 1) = k∗

when at least one of the half-edges of vertex i is a success. Therefore, the probability that
the distance between vertex i and Coren is larger than k∗ is o(1/n), as required.

10.6 Branching processes with infinite mean

When τ ∈ (2, 3), the branching processes (Z(1)

j )j≥0 and (Z(2)

j )j≥0 are well-defined, but
has infinite mean in generations 2, 3, etc. This leads us to consider branching processes
with infinite mean. In this section, we give a scaling result for the generation sizes for such
branching processes. This result will be crucial to describe the fluctuations of the typical
distances in CMn(d). The main result is the following theorem:

Theorem 10.39 (Branching processes with infinite mean). Let (Zn)n≥0 be a branching
process with offspring distribution Z1 = X having distribution function FX . Assume that
there exist α ∈ (0, 1) and a non-negative, non-increasing function x 7→ γ(x), such that

x−α−γ(x) ≤ 1− FX(x) ≤ x−α+γ(x), for large x, (10.6.1)

where x 7→ γ(x) satisfies

(i) x 7→ xγ(x) is non-decreasing,

(ii)
∫∞

0
γ(eex) dx <∞, or, equivalently,

∫∞
e

γ(y)
y log y

dy <∞.

Then αn log(Zn ∨ 1)
a.s.−→ Y , with P(Y = 0) equal to the extinction probability of (Zn)n≥0,

whereas Y admits a density on (0,∞).

In the analysis for the configuration model, α = τ − 2, as α corresponds to the tail
exponent of the size-biased random variable D∗. Theorem 10.39 covers the case where the
branching process has an offspring which has very thick tails. Indeed, it is not hard to
show that Theorem 10.39 implies that E[Xs] = ∞ for every s > α ∈ (0, 1) (see Exercise
10.20 below).

We do not prove Theorem 10.39 in full generality. Rather, we prove it in a simpler, yet
still quite general case, in which γ(x) = (log x)γ−1 for some γ ∈ [0, 1).



292 Configuration model revisited

Exercise 10.19 (Example of infinite-mean branching process). Prove that γ(x) = (log x)γ−1

for some γ ∈ [0, 1) satisfies the assumptions in Theorem 10.39.

Proof of Theorem 10.39 for γ(x) = (log x)γ−1. The proof is divided into four main steps.
Define

Mn = αn log(Zn ∨ 1). (10.6.2)

We shall first assume that P(Z1 ≥ 1) = 1, so that η = 1. We start by splitting Mn in a
suitable way.

The split. For i ≥ 1, we define

Yi = αi log
( (Zi ∨ 1)

(Zi−1 ∨ 1)1/α

)
. (10.6.3)

We can write
Mn = Y1 + Y2 + · · ·+ Yn. (10.6.4)

From this split, it is clear that almost sure convergence of Mn follows when the sum
∑∞
i=0 Yi

converges, which, in turn, is the case when

∞∑
i=1

E
[∣∣Yi∣∣] <∞. (10.6.5)

This is what we prove in the following three steps.

Inserting normalization sequences. We next investigate E
[∣∣Yi∣∣]. We prove by induc-

tion on i that there exist constants κ < 1 and C > 0 such that

E
[∣∣Yi∣∣] ≤ Kκi. (10.6.6)

For i = 0, this follows from the fact that, when (10.6.1) holds, the random variable Y1 =
α log(Z1∨1) has a bounded absolute expectation. This initializes the induction hypothesis.
We next turn to the advancement of the induction hypothesis. For this, we recall the
definition of un in (2.6.7) and define

Ui = αi log
( uZi−1∨1

(Zi−1 ∨ 1)1/α

)
, Vi = αi log

( Zi ∨ 1

uZi−1∨1

)
. (10.6.7)

Then, Yi = Ui + Vi, so that

E
[∣∣Yi∣∣] ≤ E

[∣∣Ui∣∣]+ E
[∣∣Vi∣∣]. (10.6.8)

We bound each of these terms separately.

Bounding the normalizing constants. In this step, we analyse the normalizing con-
stants n 7→ un, assuming (10.6.1), and use this, as well as the induction hypothesis, to
bound E

[∣∣Ui∣∣].
When (10.6.1) holds and since limx→∞ γ(x) = 0, there exists a constant Cε ≥ 1 such

that, for all n ≥ 1,

un ≤ Cεn1/α+ε, (10.6.9)

This gives a first bound on n 7→ un. We next substitute this bound into (10.6.1) and use

that x 7→ xγ(x) is non-decreasing together with γ(x) = (log x)γ−1, to obtain that

1 + o(1) = n[1− FX(un)] ≥ n
[
u−(τ−1)−γ(un)
n

]
≥ n

[
u−(τ−1)
n elog

(
Cεn

1
α

+ε
)γ ]

, (10.6.10)
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which, in turn, implies that there exists a constant c > 0 such that

un ≤ n1/αec(logn)γ . (10.6.11)

In a similar way, we can show the matching lower bound un ≥ n1/αe−c(logn)γ . As a result,

E
[∣∣Ui∣∣] ≤ cαiE[(log (Zi−1 ∨ 1))γ

]
. (10.6.12)

Using the concavity of x 7→ xγ for γ ∈ [0, 1), as well as Jensen’s Inequality, we arrive at

E
[∣∣Ui∣∣] ≤ cαi(E[(log (Zi−1 ∨ 1))

])γ
= αi(1−γ)E[Mi−1]γ . (10.6.13)

By (10.6.4) and (10.6.6), which implies that E[Mi−1] ≤ Kκ/(1− κ), we arrive at

E
[∣∣Ui∣∣] ≤ αi(1−γ)c

( Kκ

1− κ

)γ
. (10.6.14)

Bounding the logarithmic moment of an asymptotic stable random variable.
In this step, we bound E

[∣∣Vi∣∣]. We note that by Theorem 2.29 and for Zi quite large, the
random variable (Zi ∨ 1)/(uZi−1∨1) should be close to a stable random variable. We make
use of this fact by bounding

E
[∣∣Vi∣∣] ≤ αi sup

m≥1
E
[∣∣ log

(
Sm/um

)∣∣], (10.6.15)

where Sm = X1 + · · · + Xm, and (Xi)
m
i=1 are i.i.d. copies of the offspring distribution X.

We shall prove that there exists a constant C > 0 such that, for all m ≥ 1,

E
[∣∣ log

(
Sm/um

)∣∣] ≤ C. (10.6.16)

In order to prove (10.6.16), we note that it suffices to bound

E
[(

log
(
Sm/um

))
+

]
≤ C+, E

[(
log
(
Sm/um

))
−

]
≤ C−, (10.6.17)

where, for x ∈ R, x+ = max{x, 0} and x− = max{−x, 0}. Since |x| = x+ + x−, we then
obtain (10.6.16) with C = C+ +C−. In order to prove (10.6.16), we start by investigating
E
[(

log
(
Sm/um

))
−

]
. We note that (log x)− = log (x−1 ∨ 1), so that

E
[(

log
(
Sm/um

))
−

]
= E

[
log
(
um/(Sm ∧ um)

)]
, (10.6.18)

where x ∧ y = min{x, y}. The function x 7→ log
(
(um/(x ∧ um)

)
is non-increasing, and,

since Sm ≥ X(m), where X(m) = max1≤i≤mXi, we arrive at

E
[

log
(
um/(Sm ∧ um)

)]
≤ E

[
log
(
um/(X(m) ∧ um)

)]
. (10.6.19)

We next use that, for x ≥ 1, x 7→ log(x) is concave, so that, for every s,

E
[

log
(
um/(X(m) ∧ um)

)]
=

1

s
E
[

log
(
(um/(X(m) ∧ um))s

)]
(10.6.20)

≤ 1

s
log
(
E
[(
um/(X(m) ∧ um)

)s])
≤ 1

s
+

1

s
log
(
usmE

[
X−s(m)

])
,
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where, in the last step, we made us of the fact that um/(x∧um) ≤ 1 +um/x. Now rewrite
X−s(m) = (−Y(m))

s, where Yj = −X−1
j and Y(m) = max1≤j≤m Yj . Clearly, Yj ∈ [−1, 0] since

Xi ≥ 1, so that E[(−Y1)s] < ∞. Also, umY(m) = −um/X(m) converges in distribution to

−E−1/α, where E is exponential with mean 1, so it follows from [232, Theorem 2.1] that,
as m→∞,

E [(umY(m))
p]→ E[E−1/α] <∞. (10.6.21)

We proceed with E
[(

log
(
Sm/um

))
+

]
, for which the proof is a slight adaptation of the

above argument. Now we make use of the fact that (log x)+ = log (x ∨ 1) ≤ 1+x for x ≥ 0,
so that we must bound

E
[

log
(
Sm ∨um/um

)]
=

1

s
E
[

log
(
(Sm ∨um/um))s

)]
≤ 1

s
+ log

(
E
[(
Sm/um

)s]
. (10.6.22)

The discussion on [142, Page 565 and Corollary 1] yields, for s < α, E[Ssm] = E[|Sm|s] ≤
2s/2λs(t), for some function λs(m) depending on s, m and FX . Using the discussion on

[142, Page 564], we have that λs(m) ≤ Csm
s/αl(m1/α)s, where l( · ) is a slowly varying

function. With some more effort, it can be shown that we can replace l(m1/α) by `(m),
which gives

E
[

log
(
Sm ∨ um/um

)]
≤ 1

s
+ logE

[(Sm
um

)s] ≤ 1

s
+
Cs
s
ms/α`(m)su−sm =

1

s
+ 2s/2

Cs
s
,

(10.6.23)

and which proves the first bound in (10.6.17) with C+ = 1
s

+ 2s/2 Cs
s

.

Completion of the proof of Theorem 10.39 when X ≥ 1. Combining (10.6.8) with
(10.6.14) and (10.6.15)–(10.6.16), we arrive at

E
[∣∣Yi∣∣] ≤ αi(1−γ)c

( Kκ

1− κ

)γ
+ Cαi ≤ Kκi, (10.6.24)

when we take κ = α1−γ and we take K to be sufficiently large, for example K ≥ 2C and

K ≥ 2c
(
Kκ
1−κ

)γ
. We shall not prove that Y admits a density. This completes the proof

when the offspring distribution X satisfies X ≥ 1.

Completion of the proof of Theorem 10.39. We finally extend the result to the
setting where X = 0 with positive probability. Since E[X] = ∞, the survival probability

ζ satisfies ζ > 0. Conditionally on extinction, clearly Zn
a.s.−→ 0, so that, on the survival

event, αn log(Zn ∨ 1)
a.s.−→ Y , where, conditionally on extinction, Y = 0.

It remains to prove that αn log(Zn ∨ 1)
a.s.−→ Y on the survival event. By Theorem 3.12,

we have that, conditionally on survival,

Z(∞)
n

Zn

a.s.−→ ξ > 0, (10.6.25)

where we recall that Z(∞)
n are the individuals in the nth generation which have an infinite

line of descent. By Theorem 3.11 and conditionally on survival, (Z(∞)
n )n≥0 is again a

branching process, now with offspring distribution p(∞) given in (3.4.2). Note that, in

particular, P(Z(∞)

1 ≥ 1) = 1, and we wish to apply Theorem 10.39 to Z(∞)
n instead of Zn.

It is not hard to show that also p(∞) in (3.4.2) satisfies the conditions in Theorem 10.39
with the function x 7→ γ∗(x), given by γ∗(x) = γ(x) + c/ log x . Thus, conditionally on
survival,

αn log(Z(∞)
n ∨ 1)

a.s.−→ Y (∞), (10.6.26)
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and combining (10.6.25) and (10.6.26), it immediately follows that, conditionally on sur-
vival,

αn log(Zn ∨ 1)
a.s.−→ Y (∞). (10.6.27)

We conclude that Theorem 10.39 holds, where Y = 0 with probability η = 1 − ζ and
Y = Y (∞) with probability ζ.

Exercise 10.20 (Infinite mean under conditions Theorem 10.39). Prove that E[X] = ∞
when the conditions in Theorem 10.39 are satisfied. Extend this to show that E[Xs] = ∞
for every s > α ∈ (0, 1).

Exercise 10.21 (Conditions in Theorem 10.39 for individuals with infinite line of descent).
Prove that p(∞) in (3.4.2) satisfies the conditions in Theorem 10.39 with the function
x 7→ γ∗(x), given by γ∗(x) = γ(x) + c/ log x.

Exercise 10.22 (Convergence for Zn + 1). Show that, under the conditions of Theorem
10.39, also αn log(Zn + 1) converges to Y almost surely.

We finally state some properties of the a.s. limit Y of (αn log(Zn ∨ 1))n≥0, of which we
omit a proof:

Theorem 10.40 (Limiting variable for infinite-mean branching processes). Under the
conditions of Theorem 10.39,

lim
x→∞

log P(Y > x)

x
= −1, (10.6.28)

where is the a.s. limit of αn log(Zn ∧ 1).

Theorem 10.40 can be understood from the fact that by (10.6.2)–(10.6.3),

Y =
∞∑
n=1

Yi, (10.6.29)

where

Y1 = α log
(
Z1 ∨ 1

)
. (10.6.30)

By (10.6.1),

P(Y1 > x) = P(Z1 > ex
1/α

) = e−x(1+o(1)), (10.6.31)

which shows that Y1 satisfies (10.6.28). The equality in (10.6.29) together with (10.6.3)
suggests that the tails of Y1 are equal to those of Y , which heuristically explains (10.6.28).

10.7 Related results for the configuration model

In this section, we discuss related results for the configuration model. We start by
discussing the subcritical behavior of the configuration model.
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The largest subcritical cluster. When ν < 1, so that in particular E[D2] < ∞, the
largest connected component for CMn(d) is closely related to the largest degree:

Theorem 10.41 (Subcritical phase for CMn(d)). Let d satisfy Condition 7.5(a)-(c) with
ν = E[D(D − 1)]/E[D] < 1. Suppose further that there exists τ > 3 and c2 > 0 such that

[1− Fn](x) ≤ c2x−(τ−1). (10.7.1)

Then, for CMn(d) with ∆ = maxj∈[n] dj,

|Cmax| =
∆

1− ν + oP(n
1/(τ−1)). (10.7.2)

Theorem 10.41 is closely related to Theorem 9.34. In fact, we can use Theorem 10.41
to prove Theorem 9.34:

Exercise 10.23 (Proof of Theorem 9.34). Use Theorem 10.41 and Proposition 10.10 to
prove Theorem 9.34.

The near-critical supercritical behavior in the configuration model. In [170],
also partial results appear on the near-critical behavior of CMn(d):

Theorem 10.42 (Near-critical behavior CMn(d)). Let d satisfy Condition 7.5(a)-(c) with
ν = E[D(D− 1)]/E[D] < 1. Assume further that αn = νn− 1 = E[Dn(Dn− 2)]/E[Dn] > 0

is such that n1/3αn →∞, and that

E[D4+ε
n ] = O(1) (10.7.3)

for some ε > 0. Let β = E[D(D − 1)(D − 2)]/E[D] > 0. Then, CMn(d) satisfies

|Cmax| =
2

E[D]β
nαn + oP(nαn),

|vk(Cmax)| =
2E[D]

β
kpknαn + oP(nαn), for every k ≥ 0,

|E(Cmax)| =
2E[D]2

β
nαn + oP(nαn),

while |C(2)| = oP(nαn) and |E(C(2))| = oP(nαn).

The asymptotics of |Cmax| in Theorem 10.42 can be understood by the fact that, for
a branching process with offspring distribution X having mean E[X] = 1 + ε where ε is
small, the survival probability ζ satisfies ζ = 2ε/Var(X)(1 + o(1)). Therefore, the survival
probability ζ∗ of the branching process with offspring distribution D∗− 1 is close to 2ε/β,
where we note that β = Var(D∗ − 1) = Var(D∗). Since the limit of |Cmax|/n ζ satisfies

ζ =

∞∑
k=1

pk(1− (1− ζ∗)k), (10.7.4)

we further obtain that

ζ = ζ∗E[D](1 + o(1)). (10.7.5)

The results on |vk(Cmax)| and |E(Cmax)| can be understood in a similar way.
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The critical behavior in the configuration model. We continue to study the critical
case of CMn(d) for i.i.d. degrees.

Theorem 10.43 (Weak convergence of the ordered critical clusters). Let d = (di)i∈[n]

be a sequence of i.i.d. random variables having the same distribution as D satisfying ν =
E[D(D − 1)]/E[D] = 1. Let (|C(i)|)i≥1 denote the clusters of CMn(d), ordered in size.
(a) Let E[D3] <∞. Then, as n→∞,(

n−2/3|C(i)|
)
i≥1

d−→ (γi)i≥1, (10.7.6)

in the product topology, for some non-degenerate limit (γi)i≥1.
(b) Let the distribution function F of D satisfy that there exists a τ ∈ (3, 4) and 0 < cF <∞
such that

lim
x→∞

xτ−1[1− F (x)] = cF . (10.7.7)

Then, as n→∞, (
n−(τ−2)/(τ−1)|C(i)|

)
i≥1

d−→ (γi)i≥1, (10.7.8)

in the product topology, for some non-degenerate limit (γi)i≥1.

Theorem 10.43 implies that as long as E[D3] < ∞, the scaling of the large clusters in
CMn(d) for i.i.d. degrees is similar to that for the Erdős-Rényi random graph ERn(λ/n)
(recall Theorem 5.4 in Section 5.1.3), and the effect of large degrees is negligible. When
E[D3] = ∞, on the other hand, the critical scaling changes rather dramatically, and the
largest critical cluster has size nρ, where ρ = (τ − 2)/(τ − 1) ∈ (1/2, 2/3).

One would expect Theorem 10.43 to hold for fixed degrees, under similar (but stronger)
assumptions as in Condition 7.5(a)-(c). In particular, for Theorem 10.43(a), one would
expect to need E[D3

n]→ E[D3] <∞.

Infinite mean degrees. In this section, we assume that there exist τ ∈ (1, 2) and c > 0
such that

lim
x→∞

xτ−1[1− F ](x) = c. (10.7.9)

We study the configuration model CMn(d) where the degrees d = (di)i∈[n] are an i.i.d.
sequence of random variables with distribution F satisfying (10.7.9).

We make heavy use of the notation used in Theorem 7.17, which we first recall. Recall
that the random probability distribution P = (Pi)i≥1 is given by

Pi = Zi/Z, (10.7.10)

where Zi = Γ
−1/(τ−1)
i and Γi =

∑i
j=1 Ei with (Ei)i≥1 an i.i.d. sequence of exponential

random variables with parameter 1, and where Z =
∑
i≥1 Γi. Recall further that MP,k

is a multinomial distribution with parameters k and probabilities P = (Pi)i≥1. Thus,
MP,k = (B1, B2, . . .), where, conditionally on P = (Pi)i≥1, Bi is the number of outcomes i
in k independent trials such that each outcome is equal to i with probability Pi. In Theorem
7.17, the random variable MP,D1

appears, where D1 is independent of P = (Pi)i≥1. We

let M (1)
P,D1

and M (2)
P,D2

be two random variables which are conditionally independent given
P = (Pi)i≥1. In terms of this notation, the main result on distances in CMn(d) when the
degrees have infinite mean is the following:

Theorem 10.44 (Distances in CMn(d) with i.i.d. infinite mean degrees). Fix τ ∈ (1, 2)
in (10.7.9) and let (di)i∈[n] be a sequence of i.i.d. copies of D. Then, CMn(d) satisfies

lim
n→∞

P(Hn = 2) = 1− lim
n→∞

P(Hn = 3) = pF ∈ (0, 1). (10.7.11)
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Figure 10.1: Empirical probability mass function of the hopcount for τ = 1.8 and N =
103, 104, 105.

The probability pF can be identifies as the probability that M (1)
P,D1

and M (2)
P,D2

have an iden-

tical outcome, i.e., there is an outcome that occurs both in M (1)
P,D1

and M (2)
P,D2

, where D1

and D2 are two i.i.d. copies of D.

Proof. We sketch the proof of Theorem 10.44. First, whp, both d1 ≤ logn and d2 ≤ logn.
The event that Hn = 1 occurs precisely when one of the d1 half-edges of vertex 1 is attached
to one of the d2 half-edges of vertex 2. Also, with high probability, `n ≥ n1/(τ−1)−ε.
Therefore, on the event that `n ≥ n1/(τ−1)−ε and d1 ≤ logn and d2 ≤ logn, the probability
that Hn = 1 is bounded above by

(logn)2

n1/(τ−1)−ε = o(1). (10.7.12)

Exercise 10.24 (Typical distance is at least 2 whp). Complete the argument that P(Hn =
1) = o(1).

We note that the proof of Theorem 7.17 implies that M (1)
P,d1

denotes the number of edges

between vertex 1 and the largest order statistics. Indeed, M (1)
P,d1

= (B(1)

1 , B(1)

2 , . . .), where

B(1)

i is the number of edges between vertex i and the vertex with degree d(n+1−i). The same

applies to vertex 2. As a result, when M (1)
P,d1

and M (2)
P,d2

have an identical outcome, then
the typical graph distance equals 2. We are left to prove that the typical graph distance is

bounded by 3 with high probability. By (2.6.17), we have that ξkk
1/(τ−1) P−→ 1 as k →∞.

Thus, when K is large, the probability that vertex 1 is not connected to any of the vertices
corresponding to (d(n+1−i))

K
i=1 converges to 0 when K tends to infinity.

Let Pn denote the conditional probability given the degrees (di)i∈[n]. For i ∈ [n], we let
vi be the vertex corresponding to the ith order statistic d(n+1−i). By Lemma 10.30,

Pn(vi not directly connected to vj) ≤ e
−
d(n+1−i)d(n+1−j)

2`n . (10.7.13)
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Moreover, d(n+1−i), d(n+1−j) ≥ n1/(τ−1)−ε with high probability for n sufficiently large and

any ε > 0, while whp `n ≤ n1/(τ−1)+ε. As a result, whp,

Pn(vi not directly connected to vj) ≤ e−n
1/(τ−1)−3ε

. (10.7.14)

Therefore, for fixed K and for every i, j ∈ [K], the vertices vi and vj are whp neighbors.
This implies that the vertices corresponding to the high order statistics form a complete
graph. We have already concluded that 1 is connected to vi for some i ≤ K. In the
same way, we conclude that vertex 2 is connected to vj for some j ≤ K. Since vi is whp
connected to vj , we conclude that

Pn
(
Hn ≤ 3

)
= 1− o(1). (10.7.15)

This completes the proof.

Exercise 10.25 (Typical distance equals 2 whpfor τ = 1). Let the (di)i∈[n] be a sequence
of i.i.d. copies of D with distribution function F satisfying that x 7→ [1 − F ](x) is slowly

varying at ∞. Prove that CMn(d) satisfies that Hn
P−→ 2.

Fluctuation of distances for finite-variance degrees. We continue to study the
fluctuations of the distances in the configuration model, starting with the case where the
degrees have finite variance. We need a limit result from branching process theory before
we can identify the limiting random variables (Ra)a∈(−1,0]. Recall that (Zk)k≥0 denotes
the two-stage branching process where in the first generation, the offspring has distribu-
tion D with distribution function F and in the second and further generations, the off-
spring has distribution D∗ − 1, where D∗ is the size-biased distribution of D. The process
(Zk/E[D]νk−1)k≥1 is a martingale with uniformly bounded expectation and consequently
converges almost surely to a limit (see e.g., Theorem 2.22 and Exercise 2.23):

lim
n→∞

Zn
E[D]νn−1

=W a.s. (10.7.16)

In the theorem below we need two independent copies W(1) and W(2) of W.

Theorem 10.45 (Limit law for typical distance in CMn(d)). Let (di)i∈[n] be a sequence
of i.i.d. copies of a random variable D, and assume that there exist τ > 3 and c <∞ such
that, for all x ≥ 1,

[1− F ](x) ≤ cx−(τ−1), (10.7.17)

and let ν > 1. For k ≥ 1, let ak = blogν kc− logν k ∈ (−1, 0]. Then, CMn(d) satisfies that
there exist random variables (Ra)a∈(−1,0] such that as n→∞,

P
(
Hn − blogν nc = k | Hn <∞

)
= P(Ran = k) + o(1), k ∈ Z. (10.7.18)

The random variables (Ra)a∈(−1,0] can be identified as

P(Ra > k) = E
[

exp{−κνa+kW(1)W(2)}
∣∣W(1)W(2) > 0

]
, (10.7.19)

where W(1) and W(2) are independent limit copies of W in (10.7.16) and where κ =
E[D](ν − 1)−1.

In words, Theorem 10.45 states that for τ > 3, the graph distance Hn between two
randomly chosen connected vertices grows like the logν n, where n is the size of the graph,
and that the fluctuations around this mean remain uniformly bounded in n.
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The law of Ra is involved, and can in most cases not be computed exactly. The reason
for this is the fact that the random variables W that appear in its statement are hard to
compute explicitly (see also Chapter 3).

There are two examples where the law of W is known. The first is when all degrees
in the graph are equal to some r > 2, and we obtain the r-regular graph. In this case,
E[D] = r, ν = r − 1, and W = 1 a.s. In particular, P(Hn <∞) = 1 + o(1). Therefore,

P(Ra > k) = exp{− r

r − 2
(r − 1)a+k}, (10.7.20)

andHn is asymptotically equal to logr−1 n. The second example is when g is the probability
mass function of a geometric random variable, in which case the branching process with
offspring g conditioned to be positive converges to an exponential random variable with
parameter 1. This example corresponds to

gj = p(1− p)j−1, so that pj =
1

jcp
p(1− p)j−2, ∀j ≥ 1, (10.7.21)

and cp is a normalization constant. For p > 1
2
, the law of W has the same law as the sum

of D1 copies of a random variable Y, where Y = 0 with probability 1−p
p

and equal to an

exponential random variable with parameter 1 with probability 2p−1
p

. Even in this simple

case, the computation of the exact law of Ra is non-trivial.

Exercise 10.26 (Convergence along subsequences [149]). Fix an integer n1. Prove that,
under the assumptions in Theorem 10.45, and conditionally on Hn < ∞, along the sub-
sequence nk = bn1ν

k−1c, the sequence of random variables Hnk
− blogν nkc converges in

distribution to Ran1
as k →∞.

Exercise 10.27 (Tightness of the hopcount [149]). Prove that, under the assumptions in
Theorem 10.45,

(i) with probability 1 − o(1) and conditionally on Hn < ∞, the random variable Hn is
in between (1± ε) logν n for any ε > 0;

(ii) conditionally on Hn < ∞, the random variables Hn − logν n form a tight sequence,
i.e.,

lim
K→∞

lim sup
n→∞

P
(
|Hn − logν n| ≤ K

∣∣Hn <∞) = 1. (10.7.22)

As a consequence, prove that the same result applies to a uniform random graph with
degrees (di)i∈[n]. Hint: Make use of Theorem 7.15.

Fluctuation of distances for infinite-variance degrees. We next study the fluctua-
tions of typical distances in CMn(d) in the setting where the degrees are i.i.d. and satisfy
that there exist τ ∈ (2, 3), γ ∈ [0, 1) and C <∞ such that

x−τ+1−C(log x)γ−1

≤ 1− F (x) ≤ x−τ+1+C(log x)γ−1

, for large x. (10.7.23)

The condition in (10.7.23) is such that the results in Theorem 10.39 apply. Then, we can
identify the fluctuations of the typical graph distance in CMn(d) as follows:

Theorem 10.46 (Fluctuations graph distance CMn(d) for infinite variance degrees). Let
(di)i∈[n] be a sequence of i.i.d. copies of a random variable D. Fix τ ∈ (2, 3) and assume
that (10.7.23) holds. Then, CMn(d) satisfies that there exist random variables (Ra)a∈(−1,0]

such that, as n→∞,

P
(
Hn = 2

⌊ log log n

| log(τ − 2)|

⌋
+ l

∣∣∣Hn <∞) = P(Ran = l) + o(1), l ∈ Z,(10.7.24)
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Figure 10.2: Number of AS traversed in hopcount data (blue) compared to the model
(purple) with τ = 2.25, n = 10, 940.

where an = b log logn
| log(τ−2)|c −

log logn
| log(τ−2)| ∈ (−1, 0]. Here, the random variables (Ra)a∈(−1,0] are

given by

P(Ra > l) = P
(

min
s∈Z

[
(τ − 2)−sY (1) + (τ − 2)s−clY (2)

]
≤ (τ − 2)dl/2e+a

∣∣Y (1)Y (2) > 0
)
,

where cl = 1 if l is even, and zero otherwise, and Y (1), Y (2) are two independent copies of
the limit random variable in Theorem 10.39.

In words, Theorem 10.17 states that for τ ∈ (2, 3), the graph distance Hn between two
randomly chosen connected vertices grows proportional to log log of the size of the graph,
and that the fluctuations around this mean remain uniformly bounded in n.

Simulations indicating the properties of the typical graph distance for τ ∈ (2, 3) can bee
seen in Figure 10.2. In it, the distances of the AS-graph in Figure 1.2, and these distances
are compared to the ones in CMn(d) where n is equal to the number of AS and the best
approximation to the exponent of the power-law for the degree sequence of the AS-graph,
which is τ = 2.25.

10.8 Related random graph models

In this section, we describe a few related models that have been investigated in the
literature.

The configuration model with household structure. The configuration model has
low clustering, which often makes it inappropriate in applied contexts. Indeed, in Chapter
1, we have seen that many real-world networks have a high amount of clustering instead.
For example, in modeling a social network, one can expect a large amount of clustering.
A possible solution to overcome this low clustering, is by introducing a community or
household structure. Consider the configuration model CMn(d) with a degree sequence
d = (di)i∈[n] satisfying Condition 7.5(a)-(b). Now we replace each of the vertices by a
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small graph. Thus, vertex i is replaced by a local graph Gi. We assign each of the di
half-edges incident to vertex i to a uniform vertex in Gi. As a result, we obtain a graph
with two levels of hierarchy, whose local structure is described by the local graphs Gi,
whereas its global structure is described by the configuration model CMn(d).

The number of vertices in the configuration model with household structure is given by

N =

n∑
i=1

ni, (10.8.1)

where ni denotes the number of vertices in Gi. Further, assume that the empirical distri-
bution of the graph sizes converges, i.e., there exists a distribution function FH such that,
for every x ∈ R,

FH,n(x) =
1

n

∑
i∈[n]

1{ni≤x} → FH(x), (10.8.2)

and N/n → E[H], where H has distribution function FH. Assume further that the local
graphs Gi are all connected. Then, assuming (10.8.2) and N/n → E[H], the size of the
largest connected component |Cmax| of the configuration model with household structure
satisfies

|Cmax|/N
P−→ ζ, (10.8.3)

where ζ is the asymptotic proportion of vertices in the giant component of CMn(d).

Exercise 10.28 (Law of large number for |Cmax| in CM with households). Use Theorem
10.1 to prove (10.8.3).

It would be of interest to investigate typical distances within the configuration model
with household structure. It seems reasonable to predict that HN/ logN converges to a
limit when Condition 7.5(a)-(c) holds, where the limit equals α/ log ν, where α denotes the
typical distance in a household drawn uniformly at random. Similar results should hold for

infinite variance degrees, where it can be expected that HN/ log logN
P−→ 2α/| log(τ −2)|.

Due to the fact that a vertex in the configuration model is a household, which in itself
is a small subgraph, it seems plausible that the fluctuations of the typical distances within
the different households give rise to larger fluctuations of the typical distances for the
configuration model with household structure than for CMn(d) as presented in Theorem
10.45–10.46. In particular, one might expect that (HN −α logν N)/

√
logN converges to a

normal random variable when Condition 7.5(a)-(c) holds, while (Hn−2α log logN/| log(τ−
2)|)/

√
log logN converges to a normal random variable when a condition as in (10.3.7) holds

with δ = 0.

Configuration model with clustering. The low clustering of CMn(d) can be resolved
by introducing households as described above. Alternatively, and in the spirit of clustered
inhomogeneous random graphs as described in Section 9.7, we can also introduce clustering
directly. In the configuration model with clustering, we assign two numbers to a vertex
i ∈ [n]. We let d(si)

i denote the number of simple half-edges incident to vertex i, and we

let d(tr)

i denote the number of triangles that vertex i is part of. We say that there are d(si)

i

half-edges incident to vertex i, and d(tr)

i third-triangles.
The graph is built by (a) recursively choosing two half-edges uniformly at random

without replacement, and pairing them into edges (as for CMn(d)); and (b) choosing
triples of third-triangles uniformly at random and without replacement, and drawing edges
between the three vertices incident to the third-triangles that are chosen.

Let (D(si)
n , D(tr)

n ) denote the number of simple edges and triangles incident to a uniform

vertex in [n], and assume that (D(si)
n , D(tr)

n )
d−→ (D(si), D(tr)) for some limiting distribution
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(D(si), D(tr)). In [219], Newman performs a generating function analysis of when a giant
component is expected to exist. The criterion Newman finds is that(E[(D(si))2]

E[D(si)]
− 2
)(2E[(D(tr))2]

E[D(tr)]
− 3
)
<

2E[D(si)D(tr)]

E[D(si)]E[D(tr)]
. (10.8.4)

When D(tr) = 0 a.s., so that there are no triangles, this reduces to

E[(D(si))2]

E[D(si)]
− 2 > 0, (10.8.5)

which is equivalent to ν = E[D(si)(D(si)−1)]/E[D(si)] > 1. It would be of interest to analyze
this model mathematically.

The directed configuration model. Many real-world networks are directed, in the
sense that edges are oriented. For example, in the World-Wide Web, the vertices are
web pages, and the edges are the hyperlinks between them, which are clearly oriented.
One could naturally forget about these directions, but that would discard a wealth of
information. For example, in citation networks, it makes a substantial difference whether
my paper links to a paper, or that paper links to mine.

One way to obtain a directed version of CMn(d) is to give each edge a direction, chosen
with probability 1/2, independently of all other edges. In this model, however, the correla-
tion coefficient between the in- and out-degree of vertices is close to one, particularly when
the degrees are large. In real-world applications, correlations between in- and out-degrees
can be positive or negative, depending on the precise application. Therefore, we formulate
a general model of directed graphs, where we can prescribe both the in- and out-degrees
of vertices.

Fix d(in) = (d(in)

i )i∈[n] to be a sequence of in-degrees, where d(in)

i denotes the in-degree

of vertex i. Similarly, we let d(out) = (d(out)

i )i∈[n] be a sequence of out-degrees. Naturally,
we need that ∑

i∈[n]

d(in)

i =
∑
i∈[n]

d(out)

i (10.8.6)

in order for a graph with in- and out-degree sequence d = (d(in),d(out)) to exist. We think

of d(in)

i as the number of in-half-edges incident to vertex i and d(out)

i as the number of out-
half-edges incident to vertex i. The directed configuration model DCMn(d) is obtained
by pairing each in-half-edge to a uniformly chosen out-half-edge. The resulting graph
is a random multigraph, where each vertex i has in-degree d(in)

i and out-degree d(out)

i .
Similarly to CMn(d), DCMn(d) can have self-loops as well as multiple edges. A self-loop
arises at vertex i when one of its in-half-edges pairs to one of its out-half-edges. Let
(D(in)

n , D(out)
n ) denote the in- and out-degree of a vertex chosen uniformly at random from

[n]. The following exercise investigates the limiting distribution of the number of self-loops
in DCMn(d):

Exercise 10.29 (Self-loops and multiple edges in DCMn(d)). Adapt the proof of Propo-

sition 7.9 to show that when (D(in)
n , D(out)

n )
d−→ (D(in), D(out)) and

E[D(in)
n D(out)

n ]→ E[D(in)D(out)], (10.8.7)

then the number of self-loops in DCMn(d) converges to a Poisson random variable with pa-
rameter E[D(in)D(out)]. What can you say about the number of multiple edges in DCMn(d)?

We continue to investigate the strongly connected component of DCMn(d). Assume,

similarly to Condition 7.5(a)-(b), that (D(in)
n , D(out)

n )
d−→ (D(in), D(out)), and that E[D(in)

n ]→
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E[D(in)] and E[D(out)
n ] → E[D(in)]. Naturally, by (10.8.6), this implies that E[D(out)] =

E[D(in)]:

Exercise 10.30 (Equivalence of convergence in- and out-degree in DCMn(d)). Show that

(10.8.6) implies that E[D(out)] = E[D(in)] when (D(in)
n , D(out)

n )
d−→ (D(in), D(out)), E[D(in)

n ]→
E[D(in)] and E[D(out)

n ]→ E[D(in)].

Let

pk,l = P(D(in) = k,D(out) = l) (10.8.8)

denote the asymptotic joint in- and out-degree distribution. We refer to (pk,l)k,l≥0 simply
as the asymptotic degree distribution of DCMn(d). The distribution (pk,l)k,l≥0 plays a
similar role for DCMn(d) as (pk)k≥0 does for CMn(d). We further define

g(in)

k =
∑
l

lpk,l/E[D(out)], g(out)

l =
∑
k

kpk,l/E[D(in)]. (10.8.9)

The distributions (g(in)

k )k≥0 and (g(out)

k )k≥0 correspond to the asymptotic forward in- and
out-degree of a uniformly chosen edge in CMn(d). Let θ(in) and θ(out) be the survival prob-

abilities of the branching processes with offspring distributions (g(in)

k )k≥0 and (g(out)

k )k≥0,
respectively, and define

ζ(in) = 1−
∑
k,l

pk,l(1− θ(in))l, ζ(out) = 1−
∑
k,l

pk,l(1− θ(out))k. (10.8.10)

Then, ζ(out) has the interpretation of the asymptotic probability that a uniform vertex has
a large forward cluster, while ζ(in) has the interpretation of the asymptotic probability that
a uniform vertex has a large backward cluster. Here, the backward cluster of a vertex v
consists of all vertices u that are connected to v, and the forward cluster of v consists of
all vertices u for which v is connected to u.

Further, let

ψ =
∑
k,l

pk,l(1− θ(in))l(1− θ(out))k (10.8.11)

so that ψ has the interpretation of the asymptotic probability that a uniform vertex has
finite forward and backward cluster. We conclude that 1 − ψ is the probability that a
uniform vertex has either a large forward or backward cluster, and thus

ζ = ζ(out) + ζ(in) − (1− ψ) (10.8.12)

has the interpretation of the asymptotic probability that a uniform vertex has both a large
forward and backward cluster. Recall that the strongly connected component of a vertex v
is the set of u for which there are directed paths from v to u and from u to v, so that u is
both in the forward and backward cluster of v. We let Cmax denote the size of the largest
strongly connected component in DCMn(d). Finally, we let

ν =

∞∑
k=0

kg(in)

k =
∑
k,l

klpk,l/E[D(out)], (10.8.13)

Alternatively, ν =
∑∞
k=0 kg

(out)

k . Then, the main results is as follows:
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Theorem 10.47 (Phase transition in DCMn(d)). Suppose that d satisfies that

(D(in)
n , D(out)

n )
d−→ (D(in), D(out)), E[D(in)

n ]→ E[D(in)], E[D(out)
n ]→ E[D(in)], (10.8.14)

and

E[D(in)
n D(out)

n ]→ E[D(in)D(out)]. (10.8.15)

Further, assume that d is proper, as explained below.

(a) When ν > 1, ζ in (10.8.12) satisfies ζ ∈ (0, 1] and

|Cmax|/n
P−→ ζ, (10.8.16)

while |C(2)|/n
P−→ 0 and |E(C(2))|/n

P−→ 0.

(b) When ν < 1, ζ in (10.8.12) satisfies ζ = 0 and |Cmax|/n
P−→ 0 and |E(Cmax)|/n P−→

0.

Theorem 10.47 is the adaptation to DCMn(d) of Theorem 10.1 for CMn(d). In the
statement of Theorem 10.47, we have assumed that d is proper, which is a technical re-
quirement on the degree sequence stating that (a) E[(D(in)

n )2] = O(1), E[(D(out)
n )2] = O(1);

(b) E[D(in)
n (D(out)

n )2] = o(n1/12 logn). In view of the fact that such conditions do not ap-
pear in Theorem 10.1, these conditions are likely to be suboptimal for Theorem 10.47 to
hold.

Random intersection graph with prescribed degrees and groups. In Section
9.7, we have studied random intersection graphs, where connections are randomly and
independently formed between individuals and groups. We now describe a model in which
vertex v ∈ [n] belongs to d(ve)

v groups, while group g ∈ [m] has size d(gr)
g . Here n is the

number of individuals, while m is the number of groups. Naturally, in order for the model
to be well defined, we need that ∑

v∈[n]

d(ve)
v =

∑
g∈[m]

d(gr)
g . (10.8.17)

We call two vertices v1 and v2 neighbors when they are connected to the same group,
so that the degree of a vertex v is the total number of other vertices u for which there
exists a group of which both u and v are members. This model might be appropriate as
a simple model for collaboration graphs such as the IMDb and the collaboration graph
among mathematicians. In the above setting, this model has not received much attention
in the mathematical community.

10.9 Notes and discussion

Notes on Section 10.1 This section is adapted from [170], which, in turn, generalizes
the results in [209, 210]. The results in [209, 210] are not phrased in terms of branching
processes, which makes them a bit more difficult to grasp. We have chosen to reformulate
the results using branching process terminology.

Notes on Section 10.2. These results are folklore. A version of Theorem 10.14 can be
found in [79, Lemma 1.2]. We could not find the precise version stated in Theorem 10.14.
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Notes on Section 10.3. Distances in the configuration model were first obtained in a
non-rigorous way in [220, 221]. Theorem 10.16 is [132, Theorem 4.1]. A logn lower bound
on the diameter is also proved in [153]. Theorem 10.45 is proved in [149]. Theorem 10.46
is proved in [152]. The proof of Theorem 10.28 is close in spirit to the analysis in [238],
the only difference being that we have simplified the argument slightly.

Notes on Section 10.4. Proposition 10.23 is adapted from [168, Lemma 5.1]. The path
counting techniques used in Section 10.4 are novel. Comparisons to branching processes
appear in many papers on the configuration model (see, in particular, [42, 149, 153]). We
have strived for a construction that is most transparent and complete.

Notes on Section 10.5. Theorem 10.33 is novel, as far as we are aware.

Notes on Section 10.6. Theorem 10.39 is proved in [97]. A related result, under
stronger conditions, appeared in [96]. Branching processes with infinite mean have at-
tracted considerable attention, see e.g., [242, 244] and the references therein. There is a
balance between the generality of the results and the conditions on the offspring distribu-
tion, and in our opinion Theorem 10.39 strikes a nice balance in that the result is relatively
simple and the conditions fairly general.

Notes on Section 10.7. Theorem 10.42 is improved to the case where E[D3
n]→ E[D3] in

[154]. Interestingly, the behavior is different when Condition 7.5(a)-(b) hold, but E[D3
n]→

∞ sufficiently fast. Also this case is studied in in [154].
Theorem 10.43 is proved in [176]. For related (but much weaker) results in the case of

fixed degrees satisfying an assumption as in Condition 7.5, see [146].
Theorem 10.44 is proved in [128]. The explicit identification of P(Hn = 2) is novel.

One might argue that including degrees larger than n − 1 is artificial in a network with
n vertices. In fact, in many real networks, the degree is bounded by a physical constant.
Therefore, in [128], also the case where the degrees are conditioned to be smaller than nα

is considered, where α is an arbitrary positive number. Of course, we cannot condition on
the degrees to be at most M , where M is fixed and independent on n, since in this case,
the degrees are uniformly bounded, and this case is treated in [128] as well. Therefore,
[128] considers cases where the degrees are conditioned to be at most a given power of n.
In this setting, it turns out that the average distance is equal to k+3 with high probability,
whenever α ∈ (1/(τ + k), 1/(τ + k − 1)).

Notes on Section 10.8. The configuration model with household structure was investi-
gated in [25, 26] in the context of epidemics on social networks. Particularly when studying
epidemics on networks, clustering is highly relevant, as clustering slows down the spread
of infectious diseases. Random intersection graph with prescribed degrees and groups are
studied in a non-rigorous way in [223, 224].

The directed configuration model was investigated in [94], where the results discussed
here are proved. In fact, the results in [94] are much more detailed than the one in
Theorem 10.47, and also include detailed bounds on the strongly connected component in
the subcritical regime, as well as precise bounds on the number of vertices whose forward
and backward clusters are large and the asymptotic size of forward and backward clusters.



Chapter 11

Preferential attachment revisited

In this chapter, we further investigate preferential attachment models. In Section 11.1 we
start by discussing an important tool in this chapter: exchangeable random variables and
their distribution described in De Finetti’s Theorem. We apply these results to Polya urn
schemes, which, in turn, we use to describe the distribution of the degrees in preferential
attachment models. In Section 11.2 we investigate the connectivity of PAt(m, δ). In Section
11.4 we investigate graph distances in PAt(m, δ).

Throughout this chapter, we work with the preferential attachment model defined in
Section 8.1 and denoted by (PAt(m, δ))t≥1, unless stated otherwise. We recall that this
model starts with a single vertex with m self-loops at time t = 1 and at each time a vertex
is added with m edges which are attached to the vertices in the graph with probabilities
given in (8.1.1) for m = 1, and as described on page 162 for m ≥ 2. This model can also be
obtained by identifying blocks of m vertices in (PA1,δ/m(t))t≥1. We sometimes also discuss

other variants of the model, such as (PA(b)

m,δ(t))t≥1, in which the m = 1 model does not
have any self-loops.

11.1 Exchangeable random variables and Polya urn schemes

In this section, we discuss the distribution of infinite sequences of exchangeable random
variables and their applications to Polya urn schemes. We start by discussing De Finetti’s
Theorem.

De Finetti’s Theorem for infinite sequences of exchangeable random variables.
A sequence of random variables (Xi)i≥1 is called exchangeable when, for every n ≥ 1, the
distribution of (Xi)

n
i=1 is the same as the one of (Xσ(i))

n
i=1 for any permutation σ : [n]→

[n]. Clearly, when a sequence of random variables is i.i.d., then it is also exchangeable.
Remarkably, however, the distribution of an infinite sequence of random variables is always
a mixture of independent and identically distributed random variables. This is the content
of De Finetti’s Theorem, which we state and prove here in the case where (Xi)i≥1 are
indicator variables:

Theorem 11.1 (De Finetti’s Theorem). Let (Xi)i≥1 be an infinite sequence of exchange-
able random variables, and assume that Xi ∈ {0, 1}. Then there exists a random variable
U with P(U ∈ [0, 1]) = 1 such that, for all 1 ≤ k ≤ n

P(X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0) = E[Uk(1− U)n−k]. (11.1.1)

De Finetti’s Theorem (Theorem 11.1) states that an infinite exchangeable sequence of
indicators has the same distribution as an independent Bernoulli sequence with a random
success probability U . Thus, the different elements of the sequence are not independent,
but their dependence enters only through the random success probability U .

In the proof we will see that Theorem 11.1 in fact holds more generally, for example,
when Xi takes on at most a finite number of values. Since we will use Theorem 11.1 only
for indicator variables, we refrain from stating this version.

Define Sn to be the number of ones in (Xi)
n
i=1, i.e.,

Sn =

n∑
k=1

Xk. (11.1.2)
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Then Theorem 11.1 is equivalent to the statement that

P(Sn = k) = E
[
P
(
Bin(n,U) = k

)]
. (11.1.3)

Equation (11.1.3) also allows us to compute the distribution of U . Indeed, when we would
have that

lim
n→∞

nP(Sn = dune) = f(u), (11.1.4)

where f is a density, then (11.1.3) implies that f is in fact the density of the random
variable U . This will be useful in applications of De Finetti’s Theorem (Theorem 11.1).

Furthermore, Sn/n
a.s.−→ U by the strong law of large numbers applied to the conditional

law given U .

Exercise 11.1 (The number of ones in (Xi)
n
i=1). Prove (11.1.3).

Proof of Theorem 11.1. The proof makes use of Helly’s Theorem, which states that any
sequence of bounded random variables has a weakly converging subsequence. We fix m ≥ n
and condition on Sm to write

P(X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0)

=

m∑
j=k

P
(
X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0

∣∣Sm = j
)
P(Sm = j). (11.1.5)

By exchangeability and conditionally on Sm = j, each sequence (Xi)
m
i=1 containing pre-

cisely j ones is equally likely. Since there are precisely
(
m
j

)
such sequences, and precisely(

n
k

)(
m−n
j−k

)
of them start with k ones and n− k zeros, we obtain

P
(
X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0

∣∣Sm = j
)

=

(
n
k

)(
m−n
j−k

)(
m
j

) . (11.1.6)

We therefore arrive at

P(X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0)

=

m∑
j=k

j · · · (j − k + 1) · (m− j) · · · (m− j − (n− k) + 1)

m · · · (m− n+ 1)
P(Sm = j). (11.1.7)

When m→∞ and for k ≤ n fixed,

j · · · (j − k + 1) · (m− j) · · · (m− j − (n− k) + 1)

m · · · (m− n+ 1)
=
( j
m

)k(
1− j

m

)n−k
+ o(1). (11.1.8)

Recall that Sm = j, so that

P(X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0) = lim
m→∞

E
[
Y km(1− Ym)n−k

]
, (11.1.9)

where Ym = Sm/m. Note that it is here that we make use of the fact that (Xi)i≥1 is an
infinite exchangeable sequence of random variables.

We have that 0 ≤ Ym ≤ 1 since 0 ≤ Sm ≤ m, so that the sequence of random variables
(Ym)m≥1 is a bounded sequence. By Helly’s Theorem, it contains a weakly converging
subsequence, i.e., there exists a (Yml)l≥1 with liml→∞ml = ∞ and a random variable U
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such that Yml
d−→ U . Since the random variable Y km(1− Ym)n−k is uniformly bounded for

each k, n, Lebegues Dominated Convergence Theorem (Theorem A.42) gives that

lim
m→∞

E
[
Y km(1− Ym)n−k

]
= lim
l→∞

E
[
Y kml(1− Yml)

n−k] = E
[
Uk(1− U)n−k

]
(11.1.10)

This completes the proof.

De Finetti’s Theorem implies that when Xk and Xn are coordinates of an infinite ex-
changeable sequence of indicators, then they are positively correlated:

Exercise 11.2 (Positive correlation of exchangeable random variables). Let (Xi)i≥1 be an
infinite sequence of exchangeable random variables. Prove that

P(Xk = Xn = 1) ≥ P(Xk = 1)P(Xn = 1). (11.1.11)

Prove that equality holds if and only if there exists a p such that P(U = p) = 1.

In the proof of De Finetti’s Theorem, it is imperative that the sequence (Xi)i≥1 is infinite.
This is not mere a technicality of the proof. Rather, there are finite exchangeable sequences
of random variables for which the equality (11.1.1) does not hold. Indeed, take an urn
filled with b blue and r red balls and draw balls successively without replacement. Let Xi
denote the indicator that the ith ball drawn is blue. Then, clearly, the sequence (Xi)

r+b
i=1 is

exchangeable. However,

P(X1 = X2 = 1) =
b(b− 1)

(b+ r)(b+ r − 1)
<
( b

b+ r
)2 = P(X1 = 1)P(X2 = 1), (11.1.12)

so that X1 and X2 are negatively correlated. As a result, (11.1.1) fails.

Polya urn schemes. An important application of De Finetti’s Theorem (Theorem 11.1)
arises in so-called Polya urn schemes. An urn consists of a number of balls, and we
successively draw balls and replace them in the urn. We start with B0 = b0 blue balls
and R0 = r0 red balls at time n = 0. Let Wb,Wr : N → (0,∞) be two weight functions.
Then, at time n + 1, the probability of drawing a blue ball, conditionally on the number
Bn of blue balls at time n, is proportional to the weight of the blue balls at time n, i.e.,
the conditional probability of drawing a blue ball is equal to

Wb(Bn)

Wb(Bn) +Wr(Rn)
. (11.1.13)

After drawing a ball, it is replaced together with a second ball of the same color. We shall
denote this Polya urn scheme by ((Bn, Rn))∞n=1. Naturally, Bn +Rn = b0 + r0 + n.

In this section, we restrict to the case where there are ar, ab ≥ 0 such that

Wb(k) = ab + k, Wr(k) = ar + k, (11.1.14)

i.e., both weight functions are linear with the same slope, but possibly a different intercept.
The main result concerning Polya urn schemes is the following theorem:

Theorem 11.2 (Limit theorem for linear Polya urn schemes). Let ((Bn, Rn))∞n=1 be a
Polya urn scheme with linear weight functions Wb and Wr as in (11.1.14). Then, as
n→∞,

Bn
Bn +Rn

a.s.−→ U, (11.1.15)

where U has a Beta-distribution with parameters a = b0 + ab and b = r0 + ar, and

P(Bn = B0 + k) = E
[
P
(
Bin(n,U) = k

)]
. (11.1.16)
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Proof of Theorem 11.2. Let Xn denote the indicator that the nth ball drawn is blue. We
first show that (Xn)n≥1 is an infinite exchangeable sequence. For this, we note that

Bn = b0 +

n∑
j=1

Xj , Rn = r0 +

n∑
j=1

(1−Xj) = r0 − b0 + n−Bn. (11.1.17)

Now, for any sequence (xt)
n
t=1,

P
(
(Xt)

n
t=1 = (xt)

n
t=1

)
=

n∏
t=1

Wb(bt)
xtWr(rt)

1−xt

Wb(bt) +Wr(rt)
, (11.1.18)

where bt = b0 +
∑t
j=1 xj and rt = R0 − B0 + t − bt. Denote k =

∑n
t=1 xt. Then, by

(11.1.14) and (11.1.17),

n∏
t=1

(Wb(bt) +Wr(rt)) =

n−1∏
t=0

(b0 + r0 + ab + ar + t), (11.1.19)

while

n∏
t=1

Wb(bt)
xt =

k−1∏
m=0

(b0 + ab +m),

n∏
t=1

Wr(rt)
1−xt =

n−k−1∏
j=0

(r0 + ar + j). (11.1.20)

Thus, we arrive at

P
(
(Xt)

n
t=1 = (xt)

n
t=1

)
=

∏k−1
m=0(b+m)

∏n−k−1
j=0 (r + j)∏n−1

t=0 (b+ r + t)
, (11.1.21)

where b = b0 + ab and r = r0 + ar. In particular, (11.1.21) does not depend on the
order in which the elements of (xt)

n
t=1 appear, so that the sequence (Xn)n≥1 is an infinite

exchangeable sequence. Thus, by De Finetti’s Theorem (Theorem 11.1), the sequence
(Xn)n≥1 is a mixture of Bernoulli random variables with a random success probability U ,
and we are left to compute the distribution of U . We also observe that the distribution of
depends only on b0, r0, ab, ar through b = b0 + ab and r = r0 + ar.

We next verify (11.1.4). For fixed 0 ≤ k ≤ n, there are
(
n
k

)
sequences of k ones and

n− k zeros. Each sequence has the same probability given by (11.1.21). Thus,

P(Sn = k) =

(
n

k

)∏k−1
m=0(b+m)

∏n−k−1
j=0 (r + j)∏n−1

t=0 (b+ r + t)

=
Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
× Γ(k + b)

Γ(b)
× Γ(n− k + r)

Γ(r)
× Γ(b+ r)

Γ(n+ b+ r)

=
Γ(b+ r)

Γ(r)Γ(b)
× Γ(k + b)

Γ(k + 1)
× Γ(n− k + r)

Γ(n− k + 1)
× Γ(n+ 1)

Γ(n+ b+ r)
. (11.1.22)

For k and n− k large, by (8.2.8),

P(Sn = k) =
Γ(b+ r)

Γ(r)Γ(b)

kb−1(n− k)r−1

nb+r−1
(1 + o(1)). (11.1.23)

Taking k = dune (recall (11.1.4))

lim
n→∞

nP(Sn = dune) =
Γ(b+ r)

Γ(r)Γ(b)
ub−1(1− u)r−1, (11.1.24)

which is the density of a Beta-distribution with parameters b and r.
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Applications to scale-free trees. We close this section by discussing applications of
Polya urn schemes to scale-free trees. We start at time t = 2 with two vertices of which
vertex 1 has degree d1 and vertex 2 has degree d2. After this, we successively attach vertices
to older vertices with probability proportional to the degree plus δ > −1. We do not allow
for self-loops, so that indeed we obtain a tree. This is a generalization of (PAt(1, δ))

∞
t=2,

in which we are are more flexible in choosing the initial graph.
We now decompose the growing tree in two trees. For i = 1, 2, we let Ti(t) be the tree

of vertices which are closer to i than to 3− i. Thus, the tree T2(t) consists of those vertices
for which the path in the tree from the vertex to the root passes through vertex 2, and
T1(t) consists of the remainder of the scale-free tree. Let Si(t) = |Ti(t)| denote the number
of vertices in Ti(t). Clearly, S1(t) + S2(t) = t, which is the total number of vertices of the
tree at time t.

Theorem 11.3 (Tree decomposition for scale-free trees). As t→∞,

S1(t)

S1(t) + S2(t)

a.s.−→ U, (11.1.25)

where U has a Beta-distribution with parameters a = d1+δ
2+δ

and b = d2+δ
2+δ

, and

P(S1(t) = k) = E
[
P
(
Bin(t− 1, U) = k − 1

)]
. (11.1.26)

By Theorem 11.3, we can decompose a scale-free tree into two disjoint scale-free trees each
of which contains a positive proportion of the vertices that converges almost surely to a
Beta-distribution with parameters a = d1+δ

2+δ
and b = d2+δ

2+δ
.

Proof of Theorem 11.3. The evolution of (S1(t))t≥2 can be viewed as a Polya urn scheme.
Indeed, when S1(t) = s1(t), then the probability of attaching the (t+ 1)st vertex to T1(t)
is equal to

(2s1(t) + d1 − 2) + δs1(t)

(2s1(t) + d1 − 2) + δs1(t) + 2(s2(t) + d2) + δs2(t)
, (11.1.27)

since the number of vertices in Ti(t) equals Si(t), while the total degree of Ti(t) equals
(2Si(t) + di − 2). We can rewrite this as

s1(t) + d1−2
2+δ

s1(t) + s2(t) + d1+d2−4
2+δ

, (11.1.28)

which is equal to (11.1.13) in the case (11.1.14) when r0 = b0 = 1 and ab = d1−2
2+δ

, ar = d2−2
2+δ

.
Therefore, the proof of Theorem 11.3 follows directly from Theorem 11.2.

Exercise 11.3 (Uniform recursive trees). A uniform recursive tree is obtained by starting
with a single vertex, and successively attaching the (n+ 1)st vertex to a uniformly chosen
vertex in [n]. Prove that for uniform recursive trees the tree decomposition described above
is such that

S1(n)

S1(n) + S2(n)

a.s.−→ U, (11.1.29)

where U is uniform on [0, 1]. Use this to prove that P(S1(n) = k) = 1
n

for each k ∈ [n].

We continue by discussing an application of Polya urn schemes to the relative sizes of the
initial degrees. For this, we fix an integer k ≥ 2, and only regard times t ≥ k at which an
edge is attached to one of the k initial vertices. We work with (PAt(1, δ))t≥1, so that we
start at time t = 1 with one vertices with one self-loop, after which we successively attach
vertices to older vertices with probability proportional to the degree plus δ > −1, allowing
for self-loops. The main result is as follows:
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Theorem 11.4 (Relative degrees in scale-free trees). For (PAt(1, δ))t≥1, as t→∞,

Dk(t)

D1(t) + · · ·+Dk(t)

a.s.−→ Bk, (11.1.30)

where Bk has a Beta-distribution with parameters a = 1 + δ and b = (k − 1)(2 + δ).

By Theorem 8.8, Bk = ξk/(ξ1 + · · ·+ξk) (where we also use that these random variables
are positive almost surely). Theorem 11.4 allows to identify properties of the law of the
limiting degrees.

Proof of Theorem 11.4. Denote the sequence of stopping times (τk(n))n≥2k−1, by τk(2k −
1) = k − 1, and

τk(n) = inf{t : D1(t) + · · ·+Dk(t) = n}, (11.1.31)

i.e., τk(n) is the time where the total degree of vertices 1, . . . , k equals n. Since Dj(t)
a.s.−→∞

for every j, τk(n) <∞ for every n. Moreover, since limn→∞ τk(n) =∞,

lim
t→∞

Dk(t)

D1(t) + · · ·+Dk(t)
= lim
n→∞

Dk(τk(n))

D1(τk(n)) + · · ·+Dk(τk(n))
= lim
n→∞

Dk(τk(n))

n
.

(11.1.32)
Now, the random variables

(
(Dk(τk(n)), D1(τk(n)) + · · · + Dk−1(τk(n)))

)
n≥2k−1

form a

Polya urn scheme, with Dk(τk(2k−1)) = 1, and D1(τk(2k−1))+ · · ·+Dk−1(τk(2k−1)) =
2k − 2. The edge at time τk(n) is attached to vertex k with probability

Dk(t) + δ

n+ kδ
, (11.1.33)

which are the probabilities of a Polya urn scheme in the linear weight case in (11.1.14)
when ab = δ, ar = (k − 1)δ, b0 = 1, r0 = 2(k − 1). Thus, the statement follows from
Theorem 11.2.

Exercise 11.4 (Relative degrees of vertices 1 and 2). Compute limt→∞ P(D2(t) ≥ xD1(t))
for (PAt(1, δ))t≥1.

11.2 Connectivity of preferential attachment models

In this section we investigate the connectivity of (PAt(m, δ))t≥1. We start by describing
the connectivity when m = 1, which is special. For m = 1, the number of connected
components of PAt(1, δ) Nt has distribution given by

Nt = I1 + I2 + · · ·+ It, (11.2.1)

where Ii is the indicator that the ith edge connects to itself, so that (Ii)i≥1 are independent
indicator variables with

P(Ii = 1) =
1 + δ

(2 + δ)(i− 1) + 1 + δ
. (11.2.2)

It is not hard to see that this implies that Nt/ log t converges in probability to (1 + δ)/(2 +
δ) < 1, so that whpthere exists a largest connected component of size at least t/ log t. As
a result, whp PAt(1, δ) is not connected, but has few connected components which are
almost all quite large. We do not elaborate more on the connectivity properties for m = 1
and instead leave the asymptotics of the number of connected components as an exercise:
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Exercise 11.5 (CLT for number of connected components for m = 1). Show that the
number of connected components Nt in PAt(1, δ) satisfies a central limit theorem with
equal asymptotic mean and variance given by

E[Nt] =
1 + δ

2 + δ
log t(1 + o(1)), Var(Nt) =

1 + δ

2 + δ
log t(1 + o(1)). (11.2.3)

For m ≥ 2 the situation is entirely different since then PAt(m, δ) is connected whp:

Theorem 11.5 (Connectivity of PAt(m, δ) for m ≥ 2). Fix m ≥ 2. Then, with high
probability, PAt(m, δ) is connected.

Proof of Theorem 11.5. Again we let Nt denote the number of connected components of
PAt(m, δ). We note that, It = Nt − Nt−1 = 1 precisely when all m edges of vertex t are
attached to vertex t. Thus

P(It = 1) =

m∏
e=1

2e− 1 + δ

(2m+ δ)t+ (2e− 1 + δ)
. (11.2.4)

For m ≥ 2
∞∑
t=2

P(It = 1) <∞, (11.2.5)

so that, almost surely, It = 1 only occurs finitely often. As a result, limt→∞Nt < ∞
almost surely since Nt ≤ 1 +

∑∞
t=2 It. This implies that, for m ≥ 2, PAt(m, δ) almost

surely contains only finitely many connected components. However, PAt(m, δ) has a pos-
itive probability of being disconnected at a certain time t ≥ 2 (see Exercise 11.6 below).
However, for m ≥ 2, It = Nt −Nt−1 can also be negative, since the edges of the vertex vt
can be attached to two distinct connected components. We will see tat this hapens with
high probability, which explains why Nt = 1 whp for t large, as we next show.

We first fix K ≥ 1 large. Then, with probability converging to 1 as K →∞,
∑∞
t=K It =

0. We condition on
∑∞
t=K It = 0, so that no new connected components are formed after

time K, and we are left to prove that for t sufficiently large, the vertices 1, . . . ,K are whp
all connected in PAt(m, δ). This proof proceeds in two steps. In the first step, we fix
i ∈ [K] and prove that whp the number of vertices that are connected to i ∈ [K] is large
when t → ∞. In the next step, we show that this implies that for t sufficiently large and
whp in fact all vertices in [K] are connected to i in PAt(m, δ).

To prove a lower bound on the number of vertices attached to vertex i ∈ [K], we lower
bound this number by a Polya urn scheme. We denote b0 = 1 and r0 = i. We recursively
define the Polya urn scheme ((Bn, Rn))n≥1 as follows. We draw a ball, where the color of
the ball is blue with probability proportional to the number of blue balls. If we draw a
blue ball, then we replace it with an extra blue ball. If we draw a red ball, then we replace
it with an extra red ball. We claim that the number of vertices Ci(t) in the connected
component of vertex i at time t, is bounded below by Bt−i. We prove this by induction
on t ≥ i. At time i, the number of vertices connected to vertex i is at least 1 (namely,
vertex i itself), and this proves the claim since B0 = b0 = 1. Tis initializes the induction
hypothesis. To advance the induction hypothesis, suppose that Ci(t) ≥ Bt−i and we will
prove that also Ci(t + 1) ≥ Bt+1−i. When Ci(t) ≥ Bt−i, the total weight of the vertices
connected to vertex i at time t is at least Bt−i(2m + δ), while the total weight of all
vertices is equal to t(2m+ δ) + (1 + δ) ≤ (t+ 1)(2m+ δ) = (2m+ δ)(Bt−i + Rt−i), since
Bt−i+Rt−i = (t−i)+b0+r0 = t+1. Now, we say that we draw a red ball at time t+1 when
the first edge of vertex t+ 1 is attached to a vertex which is in the connected component
of vertex i at time t. If this happens, then indeed vertex t + 1 will be in the connected
component of vertex i, and Ci(t) is increased by (at least) one. Thus, this advances the
induction hypothesis, and proves the claim.



314 Preferential attachment revisited

Now, Bt/t
a.s.−→ U where U has a Beta-distribution with parameters a = 1 and b = i

by Theorem 11.2. Since Ci(t) ≥ Bt−i and P(U = 0) = 0 whp Ci(t) ≥ ε(t − i) for all t
sufficiently large when ε > 0 is small. We conclude that, as t→∞,

P(lim inf
t→∞

Ci(t)/t ≥ ε ∀i ∈ [K]) = 1− o(1) (11.2.6)

as ε ↓ 0. This completes the first step of the analysis, and shows that the size of the
connected components of each of the vertices in [K] is whp at least ε > 0.

For the second step, to show that whp all vertices in [K] are connected to one another,
we claim that when Ci(t)/t ≥ ε and Cj(t)/t ≥ ε for i 6= j, then whp i is connected to j in
PA2t(m, δ). Indeed, let l ∈ [2t] \ [t]. Then, when the first edge of vertex l is attached to a
vertex in the connected component of vertex i, and the second to a vertex in the connected
component of vertex j, then i and j are connected to one another in PA2t(m, δ). In this
case, we say that l is a t-connector for vertices i and j. Independently of the attachment
of the edges of vertices t + 1, . . . , l − 1, and conditionally on PA2t(m, δ), the probability
that l is a t-connector for the vertices i and j is at least

Ci(t)(2m+ δ)

l(2m+ δ) + 1 + δ

Cj(t)(2m+ δ)

l(2m+ δ) + 2 + δ
≥ Ci(t)Cj(t)

(2t+ 1)2
. (11.2.7)

When Ci(t)/t ≥ ε and Cj(t)/t ≥ ε, this is at least ε2/16 independently of all previous
connections. Thus, the probability that there is no t-connector in [2t]\ [t] for vertices i and
j is at most (

1− ε2

16

)t
≤ e−ε

2t/16. (11.2.8)

This tends to 0 exponentially when t→∞, so that we obtain that the probability that the
probability that there exists i, j ∈ [K] that are not connected in PA2t(m, δ) tends to 0 as
t→∞. This proves that PA2t(m, δ) is whp connected for t large, which implies Theorem
11.5.

Exercise 11.6 (All-time connectivity for (PAt(m, δ))t≥1). Fix m ≥ 2. Compute the prob-
ability that (PAt(m, δ))t≥1 is connected for all times t ≥ 1, and show that this probability
is in (0, 1).

11.3 Logarithmic distances in preferential attachment trees

In this section, we investigate distances in scale-free trees, arising for m = 1:

Theorem 11.6 (Typical distance in scale-free trees). Fix m = 1 and δ > −1. Then

Ht
log t

P−→ 2(1 + δ)

(2 + δ)
. (11.3.1)

Theorem 11.7 (Diameter of scale-free trees). Fix m = 1 and δ > −1. Let γ be the
non-negative solution of

γ + (1 + δ)(1 + log γ) = 0. (11.3.2)

Then
diam(PAt(1, δ))

log t

P−→ 2(1 + δ)

(2 + δ)γ
. (11.3.3)
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The proof of Theorems 11.6–11.7 rely on the fact that PAt(1, δ) consists of a collection
of trees with precisely one self-loop. There is a close analogy between these trees and
so-called uniform recursive trees. In uniform recursive trees, we grow a tree such that at
time 1, we have a unique vertex called the root, with label 1. At time t, we add a vertex
and connect it to a uniformly chosen vertex in the tree. See [250] for a survey of recursive
trees.

A variant of a uniform recursive tree is the case where the probability that a newly
added vertex is attached to a vertex is proportional to the degree of the vertices (and, for
the root, the degree of the root plus one). This process is called a random plane-oriented
recursive tree. For a uniform recursive tree of size t, it is proved by Pittel in [235] that
the maximal distance between the root and any other vertex is with high probability equal
to 1

2γ
log t(1 + o(1)), where γ satisfies (11.3.2) with δ = 0. It is not hard to see that this

implies that the maximal graph distance between any two vertices in the uniform recursive
tree is equal to 1

γ
log t(1 + o(1)). We shall make use of similar arguments below to prove

Theorem 11.7.

Exercise 11.7 (Relation θ and γ). Prove that the solution γ of (11.3.2) satisfies γ < 1.
What does this imply for the diameter and typical distances in scale-free trees?

Exercise 11.8 (Bound on γ). Prove that the solution γ of (11.3.2) satisfies γ ∈ (0, e−1).

In the proof of Theorem 11.7 it will be useful to work with PA(b)

t (1, δ) instead of
PAt(1, δ), for which the same result holds:

Theorem 11.8 (Distances in of scale-free trees PA(b)

t (1, δ)). Fix m = 1 and δ > −1, and
let γ be the solution of (11.3.2). Then

Ht
log t

P−→ 2(1 + δ)

(2 + δ)
. (11.3.4)

and
diam(PA(b)

t (1, δ))

log t

P−→ 2(1 + δ)

(2 + δ)γ
. (11.3.5)

In order to prove Theorem 11.8, we make use of a result on the height of scale-free trees,
which is the maximal distance between any of the vertices of the tree to its root. For a
tree T , we denote the height of T by height(T ). Further, we let V denote a vertex in [t]
chosen uniformly at random, and we let Gt denote the height of V . Then the asymptotics
of heights in scale-free trees is as follows:

Theorem 11.9 (Height of scale-free trees). Fix m = 1 and δ > −1, and let γ be the
solution of (11.3.2). Then

Gt
log t

P−→ (1 + δ)

(2 + δ)
(11.3.6)

and
height

(
PA(b)

t (1, δ)
)

log t

a.s.−→ (1 + δ)

(2 + δ)γ
. (11.3.7)

We start by proving the upper bound in Theorem 11.9. We remark that the almost sure
limit of the height in Theorem 11.9 does not depend on the precise starting configuration
of the graph PA(b)

2 (1, δ).
In the proof of the upper bound, we make use of the following result which computes

the probability mass function of the distance between vertex vt and the root v1. Before
stating the result, we need some more notation. We write t −→ s when in (PA(b)

t (1, δ))t≥1

one of the edges of vertex vt is connected to vertex vs. Note that for this to happen, we
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need that t > s. For s1 = t > s2 > · · · > sk = 1, and denoting ~sk = (s1, s2, . . . , sk), we
write

E~sk =

k−1⋂
i=1

{si −→ si+1}. (11.3.8)

For a configuration of PA(b)

t (1, δ), we let dist(vt, vs) denote the unique value of k such
that t = s1 −→ s2 −→ · · · −→ sk−1 −→ sk = s. Then the probability mass function of
dist(vt, vs) can be identified as follows:

Proposition 11.10 (Distribution of dist(vt, vs) in PA(b)

t (1, δ)). Fix m = 1 and δ > −1.
Then, for all t > s,

P(dist(vt, vs) = k) =
(1 + δ

2 + δ

)k Γ(t+ 1
2+δ

)Γ(s)

Γ(s+ 1
2+δ

)Γ(t+ 1)

∑
~sk

k−1∏
i=1

1

si
, (11.3.9)

where the sum is over ordered vectors ~sk = (s0, . . . , sk) of length k + 1 with s0 = t and
sk = s. Further,

P(vt −→ vs1 −→ · · · −→ vsk−1 −→ vs) =
(1 + δ

2 + δ

)k Γ(t+ 1
2+δ

)Γ(s)

Γ(s+ 1
2+δ

)Γ(t+ 1)

k−1∏
i=1

1

si
, (11.3.10)

Proof of Proposition 11.10. Since the path between vertex vt and vs is unique

P(dist(vt, vs) = k) =
∑
~sk

P
( k−1⋂
i=0

{si −→ si+1}
)
, (11.3.11)

where again the sum is over all ordered vectors ~sk = (s0, . . . , sk) of length k+ 1with s0 = t
and sk = s. Therefore, (11.3.9) follows immediately from (11.3.10).

We claim that the events {si −→ si+1} are independent, i.e., for every sequence ~sk =
(s0, . . . , sk)

P
( k−1⋂
i=0

{si −→ si+1}
)

=

k−1∏
i=0

P(si −→ si+1). (11.3.12)

We prove the independence in (11.3.12) by induction on k. For k = 0, there is nothing to
prove, and this initializes the induction hypothesis. To advance the induction hypothesis
in (11.3.12), we condition on PA(b)

s10−1(1, δ) to obtain

P
( k−1⋂
i=0

{si −→ si+1}
)

= E
[
P
( k−1⋂
i=0

{si −→ si+1}
∣∣∣PA(b)

s1−1(1, δ)
)]

= E
[
1{

⋂k−1
i=1 {si−→si+1}}

P
(
s0 −→ s1 | PA(b)

s0−1(1, δ)
)]
, (11.3.13)

since the event
⋂l−1
i=1{si −→ si+1} is measurable with respect to PA(b)

s0−1(1, δ). Furthermore,
from (8.1.2),

P
(
s0 −→ s1 | PA(b)

s0−1(1, δ)
)

=
Ds1(s0 − 1) + δ

(2 + δ)(s0 − 1)
. (11.3.14)

In particular,

P
(
s0 −→ s1

)
= E

[Ds1(s0 − 1) + δ

(2 + δ)(s0 − 1)

]
. (11.3.15)
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Therefore,

P
( k−1⋂
i=0

{si −→ si+1}
)

= E
[
1{

⋂k−1
i=1 {si−→si+1}}

Ds2(s1 − 1) + δ

(2 + δ)(s1 − 1)

]
= P

( k−1⋂
i=1

{si −→ si+1}
)
E
[Ds1(s0 − 1) + δ

(2 + δ)(s0 − 1)

]
, (11.3.16)

since the random variable Ds1(s0 − 1) only depends on how many edges are connected

to s1 after time s1, and is thus independent of the event
⋂l−1
i=1{si −→ si+1}, which only

depends on the attachment of the edges up to and including time s1. We conclude that

P
( k−1⋂
i=0

{si −→ si+1}
)

= P
(
s1 −→ s2

)
P
( k−1⋂
i=0

{si −→ si+1}
)
. (11.3.17)

The claim in (11.3.12) for k follows from the induction hypothesis.
Combining (11.3.11) with (11.3.12) and (11.3.15), we obtain that

P(vt −→ vs1 −→ · · · −→ vsk−1 −→ vs) =

k−1∏
i=0

E
[Dsi+1(si − 1) + δ

(2 + δ)(si − 1)

]
. (11.3.18)

By (8.2.12),

E
[Di(t) + δ

(2 + δ)t

]
= (1 + δ)

Γ(t+ 1
2+δ

)Γ(i)

(2 + δ)tΓ(t)Γ(i+ 1
2+δ

)
=

1 + δ

2 + δ

Γ(t+ 1
2+δ

)Γ(i)

Γ(t+ 1)Γ(i+ 1
2+δ

)
, (11.3.19)

so that

P(vt −→ vs1 −→ · · · −→ vsk−1 −→ vs) =
(1 + δ

2 + δ

)k k−1∏
i=0

Γ(si + 1
2+δ

)Γ(si+1)

Γ(si + 1)Γ(si+1 + 1
2+δ

)

=
(1 + δ

2 + δ

)k Γ(s0 + 1
2+δ

)Γ(sk + 1)

Γ(sk + 1
2+δ

)Γ(s0)

k−1∏
i=1

1

si

=
(1 + δ

2 + δ

)k Γ(t+ 1
2+δ

)Γ(s)

Γ(1 + 1
2+δ

)Γ(t+ 1)

k−1∏
i=1

1

si
. (11.3.20)

This completes the proof of Proposition 11.10.

Proof of the upper bounds in Theorem 11.9. We first use Proposition 11.8 to prove that,
in probability,

lim sup
t→∞

dist(vt, v1)

log t
≤ (1 + δ)

(2 + δ)θ
. (11.3.21)

and, almost surely,

lim sup
t→∞

dist(vt, v1)

log t
≤ (1 + δ)

(2 + δ)γ
. (11.3.22)

We use (11.3.9) and symmetry to obtain

P(dist(vt, v1) = k) =
(1 + δ

2 + δ

)k Γ(t+ 1
2+δ

)

Γ(1 + 1
2+δ

)Γ(t+ 1)

∑∗

~tk−1

1

(k − 1)!

k−1∏
i=1

1

ti
, (11.3.23)
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where the sum now is over all vectors ~tk−1 = (t1, . . . , tk−1) with 1 < ti < t with dis-
tinct coordinates. We can upper bound this sum by leaving out the restriction that the
coordinates of ~tk−1 are distinct, so that

P(dist(vt, v1) = k) ≤
(1 + δ

2 + δ

)k Γ(t+ 1
2+δ

)

Γ(1 + 1
2+δ

)Γ(t+ 1)

1

(k − 1)!

( t−1∑
s=2

1

s

)k−1

. (11.3.24)

Since x 7→ 1/x is monotonically decreasing

t−1∑
s=2

1

s
≤
∫ t

1

1

x
dx = log t. (11.3.25)

Also, we use (8.2.8) to bound, for some constant Cδ > 0,

P(dist(vt, v1) = k) ≤ Cδt−
1+δ
2+δ

(
1+δ
2+δ

log t
)k−1

(k − 1)!
= CP

(
Poi
(1 + δ

2 + δ
log t

)
= k − 1

)
. (11.3.26)

Now we are ready to prove (11.3.9). We note that V is chosen uniformly in [t], so that

P(Gt = k) =
1

t

t∑
s=1

P(dist(vs, v1) = k) ≤ 1

t

t∑
s=1

Cδs
− 1+δ

2+δ

(
1+δ
2+δ

log s
)k−1

(k − 1)!

≤

(
1+δ
2+δ

log t
)k−1

t(k − 1)!

t∑
s=1

Cδs
− 1+δ

2+δ

≤ C

(
1+δ
2+δ

log t
)k−1

(k − 1)!
t−

1+δ
2+δ = CP

(
Poi
(1 + δ

2 + δ
log t

)
= k − 1

)
. (11.3.27)

Therefore,

P(Gt > k) ≤ CP
(

Poi
(1 + δ

2 + δ
log t

)
≥ k

)
. (11.3.28)

Now we fix ε > 0 and take k = kt = (1+ε)(1+δ)
(2+δ)

log t, to arrive at

P(Gt > kt) ≤ CP
(

Poi
(1 + δ

2 + δ
log t

)
≥ (1 + ε)(1 + δ)

(2 + δ)
log t

)
= o(1), (11.3.29)

by the law of large numbers and for any ε > 0, as required.
We continue to prove (11.3.22). By (11.3.26)

P(dist(vt, v1) > k) ≤ CδP
(

Poi
(1 + δ

2 + δ
log t

)
≥ k

)
. (11.3.30)

Now take k = a log t with a > (1 + δ)/(2 + δ), and use the large deviation bounds for
Poisson random variables in Exercise 2.17 with λ = (1 + δ)/(2 + δ) to obtain that

P(dist(vt, v1) > a log t) ≤ Cδt−[a(log (a(2+δ)/(1+δ))−1)+ 1+δ
2+δ

]. (11.3.31)

Let x be the solution of

x(log (x(2 + δ)/(1 + δ))− 1) +
1 + δ

2 + δ
= 1, (11.3.32)
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so that x = (1+δ)
(2+δ)γ

. Then, for every a > x,

P(dist(vt, v1) > a log t) = O(t−p), (11.3.33)

where

p = [a(log (a(2 + δ)/(1 + δ))− 1) + (1 + δ)(2 + δ)] > 1. (11.3.34)

As a result, by the Borel-Cantelli Lemma, the event {dist(vt, v1) > kt} occurs only finitely
often, and we conclude that (11.3.22) holds.

Proof of the lower bound on Gt in Theorem 11.9. We use (11.3.27) to obtain that

P(Gt ≤ k) ≤ CP
(

Poi
(1 + δ

2 + δ
log t

)
≤ k

)
. (11.3.35)

Fix kt = (1+δ)(1−ε)
(2+δ)

log t, and note that P(Gt ≤ kt) = o(1) by the law of large numbers.

To complete the proof of Theorem 11.9, we use the second moment method to prove

that height
(
PA(b)

t (1, δ)
)
≤ (1+δ)(1−ε)

(2+δ)γ
log t has vanishing probability. This is formalized in

the following proposition:

Proposition 11.11 (Height of PA(b)

t (1, δ) converges in probability). For every ε > 0 there
exists a η = η(ε) > 0 such that

P
(

height
(
PA(b)

t (1, δ)
)
≤ (1 + δ)(1− ε)

(2 + δ)γ
log t

)
≤ O(t−η). (11.3.36)

Proof of lower bound on height
(
PA(b)

t (1, δ)
)

in Theorem 11.9 subject to Proposition 11.11.

Fix α > 0, and take tk = tk(α) = eαk. For any α > 0, by Proposition 11.11 and the fact

that t−ηk is summable, almost surely, height
(
PA(b)

tk
(1, δ)

)
≥ (1+δ)(1−ε)

(2+δ)γ
log tk. This proves the

almost sure lower bound on height
(
PA(b)

t (1, δ)
)

along the subsequence (tk)k≥0. To extend

this to an almost sure lower bound when t → ∞, we use that t 7→ height
(
PA(b)

t (1, δ)
)

is
non-decreasing, so that, for every t ∈ [tk−1, tk],

height
(
PA(b)

t (1, δ)
)
≥ height

(
PA(b)

tk−1
(1, δ)

)
(11.3.37)

≥ (1 + δ)(1− ε)
(2 + δ)γ

log tk−1

≥ (1− ε)(1− α)
(1 + δ)

(2 + δ)γ
log t,

where the third inequality follows from the almost sure lower bound on height
(
PA(b)

tk−1
(1, δ)

)
.

The above bound holds for all ε, α > 0, so that letting ε, α ↓ 0 proves our claim.

Proof of Proposition 11.11. We perform a path counting argument. We fix T ∈ [t] and
k ∈ N. Recall that a path π = (π0, . . . , πk) is a sequence of vertices. In this section

we assume that πi > πi+1, since our paths will be part of the scale-free tree PA(b)

t (1, δ).

We write π ∈ PA(b)

t (1, δ) for the event that the edge from πi is connected to πi+1 for all
i = 0, . . . , k − 1. We let

Nk(t) = #{π ⊆ PA(b)

t (1, δ) : πk ∈ [T ]} (11.3.38)
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denote the number of k-step paths in PA(b)

t (1, δ) with an endpoint in [T ]. By Proposition
11.10

E[Nk(t)] =
(1 + δ

2 + δ

)k T∑
sk=1

t∑
s0=sk

Γ(s0 + 1
2+δ

)Γ(sk)

Γ(sk + 1
2+δ

)Γ(s0 + 1)

∑
~sk

k−1∏
i=1

1

si
(11.3.39)

≥
(1 + δ

2 + δ

)k T∑
sk=1

Γ(sk)

Γ(sk + 1
2+δ

)

t∑
s0=sk

Γ(s0 + 1
2+δ

)

Γ(s0 + 1)

∑
~sk

k−1∏
i=1

1

si
,

where again the sum is over all ordered ~sk = (s0, . . . , sk) with sk ∈ [T ] and s0 ∈ [t]. We
can bound this from below by

E[Nk(t)] ≥
(1 + δ

2 + δ

)k T∑
sk=1

Γ(sk)

Γ(sk + 1
2+δ

)

t∑
s0=sk

Γ(s0 + 1
2+δ

)

Γ(s0 + 1)

1

(k − 1)!

∑
~tk

k−1∏
i=1

1

ti
, (11.3.40)

where now the sum is over all vectors ~tk = (t1, . . . , tk−1) with distinct coordinates with
ti ∈ [sk + 1, s0 − 1]. For fixed s0, sk,

∑
~tk

k−1∏
i=1

1

ti
≥
( s0−1∑
s=sk+k

1

s

)k−1

. (11.3.41)

We can lower bound

s0−1∑
s=sk+k

1

s
≥
∫ s0

sk+k

1

x
dx = log(s0/(sk + k)) ≥ (1− ε) log t (11.3.42)

when s0 ≥ t/2, sk ≤ T and log[2(T + k)] ≤ ε log t. Thus, we conclude that

E[Nk(t)] ≥
(1 + δ

2 + δ

)k T∑
sk=1

Γ(sk)

Γ(sk + 1
2+δ

)

t∑
s0=t/2

Γ(s0 + 1
2+δ

)

Γ(s0 + 1)

1

(k − 1)!
[(1− ε) log t]k−1.

(11.3.43)
Using (8.2.8), we therefore arrive at

E[Nk(t)] ≥ (1 + o(1))
(1 + δ

2 + δ

)k T∑
sk=1

s
−1/(2+δ)
k

t∑
s0=t/2

s
−(1+δ)/(2+δ)
0

1

(k − 1)!
[(1− ε) log t]k

≥ c
(1 + δ

2 + δ

)k
T (1+δ)/(2+δ)t1/(2+δ) 1

(k − 1)!
[(1− ε) log t]k−1

= cT (1+δ)/(2+δ)t[1+(1−ε)(1+δ)]/(2+δ)P
(

Poi
(1 + δ

2 + δ
(1− ε) log t

)
= k − 1

)
.

(11.3.44)

When we take k = kt = (1+δ)(1−ε)
(2+δ)γ

log t, then

P
(

Poi
(1 + δ

2 + δ
(1− ε) log t

)
= k − 1

)
≥ ct−(1−ε)/

√
log t, (11.3.45)

so that
E[Nk(t)] ≥ T (1+δ)/(2+δ)tε/(2+δ)+o(1). (11.3.46)
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We next take T = tε to arrive at

E[Nk(t)] ≥ tε+o(1). (11.3.47)

This provides the required lower bound on E[Nk(t)]. We defer the proof of an upper bound
on Var(Nk(t)) to Section 11.5.1, where we prove that ther exist C > 0 and η = η(ε) > 0
such that Var(Nk(t)) ≤ CE[Nk(t)]2t−η (see Lemma 11.19). As a result, by the Chebychev
inequality (Theorem ??)

P(Nk(t) = 0) ≤ Var(Nk(t))

E[Nk(t)]2
≤ Ct−η. (11.3.48)

Since height(PA(b)

t (1, δ)) ≥ k when Nk(t) ≥ 1, this proves the claim in Proposition 11.11.

We complete this section by proving Theorems 11.7–11.8:
Proof of Theorems 11.7 and 11.8. We first prove the upper bound on the diameter of
PA(b)

t (1, δ) in Theorem 11.8, for which we use that

diam(PA(b)

t (1, δ)) ≤ 2 · height
(
PA(b)

t (1, δ)
)
. (11.3.49)

Equation (11.3.49) together with the upper bound in Theorem 11.9 imply that

lim sup
t→∞

diam(PA(b)

t (1, δ))

log t
≤ 2(1 + δ)

γ(2 + δ)
. (11.3.50)

For the lower bound, we use the lower bound on diam(PA(b)

t (1, δ)) in Theorem 11.8
and the decomposition of scale-free trees in Theorem 11.3. Theorem 11.3 states that
the scale-free tree PA(b)

t (1, δ) can be decomposed into two scale-free trees, having a sim-

ilar distribution as copies PA(b1)

S1(t)(1, δ) and PA(b2)

t−S1(t)(1, δ), where (PA(b1)

t (1, δ))t≥1 and

(PA(b2)

t (1, δ))t≥1 are independent scale-free tree processes, and the law of S1(t) is described
in (11.1.26). By this tree decomposition

diam
(
PA(b)

t (1, δ)
)
≥ height

(
PA(b1)

S1(t)(1, δ)
)

+ height
(
PA(b2)

t−S1(t)(1, δ)
)
. (11.3.51)

The two trees (PA(b1)

t (1, δ))t≥1 and (PA(b2)

t (1, δ))t≥1 are not exactly equal in distribu-

tion to (PA(b)

t (1, δ))t≥1, because the initial degree of the starting vertices at time t = 2
is different. However, the precise almost sure scaling in Theorem 11.3 does not depend
in a sensitive way on d1 and d2, and also the height of the scale-free tree in Theorem
11.9 does not depend on the starting graphs PA(b1)

2 (1, δ) and PA(b1)

2 (1, δ) (see the remark

below Theorem 11.9). Since S1(t)/t
a.s.−→ U , with U having a Beta-distribution with pa-

rameters a = 3+δ
2+δ

and b = 1+δ
2+δ

, we obtain that height
(
PA(b1)

S1(t)(1, δ)
)
/ log t

a.s.−→ (1+δ)
(2+δ)γ

and

height
(
PA(b2)

t−S1(t)(1, δ)
)
/ log t

a.s.−→ (1+δ)
(2+δ)γ

. Thus, we conclude that

lim sup
t→∞

diam
(
PA(b)

t (1, δ)
)

log t
≥ 2(1 + δ)

(2 + δ)γ
. (11.3.52)

Combining (11.3.50) and (11.3.52) proves Theorem 11.8.
To prove Theorem 11.7, we note that the connected components of PAt(1, δ) are similar

in distribution to single scale-free tree PA(b1)

t1
(1, δ), . . . ,PA(bNt)

tNt
(1, δ), apart from the initial

degree of the root. Here ti denotes the size of the ith tree at time t, and we recall that

Nt denotes the total number of trees at time t. Since Nt/ log t
d−→ (1 + δ)/(2 + δ) (recall

Exercise 11.5), whp the largest connected component has size at least εt/ log t. Since

log
(
εt/ log t

)
= log t(1 + o(1)), (11.3.53)

the result follows along the same lines as in the proof of Theorem 11.8.
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11.4 Small-world effect in preferential attachment models

In the next sections we investigate distances in preferential attachment models for m ≥
2. These results are not as complete as those for inhomogeneous random graphs or the
configuration model as discussed in Chapter 9 and 10, respectively. We investigate both
the diameter as well as typical distances. By Theorem 11.5, PAt(m, δ) is whp connected
when m ≥ 2. Recall that in a connected graph, the typical distance or hopcount Ht is the
graph distance between two vertices chosen uniformly at random from [t]. Recall further
that the power-law degree exponent for PAt(m, δ) is equal to τ = 3+δ/m. Therefore, τ > 3
precisely when δ > 0. For the generalized random graph and the configuration model, we
have seen that distaces are logarithmic in the size of the graph when τ > 3, and doubly
logarithmic when τ ∈ (2, 3). We will see that similar behavior is true for PAt(m, δ). We
start by analyzing the case where δ > 0.

Logarithmic distances in preferential attachment models with m ≥ 2 and δ > 0.
We start by investigating the case where δ > 0 so that also the power-law degree exponent
τ satisfies τ > 3. In this case, both the diameter as well as typical distances are logarithmic
in the size of the graph:

Theorem 11.12 (A log t bound for typical distances in PAMs). Fix m ≥ 1 and δ > 0.
For PAt(m, δ) there exist 0 < a1 < a2 <∞ such that, as t→∞,

P(a1 log t ≤ Ht ≤ a2 log t) = 1− o(1). (11.4.1)

Theorem 11.13 (A log t bound for the diameter in PAMs). Fix m ≥ 1 and δ > 0. For
PAt(m, δ) there exist 0 < b1 < b2 <∞ such that, as t→∞,

P(b1 log t ≤ diam(PAm,δ(t)) ≤ b2 log t) = 1− o(1). (11.4.2)

While we believe that there are constants a and b with a < b such that

Ht/ log t
P−→ a, diam(PAm,δ(t))/ log t, (11.4.3)

we have no proof for this fact.

Distances in preferential attachment models with m ≥ 2 and δ = 0. For δ = 0,
τ = 3. For NRn(w), distances grow as logn/ log logn in this case (recall Theorem 9.22).
The same turns out to be true for PAt(m, δ):

Theorem 11.14 (Diameter of PAt(m, δ) for δ = 0). Fix m ≥ 2 and δ = 0. For PAt(m, δ),
as t→∞,

Ht
log log t

log t

P−→ 1, (11.4.4)

and

diam(PAt(m, δ))
log log t

log t

P−→ 1. (11.4.5)

Theorem 11.14 shows that distances for τ = 3 are similar in PAt(m, δ) as in NRn(w).
Interestingly, for PAt(m, δ) with δ = 0, the diameter and the typical distances are close to
being equal. For NRn(w) and CMn(d) with power-law exponent τ = 3, this fact is not
known.
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Doubly logarithmic distances in preferential attachment models with m ≥ 2 and
δ < 0. We close this section by discussing the case where δ ∈ (−m, 0), so that τ ∈ (2, 3).
In this case, it turns out that distances again grow douby logarithmically in the size of the
graph:

Theorem 11.15 (log log t asymptotics for the diameter for δ < 0). Fix m ≥ 2 and assume
that δ ∈ (−m, 0). For PAt(m, δ), as t→∞,

Ht
log log t

P−→ 4

| log (τ − 2)| . (11.4.6)

Interestingly, the term 4/| log (τ − 2)| appearing in Theorems 11.15–?? replaces the term
2/| log (τ − 2)| in Theorems 10.17 and 10.33 for the configuration model CMn(d) with
power-law exponent τ ∈ (2, 3). Thus, typical distances are twice as big for PAt(m, δ)
compared to CMn(d) with the same power-law exponent. This can be intuitively explianed
as follows. For the configuration model CMn(d), vertices with high degrees are likely
to be directly connected (see e.g. Lemma 10.30). For PAt(m, δ), this is not the case.
However, vertices with high degrees are likely to be at distance two. This makes distances
in PAt(m, δ) about twice as big as those for CMn(d) with the same degree sequence. This
effect is special for δ < 0 and is studied in more detail in the next exercises:

Exercise 11.9 (Early vertices are whp at distance 2 for δ < 0). Let δ ∈ (−m, 0) and
m ≥ 2. Show that for i, j fixed

lim
t→∞

P(distPAt(m,δ)(vi, vj) ≤ 2) = 1. (11.4.7)

Exercise 11.10 (Early vertices are not at distance 2 when δ > 0). Let δ > 0 and m ≥ 2.
Show that for i, j fixed

lim
t→∞

P(distPAt(m,δ)(vi, vj) = 2) = 0. (11.4.8)

Universality in distances for scale-free graphs. The available results are all consis-
tent with the prediction that distances in preferential attachment models have the same
asymptotics as distances in the configuration model with the same degree sequence. This
suggest a strong form of universality, which is interesting in its own right.

11.5 Small-world effect in PA models: lower bounds

In this section we prove lower bounds on distances in PAt(m, δ) with m ≥ 2. In
Section 11.5.1 we start by proving an upper bound on the probability that a path exists in
PAt(m, δ), which is our main tool in this section. After this we prove the lower bounds on
distances for δ > 0 in Section 11.5.2, for δ = 0 in Section 11.5.3, and for δ < 0 in Section
11.5.4.

11.5.1 Path counting in preferential attachment models

In this section we study the probability that a certain path is present in PAt(m, δ).
Recall that we call a path π = (s0, s1, . . . , sl) self-avoiding when si 6= sj for all 1 ≤ i < j ≤
l. The following proposition studies the probability that a path is present in PAt(m, δ):

Proposition 11.16 (Path counting in PAt(m, δ)). Denote γ = m
2m+δ

. Let π = (π0, π1, . . . , πl)
be a self-avoiding path of length l consisting of the l + 1 unordered vertices π0, π1, . . . , πl.
Then

P(π ⊆ PAt(m, δ)) ≤ (Cm2)l
l−1∏
i=0

1

(πi ∧ πi+1)γ(πi ∨ πi+1)1−γ . (11.5.1)
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Paths are formed by repeatedly forming edges. When m = 1, paths go from later
vertices to older vertices. When m ≥ 2, this monotonicity property of paths is lost, which
makes the proof harder. We start by investigating intersections of events that specify which
edges are present in PAt(m, δ). We start by introducing some notation. Denote by

{g(t, j) = s}, 1 ≤ j ≤ m, (11.5.2)

the event that the jth edge of vertex t is attached to the earlier vertex s. For PAt(m, δ),
this event means that in {PAmt(1, δ)} the edge from vertex m(t− 1) + j is attached to one
of the vertices m(s− 1) + 1, . . . ,ms.

It is a direct consequence of the definition of PA-models that the event (11.5.2) increases
the preference for vertex s, and hence decreases (in a relative way) the preference for the
vertices u, 1 ≤ u ≤ t, u 6= s. It should be intuitively clear that another way of expressing
this effect is to say that, for different s1 6= s2, the events {g(t1, j1) = s1} and {g(t2, j2) = s2}
are negatively correlated. We now formalize this result For integer ns ≥ 1, we denote by

Es =

ns⋂
i=1

{
g(t(s)i , j(s)

i ) = s
}
, (11.5.3)

the event that the jith edge of vertex ti is attached to the earlier vertex s, for i = 1, . . . , ns.
We start by proving that the events Es, for different s, are negatively correlated for each
choice of k ≥ 1 and all possible choices of t(s)i , j(s)

i .

Lemma 11.17 (Negative correlation for connection of edges). For distinct s1, s2, . . . , sk,

both for PAt(m, δ) and for PA(b)

t (m, δ),

P
( k⋂
i=1

Esi

)
≤

k∏
i=1

P(Esi). (11.5.4)

Proof. We only prove the statement for PAt(m, δ), the proof for PA(b)

t (m, δ) is identical.
We use induction on the largest edge number present in the events Es1 , . . . , Esk . Here, we
define the edge number of the event {g(t, j) = s} to be m(t− 1) + j, which is the order of
the edge when we consider the edges as being attached in sequence in PAmt(1, δ/m).

The induction hypothesis is that (11.5.4) holds for all k and all choices of t(s)i , j(s)

i such

that maxi,sm(t(s)i − 1) + j(s)

i ≤ e, where induction is performed with respect to e.
To initialize the induction, we note that for e = 1, the induction hypothesis holds

trivially, since
⋂k
i=1 Esi can be empty or consist of exactly one event, and in the latter case

there is nothing to prove. This initializes the induction.
To advance the induction, we assume that (11.5.4) holds for all k and all choices of

t(s)i , j(s)

i such that maxi,sm(t(s)i −1) + j(s)

i ≤ e−1, and we extend it to all k and all choices

of t(s)i , j(s)

i such that maxi,sm(t(s)i − 1) + j(s)

i ≤ e. Clearly, for k and t(s)i , j(s)

i such that

maxi,sm(t(s)i − 1) + j(s)

i ≤ e − 1, the bound follows from the induction hypothesis, so we

may restrict attention to the case that maxi,sm(t(s)i − 1) + j(s)

i = e. We note that there is
a unique choice of t, j such that m(t − 1) + j = e. There are two possibilities: (1) Either

there is exactly one choice of s and t(s)i , j(s)

i such that t(s)i = t, j(s)

i = j, or (2) there are at

least two of such choices. In the latter case,
⋂k
s=1 Es = ∅, since the eth edge is connected

to a unique vertex. Hence, there is nothing to prove.
We are left to investigate the case where there exists a unique s and t(s)i , j(s)

i such that

t(s)i = t, j(s)

i = j. Denote by

E′s =

ns⋂
i=1:(t

(s)
i ,j

(s)
i )6=(t,j)

{
g(t(s)i , j(s)

i ) = s
}

(11.5.5)
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the restriction of Es to all other edges. Then we can write

k⋂
i=1

Esi =
{
g(t, j) = s

}
∩ E′s ∩

k⋂
i=1: si 6=s

Esi . (11.5.6)

By construction, all the edge numbers of the events in E′s ∩
⋂k
i=1: si 6=sEsi are at most

e− 1. Thus we obtain

P
( k⋂
i=1

Esi

)
≤ E

[
1E′s∩

⋂k
i=1: si 6=s

Esi
Pe−1(g(t, j) = s)

]
, (11.5.7)

where Pe−1 denotes the conditional probability given the edge attachments up to the
(e − 1)st edge connection, or, equivalently, given PAe−1(1, δ/m), and we have used that

the event E′s ∩
⋂k
i=1: si 6=sEsi is measurable with respect to PAe−1(1, δ/m).

We compute

Pe−1(g(t, j) = s) =
Ds(t− 1, j − 1) + δ

(2m+ δ)(t− 1) + (j − 1)(2 + δ/m) + 1 + δ
, (11.5.8)

where we recall that Ds(t− 1, j − 1) is the degree of vertex s after j − 1 edges of vertex t
have been attached. We wish to use the induction hypothesis. For this, we note that

Ds(t− 1, j − 1) = m+
∑

(t′,j′) : mt′+j′≤e−1

1{g(t′,j′)=s}, (11.5.9)

where we recall that e− 1 = m(t− 1) + j − 1. Each of the events {g(t′, j′) = s} in (11.5.9)
has edge number strictly smaller than e and occurs with a non-negative multiplicative
constant. As a result, we may use the induction hypothesis for each of these terms. Thus,
we obtain, using also m+ δ ≥ 0, that,

P
( k⋂
i=1

Esi

)
≤ m+ δ

(2m+ δ)(t− 1) + (j − 1)(2 + δ/m) + 1 + δ
P(E′s)

k∏
i=1: si 6=s

P(Esi)

(11.5.10)

+
∑

(t′,j′) : mt′+j′≤e−1

P(E′s ∩ {g(t′, j′) = s})
(2m+ δ)(t− 1) + (j − 1)(2 + δ/m) + 1 + δ

k∏
i=1: si 6=s

P(Esi).

We use (11.5.9) to recombine the above as

P
( k⋂
i=1

Esi

)
≤ E

[
1E′s

Ds(t− 1, j − 1) + δ

(2m+ δ)(t− 1) + (j − 1)(2 + δ/m) + 1 + δ

] k∏
i=1:si 6=s

P(Esi),

(11.5.11)
and the advancement is completed when we note that

E
[
1E′s

Ds(t− 1, j − 1) + δ

(2m+ δ)(t− 1) + (j − 1)(2 + δ/m) + 1 + δ

]
= P(Es). (11.5.12)

The claim in Lemma 11.17 follows by induction.
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Exercise 11.11 (Negative correlations for m = 1). Show that when m = 1, Lemma 11.17
implies that when (π0, . . . , πk) contains different coordinates as (ρ0, . . . , ρk), then

P
( k−1⋂
i=0

{πi −→ πi+1} ∩
k−1⋂
i=0

{ρi −→ ρi+1}
)
≤ P

( k−1⋂
i=0

{πi −→ πi+1}
)
P
( k−1⋂
i=0

{ρi −→ ρi+1}
)
.

(11.5.13)

We next study the probabilities of the events Es when ns ≤ 2:

Lemma 11.18 (Edge connection events for at most two edges). Denote γ = m
2m+δ

. There

exist absolute constants M1 = M1(δ,m),M2 = M2(δ,m), such that
(i) for m = 1 and any t > s,

P(g(t, 1) = s) = (1 + δ)
Γ(t)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s+ 1)
≤ M1

t1−γsγ
. (11.5.14)

Consequently, for each 1 ≤ j ≤ m and t > s,

P
(
g(t, j) = s

)
≤ M1

t1−γsγ
. (11.5.15)

(ii) for m = 1 and any t2 > t1 > s,

P
(
g(t1, 1) = s, g(t2, 1) = s

)
=

Γ(t2)Γ(t1 + 1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t2 + 1+δ
2+δ

)Γ(t1 + 1)Γ(s+ 3+δ
2+δ

)
(1 + δ). (11.5.16)

Consequently, for any 1 ≤ j1, j2 ≤ m and t2 > t1 > s,

P
(
g(t1, j1) = s, g(t2, j2) = s

)
≤ M2

(t1t2)1−γs2γ
. (11.5.17)

Proof. We only prove (11.5.14) and (11.5.16), (11.5.15) and (11.5.17) follow immediately
by (8.2.8).

Throughout this proof, we abbreviate g(t) = g(t, 1). By the definition of (PAt(m, δ))t≥1

in terms of (PAt(1, δ/m))t≥1, this implies the result for general m ≥ 1, where the factors of
m follow from the fact that vertex s in PAt(m, δ) corresponds to verticesms, . . . ,m(s+1)−1
in PAmt(1, δ/m), which are all at least ms. Note, in particular, that g(t, j) = s for m ≥ 2
in PAt(m, δ) is equivalent to g(m(t− 1) + j) ∈ {m(s− 1) + 1, . . . ,ms} in PAmt(1, δ/m).

For (11.5.14), we use Theorem 8.1 to compute

P
(
g(t) = s

)
= E

[
E[1{g(t)=s} |PAt−1(1, δ)]

]
= E

[ Ds(t− 1) + δ

(2 + δ)(t− 1) + 1 + δ

]
= (1 + δ)

Γ(t)Γ(s+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(s+ 1)
. (11.5.18)
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Take t2 > t1. We proceed with the proof of (11.5.16) by computing

P
(
g(t1) = s, g(t2) = s

)
(11.5.19)

= E
[
P
(
g(t1) = s, g(t2) = s

∣∣PAt2−1(m, δ)
)]

= E
[
1{g(t1)=s}

(
Ds(t2 − 1) + δ

(t2 − 1)(2 + δ) + 1 + δ

)]
=

1

(t2 − 1)(2 + δ) + 1 + δ

Γ(t2)Γ(t1 + 1+δ
2+δ

)

Γ(t2 − 1 + 1+δ
2+δ

)Γ(t1 + 1)
E
[
1{g(t1)=s} (Ds(t1) + δ)

]
=

Γ(t2)Γ(t1 + 1+δ
2+δ

)

Γ(t2 + 1+δ
2+δ

)Γ(t1 + 1)
E
[
1{g(t1)=s} (Ds(t1) + δ)

]
(11.5.20)

where we use the iteration, for t1 < u ≤ t2 − 1,

E
[
1{g(t1)=s} (Ds(u) + δ)

]
(11.5.21)

=
(

1 +
1

(2 + δ)(u− 1) + 1 + δ

)
E
[
1{g(t1)=s} (Ds(u− 1) + δ)

]
.

We are lead to compute E
[
1{g(t1)=s} (Ds(t1) + δ)

]
. We use recursion to obtain

E
[
1{g(t1)=s} (Ds(t1) + δ)

∣∣PAt1−1(m, δ)
]

(11.5.22)

= E
[
1{g(t1)=s} (Ds(t1)−Ds(t1 − 1))

∣∣PAt1−1(m, δ)
]

+ E
[
1{g(t1)=s} (Ds(t1 − 1) + δ)

∣∣PAt1−1(m, δ)
]

=
(Ds(t1 − 1) + δ)(Ds(t1 − 1) + 1 + δ)

(t1 − 1)(2 + δ) + 1 + δ
.

By Proposition 8.9,

E[(Ds(t) + δ)(Ds(t) + 1 + δ)] =
2

c2(t)
E[Zs,2(t)] =

c2(s)

c2(t)
(2 + δ)(1 + δ). (11.5.23)

Recalling that ck(j) = Γ(j + 1+δ
2+δ

)/Γ(j + k+1+δ
2+δ

), this brings us to

E[(Ds(t) + δ)(Ds(t) + 1 + δ)] =
Γ(t+ 3+δ

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s+ 3+δ
2+δ

)
(2 + δ)(1 + δ). (11.5.24)

where M4 is a uniform constant. Consequently,

E
[
1{g(t1)=s} (Ds(t1) + δ)

]
(11.5.25)

=
Γ(t1 + 1

2+δ
)Γ(s+ 1+δ

2+δ
)

[(t1 − 1)(2 + δ) + 1 + δ]Γ(t1 − 1
2+δ

)Γ(s+ 3+δ
2+δ

)
(2 + δ)(1 + δ)

=
Γ(t1 + 1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t1 + 1+δ
2+δ

)Γ(s+ 3+δ
2+δ

)
(1 + δ).
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Combining (11.5.20), (B.233) and (11.5.23), we arrive at

P
(
g(t1) = s, g(t2) = s

)
(11.5.26)

=
Γ(t2)Γ(t1 + 1+δ

2+δ
)

Γ(t2 + 1+δ
2+δ

)Γ(t1 + 1)
×

Γ(t1 + 1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t1 + 1+δ
2+δ

)Γ(s+ 3+δ
2+δ

)
(1 + δ)

=
Γ(t2)Γ(t1 + 1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t2 + 1+δ
2+δ

)Γ(t1 + 1)Γ(s+ 3+δ
2+δ

)
(1 + δ),

as required.

Exercise 11.12 (Extension of (11.5.16) to PA(b)

t (1, δ)). Prove that for PA(b)

t (1, δ), (11.5.16)
is replaced with

P
(
g(t1) = s, g(t2) = s

)
= (1 + δ)

Γ(t1 − δ/(2 + δ))Γ(t2 − (1 + δ)/(2 + δ))Γ(s)

Γ(t1 + 1/(2 + δ))Γ(t2)Γ(s+ 2/(2 + δ))
. (11.5.27)

With Lemmas 11.17 and 11.18 at hand, we are ready to prove Proposition 11.16:

Proof of Proposition 11.16. Since π is self-avoiding, we can write {π ⊆ PAt(m, δ)} =
∩ki=1Esi , where either

Es = {g(t, j) = s} (11.5.28)

for some t > s and some 1 ≤ j ≤ m, or

Es = {g(t1, j1) = g(t2, j2) = s}, (11.5.29)

for some t1, t2 > s and some 1 ≤ j1, j2 ≤ m. In the first case, by (11.5.14),

P(Es) = P
(
g(t, j) = s

)
≤ M1

t1−γsγ
, (11.5.30)

whereas in the second case, according to (11.5.16),

P(Es) = P(g(t1, j1) = s, g(t2, j2) = s) ≤ M2

(t1t2)1−γs2γ
=

M2

t1−γ1 sγt1−γ2 sγ
. (11.5.31)

In both cases Mi, i = 1, 2, is an absolute constant. Lemma 11.17 then yields (11.5.1), where
the factor m2l originates from the number of possible choices of ji ∈ [m] for i = 1, . . . , k
and the possible si that are collapsed to the same vertex.

Lemma 11.19 (A variance estimate on Nk(t)). Recall the definition of Nk(t) in (11.3.38)
and let T = tε for some ε > 0. Then there exists constants C > 0 and η = η(ε) > 0 such
that

Var(Nk(t)) ≤ CE[Nk(t)]2t−η. (11.5.32)

Proof. By Exercise 11.11, when the path (π0, . . . , πk) is completely disjoint from (ρ0, . . . , ρk),

P
( k−1⋂
i=0

{πi −→ πi+1} ∩
k−1⋂
i=0

{ρi −→ ρi+1}
)
≤ P

( k−1⋂
i=0

{πi −→ πi+1}
)
P
( k−1⋂
i=0

{ρi −→ ρi+1}
)
.

(11.5.33)
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Therefore, the indicators of disjoint paths are negatively correlated. As a result, we can
bound

Var(Nk(t)) ≤
∑

π,ρ : π∩ρ 6=∅

P(π, ρ ⊆ PA(b)

t (1, δ)). (11.5.34)

Since m = 1, the paths π, ρ of length k must merge at some point, before moving off to
their common end point in [T ]. When ρ = π, then we obtain a contribution E[Nk(t)], so
that from now on we assume that π 6= ρ.

Write π = (π0, . . . , πk) and ρ = (ρ0, . . . , ρk) and π 6= ρ. Then there must be an l ∈ [k−1]
such that πj = ρj for all j = l, . . . , k. For two fixed paths π and ρ for which πj = ρj for
all j = l, . . . , k, while πl−1 6= ρl−1. By Lemma 11.17, for such paths π, ρ,

P(π, ρ ⊆ PA(b)

t (1, δ)) ≤
( l−1∏
i=1

P(πi−1 −→ πi)P(ρi−1 −→ ρi)
)

(11.5.35)

× P(πl−1, ρl−1 −→ πl)
( k∏
j=l+1

P(πj−1 −→ πj)
)
.

By (11.3.10) in Proposition 11.10,

l−1∏
i=1

P(πi−1 −→ πi) =
(1 + δ

2 + δ

)l−1 Γ(π0 + 1
2+δ

)Γ(πl−1)

Γ(πl−1 + 1
2+δ

)Γ(π0 + 1)

l−2∏
i=1

1

πi
(11.5.36)

By symmetry, we may assume without loss of generality that πl−1 > ρl−1. Then, by
(11.5.16),

P(πl−1, ρl−1 −→ πl) = (1 + δ)
Γ(ρl−1 − δ

2+δ
)Γ(πl−1 − 1+δ

2+δ
)Γ(πl)

Γ(ρl−1 + 1
2+δ

)Γ(πl−1)Γ(πl + 2
2+δ

)
. (11.5.37)

As a result,

P(π, ρ ⊆ PA(b)

t (1, δ)) ≤
(1 + δ

2 + δ

)l+k−3 Γ(π0 + 1
2+δ

)Γ(πl−1)

Γ(πl−1 + 1
2+δ

)Γ(π0 + 1)

Γ(ρ0 + 1
2+δ

)Γ(ρl−1)

Γ(ρl−1 + 1
2+δ

)Γ(ρ0 + 1)

(11.5.38)

× (1 + δ)
Γ(ρl−1 − δ

2+δ
)Γ(πl−1 − 1+δ

2+δ
)Γ(πl)

Γ(ρl−1 + 1
2+δ

)Γ(πl−1)Γ(πl + 2
2+δ

)

l−2∏
i=1

1

πiρi

×
Γ(πl + 1

2+δ
)Γ(πk)

Γ(πk + 1
2+δ

)Γ(πl + 1)

k−1∏
i=l+1

1

πi

= (1 + δ)
(1 + δ

2 + δ

)l+k−3 Γ(π0 + 1
2+δ

)

Γ(π0 + 1)

Γ(ρ0 + 1
2+δ

)

Γ(ρ0 + 1)

Γ(ρl−1)Γ(ρl−1 − δ
2+δ

)

Γ(ρl−1 + 1
2+δ

)Γ(ρl−1 + 1
2+δ

))

×
Γ(πl + 1

2+δ
)

Γ(πl + 2
2+δ

)

Γ(πk)

Γ(πk + 1
2+δ

)

1

(πl−1 + 1
2+δ

)

l−2∏
i=1

1

πiρi

k−1∏
i=l

1

πi
.

By (8.2.8), this can be bounded by

C
(1 + δ

2 + δ

)l+k
(π0ρ0)−(1+δ)/(2+δ)(πlπk)−1/(2+δ)

l−1∏
i=1

1

ρi

k−1∏
i=1

1

πi
, (11.5.39)
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where C is a uniform constant. We need to sum the above over l < k, all decreasing
π = (π0, . . . , πk) with πk ∈ [T ] and all decreasing (ρ0, . . . , ρl−1) with ρl−1 > πl. The sum
can be bounded from above by summing over all decreasing (ρ0, . . . , ρl−1) and bounding

π
−1/(2+δ)
l ≤ 1 to obtain an upper bound as in (11.3.40)

E[Nk(t)]
(1 + δ

2 + δ

)l (log t)l

l!

∑
s∈[t]

s−(1+δ)/(2+δ). (11.5.40)

Therefore,

Var(Nk(t)) ≤ E[Nk(t)] + E[Nk(t)]

k−1∑
l=1

(1 + δ

2 + δ

)l (log t)l

l!

∑
s∈[t]

s−(1+δ)/(2+δ). (11.5.41)

When T = tε, it is not hard to adapt the arguments in (11.3.40)–(11.3.46) to show that
this is at most E[Nk(t)]2t−η for some η = η(ε) > 0.

11.5.2 Logarithmic lower bounds on distances for δ > 0

In this section we investigate lower bounds on the distances when δ > 0, in which case
γ = m/(2m+ δ) < 1/2. By Proposition 11.16,

P
(

distPAt(m,δ)(1, t) = k
)
≤ ck

∑
π

k−1∏
j=0

1

(πj ∧ πj+1)γ(πj ∨ πj+1)1−γ , (11.5.42)

where c = m2C, and where the sum is over all self-avoiding paths π = (π0, . . . , πk) with
πk = t, π0 = 1. Define

fk(i, t) =
∑
~s

k−1∏
j=0

1

(πj ∧ πj+1)γ(πj ∨ πj+1)1−γ , (11.5.43)

where now the sum is over all self-avoinding π = (π0, . . . , πk) with pik = t, π0 = i, so that

P
(

distPAt(m,δ)(i, t) = k
)
≤ ckfk(i, t). (11.5.44)

We study the function fk(i, t) in the following lemma:

Lemma 11.20 (A bound on fk). Fix γ < 1/2. Then, for every b > γ such that γ+ b < 1,
there exists a Cγ,b > 0 such that, for every 1 ≤ i < t and all k ≥ 1,

fk(i, t) ≤
Ckγ,b
ibt1−b

. (11.5.45)

Proof. We prove the lemma using induction on k ≥ 1. To initialize the induction hypoth-
esis, we note that, for 1 ≤ i < t and every b ≥ a,

f1(i, t) =
1

(i ∧ t)γ(i ∨ t)1−γ =
1

iγt1−γ
=

1

t

( t
i

)γ
≤ 1

t

( t
i

)b
=

1

ibt1−b
. (11.5.46)

This initializes the induction hypothesis when Cγ,b ≥ 1. To advance the induction hypoth-
esis, note that

fk(i, t)≤
i−1∑
s=1

1

sγi1−γ
fk−1(s, t) +

∞∑
s=i+1

1

iγs1−γ fk−1(s, t). (11.5.47)
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We now bound each of these two contributions, making use of the induction hypothesis.
We bound the first sum by

i−1∑
s=1

1

sγi1−γ
fk−1(s, t) ≤ Ck−1

γ,b

i−1∑
s=1

1

sγi1−γ
1

sbt1−b
=

Ck−1
γ,b

i1−γt1−b

i−1∑
s=1

1

sγ+b
(11.5.48)

≤ 1

1− γ − b
Ck−1
γ,b

ibt1−b
,

since γ + b < 1. We bound the second sum by

∞∑
s=i+1

1

iγs1−γ fk−1(s, t) ≤ Ck−1
γ,b

t−1∑
s=i+1

1

iγs1−γ
1

sbt1−b
+ Ck−1

γ,b

∞∑
s=t+1

1

iγs1−γ
1

tbs1−b (11.5.49)

=
Ck−1
γ,b

iγt1−b

t−1∑
s=i+1

1

s1−γ+b
+
Ck−1
γ,b

iγtb

∞∑
s=t+1

1

s2−γ−b

≤ 1

b− γ
Ck−1
γ,b

ibt1−b
+

1

1− γ − b
Ck−1
γ,b

ibt1−b
,

since 1 + b− a > 1, 2− γ − b > 1, b > γ and (t/i)γ ≤ (t/i)b. We conclude that

fk(i, t) ≤
Ck−1
γ,b

ibt1−b

( 1

b− γ +
2

1− γ − b

)
≤

Ckγ,b
ibt1−b

, (11.5.50)

when

Cγ,b =
1

b− γ +
2

1− γ − b ≥ 1. (11.5.51)

This advances the induction hypothesis, and completes the proof of Lemma 11.20.

We next prove the upper bound on the diameter of PAt(m, δ). By Lemma 11.20 and
(11.5.44),

P
(

distPAt(m,δ)(1, t) = k
)
≤ (cCγ,b)

k

t1−b
. (11.5.52)

As a result,

P
(
diam(PAt(m, δ)) ≤ k

)
≤ P

(
distPAt(m,δ)(1, t) ≤ k

)
≤ (cCγ,b)

k+1

t1−b(cCγ,b − 1)
= o(1), (11.5.53)

whenever k ≤ 1−b
log (cCγ,b)

log t. We conclude that there exists c2 = c2(m, δ) such that

diam(PAt(m, δ)) ≥ c2 log t whp.

We next extend the above discussion to typical distances:

Lemma 11.21 (Typical distances for δ > 0). Fix m ≥ 1 and δ > 0. Let Ht =
distPAt(m,δ)(V1, V2) be the distance between two uniformly chosen vertices in [t]. Then,
whp, for c2 = c2(m, δ) > 0 sufficiently small, Ht ≥ c2 log t.

Proof. By Lemma 11.20, with K = log (cCa,b ∨ 2) and γ < b < 1 − γ, and for all 1 ≤ i <
j ≤ t,

P
(

distPAt(m,δ)(i, j) = k
)
≤ ckfk(i, j) ≤ eKk

ibj1−b . (11.5.54)
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As a result,

P
(

distPAt(m,δ)(i, j) ≤ c2 log t
)
≤ tKc2

ibj1−b
eK

eK − 1
, (11.5.55)

and thus, using also
∑j−1
i=1 i

−b ≤ j1−b/(1− b),

P(Ht ≤ c2 log t) =
1

t2
P
(

distPAt(m,δ)(i, j) ≤ c2 log t
)

(11.5.56)

≤ 2
∑

1≤i<j≤t

tKc2

ibj1−b = O(tKc2−1) = o(1),

for every c2 > 0 such that Kc2 + 1 < 2.

11.5.3 Lower bounds on distances for δ = 0 and m ≥ 2

In this section we investigate lower bounds on the distances in PAt(m, δ) when m ≥ 2
and δ = 0 and prove the lower bound in Theorem 11.14.

We again start from Proposition 11.16, which as we will show implies that for δ = 0,

k =
log(t− 1)

log(3Cm2 log t)
(11.5.57)

is a lower bound for the diameter of PAt(m, δ). Consider a path π of length l consisting of
the vertices π0, π1, . . . , πl, then (??) implies that

P(π ⊆ PAt(m, δ)) ≤ (Cm2)l
l−1∏
j=0

1
√
πjπj+1

=
(Cm2)l√
π0πl

l−1∏
j=1

1

πj
. (11.5.58)

Thus, the expected number of paths π of length l between π0 = t and πl = t−1 is bounded
by

(Cm2)l√
t(t− 1)

∑
1≤π1,...,πl−1≤t−2

l−1∏
j=1

1

πj
=

(Cm2)l√
t(t− 1)

(
t−2∑
s=1

1

s

)l−1

≤ (Cm2)l

t− 1
(log t)l−1 ≤ (1/2)l(log t)−1 → 0

precisely when (2Cm2 log t)l ≤ t− 1, or, equivalently,

l ≤ log(t− 1)

log((2Cm2) log t)
. (11.5.59)

Equality in (11.5.59) holds for k in (11.5.57). This implies that the diameter is at least L
in (11.5.57), and completes the proof of Theorem 11.14.

11.5.4 Typical distance in PA-models: log log-lower bound

In this section we prove the lower bound in Theorem 11.15. We do so in a more general
setting assuming an upper bound on the existence of paths in the model:

Assumption 11.22. There exist κ and γ such that, for all t and pairwise distinct vertices
π0, . . . , πl ∈ [t],

P(π0 ↔ π1 ↔ . . .↔ πl) ≤
l∏
i=1

κ(πi−1 ∧ πi)−γ(πi ∨ πi−1)γ−1. (11.5.60)
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By Proposition 11.16, Assumption 11.22 is satisfied for PAt(m, δ) with γ = m/(2m+δ).
We expect log log-distances in such networks if and only if δ ∈ (−m, 0), so that 1

2
< γ < 1.

Theorem 11.23, which is the main result in this section, gives a lower bound on the typical
distance in this case:

Theorem 11.23 (Doubly logarithmic lower bound on distances PAMs). Let (PAt)t∈N be
a random graph model that satisfies Assumption 11.22 for some γ satisfying 1

2
< γ < 1.

Then, for random vertices V1 and V2 chosen independently and uniformly from [t] and whp
as K grows large,

distPAt(V1, V2) ≥ 4 log log t

log(γ/(1− γ))
−K. (11.5.61)

For PAt(m, δ), γ = m/(2m+ δ), so that

γ

1− γ =
m

m− δ =
1

2− τ , (11.5.62)

where we recall that τ = 3 + δ/m. Therefore, Theorem 11.23 proves the lower bound in
Theorem 11.15.

The proof of Theorem 11.23 is based on a constrained or truncated first order method,
similar to the ones used for NRn(w) in Theorem 9.7 and for CMn(d) in Theorem 10.25.
Due to the fact that the probability for existence of paths satisfies a rather different bound
compared to the bounds for NRn(w) and CMn(d), this truncated first order method looks
rather different compared to the ones presented in the proof of Theorems 9.7 and 10.25

Let us now briefly explain the truncated first moment method. We start with an ex-
planation of the (unconstrained) first moment bound and its shortcomings. Let v, w be
distinct vertices of PAt. Then for kn ∈ N

P(distPAt(m,δ)(v, w) ≤ 2kn) = P

(
2kn⋃
k=1

⋃
π

{v ↔ π1 ↔ π2 ↔ . . .↔ πk−1 ↔ w}

)

≤
2kn∑
k=1

∑
π

k∏
j=1

p(πj−1, πj), (11.5.63)

where π = (π0, . . . , πk) is any collection of pairwise distinct vertices in PAt with π0 = v
and πk = w and, for n, m ∈ N, we define

p(n,m) = κ(n ∧m)−γ(n ∨m)γ−1. (11.5.64)

We assign to each path π = (π0, . . . , πk) the weight

p(π) =

k∏
j=1

p(πj−1, πj), (11.5.65)

and the upper bound is just the sum over the weights of all paths from v to w of length no
more than 2kn. The shortcoming of this bound is that the paths that contribute most to
the total weight are those that connect v, resp. w, quickly to vertices with extremely small
indices and thus extremely high degree. Since such paths are quite unlikely, they have to
be removed in order to get a reasonable estimate.

To this end we define a decreasing sequence ` = (`k)k=0,...,k of positive integers and
consider a tuple of vertices π = (π0, . . . , πk) as good if vl ∧ vk−l ≥ `l for all l ∈ {0, . . . , k}.
We denote the probability that there exists a good path of length k between v and w by
Ek(v, w). We further denote by Fk(v) the event that there exists a bad path of length k in
the network starting at v, i.e., a path v = π0 ↔ . . .↔ πl such that π0 ≥ `0, . . . , πl−1 ≥ `l−1,
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but πl < `l, i.e., a path that traverses the threshold after exactly l steps. For fixed vertices
v, w ≥ `0, the truncated first moment estimate is the estimate that

P(distPAt(v, w) ≤ 2k) ≤
k∑
l=1

P(Fl(v)) +

k∑
l=1

P(Fl(w)) +

2k∑
k=1

P(El(v, w)) (11.5.66)

where the good paths in the last sum start with v0 = v and end with vk = w. Equation
(11.5.66) is identical to the inequality (9.2.22) used in the proof of Theorem 9.7. However,
the notion of good has changed due to the fact that vertices no longr have a weight, but
rather an age, and vertices that have appeared early in PAt are the most likely to have large
degrees. This explains why good vertices have high indices for PAt, while good vertices
have high weights for NRn(w).

By assumption,
P(π0 ↔ . . .↔ πk) ≤ p(π0, . . . , πk) (11.5.67)

so that for v ≥ `0 and l = 1, . . . , k, and with π = (π0, . . . , π) with π0 = v,

P(Fl(v)) ≤
t∑

π1=`1

. . .

t∑
πl−1=`l−1

`l−1∑
πl=1

p(π). (11.5.68)

Given ε > 0 we choose `0 = dεte and (`j)j=0,...,k decreasing fast enough so that the
first two summands on the right hand side of (11.5.66) together are no larger than 2ε. For
l ∈ [k], we set

fl,t(v, u) := 1{v≥`0}

t∑
π1=`1

. . .

t∑
πl−1=`l−1

p(v, π1, . . . , πl−1, u), (11.5.69)

and set f0,t(v, u) = 1{v=u}1{u≤t}. To rephrase the truncated moment estimate in terms
of f , note that p is symmetric so that for all l ≤ 2k

P(El(v, w)) ≤
t∑

π1=`1

. . .

t∑
πbl/2c=`bl/2c

. . .

t∑
πl−1=`1

p(v, π1, . . . , πbl/2c)p(πbl/2c, . . . , πl−1, w)

=

t∑
πb;/2c=`bl/2c

fbl/2c,t(v, πbl/2c)fdl/2e,t(w, πbl/2c). (11.5.70)

Using the recursive representation

fk+1,t(v, n) =

t∑
m=`k

fk,t(v,m)p(m,n), (11.5.71)

we establish upper bounds for fk,t(v, u) and use these to show that the rightmost term
in (11.5.66) remains small if k = kn is chosen sufficiently small. This leads to the lower
bounds for the typical distance in Theorem 11.23. Let us now make these ideas precise:

Proof of Theorem 11.23. We assume that Assumption 11.22 holds for a γ ∈ ( 1
2
, 1) with

a fixed constant κ. Recall the definition of fk,t and the key estimates (11.5.66), (11.5.68)
and (11.5.70), which combined give

P(distPAt(v, w) ≤ 2kn) ≤
kn∑
k=1

`k−1∑
l=1

fk,t(v, l) +

kn∑
k=1

`k−1∑
l=1

fk,t(w, l) (11.5.72)

+

2kn∑
k=1

t∑
vbk/2c=`bn/2c

fbn/2c,t(v, vbn/2c)fdn/2e,t(w, vbn/2c).
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The remaining task of the proof is to choose kn ∈ N and 2 ≤ `kn ≤ . . . ≤ `0 ≤ t which allow
the required estimates for the right-hand side. Denote the truncated version of fk,t(v,m)
by f̄k,t(v,m) = 1{m≥`k}fk,t(v,m). Our aim is to provide a majorant of the form

fk,t(v,m) ≤ αkm−γ + 1{m>`k−1}βkm
γ−1 (11.5.73)

for suitably chosen parameters αk, βk ≥ 0. Key to this choice is the following lemma:

Lemma 11.24 (A recursive bound on fk,t(v,m) for γ ∈ (1/2, 1)). Let γ ∈ (1/2, 1) and
suppose that 2 ≤ ` ≤ t, α, β ≥ 0 and q : [t]→ [0,∞) satisfies

q(m) ≤ 1{m≥`}(αm
−γ + βmγ−1) for all m ∈ [t]. (11.5.74)

Then there exists a constant c > 1 depending only on γ and κ such that

t∑
k=1

q(k)p(k,m) ≤ c
(
α log (t/`) + βt2γ−1)m−γ + c1{m>`}

(
α`1−2γ + β log (t/`)

)
mγ−1

(11.5.75)
for all m ∈ [t].

Proof. We use (11.5.64) to rewrite

t∑
k=1

q(k)p(k,m) =

t∑
k=m∨`

q(k)p(k,m) + 1{m>`}

m−1∑
k=`

q(k)p(k,m)

=

t∑
k=m∨`

κ(αk−γ + βkγ−1)kγ−1m−γ + 1{m>`}

m−1∑
k=`

κ(αk−γ + βkγ−1)k−γmγ−1.

Simplifying the sums leads to

t∑
k=1

q(k)p(k,m) ≤ κ
(
α

t∑
k=m∨`

k−1 + β

t∑
k=m∨`

k2γ−2
)
m−γ

+ κ1{m>`}

(
α

m−1∑
k=`

k−2γ + β

m−1∑
k=`

k−1
)
mγ−1

≤ κ
(
α log

(
m

`− 1

)
+

β

2γ − 1
t2γ−1

)
m−γ

+ κ1{m>`}

( α

1− 2γ
(`− 1)1−2γ + β log

(
m

`− 1

))
mγ−1. (11.5.76)

This immediately implies the assertion since ` ≥ 2 by assumption.

We apply Lemma 11.24 iteratively. We use induction to prove that there exist (`k)k≥0,
(αk)k≥1 and (βk)k≥1 such that

fk,t(v,m) ≤ αkm−γ + βkm
γ−1 for all m ∈ [t]. (11.5.77)

The sequences (`k)k≥0, (αk)k≥1 and (βk)k≥1 are chosen as follows. We let `0, α1, β1 be
determined by

`0 = dεte, α1 = κ(εt)γ−1 and β1 = κ(εt)−γ , (11.5.78)

where ε > 0 is small.
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For higher values of k, αk+1, βk+1 and `k satisfy the recursions

6ε

π2k2
≥ 1

1− γ αk`
1−γ
k , (11.5.79)

where we let `k be the largest integer satisfying the above inequality under the assumption
that `k ≥ 2, and

αk+1 ≥ c
(
αk log

(
t/`k

)
+ βkt

2γ−1) , βk+1 ≥ c
(
αk`

1−2γ
k + βk log

(
t/`k

))
, (11.5.80)

where c is the constant in Lemma 11.24.
We start by initializing the induction. Fix v ≥ `0. Then, for all m ∈ [t],

f1,t(v,m) = p(v,m) ≤ k`γ−1
0 m−γ + 1{m>`0}κ`

−γ
0 mγ−1

≤ α1m
−γ + 1{m>`0}β1m

γ−1. (11.5.81)

Now suppose, for some k ∈ N, that we have chosen αk, βk and an integer `k−1 such that

fk,t(v,m) ≤ αkm−γ + βkm
γ−1 for all m ∈ [t]. (11.5.82)

By the induction hypothesis we can apply Lemma 11.24 with ` = `k and q(m) =
f̄k,t(v,m) = 1{m≥`k}fk,t(v,m). Then Lemma 11.24 yields that

fk+1,t(v,m) ≤ αk+1m
−γ + 1{m>`k}βk+1m

γ−1 for all m ∈ [t], (11.5.83)

showing that the induction can be advanced up to the point where `k < 2. Having advanced
the induction hypothesis, we obtain that (11.5.77) holds with the given choices of (`k)k≥0,
(αk)k≥1 and (βk)k≥1 .

We next use (11.5.77) to prove Theorem 11.23. Summing over (11.5.83) and using
(11.5.77) and (11.5.79) we obtain

`k−1∑
l=1

fk,t(v, l) ≤
1

1− γ αk`
1−γ
k ≤ 6ε

π2k2
, (11.5.84)

which, when summed over all k ≥ 1 is bounded by ε. Hence the first two summands on the
right-hand side in (11.5.72) together are smaller than 2ε. It remains to choose kn = kn(t)
as large as possible while ensuring that `kn ≥ 2 and

lim
t→∞

2kn∑
k=1

t∑
vbk/2c=`bk/2c

fbk/2c,t(v, vbk/2c)fdk/2e,t(w, vbk/2c)) = 0. (11.5.85)

To this end recall that `k is the largest integer satisfying (11.5.79) and the parameters
αk, βk are defined via equalities in (11.5.80). To establish lower bounds for the decay of
`k we investigate the growth of ηk = t/`k > 0. Going backwards through the definitions
yields, for k ≥ 1, that there exists a constant C > 0 such that

η1−γ
k+2 ≤ C

[ (k + 2)2

k2
ηγk +

(k + 2)2

(k + 1)2
η1−γ
k+1 log ηk+1

]
, (11.5.86)

with η1, η2 ≤ C0 for some constant C0 > 0 (which, as all constants in this paragraph, may
depend on ε). Indeed, writing C for a constant that may change from line to line, using
first the relation for `k+2 in (11.5.79), followed by the equality for αk+2 in (11.5.80),

η1−γ
k+2 = t1−γ`γ−1

k+2 = Ct1−γαk+2(k + 2)2 = Ct1−γ(k + 2)2(αk+1 log(ηk+1) + βk+1t
2γ−1).

(11.5.87)
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The first term on the right-hand side of (11.5.87) equals C (k+2)2

(k+1)2
η1−γ
k+1 log(ηk+1), which is

the second term on the right-hand side of (11.5.86). For the second term on the right-hand
side of (11.5.87), we use the equality for βk+1 in (11.5.80) to write it as

Ctγ(k + 2)2βk+1 = Ctγ(k + 2)2(αk`1−2γ
k + βk log(ηk)

)
. (11.5.88)

Now the first term is equal to C (k+2)2

k2 ηγk+1, which is the first term in (11.5.86). We are

left with Ctγ(k + 2)2βk log(ηk). Since cβkt
2γ−1 ≤ αk+1,

Ctγ(k + 2)2βk log(ηk) ≤ Ct1−γ(k + 2)2αk+1 log(ηk) ≤ Ct1−γ (k + 2)2

(k + 1)2
`
−(1−γ)
k+1 (11.5.89)

= Cη1−γ
k+1 log(ηk) ≤ Cη1−γ

k+1 log(ηk+1),

since k 7→ `k is degreasing, so that k 7→ ηk is increasing. This completes the proof of
(11.5.86).

Lemma 11.25 (Inductive bounds on ηk). Let (ηk)k≥1 satisfy η0 = 1/ε and η1 =, and
(11.5.86) holds for k ≥ 2. Then there exist constants b,B > 0 such that

ηk ≤ b exp
(
B
( γ

1− γ
)k/2)

. (11.5.90)

Proof. By assumption, (11.5.90) follows for k = 0 by the fact that η0 = t/`0 ≤ 1/ε. By
(11.5.86), we can obtain similar bounds for ηk with k ≤ 2, Suppose that we know that
(11.5.90) holds for all l ≤ k − 1 where k ≥ 3. Then (11.5.86) together with the fact that
k/(k − 1) and k/(k − 2) are bounded yields that there exists a constant C > 0 such that

η1−γ
k ≤ Cηγk−2 + Cη1−γ

k−1 log ηk−1, (11.5.91)

and using that (x+ y)1/(1−γ) ≤ 21/(1−γ)(x1/(1−γ) + y1/(1−γ)) leads us to

ηk ≤ Cηγ/(1−γ)
k−2 + Cηk−1(log ηk−1)1/(1−γ). (11.5.92)

Iterating the above inequality once more yields

ηk ≤ C(2C)γ/(1−γ)η
(γ/(1−γ))2

k−4 +C(2C)γ/(1−γ)η
γ/(1−γ)
k−3 (log ηk−3)γ/(1−γ)2+Cηk−1(log ηk−1)1/(1−γ).

(11.5.93)
Iterating indefinitely yields

ηk ≤ C(2C)
∑k/2
l=1

(γ/(1−γ))lη
(γ/(1−γ))k/2

0 +C

k/2∑
i=1

(2C)
∑i−1
l=1

(γ/(1−γ))lη
(γ/(1−γ))i−1

k−2i+1 (log ηk−2i+1)γ
i−1/(1−γ)i .

(11.5.94)
We now prove by induction that there exists constants b,B such that

ηk ≤ b exp
(
B
( γ

1− γ
)k/2)

. (11.5.95)

Using the induction hypothesis, we can bound ηk by

Continue from
here!!

η1−γ
k ≤ CAγ(k−1) exp

(
B(1−γ)

( γ

1− γ
)k/2)

+Cb1−γ exp
(
B
√

(1− γ)3/γ
( γ

1− γ
)k/2)

B
( γ

1− γ
)(k−1)/2

.

(11.5.96)
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Since γ > 1/2, we have that (1−γ)/γ < 1, so that for large k the second term is negligible
compared to the first term for every k ≥ 2 when B is sufficiently large. For γ > 1/2...

Taking b large enough, we can bound the right-hand side of (11.5.96) by b1−γ exp
(
B(1−

γ)
(

γ
1−γ

)k/2)
We now use (11.5.83) and (11.5.90) to estimate

2kn∑
n=1

t∑
u=`k

µ(v)

n∗ (u)µ(w)

n−n∗(u) ≤ 2

kn∑
k=1

t∑
u=`k

(αku
−γ + βku

γ−1)2

≤ 4

2γ − 1

kn∑
k=1

(α2
k`

1−2γ
k + β2

kt
2γ−1)

≤ 4

2γ − 1
kn(α2

kn`
1−2γ
kn

+ β2
knt

2γ−1). (11.5.97)

Using (11.5.79) and (11.5.90) the first summand in the bracket can be estimated by

α2
kn`

1−2γ
kn

≤
(
kn
−2 6ε

π2
(1− γ)

)2

`−1
kn
≤
(

6ε

bπ2
(1− γ)

)2
1

tkn
4 exp

(
B

(
γ

1− γ

)kn/2)
.

(11.5.98)

Using equality in (11.5.80) we get βkn ≤ c(αkn`
1−2γ
kn

+ αknt
1−2γ log(t/`kn)). Noting that

the second summand on the right-hand side is bounded by a multiple of the first, we find
a constant C1 > 0 such that β2

knt
2γ−1 ≤ C1α

2
kn`

1−2γ
kn

, and thus, for a suitable constant
C2 > 0,

2kn∑
n=1

t∑
u=`k

µ(v)

n∗ (u)µ(w)

n−n∗(u) ≤ C2
1

tkn
3 exp

(
B

(
γ

1− γ

)kn/2)
. (11.5.99)

Hence, for a suitable constant C > 0, choosing

kn ≤
log log t

log
√

γ
1−γ

− C (11.5.100)

we obtain that the term we consider goes to zero of orderO((log log t)−3). Note from (11.5.90)
that this choice also ensures that `kn ≥ 2. We have thus shown that

P(distPAt(m,δ)(v, w) ≥ 2kn) ≤ 2ε+O
(
(log log t)−3) , (11.5.101)

whenever v, w ≥ `0 = dεte, which implies the statement of Theorem 11.23.

11.6 Small-world effect in PA models: upper bounds

11.6.1 Logarithmic upper bounds for δ > 0

In this section we prove lower bounds on distances in PAt(m, δ). We start by proving
that the logarithmic bounds on the diameter for (PAt(m, δ))t≥1:

Proof of Theorem 11.12. We start by proving the claim for (PA(b)

m,δ(t))t≥1. Since (PA(b)

m,δ(t))t≥1

is obtained from (PA(b)

1,δ/m(mt))t≥1 by collapsing m successive vertices, diam(PA(b)

m,δ(t)) �
diam(PA(b)

1,δ/m(mt)), and the result follows from Theorem 11.8.
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11.6.2 The diameter of the core

In this section we investigate PAt(m, δ) with m ≥ 2 and δ ∈ (−m, 0) and prove the
upper bounds in Theorems 11.15 and ??.

The proof of Theorem ?? is divided into two key steps. In the first, in Theorem 11.26,
we give a bound on the diameter of the core which consists of the vertices with degree at
least a certain power of log t. This argument is close in spirit to the argument in [238]
used to prove bounds on the average distance for the configuration model, but substantial
adaptations are necessary to deal with preferential attachment. After this, in Theorem
11.30, we derive a bound on the distance between vertices with a small degree and the
core. We start by defining and investigating the core of the preferential attachment model.
In the sequel, it will be convenient to prove Theorem ?? for 2t rather than for t. Clearly,
this does not make any difference for the results.

We adapt the proof of Theorem 10.28 to PAt(m, δ). We recall that

τ = 3 +
δ

m
, (11.6.1)

so that −m < δ < 0 corresponds to τ ∈ (2, 3). Throughout this section, we fix m ≥ 2.
We take σ > 1

3−τ = −m
δ
> 1 and define the core Coret of the PA-model PAm,δ(2t) to

be
Coret =

{
i ∈ [t] : Di(t) ≥ (log t)σ

}
, (11.6.2)

i.e., all the vertices which at time t have degree at least (log t)σ.
For a graph G with vertex set [t] and a given edge set, we write distG(i, j) for the

shortest-path distance between i and j in the graph G. Also, for A ⊆ [t], we write

diamt(A) = max
i,j∈A

distPAm,δ(t)(i, j). (11.6.3)

Then, the diameter of the core in the graph PAm,δ(2t), which we denote by diam2t(Coret),
is bounded in the following theorem:

Theorem 11.26 (The diameter of the core). Fix m ≥ 2. For every σ > 1
3−τ , whp,

diam2t(Coret) ≤ (1 + o(1))
4 log log t

| log (τ − 2)| . (11.6.4)

The proof of Theorem 11.26 is divided into several smaller steps. We start by proving
that the diameter of the inner core Innert, which is defined by

Innert =
{
i ∈ {1, 2, . . . , t} : Di(t) ≥ t

1
2(τ−1) (log t)−

1
2
}
, (11.6.5)

is, whpbounded by Cδ <∞. After this, we will show that the distance from the outer core,
which is defined to be equal to Outert = Coren\Innert, to the inner core can be bounded
by a fixed constant times log log t. This also shows that the diameter of the outer core is
bounded by a different constant times log log t. We now give the details.

Proposition 11.27 (The diameter of the inner core). Fix m ≥ 2 and δ ∈ (−m, 0). Then,
whp,

diam2t(Innert) < Cδ. (11.6.6)

Proof. We first introduce the important notion of a t-connector between a vertex i ∈
{1, 2, . . . , t} and a set of vertices A ⊆ {1, 2, . . . , t}, which plays a crucial role throughout the
proof. Fix a set of vertices A and a vertex i. We say that the vertex j ∈ {t+1, t+2, . . . , 2t}
is a t-connector between i and A if one of the edges incident to j connects to i and another
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edge incident to j connects to a vertex in A. Thus, when there exists a t-connector between
i and A, the distance between i and A in PAm,δ(2t) is at most 2.

We note that for a set of vertices A and a vertex i with degree at time t equal to Di(t),
we have that, conditionally on PAm,δ(t), the probability that j ∈ {t+ 1, t+ 2, . . . , 2t} is a
t-connector for i and A is at least

(DA(t) + δ|A|)(Di(t) + δ)

[2t(2m+ δ)]2
, (11.6.7)

independently of the fact whether the other vertices are t-connectors or not, and where,
for any A ⊆ {1, 2, . . . , t}, we write

DA(t) =
∑
i∈A

Di(t). (11.6.8)

Since di(t) + δ ≥ m+ δ > 0 for every i ≤ t, and δ < 0, we have that

Di(t) + δ = Di(t)
(

1 +
δ

Di(t)

)
≥ Di(t)(1 +

δ

m
) = Di(t)

m+ δ

m
, (11.6.9)

and, thus, also DA(t)+δ|A| ≥ DA(t)m+δ
m

. As a result, for η = (m+δ)2/(2m(2m+δ))2 > 0,
the probability that j ∈ {t + 1, t + 2, . . . , 2t} is a t-connector for i and A is at least
ηDA(t)Di(t)

t2
, independently of the fact whether the other vertices are t-connectors or not.

Therefore, the probability that there is no t-connector for i and A is, conditionally on
PAm,δ(t), bounded above by(

1− ηDA(t)Di(t)

t2

)t
≤ exp

{
−ηDA(t)Di(t)

t

}
. (11.6.10)

We shall make use of (11.6.10) in several places throughout the proof.

From Theorem 8.2 whp, Innert contains at least
√
t vertices and denote the first

√
t

vertices of Innert by I. Observe that for τ > 2 we have t(τ−1)−1−1 ↓ 0 so that, for any
i, j ∈ I, the probability that there exists a t-connector for i and j is bounded below by

1− exp{−ηt
1

τ−1
−1(log t)−1} ≥ pt ≡ t

1
τ−1
−1(log t)−2, (11.6.11)

for t sufficiently large.
We wish to couple Innert with an Erdős-Rényi random graph with nt =

√
t vertices

and edge probability pt, which we denote by ER(nt, pt). For this, for i, j ∈ {1, 2, . . . , nt},
we say that an edge between i and j is present when there exists a t-connector connecting
the ith and jth vertex in I. We now prove that this graph is bounded below by ER(nt, pt).
Note that (11.6.11) does not guarantee this coupling, instead we should prove that the
lower bound holds uniformly, when i and j belong to I.

For this, we order the nt(nt−1)/2 edges in an arbitrary way, and bound the conditional
probability that the lth edge is present conditionally on the previous edges from below by
pt, for every l. This would prove the claimed stochastic domination by ER(nt, pt).

Indeed, the lth edge is present precisely when there exists a t-connector connecting the
corresponding vertices which we call i and j in I. Moreover, we shall not make use of
the first vertices which were used to t-connect the previous edges. This removes at most
nt(nt − 1)/2 ≤ t/2 possible t-connectors, after which at least another t/2 remain. The
probability that one of them is a t-connector for the ith and jth vertex in I is bounded
below by, for t sufficiently large,

1− exp{−ηt
1

τ−1
−2(log t)−1t/2} = 1− exp{−ηt

1
τ−1
−1(log t)−1/2} ≥ pt ≡ t

1
τ−1
−1(log t)−2,

(11.6.12)
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using 1− e−x ≥ x/2 for x ∈ [0, 1] and η/2 ≥ log t−1 for t sufficiently large.
This proves the claimed stochastic domination of the random graph on the vertices

I and ER(nt, pt). Next, we show that diam(ER(nt, pt)) is, whp, bounded by a uniform
constant.

For this we use the result in [58, Corollary 10.12], which gives sharp bounds on the
diameter of an Erdős-Rényi random graph. Indeed, this result implies that if pdnd−1 −
2 logn→∞, while pd−1nd−2− 2 logn→ −∞, then diam(ER(n, p)) = d, whp. In our case,

n = nt = t1/2 and p = pt = t
1

τ−1
−1(log t)−2, which implies that, whp, τ−1

3−τ < d ≤ τ−1
3−τ + 1.

Thus, we obtain that the diameter of I in PAm,δ(2t) is whp bounded by 2( τ−1
3−τ + 1) in

this case.
We finally show that for any i ∈ Innert \ I, the probability that there does not exist

a t-connector connecting i and I is small. Indeed, this probability is, since DI(t) ≥√
tt

1
τ−1 (log t)−1/2, and Di(t) ≥ t

1
2(τ−1) (log t)−1/2, the probability of there not existing a

t-connector is bounded above by e−ηt
1/(τ−1)−1/2(log t)−1

, which is tiny since τ < 3. This
proves that whpthe distance between any vertex i ∈ Innert \ I and I is bounded by 2, and,
together with the fact that diam2t(I) ≤ 2( τ−1

3−τ + 1) thus implies that diam2t(Innert) ≤
2( τ−1

3−τ + 2).

Proposition 11.28 (Distance between outer and inner core). Fix m ≥ 2. With high
probability, the inner core Innert can be reached from any vertex in the outer core Outert
using no more than 2 log log t

| log (τ−2)| edges in PAm,δ(2t). More precisely, whp

max
i∈Outert

min
j∈Innert

distPAm,δ(2t)(i, j) ≤
2 log log t

| log (τ − 2)| . (11.6.13)

Proof. Recall that
Outert = Coret \ Innert. (11.6.14)

and define
N1 = Innert = {i : Di(t) ≥ W1}, (11.6.15)

where

W1 = lt = t
1

2(τ−1) (log t)−
1
2 . (11.6.16)

We now recursively define a sequence uk, for k ≥ 2, so that for any vertex i ∈ {1, 2, . . . , t}
with degree at least uk, the probability that there is no t-connector for the vertex i and
the set

Nk−1 = {j : Dj(t) ≥ Wk−1}, (11.6.17)

conditionally on PAt(m, δ) is tiny. According to (11.6.10) and Exercise 8.17, this proba-
bility is at most

exp
{
− ηBt[uk−1]2−τuk

t

}
= o(t−1), (11.6.18)

where we define
Wk = D log t

(
Wk−1

)τ−2
, (11.6.19)

with D exceeding (ηB)−1. By Lemma 10.29 we have

Wk = Dak (log t)bk tck , (11.6.20)

where

ck =
(τ − 2)k−1

2(τ − 1)
, bk =

1− (τ − 2)k−1

3− τ − 1

2
(τ − 2)k−1, ak =

1− (τ − 2)k−1

3− τ .

(11.6.21)
Then, the key step in the proof of Proposition 11.28 is the following lemma:
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Lemma 11.29 (Connectivity between Nk−1 and Nk). Fix m, k ≥ 2. Then the probability
that there exists an i ∈ Nk that is not at distance two from Nk−1 in PAm,δ(2t) is o(t−1).

Proof. We note that, by Exercise 8.17, with probability exceeding 1− o(t−1), for all k,∑
i∈Nk−1

Di(t) ≥ Bt[Wk−1]2−τ . (11.6.22)

On the event that the bounds in (11.6.22) hold, we obtain by (11.6.10) that the conditional
probability, given PAm, δ(t), that there exists an i ∈ Nk such that there is no t-connector
between i and Nk−1 is bounded, using Boole’s inequality, by

te−ηB[Wk−1]2−τWk = te−ηBD log t = o(t−1), (11.6.23)

where we have used (11.6.19) and we have taken D > 2(ηB)−1.

We now complete the proof of Proposition 11.28. Fix

k∗ =
⌊ log log t

| log (τ − 2)|

⌋
. (11.6.24)

As a result of Lemma 11.29, we have that the distance between Nk∗ and Innert is at most
2k∗. Therefore, we are done when we can show that

Outert ⊆ {i : Di(t) ≥ (log t)σ} ⊆ Nk∗ = {i : Di(t) ≥ Wk∗}, (11.6.25)

so that it suffices to prove that (log t)σ ≥ Wk∗ , for any σ > 1
3−τ . For this, we note that,

by Lemma 10.29, we have that

Wk∗ = Dak∗ (log t)bk∗ tck∗ . (11.6.26)

We have that tck∗ = O(1) = (log t)o(1), (log t)bk∗ = (log t)
1

3−τ +o(1), and Dak∗ = (log t)o(1).
Thus,

Wk∗ = (log t)
1

3−τ +o(1), (11.6.27)

so that, by picking t sufficiently large, we can make σ ≥ 1
3−τ + o(1). This completes the

proof of Proposition 11.28.

Proof of Theorem 11.26. We note that whp diam2t(Coret) ≤ Cδ + 2k∗, where k∗ is the
upper bound on maxi∈Outert minj∈Innert dPAm,δ(2t)(i, j) in Proposition 11.28, and we have
made use of Proposition 11.27. This proves Theorem 11.26.

Proof of the upper bound in Theorem 11.15.

11.6.3 Connecting the periphery to the core

In this section, we extend the results of the previous section and, in particular, study
the distance between the vertices not in the core Coren and the core. The main result in
this section is the following theorem:

Theorem 11.30 (Connecting the periphery to the core). Fix m ≥ 2. For every σ > 1
3−τ ,

whp, the maximal distance between any vertex and Coret in Gm(2t) is bounded from above
by 2σ log log t/ logm.
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Together with Theorem 11.26, Theorem 11.30 proves the main result in Theorem ??.
The proof of Theorem 11.30 again consists of two key steps. The first in Proposition

11.31 states that, for any two vertices i, j ∈ {1, 2, . . . , t}, the distance dPAm,δ(2t)(i, j) is

bounded by a constant times log log t, i.e., diam2t(PAt(m, δ)) is bounded by some constant
times log log t. The second in Proposition 11.34 shows that the distance between any vertex
in {t+ 1, t+ 2, . . . , 2t} and {1, 2, . . . , t} is bounded by another constant times log log t.

Proposition 11.31 (Connecting half of the periphery to the core). Fix m ≥ 2. For every
σ > 1

3−τ , whp, the maximal distance between any vertex in {1, 2, . . . , t} and the core Coret
in PAm,δ(2t) is bounded from above by σ log log t/ logm.

Proof. We start from a vertex i ∈ {1, 2, . . . , t} and will show that the probability that the
distance between i and Coret is at least C log log t is o(t−1) where C = σ/ logm. This
proves the claim. For this, we explore the neighborhood of i as follows. From i, we connect
its m ≥ 2 edges. Then, successively, we connect the m edges from each of the at most
m vertices that i has connected to and have not yet been explored. We continue in the
same fashion. We call the arising process when we have explored up to distance k from
the initial vertex i the k-exploration tree.

When we never connect two edges to the same vertex, then the number of vertices we
can reach within k steps is precisely equal to mk. We call an event where an edge connects
to a vertex which already was in the exploration tree a collision. When k increases, the
probability of a collision increases. However, the probability that there exists a vertex for
which many collisions occur in the k-exploration tree before it hits the core is small, as we
prove now:

Lemma 11.32 (A bound on the probability of multiple collisions). Fix m ≥ 2 and δ ∈
(−m, 0). Fix C = σ/ logm, l ≥ 1, b ∈ (0, 1] and take k ≤ C log log t. Then, for every
vertex i ∈ {1, 2, . . . , t}, the probability that its k-exploration tree has at least l collisions
before it hits Coret ∪ {j : j ≤ tb} is bounded above by(

(log t)dt−b
)l

= (log t)dlt−bl,

for some d > 0.

Proof. Take i ∈ {dtbe+ 1, dtbe+ 2, . . . , t} and consider its k-exploration tree T ki. Since we
add edges after time tb the denominator in (8.1.1) is at least tb. Moreover, before hitting
the core, any vertex in the k-exploration tree has degree at most (log t)σ. Hence, for l = 1,
the probability mentioned in the statement of the lemma is at most∑

v∈T ki

Dv(t) + δ

tb
≤
∑
v∈T ki

(log t)σ

tb
≤ mk(log t)σ

tb
(11.6.28)

where the bound follows from δ < 0 and |T ki| ≤ mk. For general l this upper bound
becomes (

mk(log t)σ

tb

)l
When k = C log log t with C = σ/ logm, we have that mlk = (log t)lσ. Therefore, the
claim in Lemma 11.32 holds with d = 2σ.

Lemma 11.32 shall prove to be extremely useful, as it will imply that the shortest path
graph from any vertex is, with high probability, close to a tree up to the moment when
Coret ∪ {j : j ≤ tb} is hit. We recall that Coret consists of the vertices with high degree,
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and it is reasonable to suspect that the early vertices are precisely the ones which have
high degree. This suggests that {j : j ≤ tb} ⊆ Coret. We next prove that indeed, whp,
{j : j ≤ tb} is a subset of the core Coret:

Lemma 11.33 (Early vertices have large degrees whp). Fix m ≥ 1. There exists a
b > 0 such that, whp, minj≤tb dj(t) ≥ (log t)σ, for some σ > 1

3−τ . As a result, whp,

{j : j ≤ tb} ⊆ Coret.

Proof. Note that, by Exercise 8.19, for all m ≥ 1 and for δ < 0,

P(Di(t) ≤ j) ≤ j
Γ(mt)Γ

(
mi+ m+δ

2m+δ

)
Γ
(
mt+ m+δ

2m+δ

)
Γ(mi)

. (11.6.29)

Indeed, note that by (8.6.4), and when δ ≤ 0, we have that Cj ≤ 1. Thus, for m = 1, the
bound in (11.6.29) follows in this case. Furthermore, to conclude (11.6.29) from Exercise
8.19 for m ≥ 2, we note that, by the relation between PAt(m, δ) and PA1,δ/m(mt), the
degree of vertex i in PAt(m, δ) is bounded from below by the degree of vertex im in
PA1,δ(mt). As a result,

P(D(m)

i (t) ≤ j) ≤ P(D(1)

im(mt) ≤ j), (11.6.30)

after which the result follows from (11.6.29) for m = 1.
Below, we shall rely on the obvious consequence of (11.6.29) that

P(Di(t) ≤ j) ≤ j
Γ(mt)Γ

(
mi+ m+δ

2m+δ

)
Γ
(
mt+ m+δ

2m+δ

)
Γ(mi)

. (11.6.31)

Obviously, for t and i large, we have that

P(Di(t) ≤ j) ≤ jt−
m+δ
2m+δ i

m+δ
2m+δ (1 + o(1)). (11.6.32)

We finally use (11.6.31) to complete the proof of Lemma 11.33. Take 0 < b <
m+δ
2m+δ
m+δ
2m+δ

+1
=

m+δ
3m+2δ

. Then, by Boole’s inequality,

P(∃i ≤ tb : Di(t) ≤ (log t)σ) ≤
tb∑
i=1

P(di(t) ≤ (log t)σ)

≤ (log t)σ
Γ(mt)

Γ
(
mt+ m+δ

2m+δ

) tb∑
i=1

Γ
(
mi+ m+δ

2m+δ

)
Γ(mi)

≤ (log t)σ
( m+ δ

2m+ δ
+ 1)−1 Γ(mt)

Γ
(
mt+ m+δ

2m+δ

) Γ
(
mtb + m+δ

2m+δ
+ 1
)

Γ(mtb)

= o(1), (11.6.33)

by a similar equality as in (11.6.32). This completes the proof of Lemma 11.33.

Now we are ready to complete the proof of Proposition 11.31:

Proof of Proposition 11.31. By combining Lemmas 11.32 and 11.33, the probability that
there exists an i ∈ {1, 2, . . . , t} for which the exploration tree T ki has at least l collisions
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before hitting the core is o(1), whenever l > 1/b, since, by Boole’s inequality, it is bounded
by

t∑
i=1

(log t)dlt−bl = (log t)2σlt−bl+1 = o(1), (11.6.34)

precisely when l > 1
b
. When the k-exploration tree hits the core, then we are done by

Theorem 11.26. When the k-exploration tree from a vertex i does not hit the core, but has
less than l collisions, then there are at least mk−l vertices in k-exploration tree. Indeed,
when there are at most l collisions, the minimal size of the tree is obtained by identifying
at most l vertices and their complete offspring, and the size of the pruned tree has size at
least mk−l.

When k = C log log t with C = σ/ logm, this number is at least equal to (log t)σ+o(1).
The total weight of the core is, by Exercise 8.17, at least∑

i∈Coret

(Di(t) + δ) ≥ Bt(log t)−(τ−2)σ. (11.6.35)

The probability that there does not exist a t-connector between the k-exploration tree and
the core is, by (11.6.10) bounded above by

exp

{
−ηBt(log t)−(τ−2)σ(log t)σ+o(1)

t

}
= o(t−1), (11.6.36)

by picking B sufficiently large, since σ > 1/(3− τ). This completes the proof.

Proposition 11.34. Fix m ≥ 2 and δ ∈ (−m, 0). For every σ > 1
3−τ , whp, the maximal

distance between any vertex and Coren ∪ {1, 2, . . . , t} in PAm,δ(2t) is bounded from above

by σ log log t
logm

.

Proof. Denote k = bσ log log t
logm

c−1. We again grow the k-exploration trees from the vertices

i ∈ {t+ 1, t+ 2, . . . , 2t}.
By Lemma 11.32 for b = 1, the probability that there exists a vertex whose k-exploration

tree contains at least two collisions before hitting the vertex set Coret ∪ {1, 2, . . . , t} is
bounded above by t−2(log t)d1 for some d1 sufficiently large. When the k-exploration
tree contains a vertex in Coret ∪ {1, 2, . . . , t}, then we are done by Proposition 11.31
and Theorem 11.26. If not, and there are at most 2 collisions, then there are at least
mk = (m − 1)mk−1 vertices in {t + 1, t + 2, . . . , 2t} at distance precisely equal to k from
the original vertex. Denote these vertices by i1, . . . , imk , and denote the k-exploration tree
of vertex i ∈ {t+ 1, t+ 2, . . . , 2t} by T ki. We write

P(@j ∈ {1, 2, . . . ,mk} such that ij −→ {1, 2, . . . , t}
∣∣T ki) (11.6.37)

=

mk∏
j=1

P
(
ij ←→/ {1, 2, . . . , t}

∣∣is ←→/ {1, 2, . . . , t}∀s < j, T ki
)
.

Now we note that, uniformly in the way all edges in PAm,δ(2t) are formed, we have that
for every s ∈ {t+ 1, t+ 2, . . . , 2t},∑t

i=1(Di(s) + δ)

(2m+ δ)s
≥ 1

2
. (11.6.38)

Thus, for any vertex ij in the boundary of T ki, the probability that it will be directly
connected to {1, 2, . . . , t} is at least 1/2. As a result, we have that, uniformly in t, i and j,

P
(
ij ←→/ {1, 2, . . . , t}

∣∣is ←→/ {1, 2, . . . , t}∀s < j, T ki
)
≤ (2m+ δ)t

(2m+ δ)(2t)
=

1

2
. (11.6.39)
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Therefore, we obtain that

P(@j = 1, . . . ,mk such that ij ←→ {1, 2, . . . , t}|T ki) ≤ 2−mk . (11.6.40)

Since mk = m−1
m

(log t)σ, with σ = 1
3−τ > 1, we have that 2−mk = o(t−1). Therefore, any

vertex i ∈ {t+ 1, t+ 2, . . . , 2t} is, whp, within distance k + 1 from {1, 2, . . . , t}.

Proof of Theorem 11.30. Proposition 11.34 states that whpevery vertex in PAm,δ(2t) is

within distance k + 1 = bσ log log t
logm

c of Coret ∪ {1, 2, . . . , t}. Proposition 11.31 states that

whpevery vertex in {1, 2, . . . , t} is at most distance k+ 1 from the core Coret. This shows
that every vertex in PAm,δ(2t) is whpwithin distance 2(k + 1) from the core.

Proof of Theorem ??. Theorem 11.30 states that every vertex in PAm,δ(2t) is within

distance 2σ log log t
logm

of the core Coret. Theorem 11.26 states that the diameter of the core

is at most 4 log log t
| log (τ−2)| (1 + o(1)), so that the diameter of PAm,δ(2t) is at most CG log log t,

where CG is given in (??). This completes the proof of Theorem ??.

11.7 Related results preferential attachment models

11.8 Related preferential attachment models

There are numerous related preferential attachment models in the literature. Here we
discuss a few of them:

A directed preferential attachment model. In [59], a directed preferential attach-
ment model is investigated, and it is proved that the degrees obey a power law similar
to the one in Theorem 8.2. We first describe the model. Let G0 be any fixed initial di-
rected graph with t0 edges. Fix some non-negative parameters α, β, γ, δin and δout, where
α+ β + γ = 1.

We next define G(t). In order to do so, we say that we choose a vertex according to
fi(t) when we choose vertex i with probability

fi(t)∑
j fj(t)

. (11.8.1)

Thus, the probability that we choose a vertex i is proportional to the value of the function
fi(t). Also, we denote the in-degree of vertex i in G(t) by Din,i(t), and the out-degree of
vertex i in G(t) by Dout,i(t).

We let G(t0) = G0, where t0 is chosen appropriately, as we will indicate below. For
t ≥ t0, we form G(t+ 1) from G(t) according to the following growth rules:

(A) With probability α, we add a new vertex v together with an edge from v to an
existing vertex which is chosen according to Din,i(t) + δin.

(B) With probability β, we add an edge between the existing vertices v and w, where
v and w are chosen independently, v according to Din,i(t) + δin and w according to
Dout,i(t) + δout.

(C) With probability γ, we add a vertex w and an edge from an existing vertex v to w
according to Dout,i(t) + δout.
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The above growth rule produces a graph process {G(t)}t≥t0 where G(t) has precisely t
edges. The number of vertices in G(t) is denoted by T (t), where T (t) ∼ Bin(t, α+ γ).

It is not hard to see that if αδin + γ = 0, then all vertices outside of G0 will have
in-degree zero, while if γ = 1 all vertices outside of G0 will have in-degree one. Similar
trivial graph processes arise when γδout + α = 0 or α = 1.

Exercise 11.13 (Special cases directed PA model). Prove that if αδin + γ = 0, then all
vertices outside of G0 will have in-degree zero, while if γ = 1 all vertices outside of G0 will
have in-degree one.

We exclude the above cases. Then, [59] show that both the in-degree and the out degree
of the graph converge, in the sense that we will explain now. Denote by Xi(t) the in-degree
sequence of G(t), so that

Xk(t) =
∑

v∈G(t)

1{Din,v(t)=k}, (11.8.2)

and, similarly, let Yi(t) be the out-degree sequence of G(t), so that

Yk(t) =
∑

v∈G(t)

1{Dout,v(t)=k}. (11.8.3)

Denote

τin = 1 +
1 + δin(α+ β)

α+ β
, τout = 1 +

1 + δout(γ + β)

γ + β
. (11.8.4)

Then [59, Theorem 3.1] shows that there exist probability distributions p = {pk}∞k=0 and
q = {qk}∞k=0 such that with high probability

Xk(t)− pkt = o(t), Yk(t)− qkt = o(t), (11.8.5)

while, for k →∞,

pk = Cink
−τin(1 + o(1)), qk = Coutk

−τout(1 + o(1)). (11.8.6)

In fact, the probability distributions p and q are determined explicitly, as in (8.3.2) above,
and p and q have a similar shape as p in (8.3.2). Also, since δin, δout ≥ 0, and α+β, γ+β ≤ 1,
we again have that τin, τout ∈ (2,∞). In [59], there is also a result on the joint distribution
of the in- and out-degrees of G(t), which we shall not state here.

The proof in [59] is similar to the one chosen here. Again the proof is split into a
concentration result as in Proposition 8.3, and a determination of the expected empirical
degree sequence in Proposition 8.4. In fact, the proof Proposition 8.4 is adapted after the
proof in [59], which also writes down the recurrence relation in (8.5.20), but analyses it in
a different way, by performing induction on k, rather than on t as we do in Sections 8.5.1
and 8.5.2. As a result, the result proved in Proposition 8.4 is slightly stronger. A related
result on a directed preferential attachment model can be found in [75]. In this model,
the preferential attachment probabilities only depend on the in-degrees, rather than on the
total degree, and power-law in-degrees are proved.

A general preferential attachment model. A quite general version of preferential
attachment models is presented in [93]. In this paper, an undirected graph process is
defined. At time 0, there is a single initial vertex v0. Then, to go from G(t) to G(t + 1),
either a new vertex can be added or a number of edges between existing vertices. The
first case is called NEW, the second OLD. With probability α, we choose to apply the
procedure OLD, and with probability 1− α we apply the procedure NEW.

In the procedure NEW, we add a single vertex, and let f = {fi}∞i=1 be such that fi is
the probability that the new vertex generates i edges. With probability β, the end vertices
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of these edges are chosen uniformly among the vertices, and, with probability 1 − β, the
end vertices of the added edges are chosen proportionally to the degree.

In the procedure OLD, we choose a single old vertex. With probability δ, this vertex is
chosen uniformly, and with probability 1 − δ, it is chosen with probability proportionally
to the degree. We let g = {gi}∞i=1 be such that gi is the probability that the old vertex
generates i edges. With probability γ, the end vertices of these edges are chosen uniformly
among the vertices, and, with probability 1 − γ, the end vertices of the added edges are
chosen proportionally to the degree.

The main result in [93] states that the empirical degree distribution converges to a
probability distribution which obeys a power law with a certain exponent τ which depends
on the parameters of the model. More precisely, a result such as in Theorem 8.2 is proved,
at least for k ≤ t1/21. Also, a version of Proposition 8.4 is proved, where the error term
E[Pk(t)]−tpk is proved to be at most Mt1/2 log t. For this result, some technical conditions
need to be made on the first moment of f , as well as on the distribution g. The result
is nice, because it is quite general. The precise bounds are a bit weaker than the ones
presented here.

Interestingly, also the maximal degree is investigated, and it is shown that the maximal
degree is of order Θ(t1/(τ−1)) as one would expect. This result is proved as long as τ < 3.
1 Finally, the results close to those that we present here are given in [7]. In fact, the error
bound in Proposition 8.4 is proved there for m = 1 for several models. The result for
m > 1 is, however, not contained there.

Non-linear preferential attachment. There is also work on preferential attachment
models where the probability of connecting to a vertex with degree k depends in a non-
linear way on k. In [193], the attachment probabilities have been chosen proportional to kγ

for some γ. The linear case was non-rigorously investigated in [192], and the cases where
γ 6= 1 in [193]. As one can expect, the results depend dramatically in the choice of γ.
When γ < 1, the degree sequence is predicted to have a power law with a certain stretched
exponential cut-off. Indeed, the number of vertices with degree k at time t is predicted to
be roughly equal to tαk, where

αk =
µ

kγ

k∏
j=1

1

1 + µ
jγ
, (11.8.7)

and where µ satisfies the implicit equation that
∑
k αk = 1. When γ > 1, then [192]

predicts that there is a single vertex that is connected to nearly all the other vertices. In
more detail, when γ ∈ (1 + 1

m+1
, 1 + 1

m
), it is predicted that there are only finitely many

vertices that receive more than m+1 links, while there are, asymptotically, infinitely many
vertices that receive at least m links. This was proved rigorously in [227].

In [241], random trees with possibly non-linear preferential attachment are studied
by relating them to continuous-time branching processes and using properties of such
branching processes. Their analysis can be seen as a way to make the heuristic in Section
1.3.2 precise. To explain their results, let wi be the weight of a vertex of degree i. The
random tree evolves, conditionally on the tree at time t, by attaching the (t+ 1)st vertex
to vertex i with probability proportional to wDi(t)−1. Let λ∗ be the solution, if it exists,
of the equation

1 =

∞∑
n=1

n−1∏
i=0

wi
wi + λ

. (11.8.8)

1On [93, Page 318], it is mentioned that when the power law holds with power law exponent τ ,
that this suggests that the maximal degree should grow like t1/τ . However, when the degrees are
independent and identically distributed with a power law exponent equal to τ , then the maximal
degree should grow like Θ(t1/(τ−1)), which is precisely what is proved in [93, Theorems 2 and 5].
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Then, it is proved in [241] that the degree distribution converges to pw = {pw(k)}∞k=1,
where2

pw(k) =
λ∗

wk + λ∗

k∏
i=0

wi
wi + λ∗

. (11.8.9)

For linear preferential attachment models where wi = i + 1 + δ, we have that λ∗ = δ, so
that (11.8.9) reduces to (8.3.3):

Exercise 11.14 (The affine preferential attachment case). Prove that, when λ∗ = δ and
wi = i+ 1 + δ, (11.8.9) reduces to (8.3.3).

Interestingly, in [241] not only the degree of a uniformly chosen vertex is studied, but
also its neighborhood. We refrain from describing these results here. These analyses are
extended beyond the tree case in [39].

Preferential attachment with fitness. The models studied in [47, 48, 126] include
preferential attachment models with random fitness. In general, in such models, the vertex
vi which is added at time i is given a random fitness (ζi, ηi). The later vertex vt at
time t > i connects to vertex vi with a conditional probability which is proportional to
ζiDi(t)+ηi. The variable ζi is called the multiplicative fitness, and ηi is the additive fitness.
The case of additive fitness only was introduced in [126], the case of multiplicative fitness
was introduced in [47, 48] and studied further in [68]. Bhamidi [39] finds the exact degree
distribution both for the additive and multiplicative models.

Preferential attachment and power-law exponents in (1, 2). In all models, and
similarly to Theorem 8.2, the power law exponents τ are limited to the range (2,∞). It
would be of interest to find simple examples where the power law exponent can lie in
the interval (1, 2). A possible solution to this is presented in [100], where a preferential
attachment model is presented in which a random number of edges can be added which
is, unlike [93], not bounded. In this case, when the number of edges obeys a power law,
then there is a cross-over between a preferential attachment power law and the power law
from the edges, the one with the smallest exponent winning. Unfortunately, the case where
the weights have degrees with power-law exponent in (1, 2) is not entirely analyzed. The
conjecture in [100] in this case is partially proved by Bhamidi in [39, Theorem 40].

Universal techniques to study preferential attachment models. In [39], Bhamidi
investigates various preferential attachment models using universal techniques from continuous-
time branching processes (see [12] and the works by Jagers and Nerman [159, 160, 215])
to prove powerful results for preferential attachment graphs. Models that can be treated
within this general methodology include fitness models [47, 48, 126], competition-induced
preferential attachment models [36, 37], linear preferential attachment models as studied
in this chapter, but also sublinear preferential attachment models and preferential attach-
ment models with a cut-off. Bhamidi is able to prove results for (1) the degree distribution
of the graph; (2) the maximal degree; (3) the degree of the initial root; (4) the local
neighborhoods of vertices; (5) the height of various preferential attachment trees; and (6)
properties of percolation on the graph, where we erase the edges independently and with
equal probability.

Preferential attachment models with conditionally independent edges.

2The notion of degree used in [241] is slightly different since [241] makes use of the in-degree
only. For trees, we have that the degree is the in-degree plus 1, which explains the apparent
difference in the formulas.
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11.9 Notes and discussion

Notes on Section 11.1. The proof of Theorem 11.1 is adapted from [240]. More recent
discussions on exchangeable random variables and their properties can be found in [11] and
[231], the latter focussing on random walks with self-interaction, where exchangeability is a
crucial tool. There is a lot of work on urn schemes, also in cases where the weight functions
are not linear with equal slope, in which case the limits can be seen to obey rather different
characteristics. See e.g., [22, Chapter 9].

Notes on Section 11.2.

Notes on Section 11.3. Scale-free trees have received substantial attention in the lit-
erature, we refer to [63, 235] and the references therein. Theorem ?? is one of the main
results in [235].

There is a beautiful result on the height of trees using branching processes due to King-
man [186], which Pittel [235] makes crucial use of. This approach is based on exponential
martingales, and allows for a relatively short proof of the lower bound on the height of the
tree.

Notes on Section 11.4. A weaker version of Theorem 11.15 is proved in [108]. The
current theorem is inspired by [103].

Notes on Section 11.5.



Chapter 12

Optimal flows on random graphs

In this chapter, we investigate the effect of independent and identically distributed edge
weights on the metric structure of the graph. For this, we investigat the asymptotic
properties of shortest-weight paths between vertices in complete and random graphs. We
start by motivating the problem.

12.1 Motivation for shortest-weight routing

Many real-world networks (such as the Internet at the router level or various road
and rail networks) are entrusted with carrying flow between various parts of the network.
These networks have both a graph theoretic structure as well as weights on edges that
could represent congestion weights. For example, in Internet, routing is performed by
shortest-weight routing. While we do not know which weights are used, in 2000, CISCO
advised its customers to use the inverse of the bandwidth as edge weights. In turn, the
empirical properties of bandwidths of cables in Internet are unknown, so that we resort to
assuming that edge weights are independent and identically distributed random variables.
This leads to first-passage percolation on networks. When we model real-world networks
with random graphs, we are lead to studying first-passage percolation them.

In applied settings, understanding properties of both the number of edges in and weight
of and the optimal path are crucial. Indeed, while routing is done via shortest-weight
paths, the actual time delay experienced by users scales like the hopcount (the number
of “hops” a message has to perform in getting from its source to its destination). In this
chapter, we investigate properties of minimal-weight paths, in particular the properties of
minimal weight paths between vertices, focussing on their weight and the number of edges
in them.

An instance of such distances are the hopcount in Internet, see Figure 12.1, which we
repeat here. In Internet, the hopcount is the number of routers traversed by an e-mail
message between two uniformly chosen routers. Measurements of the hopcount make use
of traceroute which allows one to record the number of routers traversed by e-mails. Thus,
with a sufficiently large set of routers, we can measure the hopcount between any pair of
them, thus yielding an estimate of the hopcount in Internet. See [245] for more details on
Internet data. We emphasize that obtaining such measurements is a highly non-trivial
task, as it is unclear how to obtain a representative set of routers. Further, uncleaned
traceroute-data contains many errors, since routers may appear with distinct names, etc.
In fact, such errors lie at the basis of the controversy about the Internet topology, for which
we refer to [272].

First-passage percolation has many more interpretations. For example, when we inter-
pret the weight of an edge as the time it takes a disease to be spread between the vertices
on either end of the end, then first-passage percolation gives rise to a caricature model
of an epidemic. When we think of two competing species trying to explore new territory,
then first-passage percolation can be used to describe which species wins the most of the
available territory.

We now formally introduce minimal-weight routing on graphs. Let G = (V (G), E(G))
be a graph with vertex set V (G) and edge set E(G). The graphs we work on are finite, so
that we may write V (G) = [n]. Let (Ye)e∈E(G) denote the edge weights on G, where we
assume that Ye > 0 a.s. Then, for i, j ∈ V (G), we let Cn(i, j) denote the minimal weight

351
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Figure 12.1: Internet hopcount data. Data courtesy of H. Tangmunarunkit.

over all paths from i to j, i.e.,

Cn(i, j) = min
π : i→j

∑
e∈π

Ye. (12.1.1)

Denote the optimal path realizing the minimum in (12.1.1) by πn(i, j). When we assume
that (Ye)e∈E(G) are i.i.d. random variables with a continuous distribution, which we assume
henceforth, then πn(i, j) is unique. We define the hopcount between i and j to be

Hn(i, j) = |πn(i, j)|, (12.1.2)

where we recall that |π| denotes the number of edges in π. The weight distribution and
hopcount of a graph are given by

Cn = Cn(U1, U2), Hn = Hn(U1, U2), (12.1.3)

where U1, U2 are two vertices chosen uniformly at random, independent of each other.
When the graph is disconnected, we will often condition on Hn < ∞. Further objects of
interest are the flooding time maxj∈V (G) Cn(i, j) and weight diameter maxi,j∈V (G) Cn(i, j).

When we think about Y(i,j) as the amount of time it takes for a rumor to be transferred
from person i to person j, then Cn(i, j) is the time for the rumor started by person i
to reach person j and maxj∈[n] Cn(i, j) is the time for the whole population to hear the
rumor. The weight diameter maxi,j∈[n] Cn(i, j) has the interpretation as the time it takes
all rumors to reach the entire population when each person starts with its own unique
rumor.

Organization of Chapter 12. This chapter is organised as follows. In Section 12.2, we
start with the simplest possible setting, the complete graph with exponential edge weights.
Just as the Erdős-Rényi random graph is a natural starting point for studying random
graphs, and thus serves as a benchmark model, the complete graph with exponential edge
weights serves as a benchmark model for weighted random graphs. Of course, the complete
graph is not a realistic model for any real-world network, and in Section 12.3, we investigate
the configuration model with exponential edge weights. In Section 12.4, we introduce
continuous-time branching processes, which serve as a main tool in the remainder of this
chapter. We continue in Section 12.5 by showing that first-passage percolation on the
configuration model with finite-variance degrees shows a remarkable degree of universality,



12.2 Markovian flow on the complete graph 353

in that the limiting behavior of both the weight and the number of edges in the minimal-
weight path between two uniform connected vertices hardly depend on the specific edge-
weight and degree distribution. We continue in Section 12.6 by describing related results
on routing on random graphs. We close in Section 12.7 with notes and discussion.

12.2 Markovian flow on the complete graph

Assign to every edge ij of the complete graph a random weight Yij . By convention, we
let Yji = Yij . We assume that the

(
n
2

)
weights Yij , 1 ≤ i < j ≤ n, are i.i.d. exponential

random variables with parameter 1, so that P(Yij > x) = e−x for x ≥ 0. The main theorem
of this section is a set of three different asymptotic results for Cn(i, j):

Theorem 12.1 (One, two and three times logn/n). For the complete graphs with expo-
nential edge weights, as n→∞

(i) for any fixed i and j,
Cn(i, j)

logn/n

P−→ 1; (12.2.1)

(ii) for any fixed i,
maxj≤n Cn(i, j)

logn/n

P−→ 2; (12.2.2)

(iii)
maxi,j≤n Cn(i, j)

logn/n

P−→ 3. (12.2.3)

Hence, whp, Cn(i, j) is about logn/n for any fixed (or random) pair of vertices, but there
are pairs of vertices for which it is larger: up to 2 logn/n if i is fixed and j varies, and up to
3 logn/n globally. Theorem 12.1(i),(ii) may alternatively be stated in terms of first-passage
percolation on the complete graph (the time to reach a given vertex is about logn/n and
the time to reach all is 2 logn/n). In the following exercise, we investigate properties of
the minimal edge weight from a given vertex, as these will be useful to interpret the results
in Theorem 12.1:

Exercise 12.1 (Minimal weights from a given vertex). Let Xi = minj 6=i Yij. Show that,
as n→∞:

nXi
d−→ Exp(1), n2 min

i∈[n]
Xi = n2 min

i,j∈[n] : i 6=j
Yij

d−→ Exp(2),
maxi∈[n] Xi

logn/n

P−→ 1.

(12.2.4)

Using Exercise 12.1, we can give a simple informal interpretation of the three parts
of Theorem 12.1 as follows, interpreting the weights as travel times. Most vertices are
connected by efficient highways, which take you to almost any other vertex within about
logn/n (but rarely much quicker). Some vertices, however, are remote villages, from which
it takes up to logn/n to get to any other vertex at all. Hence, starting at a typical vertex,
most travel times are about logn/n, but it takes an extra logn/n (just for the final step
in the path) to reach a few remote vertices. Similarly, if we start at one of the very remote
vertices, then it takes about logn/n to get to any other vertex at all, 2 logn/n to get to
most other vertices and 3 logn/n to get to the other very remote vertices.

Proof of Theorem 12.1. For parts (i) and (ii), we may assume that i = 1. We adopt the
first-passage percolation viewpoint, so we regard vertex 1 as initially infected, and assume
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that the infection spreads along each edge with an Exp(1)-distributed waiting time. We
first study when the other vertices get infected, considering them in order of infection and
ignoring their labels.

Since there are n − 1 neighbours of the initially infected vertex, the time T1 until the
second vertex is infected is exponentially distributed with expectation 1/(n − 1). More
generally, when k < n vertices have been infected, there are k(n− k) edges connecting the
infected and non-infected vertices, and thus the time Tk until the next vertex is infected
is Exp(k(n− k)); moreover, this time is independent of T1, . . . , Tk−1. In other words, the
time Sm until m with m ≥ 1 vertices have become infected can be written

Sm =

m−1∑
k=1

Tk, (12.2.5)

where T1, . . . , Tm−1 are independent with Tk
d
= Exp(k(n− k)).

The times (Sm)nm=2 are just the minimal path weights (Cn(1, j))nj=2, arranged in in-
creasing order. In particular,

max
j∈[n]

Cn(1, j) = Sn =

n−1∑
k=1

Tk. (12.2.6)

Hence, using that
1

k(n− k)
=

1

n

( 1

k
+

1

n− k
)
, (12.2.7)

we arrive at

E[max
j∈[n]

Cn(1, j)] =

n−1∑
k=1

E[Tk] =

n−1∑
k=1

1

k(n− k)
=

1

n

n−1∑
k=1

(
1

k
+

1

n− k

)

=
2

n

n−1∑
k=1

1

k
=

2 logn

n
+O (1/n) , (12.2.8)

and, similarly,

Var(max
j∈[n]

Cn(1, j)) =

n−1∑
k=1

Var(Tk) =

n−1∑
k=1

(
1

k(n− k)

)2

≤ 2

n/2∑
k=1

1

k2(n− k)2
≤ 8

n2

n/2∑
k=1

1

k2
= O(1/n2). (12.2.9)

Part (ii) now follows by Chebyshev’s inequality (see Theorem 2.16).
For part (i), fix j = 2. Observe that, if N is the number of vertices found by the flow

before vertex 2 is found, then

Cn(1, 2) = SN+1 =

N∑
k=1

Tk, (12.2.10)

where, by exchangeability, N is uniformly distributed over 1, . . . , n− 1 and independent of
T1, . . . , Tn−1. We rewrite this equation as

Cn(1, 2) =

n−1∑
k=1

1{N≥k}Tk, (12.2.11)
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using indicator functions to eliminate the random summation limit. This rewrite allows us
to compute the first moment of Cn(1, 2) as

E[Cn(1, 2)] =

n−1∑
k=1

E[1{N≥k}Tk] =

n−1∑
k=1

P(N ≥ k)E[Tk]

=

n−1∑
k=1

n− k
n− 1

1

k(n− k)
=

n−1∑
k=1

1

k(n− 1)

=
logn

n
+O (1/n) . (12.2.12)

In order to estimate the variance, we further rewrite the sum as

Cn(1, 2) =

N∑
k=1

(Tk − E[Tk]) +

N∑
k=1

1

n

(
1

k
+

1

n− k

)

=

N∑
k=1

(Tk − E[Tk]) +
1

n
(logN + logn− log(n−N)) +O (1/n) . (12.2.13)

We consider the three terms on the right-hand side separately. Since N,T1, . . . , Tn−1 are
independent,

Var

(
N∑
k=1

(Tk − E[Tk])

)
= E

( N∑
k=1

(Tk − E[Tk])

)2
 = E

[
N∑
k=1

Var(Tk)

]

≤
n−1∑
k=1

Var(Tk) =

n−1∑
k=1

1

k2(n− k)2

≤
n/2∑
k=1

4

k2n2
+

n−1∑
k=n/2

4

n2(n− k)2
= O

(
1/n2) . (12.2.14)

For the second term, we observe that, as n→∞,

E[(logN − log(n− 1))2] = E

[(
log

N

n− 1

)2
]
→
∫ 1

0

(log x)2dx <∞. (12.2.15)

Hence Var(logN) = Var(log(n − N)) = O(1), and it follows that the variance of the
second term in (12.2.13) is also O(1/n2). The same is trivially true for the third term.
Consequently, Var(Cn(1, 2)) = O(1/n2), which together with (12.2.12) yields part (i).

The proof of (iii) is divided into two parts, considering upper and lower bounds sepa-
rately. We start with the upper bound, and rely on an exponential Chebychev inequality.
First, by (12.2.6), for −∞ ≤ t < 1− 1/n.

E[entmaxj∈[n] Cn(1,j)] =

n−1∏
k=1

E[entTk ] =

n−1∏
k=1

(
1− nt

k(n− k)

)−1

. (12.2.16)
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Hence, for every a > 0, where we assume without loss of generality that n ≥ 3,

P(nmax
j∈[n]

Cn(1, j) > a logn) ≤ E[entmaxj∈[n] Cn(1,j)−ta logn] (12.2.17)

= e−ta logn
n−1∏
k=1

(
1− nt

k(n− k)

)−1

=
(

1− nt

n− 1

)−2

exp
(
− ta logn−

n−2∑
k=2

log
(
1− nt

k(n− k)

))
.

Using the Taylor expansion − log (1− x) = x+ O(x2), and choosing t = 1− 1/ logn, this
leads us to

P(nmax
j∈[n]

Cn(1, j) > a logn) (12.2.18)

≤
(

1− nt

n− 1

)−2

exp
(
− ta logn+

n−2∑
k=2

( nt

k(n− k)
+
( nt

k(n− k)

)2))
= (1− t+O(1/n))−2 exp(−ta logn+ 2t logn+O(1)) = O(n2−a log2 n).

This evidently implies that

P( max
i,j∈[n]

Cn(i, j) > a logn/n) = P(max
i

max
j∈[n]

Cn(i, j) > a logn/n) (12.2.19)

≤ nP(max
j∈[n]

Cn(1, j) > a logn/n) = O(n3−a log2 n),

which tends to 0 as n → ∞, for every fixed a > 3. This establishes the required upper
bound.

The lower bound on maxi,j∈[n] Cn(i, j) makes use of two steps. We first show that
whpthere are vertices i ∈ [n] whose minimal edge weight Xi = minj 6=i Yij is at least
(1 − ε) logn/n. In the second step, we show that most pairs of such vertices have a
smallest weight at least 3(1− ε) logn/n. We start by investigating the number of vertices
with minimal edge weight Xi ≥ (1− ε) logn/n.

We let ε > 0 to be determined later on, and define the vertices with minimal edge weight
at least (1− ε) logn/n to be

N = {i : Xi ≥ (1− ε) logn/n}, (12.2.20)

where Xi = minj 6=i Yij is the minimal edge weight from vertex i as studied in Exercise
12.1.

We apply a second moment method on |N |. Since Xi
d
= Exp(n− 1),

E[|N |] = nP(nX1 ≥ (1− ε) logn) = ne−(1−ε)n−1
n

logn = nε(1 + o(1)). (12.2.21)

Further

E[|N |(|N | − 1)] = n(n− 1)P
(
nX1 ≥ (1− ε) logn, nX2 ≥ (1− ε) logn

)
, (12.2.22)

where

P
(
nX1 ≥ (1− ε) logn, nX2 ≥ (1− ε) logn

)
= e−(1−ε) (2n−3)

n
logn. (12.2.23)

Therefore,

E[|N |(|N | − 1)] ≤ E[|N |]2e(1−ε) logn/n. (12.2.24)
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We conclude that Var(|N |) = o
(
E[|N |]2

)
, so that by the Chebychev inequality (Theorem

2.16),

n−ε|N | P−→ 1. (12.2.25)

This completes the first step in the proof.
We next show that nCn(i, j) ≥ 3(1 − ε) logn for most pairs of vertices i, j ∈ N . For

this, we let

P = {(i, j) ∈ N 2 : nYij ≥ 2(1− ε) logn, nCn(i, j) ≥ 3(1− ε) logn} (12.2.26)

denote the set of pairs (i, j) in N for which the weight of the edge between i and j is at
least 2(1− ε) logn/n, and the minimal weight is at least 3(1− ε) logn/n.

Our aim is to show that n−2ε|P| P−→ 1, which proves the lower bound. For this, we
start by noticing that

0 ≤ |N |(|N | − 1)− |P| ≤ N1 +N2, (12.2.27)

where

N1 = |{(i, j) ∈ N 2 : nYij < 2(1− ε) logn}|, (12.2.28)

N2 = |{(i, j) ∈ N 2 : nYij ≥ 2(1− ε) logn, nCn(i, j) < 3(1− ε) logn}|. (12.2.29)

We know that n−2ε|N |(|N | − 1)
P−→ 1. We perform a first moment method on N1 and N2

to show that n−2εNi
P−→ 0 for i = 1, 2, which then shows that indeed n−2ε|P| P−→ 1. We

compute

E[N1] = E|{(i, j) ∈ N 2 : nYij < 2(1− ε) logn}| (12.2.30)

≤ n(n− 1)[1− e−2(1−ε) logn/n]e−2(1−ε)n−1
n

logn = o(n2ε),

so that by the Markov inequality (Theorem 2.15) indeed n−2εN1
P−→ 0. For N2, we

compute

E[N2] = n(n− 1)P(1, 2 ∈ N , nY12 ≥ 2(1− ε) logn, nCn(1, 2) < 3(1− ε) logn) (12.2.31)

= n(n− 1)P(1, 2 ∈ N , nY12 ≥ 2(1− ε) logn)

× P(nCn(1, 2) < 3(1− ε) logn | 1, 2 ∈ N , nY12 ≥ 2(1− ε) logn).

A minor adaptation of (12.2.23) yields that

n2(1−ε)P(1, 2 ∈ N , nY12 ≥ 2(1− ε) logn)→ 1, (12.2.32)

so that

E[N2] = n2εP(nCn(1, 2) < 3(1− ε) logn | 1, 2 ∈ N , nY12 ≥ 2(1− ε) logn)(1 + o(1)).
(12.2.33)

We are left to investgate the conditional probability. For this, we note that conditionally
on Yij > x, the distribution of Yij − x is again Exp(1). Therefore, the information that
1, 2 ∈ N , nY12 ≥ 2(1−ε) logn implies that Y12−2(1−ε) logn, (Y1j−(1−ε) logn/n)j≥3 and
(Y2j − (1− ε) logn/n)j≥3 are a collection of 2n− 3 independent Exp(1) random variables.
The law of all other weights, i.e., Yij with both i 6= 1 and j 6= 2 are unaffected by the
conditioning on 1, 2 ∈ N , nY12 ≥ 2(1− ε) logn.

Let π be a path from 1 to 2. When π contains one edge, its conditional weight given
1, 2 ∈ N , nY12 ≥ 2(1 − ε) logn has distribution 2(1 − ε) logn/n + E12 where E12 has an
Exp(1) distribution. On the other hand, when π contains at least two edges, then both the
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edge incident to 1 and that incident to 2 have edge have weight E1π(1) +(1−ε) logn/n and
Eπ(|pi|−1)π(|pi|) +(1−ε) logn/n respectively. As a result, conditionally on 1, 2 ∈ N , nY12 ≥
2(1− ε) logn, the weight of a path π from 1 to 2 has distribution∑

e∈π

Ee + 2(1− ε) logn/n, (12.2.34)

for all paths π from 1 to 2. This distribution is equal to 2(1− ε) logn/n plus the uncondi-
tional distribution of the smallest-edge weight between vertices 1 and 2, so that

P(nCn(1, 2) < 3(1− ε) logn | 1, 2 ∈ N , nY12 ≥ 2(1− ε) logn) (12.2.35)

= P(nCn(1, 2) < (1− ε) logn) = o(1),

by part (i). This completes the lower bound in part (iii).

Exercise 12.2 (Alternative proof of lower bound maxj∈[n] Cn(1, j)). Adapt the proof of the
lower bound on maxi,j∈[n] Cn(i, j) to give an alternative proof of the fact that nmaxj∈[n] Cn(1, j) ≥
2(1− ε) logn whp.

Limit distributions of path weights. We next study the fluctuations of the flooding
maxj∈[n] Cn(i, j) and Cn(i, j). The stochastic description in (12.2.5) and (12.2.9) also yields
their asymptotic distributions:

Theorem 12.2 (Asymptotic distributions of minimal weights). As n → ∞, for every
i 6= j with i, j ∈ [n] fixed,

nCn(i, j)− logn
d−→ Λ1 + Λ2 − Λ3, (12.2.36)

and, for every i ∈ [n] fixed,

nmax
j∈[n]

Cn(i, j)− 2 logn
d−→ Λ1 + Λ2, (12.2.37)

where Λ1,Λ2,Λ3 are independent Gumbel random variables, i.e., P(Λi ≤ x) = e−e−x for
all x ∈ R.

Proof. We write An ≈ Bn to mean that E[(An − Bn)2] = o(1) as n → ∞. Equation
(12.2.10) implies that with (Ei)i≥1 denoting independent Exp(1) random variables and N
a discrete uniform random variable in the set [n− 1] independent of (Ei)i≥1,

nCn(i, j)
d
=

N∑
k=1

n

k(n− k)
Ek =

N∑
k=1

n

k(n− k)
(Ek − 1) +

N∑
k=1

(
1

k
+

1

n− k

)

≈
N∑
k=1

(Ek − 1)/k + logN + γ + logn− log(n−N)

≈
∞∑
k=1

(Ek − 1)/k + log
( N/n

1−N/n

)
+ logn+ γ, (12.2.38)

where γ is the Euler-Mascheroni constant.
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Similarly, with E′k denoting i.i.d. exponentials with mean 1 independent of (Ek)k≥1,
(12.2.6) implies that

nFloodn(i)
d
=

n−1∑
k=1

n

k(n− k)
Ek =

n−1∑
k=1

n

k(n− k)
(Ek − 1) + 2

n−1∑
1

1

k

≈
bn/2c∑
k=1

(Ek − 1)/k +

n−1∑
k=bn/2c+1

1

n− k (Ek − 1) + 2 logn+ 2γ

d
=

bn/2c∑
k=1

(Ek − 1)/k +

dn/2e−1∑
k=1

(E′k − 1)/k + 2 logn+ 2γ. (12.2.39)

Since N/n
d−→ U , where U has a uniform distribution on [0, 1], the random variable

L = log (U/(1− U)) has the logistic distribution, i.e., for every x ∈ R,

P(L ≤ x) = P
(

log
(
U/(1− U)

)
≤ x

)
= P

(
U ≤ ex/(1 + ex)

)
= ex/(1 + ex). (12.2.40)

Therefore,

nCn(i, j)− logn
d−→

∞∑
k=1

(Ek − 1)/k + γ + L, (12.2.41)

and

nmax
j∈[n]

Cn(i, j)− 2 logn
d−→

∞∑
k=1

(Ek − 1)/k +

∞∑
k=1

(E′k − 1)/k + 2γ. (12.2.42)

We are left to show that

Λ =

∞∑
k=1

(Ek − 1)/k + γ (12.2.43)

has a Gumbel distribution, and that L has the same distribution as Λ1 − Λ2.
We see that

Λ =

∞∑
k=1

1

k
(Ek − 1) + γ = lim

n→∞

n∑
k=1

Ek/k − logn. (12.2.44)

Further, by the memoryless property of the exponential distribution,
∑n
k=1 Ek/k has the

same distribution as maxi∈[n] Ei:

Exercise 12.3 (Order statistics of i.i.d. exponentials). Let (Ei)i∈[n] be a sequence of
i.i.d. exponential distributions with parameter 1. Let (E(i:n))i∈[n] be the order statistics
of (Ei)i∈[n], i.e., the reordering of (Ei)i∈[n] in increasing order. Show that (E(i:n))i∈[n]

has the same distribution as
(∑n−i+1

k=n Ek/k
)
i∈[n]

. Conclude that E(n:n) = maxi∈[n] Ei
d
=∑n

k=1 Ek/k.

By Exercise 12.3 and (12.2.44),

P(Λ ≤ x) = lim
n→∞

P(
n

max
i=1

Ei − logn ≤ x) = lim
n→∞

P(E1 ≤ x+ logn)n (12.2.45)

= lim
n→∞

[1− e−(x+logn)]n = [1− e−x/n]n = e−e−x ,
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so that Λ indeed has the Gumbel distribution. Further, we compute the distribution
function of Λ1 − Λ2 as

P(Λ1 − Λ2 ≤ x) = E[P(Λ1 ≤ x+ Λ2 | Λ2)] = E[e−e−(x+Λ2)

] = E[e−e−Λ2 e−x ]. (12.2.46)

When Λ has a Gumbel distribution, E = e−Λ has an exponential distribution (see Exercise
12.4), so that

P(Λ1 − Λ2 ≤ x) = E[e−Ee−x ] = (1 + e−x)−1 = ex/(1 + ex). (12.2.47)

This completes the proof.

Exercise 12.4 (Distribution of e−Λ). Let Λ have a Gumbel distribution. Show that E =
e−Λ has an exponential distribution with parameter 1.

Exercise 12.5 (Integral representation of Euler-Mascheroni). Use the fact that

∞∑
k=1

1

k
(Ek − 1) + γ (12.2.48)

has a Gumbel distribution to conclude the following integral representation for the Euler-
Mascheroni constant γ:

γ =

∫ ∞
−∞

xe−xe−e−xdx =

∫ ∞
0

e−y log ydy. (12.2.49)

Lengths of minimal paths: the hopcount. So far, we have studied the weights of the
minimal paths, but one might also ask how long they are, disregarding their weights, that
is, how many edges they contain. Let Hn(i, j) be the length of the path between i and j
that has minimal weight, and recall from (12.1.3) that Hn = Hn(U1, U2) where U1, U2 are
two independent draws uniformly from [n]. Note that, conditionally on U1 6= U2, Hn has
the same distribution as Hn(i, j). Here we will be primarily interested in the fluctuations
of Hn(i, j) and we show a central limit theorem for it:

Theorem 12.3 (Central limit theorem for the hopcount). Consider first-passage percola-
tion on the complete graph Kn with i.i.d. exponential edge weights. As n → ∞, for any
fixed i, j ∈ [n],

Hn(i, j)− logn√
logn

d−→ Z, (12.2.50)

where Z is standard normal.

If we compare Theorem 12.1 and 12.3, then we see that the fluctuations of Hn(i, j) are
much larger than those of nCn(i, j). The asymptotic normal distribution with asymptot-
ically equal mean and variance reminds us of Figure 12.1, where the empirical mean and
variance of the number of edges in the minimal-weight paths are close.

Proof. The proof of Theorem 12.1 shows that the collection of minimal weight paths from
a given vertex, 1 say, form a tree (rooted at 1) which can be constructed as follows. Begin
with a single root and add n − 1 vertices one by one, each time joining the new vertex
to a (uniformly) randomly chosen old vertex. This type of random tree is known as a
random recursive tree. Let Hn denote the height of a random vertex in [n], so that Hn
has the same distribution as Hn(i, U), where U is uniform in [n]. Further, conditionally
on U 6= i, Hn(i, U) has the same distribution as Hn(i, j), so that a central limit theorem
for Hn implies an identical one for Hn(i, j). To investigate Hn, we use the following
characterization of its distribution:
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Lemma 12.4 (Distribution of the hopcount). Fix n ≥ 2. Let Hn be the height in a random
recursive tree of a uniformly chosen vertex in [n]. Then Hn has the same distribution as
Gn =

∑n
i=2 Ii, where Ii are independent Bernoulli random variables with success probability

1/i.

Proof. We prove this lemma by induction on n. When n = 2, we have that H2 ∈ {0, 1}
each with probability 1/2, and also G2 = I2 ∈ {0, 1} with equal probability. This initializes
the induction hypothesis.

To advance the induction hypothesis, we let Vn denote a random vertex in [n]. We
condition on Vn = n or not, to obtain

P(Hn = k) =
1

n
P(Hn = k | Vn = n) + (1− 1

n
)P(Hn = k | Vn 6= n). (12.2.51)

Now, P(Hn = k | Vn 6= n) = P(Hn−1 = k), since conditonally on Vn 6= n, Vn has a uniform
distribution on [n − 1]. Further, when Vn = n, we have that Hn is the height of the last
added vertex, which is equal to 1 plus the height of a uniformly chosen vertex in [n − 1]
since the parent of vertex n is a uniform vertex in [n − 1]. Therefore, P(Hn = k | Vn =
n) = P(Hn−1 = k − 1), so that we arrive at the recursion relation

P(Hn = k) =
1

n
P(Hn−1 = k) + (1− 1

n
)P(Hn−1 = k − 1). (12.2.52)

We conclude that Hn has the same distribution as Hn−1 + In, where In has a Bernoulli
distribution with success probability 1/n. This advances the induction hypothesis, and
completes the proof.

Theorem 12.3 follows immediately from Lemma 12.4, together with the fact that (
∑n
i=2 Ii−

logn)/
√

logn
d−→ Z, where Z is standard normal (see also Exercise 12.8).

Exercise 12.6 (Mean hopcount). Show that E[Hn] =
∑n
k=2 1/k, which is the harmonic

series.

Exercise 12.7 (Variance hopcount). Show that Var(Hn) =
∑n
k=2 1/k −

∑n
k=2 1/k2 =

E[Hn]− ζ(2) +O(1/n), where ζ(2) =
∑∞
k=1 1/k2 is equal to the zeta-function at 2.

Exercise 12.8 (CLT for sums of independent indicators). Let (Ii)i≥1 be a collection of
independent Be(pi) random variables, and assume that

m∑
i=1

pi →∞,
m∑
i=1

p2
i = o

( m∑
i=1

pi
)
. (12.2.53)

Show that, as m→∞, ∑m
i=1(Ii − pi)√∑m

i=1 pi

d−→ Z, (12.2.54)

where Z is standard normal. Use this to show that (Hn − logn)/
√

logn
d−→ Z, where Hn

be the height in a random recursive tree of a uniformly chosen vertex in [n].

Exercise 12.9 (Joint convergence). Show that the convergence of Hn(i, j) and Cn(i, j) in
Theorems 12.2 and 12.3, respectively, occurs jointly, i.e.,(Hn(i, j)− logn√

logn
, nCn(i, j)− logn

)
d−→ (Z,Λ1 + Λ2 − Λ3), (12.2.55)

where Z is standard normal and Λ1,Λ2,Λ3 are three independent Gumbel variables inde-
pendent of Z.
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12.3 Markovian flow on the configuration model

In this section, we investigate first-passage percolation on the configuration model with
exponential edge weights. Our main aim is to describe the asymptotics in distribution of
Hn and Cn on CMn(d) where the degree distribution has finite variance. Our main result
of this section is the following theorem:

Theorem 12.5 (Hopcount and minimal path weight for CM with exponential edge weights).
Let CMn(d) satisfy Condition 7.5(a)-(c) and ν = E[D(D− 1)]/E[D] > 1. Further, assume
that νn = E[Dn(Dn − 1)]/E[Dn] = ν + o(1/ logn) and that there exists ε > 0 such that

lim
n→∞

E[D2+ε
n ] = E[D2+ε]. (12.3.1)

Then, there exists a random variable Q such that, conditionally on Cn <∞,

Hn − α logn√
α logn

d−→ Z, Cn −
1

λ
logn

d−→ Q, (12.3.2)

where Z has a standard normal distribution, and

α = ν/(ν − 1), λ = ν − 1. (12.3.3)

By Theorem 10.15, we know that the graph distance dCMn(d)(U1, U2) between two uni-
formly chosen vertices satisfies

dCMn(d)(U1, U2)/ logn
P−→ 1/ log ν. (12.3.4)

By Theorem 12.5, Hn/ logn
P−→ α = ν/(ν−1) > 1/ log ν, so that the minimal-weight path

is substantially longer than the shortest path realizing the graph distance. In turn,

Cn/ logn
P−→ 1/(ν − 1) < 1/ log ν, (12.3.5)

while the expected weight of any shortest path has the same asymptotics as in (12.3.4),
so that the minimal-weight path has a significantly smaller weight. Thus, the topology of
the configuration model CMn(d) is significantly altered by adding i.i.d. weights along the
edges.

We next discuss the fluctuations of Hn and Cn in Theorem 12.5. By Theorem 10.45,
the centered graph distance dCMn(d)(U1, U2) − logn/ log ν is a tight sequence of random
variables that does not converge in distribution. The latter is due to the discrete nature of
dCMn(d)(U1, U2). In Theorem 12.5, Hn instead satisfies a CLT with asymptotic mean and
variance equal to α logn, where α = ν/(ν − 1). Thus, it has much larger fluctuations than
the graph distance. Further, the centered shortest-weight Cn − logn/λ, which is a contin-
uous random variables and thus does not suffer from the discreteness as dCMn(d)(U1, U2),
converges in distribution. In order to intuitively understand this asymptotics, we see that,
for first-passage percolation on CMn(d), the number of vertices that can be reached with
weight at most t grows proportional to eλt. As a result, when we draw an alive vertex
uniformly at random from all the alive vertices at time t, then its lifetime will be a tight
random variable (in fact, it has an asymptotically exponential distribution with parameter
1/λ). This is a hint at why the fluctuations of Cn converge in distribution. Instead, if we
draw a uniform alive vertex at time t and look at its generation, then it has an approximate
normal distribution, which suggests that the same must be true for Hn. We discuss this
matter in more detail below.

The limiting random variable Q in (12.3.2) can be identified as

Q = Q1 +Q2 −
Λ

ν − 1
+

logµ(ν − 1)

ν − 1
, (12.3.6)
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where Q1, Q2 are two independent copies of a certain limiting random variable and Λ
has a Gumbel distribution independent from Q1, Q2, and where we write, throughout this
section, µ = E[D].

We now start by describing the key steps in the proof of Theorem 12.5:

Local structure first-passage percolation on CMn(d). Proposition 10.18 shows that
the local structure around a uniform vertex in CMn(d) is close to a two-stage branching
process, where the root has offspring distribution D appearing in Condition 7.5(a), while
all other individuals have offspring D? − 1, where D? is the size-biased version of D. This
leads us to study first-passage percolation on Galton-Watson trees. Due to the memoryless
property of the exponential distribution, this process has a Markovian structure that is
closely related to, but slightly more involved than, that on the complete graph as in
the proofs of Theorems 12.1, 12.2 and 12.3. We start by describng this construction on
determinstic trees where the ith explored vertex has degree di. Later, we shall take d1 = D,
and di = D?

i − 1 for i ≥ 2, where these random variables are independent. However, since
the construction is true for any tree, in fact we may also apply it to situations where the
distributions of the di are weakly dependent, which will turn out to be highly useful in the
sequel.

We now present the details. Suppose we have positive (non-random) integers d1, d2, . . ..
Consider the following construction of a branching tree:

Construction 12.6 (Flow from root of tree and split-times). The shortest-weight graph
and split times on a tree with degrees (di)i≥1 are obtained as follows:

(1) Start with the root which dies immediately giving rise to d1 alive offspring;

(2) Each alive offspring lives for a random amount of time, which has an exponential
distribution with parameter 1, independent of all other randomness involved;

(3) When the mth vertex dies, it leaves behind dm alive offspring.

In Construction 12.6, the number of offspring di is fixed once and for all. It is crucial
that there always is at least one alive vertex. This occurs precisely when si = d1 + · · · +
di − (i− 1) ≥ 1 for every i ≥ 1:

Exercise 12.10 (The number of alive vertices). Show that the number of alive vertices
after the ith step in Construction 12.6 is equal to

si = d1 + · · ·+ di − (i− 1). (12.3.7)

Thus, this construction continues forever precisely when si ≥ 1 for every i ≥ 1.

The split-times (or death-times) of the process in Construction 12.6 are denoted by
(Ti)i≥0, where, by convention, T0 = 0 and T1 has an exponential distribution with param-
eter d1. We refer to i as time. Note that Construction 12.6 is equivalent to this process,
observed at the discrete times (Ti)i≥0. The fact that the chosen alive vertex is chosen
uniformly at random follows from the memoryless property of the exponential random
variables that compete to become the minimal one, and makes the process Markovian. We
continue to investigate the generation and weight to the mth chosen alive vertex in our
first-passage percolation problem on the tree:

Proposition 12.7 (Shortest-weight paths on a tree). Pick an alive vertex at time m ≥ 1
uniformly at random among all vertices alive at this time. Then,
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(a) the weight of the minimal-weight path between the root of the tree and the vertex chosen
at time m is equal in distribution to

Tm
d
=

m∑
i=1

Ei/si, (12.3.8)

where (Ei)i≥1 are i.i.d. exponential random variables with mean 1.
(b) the generation of the vertex chosen at time m is equal in distribution to

Gm
d
=

m∑
i=1

Ii, (12.3.9)

where (Ii)i≥1 are independent Bernoulli random variables with

P(Ii = 1) = di/si, (12.3.10)

Proof. We start by proving part (a). At each time m, and conditionally on (Ti)
m−1
i=1 , the

memoryless property of the exponential distribution implies that Tm − Tm−1 has an expo-
nential distribution with parameter sm. Here we use that the minimum of si independent
exponential 1 random variables has an exponential distribution with parameter si, and is
hence equal in distribution to Ei/si. Therefore, conditionally on (Ti)

m−1
i=1 ,

Tm − Tm−1
d
= Em/sm, (12.3.11)

where Em is independent from (Ti)
m−1
i=1 . This proves the claim for part (a).

We prove part (b) by induction on m ≥ 1. The statement is trivial for m = 1, since then
G1 = 1 a.s., while s1 = d1, so that also I1 = 1 a.s. This initializes the induction hypothesis.

We next assume that (12.3.9) holds for m, where (Ii)
m
i=1 are independent Bernoulli

random variables satisfying (12.3.10). We then advance the induction hypothesis to m+1,
by showing that Gm+1 has the distribution in (12.3.9).

Let Gm+1 denote the generation of the randomly chosen vertex at time m + 1, and
consider the event {Gm+1 = k} for 1 ≤ k ≤ m. If randomly choosing one of the alive
vertices at time m + 1 results in one of the dm+1 newly added vertices, then, in order to
obtain generation k, the previous uniform choice, i.e., the choice of the vertex which was
the last one to die, must have been a vertex from generation k − 1. On the other hand,
if a uniform pick is conditioned on not taking one of the dm+1 newly added vertices, then
this choice is a uniform alive vertex from generation k. Hence, we obtain, for 1 ≤ k ≤ m,

P(Gm+1 = k) =
dm+1

sm+1
P(Gm = k − 1) +

(
1− dm+1

sm+1

)
P(Gm = k). (12.3.12)

As a result, Gm+1
d
= Gm+Im+1, where Im+1 is a Bernoulli variable with success probability

dm+1/sm+1. The proof of part (a) is now immediate from the induction hypothesis.

Exercise 12.11 (Gumbel law for deterministic trees). Let d1 = r − 2 and di = r − 1 for
every i ≥ 2. Use Proposition 12.7 to conclude that

Tm −
logm

r − 2

d−→ Λ/(r − 2), (12.3.13)

where Λ has a Gumbel distribution.
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Exercise 12.12 (CLT for height of uniform point in deterministic tree). Let d1 = r − 2
and di = r − 1 for every i ≥ 2. Use Proposition 12.7 to conclude that

Gm − r−1
r−2

logm√
r−1
r−2

logm

d−→ Z, (12.3.14)

where Z has a standard normal distribution.

We next intuitively relate the above result to our setting. Start from vertex U1, and
iteratively choose the half-edge with minimal additional weight attached to the SWG so far.
As mentioned before, because of the memoryless-property of the exponential distribution,
the half-edge with minimal additional weight can be considered to be picked uniformly at
random from all half-edges incident to the SWG at that moment.

With high probability, this half-edge is paired to a half-edge that is not incident to the
SWG. Let Bi denote the forward degree (i.e., the degree minus 1) of the vertex incident
to the half-edge to which the ith half-edge is paired. By the results in Chapter 10, see in
particular Proposition 10.18, (Bi)i≥2 are close to being i.i.d., and have distribution given
by D? − 1. Therefore, we are lead to studying random variables of the form (12.3.9)–

(12.3.10), where (Bi)i≥1 are independent random variables with B1
d
= D and Bi

d
= D?−1.

Thus, we study the unconditional law of Gm in (12.3.9), in the setting where the vector
(di)i≥1 is replaced by a sequence of independent random variables (Bi)i≥1. We first state
a CLT for Gm and a limit result for Tm in this setting.

Let us recall the definitions of Tm and Gm in this setting, and introduce some notation.

Let S(ind)

i = B1 + · · · + Bi − (i − 1), where B1
d
= D and Bi

d
= D?

i − 1, and (Bi)i≥1 are
independent. Then, define

Tm =

m∑
i=1

Ei/S
(ind)

i , Gm
d
=

m∑
i=1

Ii, (12.3.15)

where, conditionally on (S(ind)

i )i≥1, (Ii)i≥1 are independent Bernoulli random variables
with

P(Ii = 1) = Bi/S
(ind)

i . (12.3.16)

Corollary 12.8 (Asymptotics for shortest-weight paths on trees). Let (Bi)i≥1 be a se-
quence of independent non-degenerate integer-valued random variables satisfying E[B1+ε

i ] <

∞ for some ε > 0. Denote ν = E[B1]. Then, conditionally on S(ind)

i = B1 + · · ·+Bi− (i−
1) ≥ 1 for all i ≥ 1,
(a) for Tm given by (12.3.15), there exists a random variable X such that

Tm −
1

λ
logm

d−→ X, (12.3.17)

where λ = ν − 1.
(b) for Gm given in (12.3.15)–(12.3.16), with α = ν/(ν − 1) ≥ 1, as m→∞,

Gm − α logm√
α logm

d−→ Z, (12.3.18)

where Z is a standard normal variable.

We next identify the limit of Tm − (logm)/λ where λ = ν − 1. We start from (12.3.8),
and rewrite

Tm =

m∑
i=1

(Ei − 1)/S(ind)

i +

m∑
i=1

( 1

S(ind)

i

− 1

(ν − 1)i

)
+

1

ν − 1

m∑
i=1

1/i. (12.3.19)
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On the event that S(ind)

i ≥ 1 for every i ≥ 1, by the Strong Law of Large Numbers,

S(ind)

i /i
a.s.−→ ν − 1, (12.3.20)

As a result, there are a.s. only finitely many values for which Si ≤ (1− ε)(ν − 1)i. Denote

Mm =
∑m
i=1(Ei − 1)/S(ind)

i , and note that, conditionally on (S(ind)

i )i≥0, (Mm)m≥1 is a
martingale. with conditional second moment

E[M2
m | (S(ind)

i )i≥0] =

∞∑
m=1

1/(S(ind)

i )2, (12.3.21)

which is a.s. bounded on the event that S(ind)

i ≥ 1 for every i ≥ 1 and that S(ind)

i ≤
(1−ε)(ν−1)i except for finitely many i. As a result, for a.e. (S(ind)

i )i≥0, Mn and converges

a.s. to its limit, which equals M∞ =
∑∞
i=1(Ei − 1)/S(ind)

i . For the second term, we can
rewrite

m∑
i=1

( 1

S(ind)

i

− 1

(ν − 1)i

)
=

m∑
i=1

( 1

S(ind)

i

− 1

E[S(ind)

i ]

)
+

∞∑
i=1

( 1

(µ+ (ν − 1)(i− 1)
− 1

(ν − 1)i

)
,

(12.3.22)
and

∞∑
i=1

( 1

(µ+ (ν − 1)(i− 1)
− 1

(ν − 1)i

)
=

1

ν − 1

∞∑
i=1

ν − µ− 1

i(µ+ (ν − 1)(i− 1))
, (12.3.23)

which is finite. Further, on the event that S(ind)

i ≥ 1 for every i ≥ 1 and that Si ≤
(1− ε)(ν − 1)i except for finitely many i,

m∑
i=1

( 1

S(ind)

i

− 1

E[S(ind)

i ]

)
= −

m∑
i=1

S(ind)

i − E[S(ind)

i ]

S(ind)

i E[S(ind)

i ]
(12.3.24)

= ΘP(1)

m∑
i=1

|S(ind)

i − E[S(ind)

i ]|
i2

.

Since S(ind)

i = D +
∑i
j=2(D?

j − 1) + (i − 1) and the summands have a (1 + ε) bounded

moment, |E[S(ind)

i −E[S(ind)

i ]| = O(i1/(1+ε)), which implies that the random variable on the
r.h.s. of (12.3.24) has a finite mean. Finally,

m∑
i=1

1/i− logm→ γ, (12.3.25)

where γ is Euler-Mascheroni’s constant. This identifies the limit of Q1 = Tm−(logm)/(ν−
1) as

Q1 =

∞∑
i=1

(Ei − 1)/S(ind)

i +

∞∑
i=1

(1/S(ind)

i − 1/[(ν − 1)i) + γ/(ν − 1). (12.3.26)

In turn, (12.3.26) identifies the limit law Q1 appearing in the limit law of Cn − γ logn in
(12.3.6).
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The flow on CMn(d) from one vertex. We next discuss the first-passage percolation
problem on CMn(d), started from a single vertex U1. Naturally, this is not quite the same
as first-passage percolation on a tree. Differences arise since

(1) the degrees of vertices found by the first-passage percolation flow are not quite
independent (but they are quite close to i.i.d);

(2) in the flow, sometimes we encounter vertices that have already been found by the
flow, thus creating a cycle (but this is rare when few vertices have been found);

(3) the offspring distribution depends on n, the size of the graph (but the empirical
distribution converges).

The aim of this paragraph is to quantify that these differences are only negligible.
Let us start by describing how we explore the first-passage percolation neighborhood

of a vertex in the graph. We perform the exploration of the first-passage percolation flow
from U1 and build the neighborhood of U1 in CMn(d) at the same time. The root U1

immediately dies, and has dU1

d
= Dn half-edges incident to it. We check, one by one,

whether these half-edges are paired to one of the other dU1 half-edges incident to the root

U1, thus creating a self-loop. We let B(n)

1 be the number of half-edges left, i.e., the number

of half-edges incident to U1 that are not part of self-loops. We denote S(n)

1 = B(n)

1 , and we

let T (n)

1 = E1/S
(n)

1 .
We now recursively continue the above construction. Suppose we have constructed

S(n)

1 , . . . , S(n)

m−1, the random variablesB(n)

1 , . . . , B(n)

m−1 as well as the vertices U1, V1, . . . , Vm−1

where Vi is incident to the half-edge to which the mth chosen half-edge is paired. Then,
we draw one of the S(n)

m−1 alive half-edges at time m − 1 uniformly at random, and pair
it to one of the available half-edges in the graph. Let Vm denote the vertex to which it is
incident, and let dVm denote its degree. By construction, Vm cannot be indicent to any of
the half-edges found so far, so that Vm ∈ [n] \ {U1, V1, . . . , Vm−1}. Moreover, by Lemma
10.20, the random variables (dVi)i≥2 form a size-biased reordering of [n]\{U1}. We let B(n)

m

denote the number of half-edges from the dVm−1 half-edges incident to Vm that are paired
to vertices outside of {U1, V1, . . . , Vm}, and let S(n)

m denote the number of alive half-edges

after the edges involved in cycles have been removed. Define S(n)
m = S(n)

m−1 +B(n)
m − 1.

We note that S(n)
m is not quite the number of unpaired half-edges at time m. Indeed, let

Q(n)
m be the number of half-edges counted in S(n)

m−1 that are paired to a half-edge incident
to Vm. Then, at time m, there are

S(n)
m −

m∑
i=2

Q(n)
m (12.3.27)

unpaired half-edges. We call the
∑m
i=2 Q

(n)
m half-edges artificial.

In order to correct for the mistake created due to the presence of artificial half-edges,
we note that with probability (

∑m
i=2 Q

(n)
m )/S(n)

m , we draw one of these half-edges. If we

do so, then we let B(n)
m = 0. Then, when we only observe (S(n)

m , B(n)
m , Vm)m≥2 at the

times when we do not use one of the artificial half-edges, this describes the first-passage
flow from vertex U1. Since, when we draw an artificial half-edge, we set B(n)

m = 0, these
half-edges can be thought of as dangling ends that do not really change the dynamics of
the first-passage percolation flow. We let Rm denote the time where we find the mth real
vertex, i.e., R0 = 0 and R1 = 1 unless vertex U1 only has self-loops. This leads us to our
main coupling result:

Proposition 12.9 (Coupling shortest-weight graphs on a tree and CM). Jointly for all
m ≥ 1, the set of real vertices in SWGRm is equal in distribution to the set of ith closest
vertices to vertex 1, for i = 1, . . . ,m. Consequently, the weight and generation of the mth
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closest vertex to vertex 1 have distribution (TRm , GRm), where (Tm, Gm)m≥0 are defined
in (12.3.15)–(12.3.16).

We fix an =
√
n. We can combine Proposition 12.9 with Proposition 12.8, as well as

Lemma 10.20, to obtain the following corollary:

Corollary 12.10 (Asymptotics for shortest-weight paths on CM). Conditionally on vertex

S(n)

i = B(n)

1 + · · ·+B(n)

i − (i− 1) ≥ 1 for every i ≥ 1, and with an =
√
n,

Tan −
1

λ
log an

d−→ X, (12.3.28)

where λ = ν − 1 and X is defined in Proposition 12.8.
(b) for Gan the generation of the vertex incident to the anth added half edge in (SWGt)t≥0,

Gan − β log an√
β log an

d−→ Z, (12.3.29)

where Z is a standard normal variable.

Corollary 12.10 describes the limiting split-time and the height of the anth half-edge.
We now extend this result to th flow from two vertices, which is necessary to obtain the
hopcount and weight result on CMn(d).

Flow clusters started from two vertices. To compute the hopcount, we first grow the
SWG from vertex U1 until time an =

√
n, followed by the growth of the SWG from vertex

U2 until the two SWGs meet, as we now explain in more detail. Denote by (SWG(i)
m )m≥0

the SWG from the vertex Ui with i ∈ {1, 2}, and, for m ≥ 0, let

SWG(1,2)
m = SWG(1)

an ∪ SWG(2)
m , (12.3.30)

the union of the SWGs of vertices U1 and U2. We only consider values of m where SWG(1)
an

and SWG(2)
m are disjoint, i.e., they do not contain any common vertices. We discuss the

moment when SWG(1)
an and SWG(2)

m connect below.

We start by describing the flow from vertex U2, conditionally on SWG(1)
an . By the

memoryless property of the exponential distribution, all alive and real half-edges in SWG(1)
an

have a remaining lifetime that has an exponential distribution with prameter 1. In first-
passage percolation on CMn(d), these weights are associated to edges, while for our flow
clusters, we associate these weights to the half-edge that is incident to the flow cluster
at that time. For the flow from a single vertex, this makes no difference, as we associate
weight 0 on the half-edge to which it is paired. We have grown SWG(1)

m to size m = an,
and, by construction, all unpaired half-edges in SWG(1)

an are connected to vertices outside
of SWG(1)

m .
We can now, for all half-edges that are paiired to the unpaired half-edges in SWG(1)

an ,
instead associate the remaining weight to the other end of the edge, which is incident to a
vertex that is not part of SWG(1)

an . When applying this to edges that connect SWG(1)
an and

SWG(2)
m for some m ≥ 0, this restores the weight distribution on alive half-edges in SWG(2)

m

to independent exponential random variables with parameter 1. As a result, the weights
of unpaired half-edges incident to SWG(2)

m are independent on whether these half-edges are
paired to unpaired half-edges incident to SWG(1)

an or not. In effect, we have

transferred the remaining lifetimes of half-edges in SWG(1)
an

to weights of half-edges incident to SWG(2)
m .
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We now give the details of this subtle argument. Let the half-edge x be incident to SWG(1)
an .

Let the vertex incident to x be Vx. Let y be the half-edge incident to SWG(2)
m to which

x is paired, and let Vy be the vertex incident to y. Then, conditionally on SWG(1)
an and

(T (1)

i )ani=1, the weight of xy is at least T (1)
an −W

(1)

Vx
, where W (1)

is
is the weight of the shortest

path from 1 to Vx. By the memoryless property of the exponential distribution, therefore,
the weight on edge e = xy equals T (1)

an − W (1)

Vx
+ Ee, where the collection (Ee), for all

e incident to SWG(1)
an are i.i.d. Exp(1) random variables. This means that the remaining

lifetime of the edge is Ee, which is an exponentila random variable with mean 1.
Alternatively, we can redistribute the weight by saying that the half-edge y has weight

Ee, and the half-edge x has weight T (1)
an −W

(1)

Vx
. Further, in the growth of (SWG(2)

m )m≥0, we

can also think of the exponential weights of the edges incident to SWG(2)
m being positioned

on the half-edges incident to SWG(2)
m . Hence, there is no distinction between the half-edges

that are part of edges connecting SWG(1)
an and SWG(2)

m and the half-edges that are part of
edges incident to SWG(2)

m , but not to SWG(1)
an . Therefore, in the growth of (SWG(2)

m )m≥0,
we can think of the minimal weight half-edge incident to SWG(2)

m being chosen uniformly
at random, and then a uniform free half-edge is chosen to pair it with. As a result, the
distribution of the half-edges chosen at the time of connection is equal to any of the other
(real) half-edges chosen along the way. This is a crucial ingredient to prove the scaling of
the shortest-weight path between vertices U1 and U2.

To grow (SWG(2)
m )m≥0, we follow a strategy close to the one for (SWG(1)

m )m ≥ 0, now
living on the vertex set [n]∪{∅}\{U1, V1, . . . , Van}. Here ∅ is a vertex that we think of as
encoding the information of SWG(1)

an . In particular, we set d∅ = S(n;1)
an , the number of alive

half-edges incident to SWG(1)
an . By the above remark, (SWG(2)

m )m≥0 evolves as the flow on
configuration model with degree distribution formed by (di)i∈[n]\{U1,V1,...,Van}, until the

flow finds the distuinguished vertex ∅ of degree d∅ = S(n;1)
an .

The above description shows how we can grow the SWG from vertex U1 followed by the
one of vertex U2. In order to state an adaptation of Proposition 12.9 to the setting where
the SWGs of vertex U1 is first grown to size an, followed by the growth of the SWG from
vertex U2 until the connecting edge appears, we let the random time R(i)

m be the first time
l such that SWG(i)

l consists of m+ 1 real vertices. Then, our main coupling result for two
simultaneous SWGs is as follows:

Proposition 12.11 (Coupling SWGs from two vertices on CM). Jointly for m ≥ 0, as
long as the sets of real vertices in (SWG(1)

an , SWG(2)
m ) are disjoint, these sets are equal in

distribution to the sets of j1th, respectively j2th, closest vertices to vertex U1 and U2,
respectively, for j1 = 1, . . . , R(1)

an and j2 = 1, . . . , R(2)
m , respectively.

Proposition 12.11 describes the flow from two vertices U1 and U2 up to the moment that
the SWGs are connected to one another. We next investigate the moment the connection
between the SWGs takes place, as well as the properties of the connecting edge.

The connecting edge. As described above, we grow the two SWGs until the first half-
edge with minimal weight incident to SWG(2)

m is paired to a half-edge incident to SWG(1)
an .

We call the created edge linking the two SWGs the connecting edge. More precisely, let

Cn = min{m ≥ 0: SWG(1)
an ∩ SWG(2)

m 6= ∅}, (12.3.31)

be the first time that SWG(1)
an and SWG(2)

m share a vertex. When m = 0, this means that
U2 ∈ SWG(1)

an (which we shall show happens with small probability), while when m ≥ 1,
this means that the mth half-edge of SWG(2) which is chosen and then paired, is paired to
a half-edge from SWG(1)

an . The path found then is the shortest-weight path between vertices
1 and 2, since SWG(1)

an and SWG(2)
m precisely consists of the closest real vertices to the root

Ui, for i = 1, 2, respectively.
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For i ∈ {1, 2}, let H(i)
n denote the length of the shortest-weight path between vertex Ui

and the common vertex in SWG(1)
an and SWG(2)

Cn
, so that

Hn = H(1)
n +H(2)

n . (12.3.32)

Since at time Cn we have found the shortest-weight path,

(H(1)
n , H(2)

n )
d
= (G(1)

an+1 − 1, G(2)
Cn

), (12.3.33)

where (G(1)
m )m≥1 and (G(2)

m )m≥1 are copies of the process in (12.3.9), which are conditioned
on drawing a real half-edge. Indeed, at the time of the connecting edge, a uniform (real)
half-edge of SWG(2)

m is drawn, and it is paired to a uniform (real) half-edge of SWG(1)
an . The

number of hops in SWG(1)
an to the end of the attached edge is therefore equal in distribution

to G(1)

an+1 conditioned on drawing a real half-edge. The −1 in (12.3.33) arises since the

connecting edge is counted twice in G(1)

an+1 +G(2)
Cn

. The processes (G(1)
m )m≥1 and (G(2)

m )m≥1

are conditionally independent given the realizations of (B(i)
m )m≥2.

Further, because of the way the weight of the potential connecting edges has been
distributed over the two half-edges out of which the connecting edge is comprised,

Cn = T (1)
an + T (2)

Cn
, (12.3.34)

where (T (1)
m )m≥1 and (T (2)

m )m≥1 are two copies of the process (Tm)m≥1 in (12.3.8), again
conditioned on drawing a real half-edge. Indeed, to see (12.3.34), we note that the weight
of the connecting edge is equal to the sum of weights of its two half-edges. Therefore, the
weight of the shortest weight path is equal to the sum of the weight within SWG(1)

an , which

is equal to T (1)
an , and the weight within SWG(2)

Cn
, which is equal to T (2)

Cn
.

In the distributions in (12.3.33) and (12.3.34) above, we always condition on drawing a
real half-edge. Since we shall show that this occurs whp, this conditioning plays a minor
role.

The connection time. We now intuitively explain why the leading order asymptotics
of Cn is given by an =

√
n. For this, we must know how many allowed half-edges there

are, i.e., we must determine how many half-edges there are incident to the union of the
two SWGs at any time. Recall that S(n;i)

m denotes the number of allowed half-edges in the
SWG from vertex i at time m. The total number of allowed half-edges incident to SWG(1)

an

is S(1)
an , while the number incident to SWG(2)

m is equal to S(2)
m , and where

S(i)
m = Di +

m∑
l=2

(B(i)

l − 1). (12.3.35)

Proposition 12.12 (The time to connection). For i ∈ {1, 2}, and with α = ν/(ν − 1),

(G(1)

an+1 − α log an√
α log an

,
G(2)

Cn
− α log an√
α log an

) d−→ (Z1, Z2), (12.3.36)

where Z1, Z2 are two independent standard normal random variables. Moreover, there exist
random variables X1, X2 two independent copies of the random variable X in (12.3.26) and
an independent exponential random variable E such that,(
T (1)
an −

1

ν − 1
log an, T

(2)

Cn
− 1

ν − 1
log an

) d−→ (X1, X2 +
1

ν − 1
logE+

1

ν − 1
log(µ/(ν−1))).

(12.3.37)
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Proof. Conditionally on SWG(1)
an and (S(2)

l )m−1
l=1 and `n, and assuming that m and S(i)

m

satisfy appropriate bounds

P(Cn = m|Cn > m− 1) ≈
S(1)
an

`n
. (12.3.38)

We use this heuristic in order to identify the limit of Cn/an:

Lemma 12.13 (Weak convergence of connection time). Under the conditions of Theorem
12.5, with an =

√
n,

S(1)
an/an

P−→ ν − 1. (12.3.39)

Consequently,

Cn/an
d−→ Eµ/(ν − 1), (12.3.40)

where E has an exponential distribution with mean 1.

We only sketch the proof of Lemma 12.13. The details are not very difficult, but
somewhat tedious.
Sketch of proof of Lemma 12.13. We have that S(1)

an ≈
∑an
i=1(Bi − 1), where (Bi)

an
i=1 is a

collection of i.i.d. random variables with distribution D? − 1. Since E[(D?)1+ε] <∞

1

an

an∑
i=1

(Bi − 1)
a.s.−→ ν − 1. (12.3.41)

Naturally, S(1)
an is not quite a sum of i.i.d. random variables, and, therefore, the above

argument misses its rigorous details.
Each time we pair a half-edge, we have a probability close to S(1)

an/`n ≈ (ν−1)/(µ
√
n) of

drawing one that is incident to SWG(1)
an . Since this probability is close to constant and quite

small, the time it takes until we first draw one is close to a Geometric random variable

Qn with parameter (ν − 1)/(µ
√
n). The conclusion follows since Qn(ν − 1)/(µ

√
n)

d−→ E,
where E is an exponential random variable.

Now we are ready to complete the proof of Proposition 12.12:
Proof of Proposition 12.12. We first complete the proof of (12.3.37). It is not hard to
prove from (12.3.34) that

(
T (1)
an − γ log an, T

(2)
Cn
− 1

ν − 1
logCn

) d−→ (X1, X2), (12.3.42)

where (X1, X2) are two independent random variables with distribution given by (12.3.26).
By Lemma 12.13,

logCn − log an = log (Cn/an)
d−→ logE +

1

ν − 1
log(µ/(ν − 1))

)
. (12.3.43)

Also, the two limits are independent, since the limit in (12.3.42) is independent of the limit
of Cn/an. This completes the proof for the weight of the shortest path in (12.3.37). The
proof for (12.3.36) is similar.

Proof of Theorem 12.5. The statement for Cn in (12.3.2) follows by (12.3.34), (12.3.37) in
Proposition 12.12 and the fact that − logE = log(1/E) has a Gumbel distribution.
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By (12.3.33) and Proposition 12.12, with Z1, Z2 denoting independent standard normal

random variables, and with Z = (Z1 + Z2)/
√

2, which is again standard normal,

Hn
d
= G(1)

an+1 +G(2)

Cn
− 1 (12.3.44)

= 2α log an + Z1

√
α log an + Z2

√
α log an + oP(

√
logn)

= 2α log an + Z
√

2α log an + oP(
√

logn) = α logn+ Z
√
α logn+ oP(

√
logn).

This completes the proof of (12.3.2) for the hopcount.

12.4 Continuous-time branching processes

In the previous section, we have relied upon the memoryless property of the exponential
distribution to describe the limiting behavior of the weight of the minimal-weight path,
as well as to decouple it from the number of edges in this path. When dealing with first-
passage percolation with general edge weights, the memoryless property no longer holds.
It turns out that many of such settings can be described in terms of continuous-time
branching processes (CTBPs).

In this section, we discuss such CTBPs, which are models for the evolution of a popula-
tion in continuous time. In a CTBP, each individual has offspring that is independent and
identically distributed. The times at which the offspring of an individual are born form a
point process or couting process in continuous time, and we are interested in the evolution
of |BP(t)|, which is the number of individuals alive at a given time t ≥ 0, as well as many
related properties of the CTBP BP(t) when viewed as a tree. Here one can think of the
heights of vertices or the residual lifetimes.

We now formally define CTBPs. Let (P(t))t≥0 be a birth process. Recall that T∞
denotes the infinite Ulam-Harris tree of words, so that v ∈ T∞ can be representated as
v = v1 · · · vk, where vi ∈ N and k is the generation of the word v ∈ T∞. Each vertex
v ∈ T∞ has its own birth process (P(v)(t))t≥0, where the birth processes for different v are
independent. At time 0, the birth process of the root ∅, which is denoted as (P(∅)(t))t≥0,
starts running. Each time an individual v is born, the birth process of v denoted by
(P(v)(t))t≥0 starts running, and individuals are born into this process. We denote the set
of alive vertices by BP(t) and its cardinality or size by |BP(t)|. Thus, BP(t) consists of
those v ∈ T∞ that are alive at time t. Sometimes, births of the children of a vertex v occur
when the parent p(v) of v dies, sometimes the individuals remain on living forever. Thus,
a CTBP (BP(t))t≥0 is characterized by its birth process together with the death rules of
the individuals.

We next discuss two examples that relate to the first-passage percolation processes
studied in the previous two sections:

Example 12.14 (Yule process). Let the birth process (P(t))t≥0 be a Poisson point process
(PP(t))t≥0, so that PP[a, b] = #{i : Yi ∈ [a, b]}, where Yi = E1 + . . .+ Ei and (Ei)i≥1 are
i.i.d. exponential random variables with parameter 1. Individuals live forever. The process
(BP(t))t≥0 where BP(t) is the set of alive individuals at time t is called a Y ule process.

We first investigate the link to first-passage percolation on the complete graph in Section
12.2. Let Tm = inf{t : |BP(t)| = m} denote the birth time of the mth individual in the
Yule process, where by convention T1 = 0 so that the ancestor of the CTBP is born
insantaneously. Then, by the memoryless property of the exponential distribution,

Tm+1
d
=

m∑
k=1

Ek/k. (12.4.1)

Thus, Tm has the same distribution as the limit as n→∞ of the birth time of the mth in-
dividual for first-passage percolation on the complete graph with exponential edge weights.
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Further, for the Yule process and again by the memoryless property of the exponential dis-
tribution, the parent of the mth individual is a uniform vertex in [m− 1]. Thus, the tree
of the first m individuals is a uniform recursive tree of size m, so that the distribution of
the height of the mth vertex in Theorem 12.3 satisfies a CLT with asymptotic mean and
variance equal to logm.

We next investigate the number of alive particles in the Yule process at time t. Let
pm(t) = P(|BP(t)| = m). Then, since the birth process of the root is a Poisson point
process,

p1(t) = P(PP[0, t] = 0) = e−t. (12.4.2)

Further, for |BP(t)| = m to occur, the mth birth should occur at some time u ∈ [0, t],
while the (m+ 1)st birth should occur after time t. Conditionally on |BP(u)| = m− 1, the
rate of birth of the mth individual is equal to m − 1. This implies the following relation
between pm(t) and pm−1(t):

pm(t) =

∫ t

0

pm−1(u)(m− 1)e−m(t−u)du. (12.4.3)

The solution to (12.4.3) is

pm(t) = e−t(1− e−t)m−1, m ≥ 1, t ≥ 0, (12.4.4)

which we now prove by induction. The claim for m = 1 is already proved in (12.4.2) above.
To advance the induction hypothesis, we can rewrite

pm(t) = (m− 1)e−mt
∫ t

0

emupm−1(u)du. (12.4.5)

We use induction, which yields that

(m− 1)emupm−1(u) = (m− 1)eu(eu − 1)m−2 =
d

du
(eu − 1)m−1, (12.4.6)

so that

pm(t) = e−mt
∫ t

0

(m− 1)emupm−1(u)du = e−mt(et − 1)m−1 = e−t(1− e−t)m−1, (12.4.7)

as required.
By (12.4.4), the distribution of |BP(t)| is Geometric with parameter e−t. A geometric

random variable with small success probability p is close to an exponential random variable:

Exercise 12.13 (Geometric with small success probability). Let Xp have a geometric
distribution with parameter p. Show that, as p↘ 0,

pXp
d−→ E, (12.4.8)

where E has an exponential distribution.

By Exercise 12.13, as t→∞,

e−t|BP(t)| d−→ E. (12.4.9)

In fact, we can improve this result to convergence almost surely using a martigale argument:

Exercise 12.14 (Yule process martingale). Show that the process M(t) = e−t|BP(t)| is a
continuous-time martingale, and conclude that the convergence in (12.4.9) occurs a.s.
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Example 12.15 (Bellman-Harris processes). In a Bellman-Harris process, the initial in-
dividual dies instantaneously, giving birth to a random number of children B. Each of
these individuals has a lifetime that is an exponential random variable with mean 1, and
upon dying, produces a random number of children independently of and having the same
distribution as B. Each of these children again has and exponentila lifetime with mean 1,
etc. This is a CTBP with birth process

P[a, b] = B1{E∈[a,b]}. (12.4.10)

Lifetimes and number of offspring across individuals are independent. When the offspring
distribution is i.i.d., we retrieve first-passage percolation on a Galton-Watson tree with
offspring have the same distribution as B and with exponential passage times.

To analyze a Bellman-Harris CTBP, we let S0 = 1, and define (Si)i≥0 recursively by

Si = Si−1 +Bi − 1, (12.4.11)

as long as Si−1 ≥ 1. Here (Bi)i≥1 is an i.i.d. sequence of random variables whose law
is called the offspring distribution. Let Tm denote the time of death of the (m + 1)st
individual, so that T1 = 0. Then, when Si ≥ 1 for all i ∈ [m− 1],

Tm =

m∑
j=1

Ej/Sj , (12.4.12)

where (Ej)j≥1 is a sequence of i.i.d. exponential random variables with mean 1. When
Si = 0 for some i ∈ [m− 1], we define Tm =∞. With |BP(t)| equal to the number of alive
vertices at time t,

|BP(Tm)| = STm , (12.4.13)

so that |BP(t)| = ST (t), where T (t) = max{m : Tm ≤ t}.
Let us first make the relation to the first-passage percolation on CMn(D) discussed

in Section 12.3. There, we had that S1 = D, while, for i > 1, the recursion relation in
(12.4.11) is satisfied. We arrive at a process that is a Bellman-Harris CTBP, apart from
the fact that the offspring distribution at the root is D instead of B = D? − 1.

Naturally, CTBPs allow us to study settings where the number of children of the root
is different from that of any other individual. We call such a CTBP a two-stage CTBP.
Indeed, let the number of children of the root be equal to D and the offspring of the ith
individual to be equal to Bi where (Bi)i≥2 is an i.i.d. sequence whose law is given by
B = D? − 1. Then, we have the relation that

|BP(t)| =
D∑
i=1

|BPi(t− Ei)|, (12.4.14)

where (Ei)i≥1 are i.i.d. exponentials, and (|BPi(t)|)t≥0 are i.i.d. Bellmann-Harris processes
with i.i.d. offsprings. By convention, |BPi(t)| = 0 when t < 0.

In Section 12.3, it was proved that, with Tm the death time of the mth individual and
Gm its height,

Tm −
1

λ
logn

d−→ X,
Gm − λ

λ−1
logm√

λ
λ−1

logm

d−→ Z, (12.4.15)

where λ = E[B] is the expected offspring, Z is standard normal and

X =

∞∑
j=1

(Ej − 1)/Sj +

∞∑
j=1

[1/Sj − 1/(λj)] + γ/λ, (12.4.16)



12.4 Continuous-time branching processes 375

where γ is the Euler-Mascheroni constant and λ = ν−1 = E[B]−1. Therefore, me−λTm
d−→

−λX, which immediately implies that

e−λt|BP(t)| d−→W = e−λX . (12.4.17)

By the Markov property of this process, the random variable M(t) = e−λt|BP(t)| is a
continuous-time martingale, and therefore the convergence in (12.4.17) even holds almost
surely.

From a first-passage percolation point of view, it may look more natural to let |BP(t)|
denote the number of vertices that can be found by the flow before time t, instead of the
number of neighbors of vertices found by the flow. However, with the current setup, the
process |BP(t)| is a continuous-time Markov process. In the alternative formulation, this
is not the case, since even when we know the number of vertices found, the next vertex is
found at rate proportional to the number of neighbors, which is random.

General formulation. In Examples 12.14 and 12.15, we let |BP(t)| denote the number
of alive indivuduals, and we see that there exists a λ and a limiting random variable W
such that

e−λt|BP(t)| d−→W. (12.4.18)

Further, there are α, β such that

Gm − α logm√
β logm

d−→ Z, (12.4.19)

where Z is standard normal. These results have been obtained in a direct way in Sections
12.2-12.3. We next turn to an example where such a direct computation is much more
difficult:

Example 12.16 (Age-dependent branching processes). Let (BP(t))t≥0 denote the CTBP
where the birth process P is given by

P[a, b] = B1{Y ∈[a,b]}, (12.4.20)

where the birth-time Y is a non-negative continuous random variable having distribution
function FY .

At time t = 0, we start with one individual which we refer to as the original ancestor or
the root of the branching process. This individual immediately dies giving rise to B1 alive
children. Each new individual v in the branching process lives for a random amount of time
which has distribution FY , and then dies. At the time of death again the individual gives
birth to Bv children, where (Bv)v is a sequence of i.i.d. random variables with the same
distribution as B1. Lifetimes and number of offspring across individuals are independent.

We let |BP(t)| denote the number of alive individuals at time t. When the offspring
distribution is i.i.d., we retrieve first-passage percolation on a Galton-Watson tree with
offspring distribution B and passage-time distribution FY . When the lifetime distribution
is exponential, we retrieve the Bellman-Harris process.

When the lifetime distribution Y is not exponential, the process (|BP(t)|)t≥0 is not
Markovian. As a result, this process is much more difficult to study. Still, one would guess
that |BP(t)| again grows exponentially in t.

In order to study general CTBPs, we define the following Malthusian parameter:
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Definition 12.17 (Malthusian parameter). Let (BP(t))t≥0 be a continuous-time branching
process with birth process (P(t))t≥0. The Malthusian parameter λ is the solution to the
equation

E
[ ∫ ∞

0

e−λtP(dt)
]

= 1. (12.4.21)

The Mathusian parameter is the solution to (12.4.21) when this exists. The necesary and

sufficient condition for this to hold is that E[|P[0,∞)|] > 1 and limt→∞ E
[ ∫∞

0
e−λtP(dt)

]
<

1. The following theorem shows that λ indeed describes the exponential growth of the
CTBP:

Theorem 12.18 (Exponential growth CTBP). Assume the X logX condition in the form

E[X̂(λ) log(X̂(λ))+] <∞, (12.4.22)

where the random variable X̂(λ) is defined by

X̂(λ) =

∫ ∞
0

e−λtP(dt). (12.4.23)

Assume that E[X̂(0)] > 1 and limλ→∞ E[X̂(λ)] < 1.
Then, the Malthusian parameter λ > 0 given in Definition 12.17 exists and is unique, and
there exists a random variable W such that

e−λt|BP(t)| d−→W. (12.4.24)

Furthermore, W is positive if and only if the survival event {|BP(t)| > 0 ∀t ≥ 0} occurs.

Example 12.19 (Examples of exponential growth CTBP). We now give three examples:
(a) For the Yule process, we can compute that

E
[ ∫ ∞

0

e−λtP(dt)
]

=
∑
i≥1

E
[
e−λYi

]
, (12.4.25)

since a Poisson point process PP can be written as PP = {Yi}i≥1 with Yi = E1 + · · ·+ Ei
and (Ei)i≥1 are i.i.d. exponential random variables. Since Yi has a Gamma-distribution
with parameter i, we can further compute∑

i≥1

E
[
e−λYi

]
=
∑
i≥1

E
[
e−λE1

]i
(12.4.26)

=
∑
i≥1

( 1

λ+ 1

)i
= 1/λ,

so that λ = 1. Thus, (12.4.24) reduces to (12.4.9), apart from the identification of the
limiting random variable. For this, it is useful to use the branching property to deduce that
W satisfies the following distributional relation:

W
d
=

∞∑
i=1

e−YiWi, (12.4.27)

where again Yi = E1 + · · ·+ Ei and (Ei)i≥1 are i.i.d. exponential random variables. Note
that e−Ei has a uniform distribution on (0, 1). Since (e−YiWi)i≥1 has the same distribution
as e−E1(e−Yi−1Wi)i≥1, we thus obtain that

W
d
= U(W1 +W2), (12.4.28)
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where W1 and W2 have are i.i.d. copies of W . It can be shown that the unique solution of
this stochastic recurrence relation is the exponential distribution.
(b) For Bellman-Harris processes with E[B] ∈ (1,∞), we compute that

E
[ ∫ ∞

0

e−λtP(dt)
]

= E[B]E
[
e−λE

]
=

E[B]

λ+ 1
, (12.4.29)

so that λ = E[B]− 1 > 0.
(c) For general age-dependent branching processes with E[B] ∈ (1,∞), instead

E
[ ∫ ∞

0

e−λtP(dt)
]

= E[B]E
[
e−λY

]
, (12.4.30)

where Y has the edge weight distribution. The equation E[B]E
[
e−λY

]
= 1 always has a

solution, since E[B] ∈ (1,∞) and E
[
e−λY

]
↘ 0 as λ↘ 0. Thus, Theorem 12.18 identifies

the exponential growth of such age-dependent branching processes.

We next investigate the X logX-condition in the case of Yule processes and Bellman-
Harris processes:

Exercise 12.15 (X logX-condition Yule process). Show that the X logX condition holds

for a Yule process. Hint: Show that X̂(1) =
∑∞
i=1 e−Yi , where Yi = E1 + · · · + Ei are

the points of a Poisson process and (Ei)i≥1 are i.i.d. exponential random variables with
parameter 1.

Exercise 12.16 (X logX-condition Bellman-Harris branching process). Show that the
X logX condition holds for a Bellman-Harris process precisely when E[B log(B)+] <∞.

Exercise 12.17 (X logX-condition age-dependent branching process). Show that the
X logX condition holds for age-dependent CTBP precisely when E[B log(B)+] <∞.

Proof of Theorem 12.18. We will not give a full proof of Theorem 12.18. Instead, in the
case of age-dependent branching processs, we prove that there exists an A ∈ (0,∞) such
that

e−λtE[|BP(t)|]→ A. (12.4.31)

We assume that the expected offspring E[B] = ν satisfies ν > 1 and that E[B2] <
∞. Further, the lifetime distribution function FY has to be non-lattice, plus some small
additional condition for the almost sure convergence (see [145] for the proof).

Age-dependent branching processes are intimately connected to renewal theory. This is
immediate when we demand that the offspring distribution is degenerated at 1, in which
case we deal with a renewal process with inter-arrival distribution FY . However, renewal
theory also plays a role when FY is non-degenerate and ν > 1. To see this, define the
probability generating function F (s, t) of the number of alive individuals |BP(t)| at time t,
by

F (s, t) =

∞∑
k=0

skP(|BP(t)| = k). (12.4.32)

The function F (s, t) satisfies the equation

F (s, t) = s(1− FY (t)) +

∫ t

0

GB(F (s, t− u))FY (du), (12.4.33)
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where GB(s) = E[sB ] is the generating function of the offspring B. Equation (12.4.33)
follows by conditioning on the lifetime and number of offspring of the first individual. In
particular E[|BP(t)|] satisfies the renewal-like equation:

E[|BP(t)|] = 1− FY (t) + ν

∫ t

0

E[|BP(t− u)|]FY (du). (12.4.34)

To make (12.4.34) into a genuine renewal equation, we define the stable-age distribution:

Definition 12.20 (Stable-age distribution). Let the stable-age distribution be the distri-
bution function F̄Y given by

F̄Y (y) = E
[ ∫ y

0

e−λtP(dt)
]
. (12.4.35)

Let Ȳ be a random variable with distribution function F̄Y .

Multiplying both sides of (12.4.34) by e−λt, where λ is the Malthusian parameter, we
obtain

e−λtE[|BP(t)|] = e−λt[1− FY (t)] + e−λuν

∫ t

0

e−λ(t−u)E[BP(t− u)]FY (du), (12.4.36)

or, equivalently, using that by (12.4.35) F̄Y (du) = νe−λuFY (du),

K(t) = f(t) +

∫ t

0

K(t− u) F̄Y (du), (12.4.37)

where
K(t) = e−λtE[|BP(t)|], f(t) = e−λt[1− FY (t)]. (12.4.38)

The Key-Renewal Theorem applies to such convolution equations. Indeed, it states that
when there exist a function f and probability measure m on the non-negative reals such
that

K(t) = f(t) +

∫ t

0

K(t− u) m(du), (12.4.39)

where m is non-lattice (i.e., there does not exist a d such that
∑
nm(nd) = 1) and f is

directly integrable, then

lim
t→∞

K(t) =
1

µ

∫ ∞
0

f(u)du, (12.4.40)

where µ =
∫∞

0
um(du) is the mean of the probability measure m. The following exercises

give an idea of why (12.4.40) could be true:

Exercise 12.18 (Key-renewal theorem (1)). For α > 0, let K̂(α) =
∫∞

0
e−αtK(t)dt, where

(K(t))t≥0 is the solution to (12.4.39). Prove that

K̂(α) =

∫∞
0

e−αtf(t)dt

1−
∫∞

0
e−αtm(dt)

. (12.4.41)

Conclude that αK̂(α)→
∫∞

0
f(u)du/

∫∞
0
um(du) when α↘ 0.

Exercise 12.19 (Key-renewal theorem (2)). Use the previous exercise to show that if
K(t)→ A when t→∞, then A must satisfy A =

∫∞
0
f(u)du/

∫∞
0
um(du).
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Applying the Key-Renewal Theorem to (12.4.37) yields

lim
t→∞

e−λtE[|BP(t)|] = lim
t→∞

K(t) =

∫ ∞
0

f(y) dy/ν̄, (12.4.42)

where ν̄ =
∫∞

0
[1− F̄Y (t)] dt equals the mean of F̄Y (t).

An easy computation verifies that (12.4.42) impies:

lim
t→∞

e−λtE[|BP(t)|] = A, (12.4.43)

or E[|BP(t)|] = Aeλt(1 + o(1)), where

A =
ν − 1

λνν̄
=

ν − 1

λν2
∫∞

0
ye−λy FY (dy)

. (12.4.44)

This proves (12.4.31) for age-dependent CTBPs.
The proof of (12.4.24) in the more general case is more involved, and we give a sketch

now.

Give a (heuris-
tic) proof for
(12.4.24)?

Exercise 12.20 (Second moment for CTBP∗). Assume that E[B2] < ∞ where B is the
random amount of offspring of our CTBP. Show that

lim
t→∞

e−2λtE
[
|BP(t)|2

]
=

A2a

1− η , (12.4.45)

where

A = lim
t→∞

e−λtE
[
|BP(t)|

]
, η =

∫ ∞
0

e−αy dF̄Y (y) < 1, a = ηE[B(B − 1)]/E[B].

(12.4.46)
Hint: Adapt (12.4.33) to get a recursion formula for E

[
|BP(t)|2

]
by conditioning on the

first generation.

In the following, we derive a results on the number of individuals in a CTBP satisfying
certain properties. We investigate the residual lifetime distribution and the heights of alive
individuals in a CTBP. In what follows, we restrict to age-dependent CTBPs.

The residual lifetime distribution. We let |BP[t, t + s)| denote the number of indi-
viduals in the CTBP at time t and with residual lifetime at most s. These are precisely
the alive individuals that will die before time t+ s. In order to state the result, we define
the residual lifetime distribution FR to have density fR given by

fR(x) =

∫∞
0

e−λyfY (x+ y) dy∫∞
0

e−λy[1− FY (y)] dy
, (12.4.47)

where fY is the density of the life time distribution FY .

Exercise 12.21 (Residual lifetime distribution). Show that fR in (12.4.47) is a denstity
on [0,∞).

The main result of this section is the following theorem:
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Theorem 12.21 (The residual lifetime distribution). Let (BP(t))t≥0 be an age-dependent
CTBP with offspring B. Assume that the X logX condition holds, i.e., E[B log(B)+] <∞.
Then, with A = (ν − 1)/λνν̄ and for all s ≥ 0,

lim
t→∞

e−λtE
[
|BP[t, t+ s)|

]
= AFR(s). (12.4.48)

Proof. We adapt the proof of (12.4.31) in Theorem 12.18. We note that (12.4.34) is now
replaced by

E[|BP[t, t+ s)|] = FY (t+ s)− FY (t) + ν

∫ t

0

E[|BP[t− u, t+ s− u)|] dFY (u). (12.4.49)

Multiplying both sides of (12.4.49) by e−λt, where λ is the Malthusian parameter, we
obtain

e−λtE[|BP[t, t+s)|] = e−λt[FY (t+s)−FY (t)]+ν

∫ t

0

e−λue−λ(t−u)E[|BP[t−u, t+s−u)|]FY (du),

(12.4.50)
or, equivalently,

K(t) = f(t) +

∫ t

0

K(t− u) F̄Y (du), (12.4.51)

where again F̄Y (du) = νe−λuFY (du) and now

K(t) = e−λtE[|BP[t, t+ s)|], f(t) = e−λt[FY (t+ s)− FY (t)]. (12.4.52)

By the Key-renewal theorem,

lim
t→∞

e−λtE[|BP[t, t+ s)|] =
1

µ

∫ ∞
0

f(u)du =

∫∞
0

e−λy[FY (y + s)− FY (y)]dy∫∞
0
uF̄Y (du)

. (12.4.53)

Inserting the definition A = (ν − 1)/(λνν̄) and rewriting the above yields the result:

Exercise 12.22 (Completion proof Theorem 12.21.). Use (12.4.53) and thm-res-lifetime-
CTBP and (12.4.47) to complete the proof of Theorem 12.21.

The height of a random vertex. We next investigate the heights of vertices in the
CTBP. For this, we let |BPj(t)| denote the number of individuals alive at time t in gener-
ation j, and write

|BP≤k(t)| =
k∑
j=0

|BPj(t)|. (12.4.54)

Theorem 12.22 (CLT for vertex heights in CTBP). Let (BP(t))t≥0 be an age-dependent
CTBP with offspring B. Assume that E[B log(B)+] < ∞, so that the X logX condition
holds. Then, with A = (ν − 1)/λνν̄ and for all x ∈ R,

lim
t→∞

e−λtE
[
|BP≤kt(x)(t)|

]
= AΦ(x), (12.4.55)

where

kt(x) =
t

ν̄
+ x

√
t
σ̄2

ν̄3
, (12.4.56)

and ν̄ and σ̄2 are the mean, respectively variance, of the stable-age distribution F̄Y .
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Theorem 12.22 suggests that a random alive individual at time t has a height that is
close to normal with mean t/ν̄ and variance tσ̄2/ν̄3.

Proof. Conditioning on the lifetime (with c.d.f. equal to FY ) of the first individual, after
which the individual dies and splits in a random number offspring with mean ν,

E[|BPj [t, t+ s)|] = ν

∫ t

0

E[|BPj−1(t− y)|] dFY (y). (12.4.57)

As before, we multiply by e−λt and define

|BPj(t)| = e−λt|BPj(t)|. (12.4.58)

Rewriting (12.4.57), we obtain the recursion

E[|BPj(t)|] =

∫ t

0

E[|BPj−1(t− y)|] dF̄Y (y), (12.4.59)

where, as before F̄Y (du) = νe−λuFY (du) is the stable-age distribution. Hence, if we con-
tinue to iterate, then we get

E[|BPj(t)|] =

∫ t

0

E[|BP(t− y)|] dF̄ ?jY (y), (12.4.60)

where F̄ ?jY is the j-fold convolution of F̄Y , and hence the distribution function of the
independent sum of j copies of a random variable each having c.d.f. F̄Y . This is the point
where we will use the CLT. For fixed t > 0 and m ≥ 0, we define

|BP>m(t)| =
∞∑

j=m+1

|BPj(t)|. (12.4.61)

By Theorem 12.18,

lim
t→∞

E[|BP(t)|] = lim
t→∞

∞∑
j=0

E[|BPj(t)|] = A. (12.4.62)

Hence, (12.4.55) follows if we show that

E[|BP>kt(x)(t)|]→ A−AΦ(x) = AΦ(−x). (12.4.63)

Note that

E[|BP>kt(x)(t)|] =

∫ t

0

E[|BP0(t− u)|] dF̄ ?kt(x)

Y (u). (12.4.64)

Take an arbitrary ε > 0 and take t0 so large so that for t > t0,

|E[|BP(t)|]−A| ≤ ε. (12.4.65)

Then, ∣∣∣E[|BP>kt(x)(t)|]−AΦ(−x)
∣∣∣ (12.4.66)

≤ εF̄ ?kt(x)

Y (t) +A
∣∣F̄ ?kt(x)

Y (t)− Φ(−x)
∣∣+

∫ t

t−t0
E[|BP(t)|] dF̄ ?kt(x)

Y (u).
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The last term vanishes since E[|BP(t)|] is uniformly bounded and F̄ ?kt(x)

Y (t) − F̄ ?kt(x)

Y (t −
t0) = o(1). Furthermore, with m = kt(x)→∞,

kt(x) ∼ t

ν̄
+ x

√
t
σ̄2

ν̄3
precisely when t ∼ mν̄ − xσ̄

√
m. (12.4.67)

As a result, by the CLT and the fact that ν̄ and σ̄2 are the mean and the variance of the
distribution function F̄Y ,

lim
t→∞

F̄ ?kt(x)

Y (t) = Φ(−x). (12.4.68)

Together with (12.4.66), this proves the claim in (12.4.63), and hence Theorem 12.22.

Exercise 12.23 (Joint residual lifetime and height convergence). Adapt the proof of The-
orem 12.22 to show that

lim
t→∞

e−λtE
[
|BP≤kt(x)[t, t+ s)|

]
= AΦ(x)FR(s), (12.4.69)

where |BP≤k[t, t + s)| is the number of alive individuals with residual lifetime at most s
and with height at most k. Thus, the asymptotic height and residual lifetime are close to
independent.

Distributional convergence of alive vertices with residual lifetime and height.
Theorems 12.21-12.22 investigate the mean number of vertices with given residual life-
time and height. Since we can interpret A = limt→∞ e−λtE[|BP(t)|], this suggests that

on the event of survival, we also have that e−λt|BP[t, t + s)| d−→ WFR(s), as well as

e−λt|BP≤kt(x)(t)|
d−→ WΦ(x). However, Theorems 12.21-12.22 only investigate first mo-

ment, and thus certainly do not imply this convergence in distribution. The asymptotics
of the number of alive individuals and their heights and residual lifetimes are investigated
in the following theorem:

Theorem 12.23 (Residual lifetime and heights in a CTBP). Let (BP(t))t≥0 be an age-
dependent CTBP with offspring B. Assume that E[B log(B)+] < ∞ so that the X logX
condition holds. Then, with W denoting the limit in Theorem 12.18, A = (ν− 1)/λνν̄ and
for all x ∈ R, s ≥ 0,

e−λt|BP≤kt(x)(t)|
d−→ Φ(x)W, e−λt|BP[t, t+ s)| d−→ FR(s)W. (12.4.70)

We will not give a proof of Theorem 12.23. Instead, we argue why the residual lifetime
and height of individuals are approximately independent from the asymptotic growth of
the CTBP that is described by W . Note that W is primarily determined by what happens
early on in the CTBP, since a fast or slow growth initially will be felt throughout the entire
future. Thus, it is this initial growth that determines W . On the other hand, the majority
of individuals counted in |BP(t)| were born in a time that is close to t. Thus, the heights
and residual lifetimes of most of the individuals in BP(t) are described by what happens
close to time t. This explains why these random influences are close to independent.

Theorem 12.23 is an extremely powerful result. Unfortunately, the CLT for the height
of alive individuals in a CTBP is not known in the most general setting, which is why we
have only stated it for age-dependent branching processes.
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Finite explosion times. So far, we have only dealt with CTBP satisfying the X logX-
condition. For age-dependent CTBPs with offspring B, this in particular implies that
E[B] < ∞. We now investigate the case where E[B] = ∞, in which the CTBP may
explode in finite time. The results are simplest in the case of exponential lifetimes, with
which we start. In Section 12.3, we have seen that the mth split time Tm for a Bellman-
Harris process is given by

Tm =

m∑
j=1

Ej/Sj , (12.4.71)

where Sj =
∑j
i=1 Bi − (i − 1). There, we assumed that E[B1+ε] < ∞ for some ε > 0.

In Theorem 12.18, the condition on B was weakened to E[B log(B)+] < ∞ (see also
Theorem 12.23). We now investigate cases where E[B] = ∞, for which it is possible that
limm→∞ Tm = T∞ <∞ a.s. This means that the CTBP explodes in finite time, i.e., after
a finite amount of time, there are infinitely many individuals alive. The following theorem
gives a precise condition when this can occur:

Theorem 12.24 (Finite explosion time). A Bellman-Harris process with offspring B al-
most surely explodes in finite time with explosion time given by

T∞ =

∞∑
j=1

Ej/Sj <∞ a.s. (12.4.72)

precisely when P(B ≥ 1) = 1 and the probability generating function GB of the offspring
distribution B satifies that there exists δ > 0 such that∫ δ

0

1

1− E[e−t(B−1)]
ds <∞. (12.4.73)

The Bellman-Harris process with offspring B satisfying (12.4.73) can also have a finite
explosion time when P(B ≥ 1) < 1, but then only on the event of survival. Theorem 12.24
also has implications for age-dependent CTBPs:

Exercise 12.24 (Explosion time for age-dependent CTBP). Show that if the lifetime Y
satisfies that there exists an a > 0 such that Y � aE, then also the age-dependent CTBP
with lifetime Y explodes in finite time when (12.4.73) holds.

Proof of Theorem 12.24. Note that (12.4.73) and P(B ≥ 1) = 1 imply that P(B ≥ 2) > 0.

Indeed, when P(B = 1) = 1, then E[e−t(B−1)] = 1, and thus (12.4.73) fails to hold.
The birth times m 7→ Tm are increasing in m, and thus it suffices to prove that

E
[ ∞∑
j=1

Ej/Sj
]
<∞. (12.4.74)

For this, we compute that

E
[ ∞∑
j=1

Ej/Sj
]

=

∞∑
j=1

E
[
1/Sj

]
. (12.4.75)

We rewrite, for any δ > 0,

E
[
1/Sj

]
=

∫ δ

0

E[e−tSj ]dt+ E
[
e−δSj/Sj

]
. (12.4.76)
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The contribution of the second term is bounded by

∞∑
j=1

E
[
e−δSj/Sj

]
≤
∞∑
j=1

E
[
e−δSj

]
≤
∞∑
j=1

(
E[e−δ(B−1)]

)j
(12.4.77)

≤ 1/(1− E[e−δ(B−1)]) <∞,

since P(B ≥ 2) > 0 implies that Sj ≥ 1 a.s. for every j ≥ 1, as well as E[e−δ(B−1)] < 1.
In a similar way, we compute the contribution of the first term as

∞∑
j=1

∫ δ

0

E[e−tSj ]dt =

∫ δ

0

∞∑
j=1

e−t
(
E[e−t(B−1)]

)j
dt (12.4.78)

=

∫ δ

0

e−tE[e−t(B−1)]

1− E[e−t(B−1)]
dt.

By assumption, this is finite. Since E[T∞] <∞, certainly T∞ <∞ a.s.

We next investigate two related theorems for age-dependent CTBPs, for which we do
not know the precise conditions for explosion in finite time to hold. In their statements,
we let GB(s) = E[sB ] be the probability generating function of the offspring B:

Theorem 12.25 (Finite explosion time age-dependent CTBPs). An age-dependent CTBP
with offspring B and lifetime Y a.s. explodes in finite time precisely when P(B ≥ 1) = 1
and the probability generating function GB of the offspring distribution B satifies that there
exists δ > 0 such that, for all 0 ≤ t ≤ δ,

1−G−1
B (t) ≤

∫ t

0

GY (s)ds <∞. (12.4.79)

Theorem 12.26 (Infinite explosion time age-dependent CTBPs). For every B with E[B] =
∞, there exists a non-negative random variable Y such that the age-dependent CTBP with
offspring B and lifetime Y does not explode in finite time.

12.5 Universality for first-passage percolation on CM

In this section, we use the general theory of age-dependent continuous-time branching
processes in order to show that Theorem 12.5 extends to first-passage percolation with gen-
eral continuous edge-weight distributions. We start by introducing the necessary notation.
We investigate the configuration model CMn(d) under the degree-regularity condition in
Condition 7.5(a)-(c). We need to extend Condition 7.5(a) slightly in order to have that the
branching process approximation of local neighborhoods in CMn(d) satisfies the X logX
condition. We assume a uniform X2 logX condition for the degrees of CMn(d), stating
that

lim sup
n→∞

E[D2
n log (Dn)+] = E[D2 log(D)+] <∞. (12.5.1)

The condition in (12.5.1) implies that the X logX-condition is satisfied for the limiting
CTBP with offspring distribution D?−1, where D? is the size-biased version of D. Indeed,
define the size-biased distribution F ? of the random variable D with distribution function
F by

F ?(x) = E[D1{D≤x}]/E[D], x ∈ R. (12.5.2)

Now let (BP(t))t≥0 denote the following CTBP:
(a) At time t = 0, we start with one individual, which we refer to as the original ancestor or
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the root of the branching process. Generate D having the asymptotic degree-distribution
F in Condition 7.5(a). This individual immediately dies giving rise to D children.
(b) Each new individual v in the branching process lives for a random amount of time
which has distribution FY , i.e., the edge weight distribution, and then dies. At the time of
death again the individual gives birth to D?

v − 1 children, where D?
v ∼ F ?. Lifetimes and

number of offspring across individuals are independent.
Note that in the above construction, by Condition 7.5(b), if we let Xv = D?

v − 1 be the
number of children of an individual then the expected number of children satisfies

E[Xv] = E[D?
v − 1] = ν > 1, (12.5.3)

The CTBP defined above is a splitting process, with lifetime distribution FY and off-
spring distribution D? − 1, except for the root, which has offspring distribution D. Thus,
this is a two-stage CTBP. Naturally, the Malthusian parameter of the two-stage CTBP is
equal to the one with offspring distribution D?−1. By (12.4.30), the Malthusian parameter
λ of the branching process BP(·) is the unique solution of the equation

ν

∫ ∞
0

e−λtdFY (t) = 1. (12.5.4)

Since ν > 1, we obtain that λ ∈ (0,∞). We also let λn be the solution to (12.5.4) with ν
replaced with νn = E[Dn(Dn − 1)]/E[Dn]. Clearly, λn → λ, when Condition 7.5(c) holds,
and |λn − λ| = O(|νn − ν|).

By Theorem 12.18, there exists a random variable W such that

e−λt|BP(t)| d−→W. (12.5.5)

Recall that F̄Y denotes the stable-age distribution in Definition 12.20, and that ν̄ and σ̄2

are the mean and variance of F̄Y . Then ν̄, σ̄2 ∈ (0,∞), since λ > 0. We also define F̄Y ,n
to be the stable-age distribution in Definition 12.20 with ν and λ replaced with νn and
λn, and we let ν̄n and σ̄2

n be its mean and variance. The main result in this section is the
following theorem:

Theorem 12.27 (Joint convergence hopcount and weight). Consider the configuration
model CMn(d) with degrees satisfying Condition 7.5(a)-(c) and (12.5.1), and with i.i.d.
edge weights distributed according to the continuous distribution FY . Then, there exist
constants α, λ, β ∈ (0,∞) and αn, λn with αn → α, λn → λ, such that the hopcount Hn
and weight Wn of the optimal path between two uniformly selected vertices conditioned on
being connected, satisfy(Hn − αn logn√

β logn
, Wn −

1

λn
logn

)
d−→ (Z,Q), (12.5.6)

as n→∞, where
(a)

αn =
1

λnν̄n
, β =

σ̄2

ν̄3λ
, (12.5.7)

(b) Z and Q are independent and Z has a standard normal distribution, while Q has a
continuous distribution given by

Q =
1

λ

(
− logW (1) − logW (2) − Λ + c

)
, (12.5.8)

where P(Λ ≤ x) = e−e−x , so that Λ is a standard Gumbel random variable, W (1),W (2) are
two independent copies of the variable W in (12.5.5), also independent from Λ, and c is
the constant

c = log(µ(ν − 1)2/(ναν̄)). (12.5.9)
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Theorem 12.27 implies that also the random variable Q is remarkably universal, in
the sense that it always involves two martingale limit variables corresponding to the flow
problem, and a Gumbel distribution.

Remark 12.28 (Asymptotic mean). We can replace λn and αn by their limits λ and
α = 1/(λν̄) in (12.5.6) precisely when αn = α + o(1/

√
logn) and λn = λ + o(1/ logn).

Since |ν̄n − ν̄| = O(|νn − ν|) and |αn −α| = O(|νn − ν|), these conditions are equivalent to
νn = ν + o(1/ logn) and νn = ν + o(1/

√
logn), respectively.

Organization of this section. The remainder of this section is organized as follows.
In Section 12.5.1, we first use Theorem 12.27 to show that identical results also apply to
related random graph models, such as uniform random graphs with a prescribed degree
sequence and rank-1 inhomogeneous random graphs. There, we also give some examples
and match these up to related results on distances. Then, in Section 12.5.2, we explain the
key ingredients in the proof of Theorem 12.27.

12.5.1 Extensions and examples

Extension to related random graphs. We start by extending Theorem 12.27 to uni-
form random graphs with a prescribed degree sequence:

Theorem 12.29 (Extension to uniform random graphs with prescribed degrees). Under
the conditions of Theorem 12.27 the results in Theorem 12.27 apply to uniform random
graphs with prescribed degree sequence d UGn(d).

The proof of Theorem 12.29 follows rather directly from that of Theorem 12.27, by
conditioning on simplicity. By Theorem 7.8, under Condition 7.5(a-c),

lim
n→∞

P(CMn(d) simple) = e−ν/2−ν
2/4. (12.5.10)

The proof of Theorem 12.27 reveals that in order to find the minimal weight path between
vertices U1, U2, we only need to investigate of order

√
n edges. Therefore, the event of

simplicity of the configuration model will be mainly determined by the uninspected edges,
and is therefore asymptotically independent of (Hn,Wn). This explains Theorem 12.29.

We next extend Theorem 12.27 to rank-1 inhomogeneous random graphs:

Theorem 12.30 (Extension to rank-1 inhomogeneous random graphs). Let w satisfy
Condition 6.4(a)-(c), and further assume that

lim
n→∞

E[W 2
n log (Wn)+] = E[W 2 log(W )+]. (12.5.11)

Then, the results in Theorem 12.27 also hold for GRGn(w), CLn(w) and NRn(w).

The proof of Theorem 12.30 is similar to the proof of Theorem 10.9 in Section 10.1.4.
Indeed, we already know that Condition 6.4(a)-(c) implies that the degree sequence of
GRGn(w) satisfies Condition 7.5(a)-(c). Therefore, the only thing left is to prove that
(12.5.11) implies (12.5.1), which we omit.

Exercise 12.25 (Example of exponential weights). Show that Theorem 12.27 implies
Theorem 12.5 in the case of exponential weights.

Example 12.31 (Exponential weights plus a large constant.). We next study what hap-
pens when Xe = 1 + Ee/k, where (Ee)e∈En are i.i.d. exponentials with mean 1, and k
is a large constant. This setting is, apart from a trivial time-rescaling, identical to the
setting where Xe = k + Ee. In this case, one would expect that for large k, Hn is close
to the graph distance between a pair of uniformly chosen vertices in [n], conditioned to be
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connected. By Theorem 10.45, (Hn− logν (n))n≥1 is a tight sequence of random variables.
This suggests that, as k →∞,

λ→ log ν, ν̄ → 1,
σ̄2

ν̄3λ
→ 0. (12.5.12)

We now check this intuitive argument. Indeed,

ν

∫ ∞
0

e−λxdFY (x) = νk

∫ ∞
1

e−λxe−k(x−1)dx =
νk

λ+ k
e−λ = 1. (12.5.13)

While solving this equation explicitly is hard, it is not too difficult to see that k → ∞
implies that λ→ log ν.

Exercise 12.26 (Stable-age distribution). Show that for Y = 1 + E/k and E an ex-
ponential with parameter 1, the stable-age distribution in Definition 12.20 is equal to
1 + Exp(k + λ).

By Exercise 12.26, the stable-age distribution is equal to 1 + Exp(k + λ), so that ν̄ =
1 + 1/(k + λ), while σ̄2 = 1/(k + λ)2 → 0. Therefore, ν̄ ∼ 1, which in turn also implies
that λν̄ → log ν. Further,

σ̄2

ν̄3λ
= k−2(log ν)−1(1 + o(1))→ 0. (12.5.14)

This shows that the two settings of graph distances and FPP with weights Y =
d
= 1 +

Exp(1)/k match up nicely when k →∞.

12.5.2 Overview of proof of Theorem 12.27

To understand the minimal-weight path between these vertices, think of water perco-
lating through the network at rate one, started simultaneously from the two vertices. For
any t ≥ 0, the set of vertices first seen by the flow from Ui will often referred to the flow
cluster or the minimal-weight graph of vertex Ui. When the two flows collide or create
prospective collision edges, then these generate prospective minimal-weight paths.

In Section 12.3, we have performed these flows by first growing (SWG(1)

t )t≥0 until it

contains an =
√
n vertices, followed by the growth of (SWG(2)

t )t≥0 until an edge was

created linking SWG(2)

t to SWG(1)

T
(1)
an

. This construction crucially depends on the memoryless

property of the exponential distribution, which implies that the residual lifetimes of all
edges incident to SWG(1)

T
(1)
an

again have an exponential distribution. For general edge weights,

however, this is not the case and we need to revise our strategy. The strategy we now
choose is that we grow (SWG(1)

t )t≥0 and (SWG(2)

t )t≥0 simultaneously, and each time we
find a vertex, we check whether any of its half-edges are paired to half-edges in the other
SWG. When this is the case, however, this edge has not been completely filled by the fluid,
so that it could create the minimal-weight path, but it might also not, as this depends on
the residual lifetime of the edge in question, as well as all other edges linking to two SWG’s.

Let us now give a precise mathematical formulation to the above description. We
grow two flow clusters (i.e. two stochastic processes in continuous time) from U1 and U2,
simultaneously. We keep track of the the alive set A(t) of half-edges that are incident to a
vertex in the flow cluster, but who have not yet been completely filled. The alive set A(t)
only changes at random times T0 = 0 < T1 < T2 < . . . and therefore we give the definition
recursively. At time t = T0 = 0, the vertices U1 and U2 die instantaneously, and give rise
to dU1 and dU2 children. These children correspond to half-edges incident to U1 and U2.

We start by testing whether any of the half-edges incident to U1 are paired to one
another. If so, then we remove both half-edges from the total set of dU1 half-edges. We
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then define X(1)

0 to be the number of unpaired half-edges after the self-loops incident to U1

are removed. We next continue with the dU2 half-edges incident to U2, and check whether

they are paired to one of the X(1)

0 remaining half-edges incident to U1 or any of the dU2

half-edges incident to U2. When such a half-edge is paired to one of the dU2 sibling half-

edges, a self-loop is formed. When such a half-edge is paired to one of the X(1)

0 remaining
half-edges incident to vertex U1, a so-called collision edge is formed. A collision possibly
yields the path with minimal weight between U1 and U2. We let X(2)

0 denote the number
of unpaired half-edges after the tests for collision edges and cycles have been performed.
Note that, by construction, each of the X(i)

0 half-edges incident to the vertices Ui, where
i ∈ {1, 2}, are paired to new vertices, i.e., vertices distinct from U1 and U2.

For the moment we collect the collision edges at time T0 = 0, together with the weights
of the connecting edge between U1 and U2 that are chosen i.i.d. from the weight distribution
FY , and continue with the description of the flow clusters. All half-edges that are not paired
to one of the other dU1 +dU2 −1 half-edges incident to either U1 or U2 are called alive, and
together form the set of alive half-edges A(0) at time 0. For y ∈ A(0), we define I(y) = i if
the half-edge y is incident to Ui, i = 1, 2, and we define (R0(y))y∈A(0) as an i.i.d. sequence
of lifetimes having distribution function FY .

We denote the set of alive half-edges at time t by A(t). For y ∈ A(t), we record its
label I(y), which is the index i ∈ {1, 2} to which Ui the half-edge is connected, and we
let H(y) denote the height of y, i.e., the number of edges in the path from the vertex Vy
incident to y to UI(y). This height equals 0 for y ∈ A(0). When we introduce new half-
edges in A(t) at later times we will specify the heights and labels of these half-edges. Now
define T1 = miny∈A(0) R0(y) and denote by y?0 the half-edge equal to the argument of this
minimum, hence R0(y?0) = miny∈A(0) R0(y). Since lifetimes have a continuous distribution,
y?0 is a.s. unique. Now set A(t) = A(0), 0 ≤ t < T1, i.e., the set of alive half-edges remains
the same during the interval [0, T1), and define the flow cluster SWG(t), for 0 ≤ t < T1, by

SWG(t) = {y, I(y), H(y), Rt(y)}y∈A(0), (12.5.15)

where I(y) and H(y) are defined above and Rt(y) = R0(y) − t, 0 ≤ t ≤ T1, denotes the
remaining lifetime of half-edge y. This concludes the initial step in the recursion, where
we defined A(t) and SWG(t) during the random interval [0, T1).

We continue recursively, by defining A(t) and SWG(t) during the random interval
[Tk, Tk+1), given that the processes are defined on [0, Tk). At time t = Tk,we let y?k−1

be the argument of miny∈A(t) Rt(y), and we remove y?k−1 from the set A(t−). We then pair
y?k−1 to a uniform available half-edge, which we denote by zk. By construction, we know
that zk ≡ Py?

k−1
/∈ A(t−), so that Vzk is not a vertex that has been reached by the flow

at time t. Then, for each of the dVzk − 1 other half-edges incident to vertex Vzk we test

whether it is part of a self-loop or paired to a half-edge from the set A(t−). All half-edges
incident to Vzk that are part of a self-loop or are paired to a half-edge incident to A(t−)
are removed from vertex Vzk . We also remove the involved half-edges from the set A(t−).
We will discuss the role of the half-edges incident to Vzk that are paired to half-edges in
A(t−) in more detail in the next paragraph below.

For all the remaining siblings of zk we do the following: Let x be one such half-edge
incident to Vzk , then x is added to A(Tk), and we define I(x) = I(y?k−1), H(x) = H(y?k−1)+
1, while RTk (x) is an i.i.d. lifetime with distribution FY . We now set A(t) = A(Tk), Tk ≤
t < Tk+1, where Tk+1 = Tk + miny∈A(Tk) RTk (y), and where the minimizing half-edge
is called y?k. Furthermore, for t ∈ [Tk, Tk+1), we can define SWG(t) by (12.5.15), where
Rt(y) = RTk (y)− (t− Tk). Finally, we denote the number of the dVzk − 1 other half-edges
incident to vertex Vzk that do not form a self-loop and that are not paired to a half-edge
from the set A(t−) by Xk. Later, it will also be convenient to introduce Bk = dVzk − 1.

Let Sk = |A(Tk)|, so that S0 = X(1)

0 +X(2)

0 , while Sk satisfies the recursion

Sk = Sk−1 +Xk − 1. (12.5.16)
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This describes the evolution of (SWG(t))t≥0.

Cycle edges and collision edges. At the times Tk, k ≥ 1, we find the half-edge y?k−1

which is paired to zk = Py?
k−1

, and for each of the other half-edges x incident to Vzk ,

we check whether or not Px ∈ A(Tk−), where Px is the half-edge to which x is paired.
The half-edges paired to alive half-edges in A(Tk−) are special. Indeed, the edge (x, Px)
creates a cycle when I(x) = I(Px) while (x, Px) completes a path between U1 and U2 when
I(x) = 3 − I(Px). Precisely the latter edges can create the minimal-weight path between
U1, U2. Let us describe these collision edges in more detail.

At time Tk and when we create a collision edge consisting of xk and Pxk , then we record(
(Tk, I(zk), H(zk), H(Pxk ), RTk (Pxk )

)
k≥0

. (12.5.17)

It is possible that multiple half-edges incident to Vzk create collision edges, and if so, we
collect all of them in the list in (12.5.17). In this definition it is tempting to write I(xk) and
H(xk), but note that xk /∈ A(Tk), whereas its sibbling half-edge does satisfy zk ∈ A(Tk),
and, moreover, xk and zk have the same ancestor and the same height.

With some abuse of notation we denote the ith collision edge by (xi, Pxi); here Pxi is
an alive half-edge and xi the half-edge which pairs to Pxi ; further zi is the sibling of xi
paired with the minimal edge y∗ found by the flow. Let T (col)

i be the time of creation of
the ith collision edge. The weight of the (unique) path between U1 and U2 that passes

through the edge consisting of xi and Pxi equals 2T (col)

i +R
T

(col)
i

(Pxi), so that the smallest

weight of all paths between U1 and U2 equals

Wn = min
i≥0

[2T (col)

i +R
T

(col)
i

(Pxi)]. (12.5.18)

Let I? denote the minimizer of i 7→ 2T (col)

i +R
T

(col)
i

(Pxi), then

Hn = H(zI?) +H(PxI? ) + 1. (12.5.19)

Of course, (12.5.18) and (12.5.19) need a proof, which we give now.
Proof that Wn given by (12.5.18) yields the minimal weight. Observe that each path

between U1 and U2 has a weight C that can be written in the form 2T (col)

i +R
T

(col)
i

(Pxi) for

some i ≥ 0. Indeed, let (i0 = U1, i1, i2, . . . , ik = U2) form a path with weight C, and denote
the weight on ij−1ij by Yej for 1 ≤ j ≤ k. For k = 1, we obviously find Ye1 = 2T0 + Ye1 .
For general k ≥ 1, take the maximal j ≥ 0 such that Ye1 + · · ·+Yej ≤ C/2. Then, we write

C =

{
2
∑j
s=1 Yes + [

∑k
s=j+1 Yes −

∑j
s=1 Yes ], when

∑j
s=1 Yes <

∑k
s=j+1 Yes ,

2
∑k
s=j+1 Yes + [

∑j
s=1 Yes −

∑k
s=j+1 Yes ], when

∑j
s=1 Yes >

∑k
s=j+1 Yes ,

(12.5.20)
which in either case is of the form C = 2Tm +RTm(y), for some m ≥ 0 and some half-edge
y. Note that in the construction of the flow clusters, instead of putting weight on the
edges, we have given weights to half-edges instead. In the representation (12.5.18), the full
edge weight is given to the active half-edges and weight 0 to the ones with which they are
paired. When the collision edge has been found we give the full weight to the half-edge Px
to which . Thus, in fact, by the redistribution of the weights in (12.5.18) is an equality in
distribution. This completes the proof of the claim.

Basic constructions and properties. To state our main technical result concerning
the appearance of collision edges, we need to define some new constructs. We start by
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defining a rescaled version of the point process corresponding to the points in (12.5.17).
Let us first setup some notation. For i ∈ {1, 2} and t ≥ 0, we let

|SWG(t)| = #{y ∈ A(t)}, |SWG(i)(t)| = #{y ∈ A(t) : I(y) = i}, (12.5.21)

be the number of alive half-edges at time t, as well as those that are closest to vertex i. By
construction, since we check whether the half-edges form a cycle or a collision edge when
the half-edges are born, SWG(1)(t) and SWG(2)(t) are disjoint.

Further, we will often work conditionally on the flow at time s. For this, we introduce
the filtration (Fs)s≥0 with Fs = σ((SWG(t))t∈[0,s] denoting the sigma-algebra generated by
the minimal-weight graph up to time s. This informally means that Fs = σ((SWG(t))t∈[0,s]

contains all the information of the flow up to time s.
Fix a deterministic sequence sn →∞ that will be chosen later on. Now let

tn =
1

2λn
logn, t̄n =

1

2λn
logn− 1

2λn
log
(
W (1)
sn W

(2)
sn

)
, (12.5.22)

where, for s ≥ 0,

W (i)
s = e−λns|SWG(i)(s)|. (12.5.23)

Note that eλntn =
√
n, so that at time tn, both |SWG(i)(s)| are of order

√
n; consequently

the variable tn denotes the typical time at which collision edges start appearing, and the
time t̄n incorporates for stochastic fluctuations in the size of the SWGs. We choose sn →∞
such that SWG(i)(t) for t ≤ sn can be coupled with two independent two-stage branching
processes BP(i)(t) such that {BP(t) = SWG(t) ∀t ≤ sn} whp (see (12.5.44) below).

Define the residual lifetime distribution FR to have density fR given by

fR(x) =

∫∞
0

e−λyfY (x+ y) dy∫∞
0

e−λy[1− FY (y)] dy
. (12.5.24)

Recall that the ith collision edge is given by (xi, Pxi), where Pxi is an alive half-edge
and xi the half-edge which pairs to Pxi and that is incident to a vertex in the other SWG.
In terms of the above definitions, we define

T̄ (col)

i = T (col)

i − t̄n, H̄(or)

i =
H(xi)− tn/ν̄n√

σ̄2tn/ν̄3
, H̄(de)

i =
H(Pxi)− tn/ν̄n√

σ̄2tn/ν̄3
, (12.5.25)

and write the random variables (Ξi)i≥1 with Ξi ∈ R× {1, 2} × R× R× [0,∞), by

Ξi =
(
T̄ (col)

i , I(xi), H̄
(or)

i , H̄(de)

i , RTi(Pxi)
)
. (12.5.26)

Then, for sets A in the Borel σ−algebra of the space S = R× {1, 2} × R× R× [0,∞), we
define the point process

Πn(A) =
∑
i≥1

δΞi(A), (12.5.27)

where δx gives measure 1 to the point x and A ⊂ S.1 In the theorem, we let Φ denote the
distribution function of a standard normal random variable. We now come to our main
result in the proof:

1Let M(S) denote the space of all simple locally finite point processes on S equipped with
the vague topology (see e.g. [177]). On this space one can naturally define the notion of weak
convergence of a sequence of random point processes Πn ∈ M(S). This is the notion of convergence
referred to in Theorem 12.32.
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Theorem 12.32 (PPP limit of collision edges). Consider the distribution of the point
process Πn ∈M(S) defined in (12.5.27) conditional on (SWG(s))s∈[0,sn] such that W (1)

sn > 0

and W (2)
sn > 0. Then Πn converges in distribution as n → ∞ to a Poisson Point Process

(PPP) Π with intensity measure

λ(dt× i×dx×dy×dr) =
2νfR(0)

E[D]
e2λtdt⊗{1/2, 1/2}⊗Φ(dx)⊗Φ(dy)⊗FR(dr). (12.5.28)

Theorem 12.32 is equivalent to the statement that Πn(A)
d−→ Π(A) for every A ⊆ S,

where Π(A) is a Poisson random variable with mean
∫
A
λ(dt× i× dx× dy × dr).

Completion of the proof of Theorem 12.27. Let us now prove Theorem 12.27 subject
to Theorem 12.32. First of all, by (12.5.25), (12.5.18) and (12.5.19),(Hn − 1

λnν̄
logn√

σ̄2

ν̄3λ
logn

,Wn −
1

λn
logn

)
, (12.5.29)

is a continuous function of the point process Πn, and, therefore, by the continuous mapping
theorem, the above random variable converges in distribution to some limiting random
variables (Z,Q).

Recall that I? denotes the minimizer of i 7→ 2T (col)

i + R
T

(col)
i

(Pxi). By (12.5.18), the

weight Wn as well as the value of I?, are functions of the first and the last coordinates of Πn.
The hopcount Hn is a function of the third and the fourth, instead. By the product form
of the intensity in (12.5.28), we obtain that the limits (Z,Q) are independent. Therefore,
it suffices to study their marginals.

We start with the limiting distribution of the hopcount. By (12.5.25),

Hn − 1
λnν̄n

logn√
σ̄2

ν̄3α
logn

=
1

2

√
2H̄(or)

I? +
1

2

√
2H̄(de)

I? + oP(1). (12.5.30)

By Theorem 12.32, the random variables (H̄(or)

I? , H̄(de)

I? ) converge in distribution to two
independent standard normals, so that also the left-hand side of (12.5.30) converges in
distribution to a standard normal.

The limiting distribution of the weight Wn is slightly more involved. By (12.5.22),
(12.5.18) and (12.5.25),

Wn −
1

λn
logn = Wn − 2tn = Wn − 2t̄n −

1

λn
log(W (1)

sn W
(2)
sn ) (12.5.31)

= − 1

λn
log(W (1)

sn W
(2)
sn ) + min

i≥1
[2T (col)

i +R
T

(col)
i

(Pxi)]− 2t̄n

= − 1

λn
log(W (1)

sn W
(2)
sn ) + min

i≥1
[2T̄ (col)

i +R
T

(col)
i

(Pxi)].

By (12.5.44) below, (W (1)
sn ,W

(2)
sn )

d−→ (W (1),W (2)), which are two independent copies of
the random variable W in (12.4.24) in Theorem 12.18. Hence,

Wn −
1

λn
logn

d−→ − 1

λ
log(W (1)W (2)) + min

i≥1
[2Pi +Ri], (12.5.32)

where (Pi)i≥1 form a PPP with intensity 2νfR(0)
µ

e2λtdt, and (Ri)i≥1 are i.i.d. random vari-

ables with distribution function FR independently of (Pi)i≥1. The distribution of the first

point of the Poisson point process with intensity 2ce2λt is a rescaled Gumbul distribution:
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Exercise 12.27. Let (Pi) be a Poisson point proces with intensity measure λ(t) = 2ce2λt.

Show that mini≥1[2Pi]
d
= − 1

λ
Λ + 1

λ
log(c/λ), where Λ has a Gumbel distribution.

Comparing to Exercise 12.27, however, we need to computeM = mini≥1[2Pi+Ri], where

(Pi)i≥1 is a PPP with intensity 2νfR(0)
E[D]

e2λtdt and (R)i)i≥1 are i.i.d. random variables with

distribution function FR.
Interestingly, the same Gumbel variable appears in this analysis, but the constant is

changed. Indeed, let us identify the distribution of M = mini≥1[2Pi +Ri]. First, (2Pi)i≥1

forms a Poisson process with intensity νfR(0)
E[D]

eλtdt. According to [239, Example 3.3] the

point process (2Pi + Ri)i≥1 is a non-homogeneous Poisson process with mean-measure

equal to the convolution of µ(−∞, x] =
∫ x
−∞

νfR(0)
E[D]

eλt dt and FR. Hence P(M ≥ x) equals

the Poisson probability of 0, where the parameter of the Poisson distribution is (µ∗FR)(x),
so that

P(M ≥ x) = exp{−νfR(0)

E[D]
eλx

∫ ∞
0

FR(z)e−λz dz}. (12.5.33)

Let Λ have a Gumbel distribution, i.e., P(Λ ≤ x) = e−e−x , x ∈ R, then

P(−aΛ + b ≥ x) = e−ex/ae−b/a . (12.5.34)

From the identity
νfR(0)

E[D]
eλx

∫ ∞
0

FR(z)e−λz dz = ex/ae−b/a, (12.5.35)

we conclude that if we take

a = 1/λ and b = −λ−1 log
(

(νfR(0)/E[D])

∫ ∞
0

FR(z)e−λz dz
)
, (12.5.36)

then

min
i≥1

(2Pi +Ri)
d
= −λ−1Λ− λ−1 log(νfR(0)a/E[D]), (12.5.37)

with a =
∫∞

0
FR(z)e−λz dz. In the following lemma, we simplify the constants a and fR(0):

Lemma 12.33 (The constant). The constants a =
∫∞

0
FR(z)e−λz dz and fR(0) are given

by
a = ν̄/(ν − 1), fR(0) = λ/(ν − 1). (12.5.38)

Consequently, the constant c in the limit variable (12.5.8) equals

c = − log(νfR(0)a/µ) = log(E[D](ν − 1)2/(λνν̄)). (12.5.39)

Proof. We start by computing fR(0), for which we note that by (12.5.24) and the definition
of the Malthusian parameter in Definition 12.17,

fR(0) =

∫∞
0

e−λyfY (y) dy∫∞
0

e−λy[1− FY (y)] dy
=
(
ν

∫ ∞
0

e−λy[1− FY (y)] dy
)−1

. (12.5.40)

Further, by partial integration,∫ ∞
0

e−λy[1− FY (y)] dy =
[
− 1

λ
e−λy[1− FY (y)]

]∞
y=0
− 1

λ

∫ ∞
0

e−λyfY (y) dy (12.5.41)

=
1

λ
− 1

λν
=
ν − 1

λν
,
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where we again use the definition of the Malthusian parameter in Definition 12.17. Com-
bining both equalities yields fR(0) = λ/(ν − 1).

For a, we again use partial integration, followed by the substitution of (12.5.24). This
yields

a =

∫ ∞
0

FR(z)e−λz dz =
1

λ

∫ ∞
0

fR(z)e−λz dz (12.5.42)

=
ν

ν − 1

∫ ∞
0

e−λz
∫ ∞

0

e−λyfY (y + z) dy dz,

by (12.5.41). The final integral can be computed using∫ ∞
−∞

e−λz1{z≥0}

∫ ∞
−∞

e−λyfY (y + z)1{y≥0} dy dz

=

∫ ∞
0

sfY (s)e−λs ds =
1

ν

∫ ∞
0

sF̄Y (ds) = ν̄/ν. (12.5.43)

This completes the proof of Theorem 12.27 subject to Theorem 12.32.

Overview of the proof of Theorem 12.32. We next infomally explain how to prove
Theorem 12.32. Recall the minimal-weight graph or flow cluster SWG(t) defined in the pre-
vious section as well as the associated filtration (Ft)t≥0. We shall couple these flow clusters
from two points with (BP(t))t≥0 where BP(t) = (BP(1)(t),BP(2)(t)) are two independent
CTBPs starting with offspring distribution D, in such a way that for some sn →∞

P
(

(SWG(s))s∈[0,sn] = (BP(s))s∈[0,sn]

)
= 1− o(1). (12.5.44)

Exercise 12.28 (Perfect coupling for increasing times). Prove the perfect coupling state-
ment in (12.5.44) using Lemma 10.21.

By (12.5.44), with W (i)
sn = e−λnsn |SWG(i)(sn)|,

lim inf
ε↓0

lim inf
n→∞

P
(
W (1)
sn ∈ [ε, 1/ε],W (2)

sn ∈ [ε, 1/ε]
∣∣∣W (1)

sn > 0,W (2)
sn > 0

)
= 1. (12.5.45)

Further, the coupling satisfies that, conditionally on Fsn ,

P
(
|SWG(tn +B(n))4BP(n)(tn +B(n))| ≥ εn

√
n | Fsn

)
P−→ 0. (12.5.46)

For i ∈ {1, 2}, k ≥ 0, and t ≥ 0, we define

|SWG(i)

≤k[t, t+ s)| = #{y ∈ A(t) : I(y) = i,H(y) ≤ k,Rt(y) ∈ [0, s)}, (12.5.47)

as the number of alive half-edges at time t that (a) are in the SWG of vertex Ui, (b) have
height at most k, and (c) have remaining lifetime at most s. To formulate the CLT for the
height of vertices, we further write

kt(x) =
t

ν̄
+ x

√
t
σ̄2

ν̄3
. (12.5.48)

Finally, for a half-edge y ∈ A(t), we let X?
y = dVy − 1.
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We will argue that, for I = [a, b)× {j} × (−∞, x]× (−∞, y]× [0, s] a subset of S,

P(Πn(I) = 0 | Fsn)
P−→ exp

{
−
∫ b

a

2νfR(0)

µ
e2αtΦ(x)Φ(y)FR(s)dt

}
. (12.5.49)

By [177, Theorem 4.7], this proves the claim.
We associate the weight of an edge to its half-edge that becomes alive first. Below, we

will say that a half-edge is found at time t by the flow when the weight of the minimal-
weight path between U1 and U2 and the vertex incident to the half-edge we consider,
together with its own weight, is at most t.

We assume that b = a+ ε, where ε > 0 is small, so that we need to show that

P(Πn(I) ≥ 1 | Fsn) ≈ ε2νfR(0)

µ
e2αaΦ(x)Φ(y)FR(s). (12.5.50)

The number of half-edges z in SWG(j)(t̄n + a) with I(z) = j ∈ {1, 2} that is found by the
flow in the interval [t̄n + a, t̄n + b] is close to |SWG(j)[t̄n + a, t̄n + b)|. These half-edges
are in turn paired to other half-edges whose siblings can alse be found. When b = a + ε
with ε > 0 small, this number is negligible, and we will ignore this effect. In order for
the half-edge z that is found in the time interval [t̄n + a, t̄n + b) to create a collision edge,
it needs to be paired to a half-edge Pz for which one of the sibbling half-edges pairs to a
half-edge incident to the other SWG. On average, there are ν|SWG(j)[t̄n+a, t̄n+b)| sibbling
half-edges to Pz, and each of them pairs to a half-edge incident to SWG(3−j)(t̄n + a) with
probability close to

|SWG(3−j)(t̄n + a)|
`n

.

Therefore, the probability that at least one collision edge is created in the interval [t̄n +
a, t̄n + b] is close to

ν

`n
|SWG(j)[t̄n+a, t̄n+b)||SWG(3−j)(t̄n+a)| ≈ ν

`n
FR(b−a)|SWG(j)(t̄n+a)||SWG(3−j)(t̄n+a)|,

where we use Theorem 12.21. We can approximate FR(b − a) ≈ (b − a)fR(0) = εfR(0).

Also, replacing |SWG(j)(t̄n +a)| ≈W (j)
sn eλn(t̄n+a), as suggested by Theorem 12.18, leads us

to

ν

`n
|SWG(j)[t̄n + a, t̄n + b)||SWG(3−j)(t̄n + a)| ≈ εfR(0)

`n
W (j)
snW

(3−j)
sn e2λn(t̄n+a).

By the definition of t̄n in (12.5.22)

W (j)
snW

(3−j)
sn e2λn(t̄n+a) = W (1)

sn W
(2)
sn e2λn(t̄n+a) = ne2λna. (12.5.51)

We conclude that the probability that at least one collision edge is created in the interval
[t̄n + a, t̄n + b] is close to

νεfR(0)

`n
ne2λna =

νεfR(0)

E[Dn]
e2λna → νεfR(0)

E[D]
e2λa, (12.5.52)

as required. Further, by Exercise 12.23 (which is based on Theorems 12.21 and 12.22)
the height of the two half-edges that form the collision edge are close to normal, and
the residual lifetime of the collision half-edge has distribution close to FR. This explains
Theorem 12.32.
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12.6 Related results for first-passage percolation

In this section, we review some further results for first-passage percolation on the com-
plete graph as well as on random graphs. We will heuristically explain the results, but
will not give their complete proofs. In Section 12.6.1 we discuss further results for FPP on
the complete graph, and in Section 12.6.1 we discuss further results for FPP on random
graphs.

12.6.1 Related results for first-passage percolation on the complete graph

Extremal functionals for FPP on the complete graph. We now investigate ex-
tremal functionals for FPP on the complete graph, by extending the results in Section
12.2. We start by investigating the lenths of the maximal paths. Indeed, recall that
Hn(i, j) is the length of the optimal path between vertices i, j ∈ [n]. The next theorem
identifies the first order asymptotics of maxj∈[n] Hn(1, j) and maxi,j∈[n] Hn(i, j):

Theorem 12.34 (Hopcount diameter). For FPP on the complete graph with exponential
edge weights, as n→∞,

maxj∈[n] Hn(1, j)

logn

P−→ e,
maxi,j∈[n] Hn(i, j)

logn

P−→ α?, (12.6.1)

where α? ≈ 3.5911 is the unique solution of the equation α logα− α = 1.

Exercise 12.29 (Equation for the height). Note that e is the unique solution to the equa-
tion α logα− α = 0.

Exercise 12.30 (Height of URT). Show that maxj∈[n] Hn(1, j) is the same as the height
of the uniform recursive tree. Conclude that

maxj∈[n] Hn(1, j)

logn

P−→ e. (12.6.2)

We now give some intuition for the results in Theorem 12.34, relying on the analysis in
the proof of Theorem 12.3. We only prove the upper bound. First note that, by Boole’s
inequality,

P( max
i,j∈[n]

Hn(i, j) ≥ α logn) ≤ nP(max
j∈[n]

Hn(1, j) ≥ α logn). (12.6.3)

Again by Boole’s inequality,

P(max
j∈[n]

Hn(1, j) ≥ α logn) ≤ nP(Hn(1, 2) ≥ α logn), (12.6.4)

so that, for the upper bound, it suffices to bound the tails of the distribution of Hn(1, 2).
By Lemma 12.4, for every t ≥ 0,

P(Hn(1, 2) ≥ α logn) ≤ e−tα lognE[etHn(1,2)] = e−tα logn
n∏
i=2

(
1− 1

i
+ et

1

i

)
. (12.6.5)

We further bound, using 1 + x ≤ ex and
∑n
i=2 1/i ≤

∫ n
1
dx/x = logn,

n∏
i=2

(
1− 1

i
+ et

1

i

)
=

n∏
i=2

(
1 + (et − 1)

1

i

)
≤ e

∑n
i=1(et−1) 1

i ≤ e(et−1) logn. (12.6.6)

This leads to
P(Hn(1, 2) ≥ α logn) ≤ elogn(−tα+et−1). (12.6.7)
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Opimizing over t ≥ 0 yields t = logα, so that

P(Hn(1, 2) ≥ α logn) ≤ n−(α logα−α+1). (12.6.8)

Thus,

P(max
j∈[n]

Hn(1, j) ≥ α logn) = o(1) when α logα− α+ 1 > 1, (12.6.9)

which occurs when α > e, while

P( max
i,j∈[n]

Hn(i, j) ≥ α logn) = o(1) when α logα− α+ 1 > 2, (12.6.10)

which occurs when α > α? which is the solution of α logα− α = 1. We conclude that the
upper bounds in Theorem 12.34 hold. The respective lower bounds are much harder to
prove, as one has to show that whp there really exists a vertex i for which Hn(1, i) ≥ α logn
for any α < e, and that whp there really exist two vertices i, j for which Hn(i, j) ≥ α logn
for any α < α?.

The lower bound on maxi,j∈[n] Hn(i, j) in (12.6.1) is the hard part, and is proved in
[5] using a delicate conditional second moment method. The basic starting point is that
if a path π : v0 → vk has a weight w(π) =

∑
e∈π Ee that satisfies (1 − ε) logn ≤ w(π) ≤

(1 + ε)w(π), then whp it is the shortest path (see [5, Corollary 5]). In turn, let us call
Pk,ε = Pk,ε(n) be the set of paths with k edges and weight at most (1ε) logn. Then it is
not hard to show that

E[Pk,ε(n)] ∼ nk+1
( (1− ε) logn

n

)k 1

k!
∼ n√

2πk

(e logn

k

)k
. (12.6.11)

This tends to infinity when α < α? and ε > 0 is sufficiently small. It would thus be
tempting to use a second moment directly on Pk,ε(n), but there is too much dependence
between these paths. Instead, in [5] a second moment method is used on a subclass of
paths in Pk,ε(n), which has a high enough mean (comparable to that of Pk,ε(n)), yet for
which the second moment can be controlled.

We next consider the fluctuations of the weight diameter for first-passage percolation
on the complete graph. Let us first define the limiting weighted random graph that arises
in the description of our main result. The vertex set of this graph will be the set of positive
integers Z+ = {1, 2, . . .}. Let PP be a Poisson process on R with intensity measure having
density

λ(y) = exp(−y), y ∈ R. (12.6.12)

Exercise 12.31 implies that Ξ′ = max{x : x ∈ PP} <∞ a.s. Thus, we can order the points
in PP as Y1 > Y2 > · · · . Let {Λst : s, t ∈ Z+, s < t} be a family of independent standard
Gumbel random variables. Define

Ξ = max{Ys + Yt − Λst : s, t ∈ Z+, s < t}. (12.6.13)

It can be shown that Ξ <∞ almost surely:

Exercise 12.31 (The random variables Ξ,Ξ′ <∞ almost surely). Show that Ξ′ <∞ and
Ξ <∞ almost surely.

The main result concerning the weight diameter for FPP on the complete graph is as
follows:
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Theorem 12.35 (Fluctuations of the weight diameter). For FPP on the complete graph
with exponential edge weights, as n→∞,

n max
i,j∈[n]

Cn(i, j)− 3 logn
d−→ Ξ. (12.6.14)

The proof of Theorem 12.35 is a close adaptation of the proof of the upper bound in
(12.2.3) in Theorem 12.1. For i ∈ [n], let Xi = minj∈[n] Eij be the minimal edge weight
from vertex i, and let X(i) be the order statistics of (Xi)i∈[n], so that X(1) < X(2) < · · · <
X(n). Further, let Vi be the vertex corresponding to X(i). Then, obviously,

max
i,j∈[n]

Cn(i, j) = max
i,j∈[n]

Cn(Vi, Vj). (12.6.15)

The point process (X(i) − logn)i∈[n] converges to the point-process with intensity λ in
(12.6.12). For i < j fixed, we can write

Cn(Vi, Vj)
d
= X(i) +X(j) + Cn({Vi, Ui}, {Vj , Uj}), (12.6.16)

where Cn(A,B) denotes the minimal weight between the subsets A,B ⊆ [n] and Ui is such
that EViUi = X(i) (and we have ignored the case where EViVj = X(i) or Eij = X(j) for
simplicity). The ideas used in Theorem 12.1

Cn({i, n}, {j, n− 1})− logn
d−→ Λ′i + Λ′j − Λij , (12.6.17)

and (Λ′i)i≥1 and (Λij)1≤i<j are independent random variables, with Λij having a Gumbel
distribution and

Λ′i = lim
m→∞

m∑
k=2

Ek/k − logm. (12.6.18)

This suggests that

n max
i,j∈[n]

Cn(Vi, Vj)− 3 logn
d−→ max

1≤i<j
Yi + Yj + Λ′i + Λ′j − Λij , (12.6.19)

which is close to what we wish to prove, except the point process (Yi)i≥1 is replaced with
the point process (Yi + Λ′i)i≥1. Interestingly, these have the same distribution, which
explains Theorem 12.35.

Multicast and Steiner trees on the complete graph. We next discuss properties
of the minimal-weight tree of a single vertex. For m ≥ 1, let SWGm denote the minimal-
weight tree between vertex 1 and m other vertices in [n] \ 1 chosen uniformly at random
conditioned to be distinct. Let Wn(m) denote its weight, and Hn(m) denote the number
of edges in it. Here we focus on aspects of Wn(m). In [150], the mean of the weight of the
multicast tree is identified as

E[Wn(m)] =

m∑
j=1

1

n− j

n−1∑
k=j

1

k
. (12.6.20)

In particular,

E[Wn(n− 1)] =

n−1∑
k=1

1

k2
. (12.6.21)
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In [151], the result is extended to a central limit theorem of the form

√
n
(
Wn(n− 1)− ζ(2)

) d−→ σZ, (12.6.22)

where σ2 = 4ζ(3) ' 4.80823. A crucial ingredient in this analysis is the computation of
the variance of Wn(n− 1), which is explicitly given by

Var(Wn(n− 1)) =
4

n

n−1∑
k=1

1

k3
+ 4

n−1∑
j=1

1

j3

j∑
k=1

1

k
− 5

n−1∑
j=1

1

j4
. (12.6.23)

The fact that nVar(Wn(n − 1)) → 4ζ(3) is non-trivial and amounts to carefully compute
the arsing sums.

The Steiner tree problem is the task of finding a minimum weight subtree containing all
these vertices, where the weight of a tree is the sum of the weights of the edges it contains.
The Steiner tree of size 2 is the minimal-weight path between the two vertices. For m ≥ 3,
however, the Steiner tree can be different from the multicast tree. Let W (Ste)

n (m) denote the
weight of the Steiner tree of size m on the complete graph with exponential edge weights.
In [60], it is shown that, with wn(m) = (m− 1)(log(n/m))/n

1

wn(m)
W (Ste)
n (m)

P−→ 1. (12.6.24)

In [150], the following analogous result is shown for the multicast tree, namely, for all
m = O(na) with a < 1,

E[Wn(m)] =
m

n
log

n

m+ 1
+O(n2(a−1) logn). (12.6.25)

Exercise 12.32 (Comparison Steiner and multicast trees). Show that (12.6.24) and (12.6.25)
imply that also

1

wn(m)
Wn(m)

P−→ 1. (12.6.26)

The complete graph with positive powers of exponential edge weights. We next
study a particular example of first-passage percolation on the complete graph with edge
weights having a distribution different from the exponential distribution. We work on the
complete graph with vertex set [n] ≡ {1, . . . , n} and edge set En = {ij : i, j ∈ [n], i 6= j}.
Each edge e is given weight le = (Ee)

s for some fixed s > 0, where (Ee)e∈En are i.i.d.
exponential random variables with mean 1. For a fixed s ∈ R+, we are interested in
statistics of the optimal path, in particular, in the asymptotics for the weight and hopcount
of the optimal path as n→∞. When s = 1, we retrieve the exponential weights studied in
great detail before, and our interest lies in investigating whether the change in edge weight
distribution changes the minimal-weight topology of the graph.

To state the results, we start by seting up some notation. Let (Ej)j≥1 be i.i.d. mean 1
exponential random variables. Define the random variables Yi by the equation

Pi =
( i∑
j=1

Ej
)s
. (12.6.27)

Let PP be the above point process, i.e.,

PP = (P1, P2, . . .). (12.6.28)
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Now consider the continuous-time branching process (CTBP) where at time t = 0 we start
with one vertex (called the root or the original ancestor), each vertex v lives forever, and
has an offspring distribution PP(v) ∼ PP as in (12.6.28) independent of every other vertex.
Let (BPt)t≥0 denote the CTBP with the above offspring distribution.

Let us first investigate some of the properties of this CTBP. Let λ = λ(s) be the
Malthusian parameter in Definition 12.17, which determines the rate of exponential growth
of this model. Indeed, by Theorem 12.18, there exists a strictly positive random variable
W such that

e−λt|BP(t)| a.s.−→W. (12.6.29)

The constant λ satisfies the equation

E
[ ∫ ∞

0

e−λtPP(dt)
]

=
∞∑
i=1

E
(
e−λPi

)
= 1. (12.6.30)

In this case, since P
1/s
i has a Gamma-distribution with parameter i, we can explicitly

compute that

∞∑
i=1

E
(
e−λPi

)
=

∞∑
i=1

∫ ∞
0

yi−1

(i− 1)!
e−ye−λy

s

dy (12.6.31)

=

∫ ∞
0

e−λy
s
( ∞∑
i=1

yi−1

(i− 1)!
e−y
)
dy

=

∫ ∞
0

e−λy
s

dy = λ−1/sΓ(1 + 1/s),

so that
λ = λ(s) = Γ(1 + 1/s)s. (12.6.32)

In the next theorem, we investigate Hn and Cn in this setting:

Theorem 12.36 (The weight of and edges in the minimal-weight path). For FPP on the
complete graph with i.i.d. edge weights with distribution Es, where E has an exponential
distribution with mean 1 and s > 0, as n→∞,(Hn − s logn√

s2 logn
, nsCn −

1

λ
logn

)
d−→ (Z,Q), (12.6.33)

where Z has a standard normal distribution, and

Q
d
=

1

λ

(
− logW (1) − logW (2) − Λ− log (1/s)

)
, (12.6.34)

where Λ is a standard Gumbel random variable independent of W (1) and W (2), and W (1)

and W (2) are two independent copies of the random variable W appearing in (12.6.29).

Theorem 12.36 shows that the behvior of Hn and Cn on the complete graph is quite
universal. Indeed, Hn always satisfies a central limit theorem with mean and variance
proportional to logn. Further, let un = F−1

Y (1/n) denote the typical size of a minimal
edge weight from a vertex, then Cn/un is of order logn with proportionality constant 1/λ,
and λ the Mathusian parameter of the corresponding CTBP approximation of local neigh-
borhoods, and the difference Cn/un − (1/λ) logn converges in distribution. The limiting
random variable even has the same shape as for FPP on the configuration model in (12.5.8)
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in Theorem 12.27. These results suggest that if a CTBP approximation of the local neigh-
borhood exploration holds, then the limiting distributions of the hopcount and weight of
the minimal-weight path behave rather universally.

The proof of Theorem 12.36 relies on a CTBP approximation of the neighborhoods
of the starting and end vertices U1 and U2. Similar ideas play a role as in the proof of
Theorem 12.27.

The complete graph with negative powers of exponential edge weights. It
may seem from the above analysis that first-passage percolation on the complete graph
always leads to a continuous-time branching process problem. We next study an example
where this is not the case. We will study the complete graph with i.i.d. edge weights
E−sij , 1 ≤ i ≤ j ≤ n. Thus, compared to the discussion in the previous section, we have
replaced s there by −s here, and we study the s > 0 regime. For fixed s > 0, define the
function

gs(x) =
xs+1

(x− 1)s
, x ≥ 2. (12.6.35)

Observe that, for 0 < s ≤ 1, the function gs(x), x ≥ 2, is increasing, while for s > 1, the
function is strictly convex with unique minimum at x = s + 1. We shall be interested in
minimizing this function only on the space Z+, the set of positive integers. Then, there
is a sequence of values s = sj , j ≥ 2, for which the minimum integer of gs is not unique.
From the equation gs(j) = gs(j + 1) and the bounds j − 1 < s < j, it is not hard to verify
that

sj =
log(1 + j−1)

log(1 + (j2 − 1)−1)
∈ (j − 1, j), j = 2, 3, . . . . (12.6.36)

We will need to deal with these special points separately. When s /∈ {s2, . . .}, then there
is a unique integer which minimizes the function gs(x) on Z+. Let S = {s2, . . .}.

Theorem 12.37 (Hopcount and weight asymptotics). Consider FPP on the complete
graph with i.i.d. edge weights with distribution E−s, where E has an exponential distribution
with mean 1 and s > 0.
For s /∈ S, let k = k∗(s) ∈ {bs + 1c, ds + 1e} denote the unique integer that minimizes

the function defined in (12.6.35). Then, the hopcount Hn = Hn(s)
P−→ k∗(s) as n → ∞,

and the optimal weight Wn, properly normalized, converges in distribution to a Gumbel
distribution. More precisely, as n→∞, there exist constants bk such that

P
(
k − 1

sgs(k)
(logn)s+1(Wn −

gs(k)

(logn)s
)

+
k − 1

2
log logn+ bk > t

)
→ e−et . (12.6.37)

When s ∈ S, P(Hn ∈ {ds + 1e, bs + 1c}) → 1 and again a linear transformation of Wn

converges in distribution to a Gumbel random variable.

Theorem 12.37 states that the hopcount Hn converges to the optimal value of the
function x 7→ gs(x) defined in (12.6.35), while the rescaled and recentered minimal weight
Wn converges in distribution to a Gumbel distribution. We can intuitively understand this
as follows. For fixed k, the minimal path of length k is similar to an independent minimum
of copies of sums of k random variables E−s. The number of independent copies is equal
to the number of disjoint paths between vertices 1 and n, which is close to nk−1. While on
the complete graph, the appearing paths do not have independent weights, the paths that
are particularly short are almost independent, which forms the crux of the proof. Due to
the fact that the random variables are close to independent, extreme value ideas can be
applied.

The following series of exercises shows that Hn is tight:
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Exercise 12.33 (Minimum of independent inverse powers of exponentials). Let (Ei)i∈[n]

be a sequence of i.i.d. exponential random variables with parameter 1. Show that

(logn)s min
i∈[n]

E−si
P−→ 1. (12.6.38)

Conclude that the minimal edge weight Ymin for first-passage percolation on the random

graph with i.i.d. edge weights with distribution E−s satisfies (logn)sYmin
P−→ 2−s.

Exercise 12.34 (Minimum of independent sums of inverse powers of exponentials). Let
Yi = E−s1i +E−si2 denote the edge weight of the two-step path between vertices 1 and 2 through

the vertex i. Show that (Yi)
n
i=3 are i.i.d. Further, show that (logn)s minni=3 Yi

P−→ 2s+1.

Exercise 12.35 (Hopcount for inverse powers of exponentials). Use Exercises 12.33 and
12.34 to show that P(Hn ≤ 22s+1)→ 1.

12.6.2 Related results for first-passage percolation on random graphs

In this section, we discuss related results for first-passage percolation on random graphs.
We start by reviewing results on extremal functionals for first-passage percolation on ran-
dom graphs with exponential edge weights.

Extremal functionals for the configuration model with exponential edge weights.
In this section, we investigate extremal functionals on weighted configuration models. We
study the limits of the weight-flooding and -diameter, as well as the hopcount-flooding and
-diameter in the case of random regular graphs. We start with the weight-flooding and
-diameter.

In order to state our main result, we need the following notation. Recall from (10.1.2)
that gk = P(D? = k + 1) denotes the asymptotic forward degree distribution in CMn(d).
Let η denote the extinction probability of the branching process with offspring distribution
D? − 1, and recall that η < 1 precisely when E[D? − 1] = ν > 1. Let η? = E[(D? −
1)ηD

?−2] = G′D?−1(η). The crucial object to describe the weight-flooding and -diameter
in CMn(d) is the following quantity:

Γ(d) = d1{d≥3} + 2(1q1)1{d=2} + (1η?)1{d=1}. (12.6.39)

In terms of Γ(d), the weight-flooding and -diameter in CMn(d) can be quantified as follows:

Theorem 12.38 (Weight-diameter and flooding on CM). Let CMn(d) satisfy Condition
7.5(a)-(c), assume that pdmin > 0 and that lim supn→∞ E[D2+ε

n ] < ∞ for some ε > 0.
Equip CMn(d) with i.i.d. exponential edge weights with mean 1. Then, as n→∞,

maxj Cn(1, j)

logn

P−→ 1

ν − 1
+

1

Γ(dmin)
, (12.6.40)

and
maxi,j Cn(i, j)

logn

P−→ 1

ν − 1
+

2

Γ(dmin)
, (12.6.41)

where Γ(d) is defined in (12.6.39).

Theorem 12.38 can be best understood when dmin ≥ 3. In this case, Γ(dmin) = dmin,
and we see that the flooding is 1/dmin larger than the typical weight as described in
Theorem 12.5, while the diameter is 2/dmin larger than the typical weight. This is similar
to the situation for the complete graph in Theorem 12.1. Indeed, for i ∈ [n], let e ∈
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E(CMn(d)) denote the edges in CMn(d) and define Xi = minj : ij∈E(CMn(d)) Eij , where
(Eij)ij∈E(CMn(d)) are the exponential edge weights with mean 1. Then, for every t > 0,

P(Xi ≥ t) = e−tdi , (12.6.42)

so that, for every a > 0,
P(Xi ≥ a logn) = n−adi . (12.6.43)

Therefore, the expected number of vertices i of degree d with Xi ≥ a logn is equal to
ndn

−ad. As a result, for every d such that pd > 0, there exist whp vertices i having degree
d and minimal edge-weight Xi ≥ a logn when a < 1/d, but not when a > 1/d. The
largest possible a arises when d = dmin is as small as possible. We conclude that, under
the conditions of the theorem, whp there exist vertices i such that Xi ≥ a logn when
a < 1/dmin, but not whe a > 1/dmin. As a result, the weight-flooding is achieved by the
minimal-weight between one of such vertices and vertex 1, while the weight-diameter is
achieved by the minimal-weight between two of such vertices.

When dmin ≤ 2, the above arguments still apply. However, in this case, paths with even
larger weight can be found. Indeed, we note that Γ(d) < d when d = 1, 2. For dmin = 2,
such paths can be realized by long thin paths. In order to prove Theorem 12.38 in this
case, it is instructive to consider a Markov branching process starting from k individuals
having offspring distribution B. Denote the time it takes the CTBP to reach n vertices by
T kn . Then,

− lim
n→∞

1

logn
log P

(( 1

E[B]− 1
+ x
)
T kn <∞

)
= xg(Bmin, k), (12.6.44)

where Bmin = min{k : P(B = k) > 0}. Note that Γ(dmin) = g((D? − 1)min, dmin).

We next study the maximal hopcount, both from a fixed vertex as well as between all
pairs in the graph. We restrict our attention to the random d-regular graph. We define
the function f : R+ 7→ R by

f(α) = α log
(d− 2

d− 1
α
)
− α+

1

d− 2
. (12.6.45)

Theorem 12.39 (Hopcount-diameter on random regular graphs). Fix di = d ≥ 3 for
every i ∈ [n]. Consider the random-regular graph CMn(d) equipped with i.i.d. exponential
edge weights with mean 1. Then, as n→∞,

maxj Hn(1, j)

logn

P−→ α, (12.6.46)

and
maxi,j Hn(i, j)

logn

P−→ α?, (12.6.47)

where α is the solution to f(α) = 0 and α? is the solution to f(α) = 1.

Configuration model with exponential weights and infinite-variance degrees.
We next study the configuration model in the case where the degrees have infinite variance.
The main resut is as follows:

Theorem 12.40 (Precise asymptotics for τ ∈ (2, 3)). Consider the configuration model
CMn(D) with i.i.d. degrees having distribution F satisfying F (x) = 0, x < 2, and satisfy
that there exists τ ∈ (2, 3) and 0 < c1 ≤ c2 <∞ such that, for all x ≥ 0,

c1x
−(τ−1) ≤ 1− F (x) ≤ c2x−(τ−1). (12.6.48)
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Then, there exists a random variable Q such that

Cn
d−→ Q,

Hn − α logn√
α logn

d−→ Z, (12.6.49)

where α = 2(τ−2)
τ−1

∈ (0, 1), Z has a standard normal distribution and

Q = Q1 +Q2, (12.6.50)

where Q1, Q2 are two independent copies of a random variable which is the explosion time
of an infinite-mean continuous-time branching process.

Theorem 12.40 shows that we can travel between pairs of vertices with a bounded travel
time, irrespective of how large the graph is. Thus, the flow is extremely efficient. The
number of edges in the minimal-weight path is much larger than shortest paths, which
by Theorem 10.17 consist of 2 log logn/| log(τ − 2)| edges instead of the α logn edges in
Theorem 12.40. Thus, it pays off to make a long detour to avoid edges with high weights.

Let us now describe the random variables Q1 and Q2 in some more detail. Define Si
recursively by S0 = D and Si = Si−1 + D? − 2. Then, (Si)i≥0 is a random walk starting
in D with step distribution D? − 2 ≥ 0. In particular, when (12.6.48) holds for some
τ ∈ (2, 3), then D? is in the domain of attraction of a (τ − 2)-stable random variable.
Therefore, E[(D?)a] =∞ for all a ≥ τ − 2. In terms of this random variable, we have the
description

Q1 =
∑
j≥1

Ej/Sj . (12.6.51)

When D? is in the domain of attraction of a (τ − 2)-stable random variable, E[Q1] < ∞.
Comparing to Theorem 12.24, we see that Qi is the explosion time of a two-stage Markov
CTBP, where the offspring in the first generation is equal to D and the offpring in all other
generations is equal to D? − 1.

Theorem 12.40, combined with the result on graph distances in Theorem 10.17, raises
the question what the universality classes are for first-passage percolation on CMn(D)
with infinite-variance degrees. Indeed, contrary to the setting of finite-variance degrees in
Theorem 12.27, we can show that there are continuous edge-weight distributions for which
the hopcount and weight of the minimal-weight path scale like log logn:

Exercise 12.36 (Infinite variance degrees and another universality class). Consider the
configuration model CMn(d) where the degrees satisfy the conditions in Theorem 10.17.
Let the edge weights be equal to (1 + Ee)e∈E(CMn(d)). Use Theorem 10.17 to show that,
whp, Wn ≤ 4(1 + ε) log logn/| log(τ − 2)|. Use this, in turn, to show that Hn ≤ 4(1 +
ε) log logn/| log(τ − 2)|

Exercise 12.36 shows that there are at least two universality classes for FPP on the CM
with τ ∈ (2, 3).

12.7 Notes and discussion

Notes on Section 12.2. The presentation in Section 12.2 follows Janson [161]. The
restrictions on the weight distribution Yij in [161] are slightly weaker than assumed here.
Assume that Yij are non-negative and that their distribution function P(Yij ≤ t) = t +
o(t) as t ↘ 0, the main examples being the uniform U(0, 1) and the exponential Exp(1)
distributions.

We see from Theorem 12.1(ii) and (iii) that maxj∈[n] Cn(i, j) typically is about 2 logn/n,
but that it is larger for a few vertices with maxj Cn(i, j) being about 3 logn/n. A companion
result in [161] shows that, in contrast, maxj∈[n] Cn(i, j) is not significantly smaller than
2 logn/n for any vertex i:
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Theorem 12.41 (Minimal-maximal weight). As n→∞,

mini∈[n] maxj∈[n] Cn(i, j)

logn/n

P−→ 2. (12.7.1)

For the case of exponentially distributed Yij , the proof of Theorem 12.1 shows that the
collection of minimal weight paths from a given vertex, 1 say, form a random recursive tree
(rooted at 1) which can be constructed as follows. Begin with a single root and add n− 1
vertices one by one, each time joining the new vertex to a (uniformly) randomly chosen
old vertex. Ditances between vertices in random recursive trees as in Theorem 12.3 have
been studied in [211], and the diameter in [235] as n→∞. See also the survey [250].

Notes on Section 12.3. Theorem 12.5 is proved in [41] under slightly more restrictive
conditions on the degrees as the ones stated. Indeed, in [41], it is assumed that the degrees
are i.i.d. random variables with a distribution D satisfying P(D ≥ 2) a.s. The present
version can be obtained from [43] under slightly weaker conditions. We follow the proof in
[41].

Proposition 12.7 is proved first by Bühler [76]. We present the probabilistic proof
from [41], since there is some confusion between the definition si given here, and the
definition of si given in [76, below Equation (3.1)]. More precisely, in [76], si is defined as
si = d1 + . . .+ di − i, which is our si − 1.

Notes on Section 12.4. A comprehensive study of continuous-time branching processes
can be found in [145], [158] and [22]. We follow [145]. In particular, [145, Chapter V] deals
with Markov branching processes, in which the evolution of (|BP(t)|)t≥0 is Markovian. Ex-
amples are Bellman-Harris processes. [145, Chapter VI] deals with general age-dependent
CTBPs. The most general results on CTBPs can be found in [159]. The convergence
in (12.4.31) is [145, Theorem 17.1]. Jagers and Nerman [159] have proved some of the
strongest results for general continuous-time branching processes. In particular, Theorem
12.18 is [159, Theorem 5.3]. Theorems 12.25 and 12.26 are due to Grey [138].

Notes on Section 12.5. Theorem 12.27 is proved in [43].

Notes on Section 12.6. The first result in Theorem 12.34 is in [106] and [234], the
second is the main result in [5]. In [5], it is proved further that maxi,j Hn(i, j) ≤ α? logn+
ω(n) whp for any ω(n) → ∞, while maxi,j Hn(i, j) ≥ α? logn + L log log n whp for some
constant L > 0. The precise fluctuations of maxj Hn(1, j) and maxi,j Hn(i, j) are unknown.

Theorem 12.35 is proved in [40] and solves [161, Problem 1]. Theorem 12.36 is proved
in [46], where, erroneously, −Λ in (12.6.34) was replaced by Λ.

It is yet unclear what the universality classes of FPP on the complete graph are. In
[117], settings are investigated where the minimal-weight paths are short compared to logn,
in [116] settings where minimal-weight paths are long compared to logn. The behavior
of FPP on the complete graph with such weights is closely related to that with weights
equal to Esn , where E is exponential with mean 1 and sn depends on n. Particularly the
case where sn →∞, sometimes also called the strong disorder phase as in [71, 147, 258], is
highly interesting. Remarkably, this setting can both arise from n-dependent weights as in
Esn , as well as from n-independent weights. The case where sn → 0 is handled in [117], the
case where sn → ∞ in [116]. In the latter case, a CLT is proved with mean sn log(n/s3

n)

and variance s2
n log(n/s3

n) as long as sn = o(n1/3). The strong disorder phase of FPP on
the complete graph is closely related to the properties of the minimal spanning tree, as
investigated in [4, 6, 134]. There, the gaph distance between vertices grows like n1/3, which
suggests that FPP and the minimal spanning tree can be in the same universality class.
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Theorem 12.38 is proved in [18], see also [?]. The result in (12.6.44), which is crucial in
the understanding of Theorem 12.38, is proved in [?]. The special case of d-random regular
graphs with d ≥ 3 is also proved in [107], where it was used to investigate the diameter of
near-critical supercritical Erdős-Rényi random graphs. Theorem 12.39 is proved in [19].

Theorem 12.40 is proved in [42]. In [41], FPP with exponential edge weights on CMn(D)
with τ ∈ (1, 2) is studied, and it is shown that both Wn and Hn converge in distribution.
Interestingly, the distributional limits of Wn and Hn depend on whether we work with the
original CM (where we keep all multiple edges) or the erased CM (where all multiple edges
are merged into a single edge).





Appendix A

Some measure and integration results

. In this section, we give some classical results from the theory of measure and integration,
which will be used in the course of the proofs. For details and proofs of these results, we
refer to the books [50, 131, 110, 143]. For the statements of the results below, we refer to
[131, Pages 110-111].

Theorem A.42 (Lebesque’s dominated convergence theorem). Let Xn and Y satisfy

E[Y ] <∞, Xn
a.s.−→ X, and |Xn| ≤ Y almost surely. Then

E[Xn]→ E[X], (A.2)

and E[|X|] <∞.

We shall also make use of a slight extension, where almost sure convergence is replaced
with convergence in distribution:

Theorem A.43 (Lebesque’s dominated convergence theorem). Let Xn and Y satisfy

E[|Xn|] <∞, E[Y ] <∞, Xn
d−→ X, and |Xn| ≤ Y . Then

E[Xn]→ E[X], (A.3)

and E[|X|] <∞.

Theorem A.44 (Monotone convergence theorem). Let Xn be a monotonically increasing
sequence, i.e., Xn ≤ Xn+1 such that E[|Xn|] <∞. Then Xn(ω) ↑ X(ω) for all ω and some
limiting random variable X, and

E[Xn] ↑ E[X]. (A.4)

In particular, when E[X] =∞, then E[Xn] ↑ ∞.

Theorem A.45 (Fatou’s lemma). If Xn ≥ 0 and E[|Xn|] <∞, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]. (A.5)

In particular, if Xn(ω)→ X(ω) for every ω, then

E[X] ≤ lim inf
n→∞

E[Xn]. (A.6)
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Appendix B

Solutions to selected exercises

Solutions to the exercises of Chapter 1.

Solution to Exercise 1.1. When (1.1.6) holds with equality, then

1− FX(x) =

∞∑
k=x+1

fk =

∞∑
k=x+1

k−τ .

Therefore, by monotonicity of x 7→ x−τ ,

1− FX(x) ≤
∫ ∞
x

y−τdy =
x1−τ

τ − 1
,

while

1− FX(x) ≥
∫ ∞
x+1

y−τdy =
(x+ 1)1−τ

τ − 1
.

As a result, we obtain that

1− FX(x) =
x1−τ

τ − 1
(1 +O(

1

x
)).

For an example where (??) holds, but (1.1.6) fails, we can take f2k+1 = 0 for k ≥ 0 and,
for k ≥ 1,

f2k =
1

kτ−1
− 1

(k + 1)τ−1
.

Then (1.1.6) fails, while

1− FX(x) =
∑
k>x

fk ∼
1

bx/2cτ−1
∼ 1

xτ−1
.

Solution to Exercise 1.2. Recall that a function x 7→ L(x) is slowly varying when, for
every c > 0,

lim
x→∞

L(cx)

L(x)
= 1.

For L(x) = log x, we can compute

lim
x→∞

L(cx)

L(x)
= lim
x→∞

log(cx)

log x
= lim
x→∞

log x+ log c

log x
= 1.

For L(x) = e(log x)γ , we compute similarly

lim
x→∞

L(cx)

L(x)
= lim

x→∞
e(log (cx))γ−(log x)γ

= lim
x→∞

e
log(x)γ

(
(1+ log c

log x
)γ−1

)
= lim

x→∞
elog(x)γ−1γ log c = 1.
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When γ = 1, however, we have that L(x) = elog x = x, which is regularly varying with
exponent 1.

Solutions to the exercises of Chapter 2.

Solution to Exercise 2.1. Take

Xn =

{
Y1 for n even,

Y2 for n odd,

where Y1 and Y2 are two independent copies of a random variable which is such that
P(Yi = E[Yi]) < 1. Then, since Y1 and Y2 are identical in distribution, the sequence
{Xn}∞n=1 converges in distribution. In fact, {Xn}∞n=1 is constant in distribution.

Moreover, X2n ≡ Y1 and X2n+1 ≡ Y2. Since subsequences of converging sequences are
again converging, if {Xn}∞n=1 converges in probability, the limit of {Xn}∞n=1 should be
equal to Y1 and to Y2. Since P(Y1 6= Y2) > 0, we obtain a contradiction.

Solution to Exercise 2.2. Note that for any ε > 0, we have

P(|Xn| > ε) = P(Xn = n) =
1

n
→ 0. (B.1)

Therefore, Xn
P−→ 0, which in turn implies that Xn

d−→ 0.

Solution to Exercise 2.3. The random variable X with density

fX(x) =
1

π(1 + x2)
,

which is a Cauchy random variable, does the job.

Solution to Exercise 2.4. Note that, by a Taylor expansion of the moment generating
function, if MX(t) <∞ for all t, then

MX(t) =

∞∑
r=0

E[Xr]
tr

r!
.

As a result, when MX(t) <∞ for all t, we must have that

lim
r→∞

E[Xr]
tr

r!
= 0.

Thus, when t > 1, (2.1.8) follows. Thus, it is sufficient to show that the moment generating
function MX(t) of the Poisson distribution is finite for all t. For this, we compute

MX(t) = E[etX ] =

∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!
= exp{−λ(1− et)} <∞,

for all t.
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Solution to Exercise 2.5. We write out

E[(X)r] = E[X(X − 1) · · · (X − r + 1)] =

∞∑
x=0

x(x− 1) · · · (x− r + 1)P(X = x)

=

∞∑
x=r

x(x− 1) · · · (x− r + 1)e−λ
λx

x!

= λr
∞∑
x=r

e−λ
λx−r

(x− r)! = λr. (B.2)

Solution to Exercise 2.6. Compute that

E[Xm] = e−λ
∞∑
k=1

km
λk

k!
= λe−λ

∞∑
k=1

km−1 λk−1

(k − 1)!
= λe−λ

∞∑
l=0

(l+1)m−1 λ
l

l!
= λE[(X+1)m−1].

Solution to Exercise 2.7. By the discussion around (2.1.16), we have that the sum∑n
r=k(−1)k+r E[(X)r ]

(r−k)!k!
is alternatingly larger and smaller than P(X = k). Thus, it suffices

to prove that, when (2.1.18) holds, then also

lim
n→∞

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
=

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
. (B.3)

This is equivalent to the statement that

lim
n→∞

∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!
= 0. (B.4)

To prove (B.4), we bound∣∣∣ ∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!

∣∣∣ ≤ ∞∑
r=n

E[(X)r]

(r − k)!k!
→ 0, (B.5)

by (2.1.18).

Solution to Exercise 2.8. For r = 2, we note that

E[(X)r] = E[X2]− E[X], (B.6)

and, for X =
∑
i∈I Ii a sum of indicators,

E[X2] =
∑
i,j

E[IiIj ] =
∑
i 6=j

P(Ii = Ij = 1) +
∑
i

P(Ii = 1). (B.7)

Using that E[X] =
∑
i P(Ii = 1), we thus arrive at

E[(X)r] =
∑
i 6=j

P(Ii = Ij = 1), (B.8)

which is (2.1.21) for r = 2.
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Solution to Exercise 2.9. For the Poisson distribution factorial moments are given by

E[(X)k] = λk

(recall Exercise 2.5.) We make use of Theorems 2.4 and 2.5. If Xn is binomial with
parameters n and pn = λ/n, then

E[(Xn)k] = E[Xn(Xn − 1) · · · (Xn − k + 1)] = n(n− 1) . . . (n− k + 1)pk → λk,

when p = λ/n and n→∞.

Solution to Exercise 2.10. We prove Theorem 2.7 by induction on d ≥ 1. The induc-
tion hypothesis is that (2.1.21) holds for all measures P with corresponding expectations
E and all r1, . . . , rd.

Theorem 2.7 for d = 1 is Theorem 2.5, which initializes the induction hypothesis. We
next advance the induction hypothesis by proving (2.1.21) for d + 1. For this, we first
note that we may assume that E[(Xd+1,n)rd+1 ] > 0, since (Xd+1,n)rd+1 ≥ 0 and when
E[(Xd+1,n)rd+1 ] = 0, then (Xd+1,n)rd+1 ≡ 0, so that (2.1.21) follows. Then, we define the
measure PX,d by

PX,d(E) =
E
[
(Xd+1,n)rd+11E

]
E[(Xd+1,n)rd+1 ]

, (B.9)

for all possible measurable events E . Then,

E[(X1,n)r1 · · · (Xd,n)rd(Xd+1,n)rd+1 ] = E[(Xd+1,n)rd+1 ]EX,d
[
(X1,n)r1 · · · (Xd,n)rd

]
.

(B.10)
By the induction hypothesis applied to the measure PX,d, we have that

EX,d
[
(X1,n)r1 · · · (Xd,n)rd

]
=

∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

PX,d
(
I(l)

is
= 1∀l = 1, . . . , d&s = 1, . . . , rl

)
.

(B.11)
Next, we define the measure P~id by

P~id(E) =
E
[∏d

l=1 I
(l)

is
1E

]
P
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

) , (B.12)

so that

E[(Xd+1,n)rd+1 ]PX,d
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
= E~id [(Xd+1,n)rd+1 ]P

(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
. (B.13)

Again by Theorem 2.5,

E~id [(Xd+1,n)rd+1 ] =
∑∗

i
(d+1)
1 ,...,i

(d+1)
r1

∈Id+1

P~id(I(d+1)

i1
= · · · = I(d+1)

ird+1
= 1). (B.14)

Then, the claim for d+ 1 follows by noting that

P
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
P~id(I(d+1)

i1
= · · · = I(d+1)

ird+1
= 1) (B.15)

= P
(
I(l)

is
= 1 ∀l = 1, . . . , d+ 1, s = 1, . . . , rl

)
.
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Solution to Exercise 2.11. Observe that∑
x

|px − qx| =
∑
x

(px − qx)1{px>qx} +
∑
x

(qx − px)1{qx>px} (B.16)

0 = 1− 1 =
∑
x

(px − qx) =
∑
x

(px − qx)1{px>qx} +
∑
x

(px − qx)1{qx>px}. (B.17)

We add the two equalities to obtain∑
x

|px − qx| = 2
∑
x

(px − qx)1{px>qx}.

Complete the solution by observing that∑
x

(px −min(px, qx)) =
∑
x

(px − qx)1{px>qx}.

Solution to Exercise 2.12. The proof of (2.2.13) is the continuous equivalent of the
proof of (2.2.11). Therefore, we will only prove (2.2.11).

Let Ω be the set of possible outcomes of the probability mass functions {px} and {qx}.
The set Ω can be partitioned into two subsets

Ω1 = {x ∈ Ω : px ≥ qx} and Ω2 = {x ∈ Ω : px < qx}.

Since {px} and {qx} are probability distribution functions, the sum
∑
x∈Ω(px − qx) equals

zero. Therefore, ∑
x∈Ω

|px − qx| =
∑
x∈Ω1

(px − qx)−
∑
x∈Ω2

(px − qx)

0 =
∑
x∈Ω

(px − qx) =
∑
x∈Ω1

(px − qx) +
∑
x∈Ω2

(px − qx)

Adding and subtracting the above equations yields∑
x∈Ω

|px − qx| = 2
∑
x∈Ω1

(px − qx) = −2
∑
x∈Ω2

(px − qx).

Hence, there exists a set A ⊆ Ω such that |F (A) −G(A)| ≥ 1
2

∑
x∈Ω |px − qx|. It remains

to show that |F (A)−G(A)| ≤ 1
2

∑
x∈Ω |px − qx| for all A ⊆ Ω.

Let A be any subset of Ω. Just as the set Ω, the set A can be partitioned into two
subsets

A1 = A ∩ Ω1 and A2 = A ∩ Ω2,

so that
|F (A)−G(A)| = |

∑
x∈A1

(px − qx) +
∑
x∈A2

(px − qx) | = |αA + βA|.

Since αA is non-negative and βA non-positive, it holds that

|αA + βA| ≤ max
A

(
αA,−βA

)
.

The quantity αA satisfies

αA ≤
∑
x∈Ω1

(px − qx) =
1

2

∑
x∈Ω

|px − qx|,
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while βA satisfies

βA ≥
∑
x∈Ω2

(px − qx) = −1

2

∑
x∈Ω

|px − qx|.

Therefore,

|F (A)−G(A)| ≤ 1

2

∑
x∈Ω

|px − qx| ∀A ⊆ Ω,

which completes the proof.

Solution to Exercise 2.13. By (2.2.15) and (2.2.20)

dTV(f, g) ≤ P(X̂ 6= Ŷ ). (B.18)

Therefore, the first claim follows directly from Theorem 2.10. The second claim follows by
(2.2.11).

Solution to Exercise 2.15. Without any loss of generality we can take σ2 = 1. Then
for each t, and with Z a standard normal variate

P(X ≥ t) = P(Z ≥ t− µX) ≤ P(Z ≥ t− µY ) = P(Y ≥ t),

whence X � Y .

Solution to Exercise 2.16. The answer is negative. Take X standard normal and
Y ∼ N(0, 2), then X � Y implies

P(Y ≥ t) ≥ P(X ≥ t) = P(Y ≥ t
√

2),

for each t. However, this is false for t < 0.

Solution to Exercise 2.17. Let X be Poisson distributed with parameter λ, then

E[etX ] =

∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(λet)n

n!
= eλ(et−1).

Put
g(t) = at− logE[etX ] = at+ λ− λet

then g′(t) = a−λet = 0⇔ t = log(a/λ). Hence, I(a) in (2.4.12) is equal to I(a) = Iλ(a) =
a(log (a/λ)− 1) + λ and with a > λ we obtain from (2.4.9),

P(

n∑
i=1

Xi ≥ an) ≤ e−nIλ(a).

This proves (2.4.17). For a < λ, we get g′(t) = a − λet = 0 for t = log(a/λ) < 0 and we
get again

Iλ(a) = a(log a/λ− 1) + λ.

By (2.4.9), with a < λ, we obtain (2.4.18).
Iλ(λ) = 0 and d

da
Iλ(a) = log a − log λ, so that for a < λ the function a 7→ Iλ(a)

decreases, whereas for a > λ the function a 7→ Iλ(a) increases. Because Iλ(λ) = 0, this
shows that for all a 6= λ, we have Iλ(a) > 0.
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Solution to Exercise 2.19. By taking expectations on both sides of (2.5.2),

E[Mn] = E[E[Mn+1|M1,M2, . . . ,Mn]] = E[Mn+1],

since according to the theorem of total probability:

E[E[X|Y1, . . . , Yn]] = E[X].

Solution to Exercise 2.20. First we show that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞, ∀i, and since the fact that Xi is an independent sequence implies that the sequence
|Xi| is independent we get

E[|Mn|] =

n∏
i=0

E[|Xi|] <∞.

To verify the martingale condition, we write

E[Mn+1|X1, X2, . . . , Xn] = E
[ n+1∏
i=1

Xi

∣∣∣X1, X2, . . . , Xn
]

=
( n∏
i=1

Xi
)
· E[Xn+1|X1, X2, . . . , Xn] = MnE[Xn+1] = Mn a.s.

Solution to Exercise 2.21. First we show that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞∀i,

E[|Mn|] = E
∣∣∣ n∑
i=1

Xi

∣∣∣ ≤ n∑
i=1

E|Xi| <∞.

To verify the martingale condition, we write

E[Mn+1|M1,M2, . . . ,Mn] = E[

n+1∑
i=1

Xi|X0, X1, . . . , Xn]

=

n∑
i=1

Xi + E[Xn+1|X0, X1, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.

Solution to Exercise 2.22. Again we first that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞∀i,

E[|Mn|] = E
∣∣∣E[Y |X0, . . . , Xn]

∣∣∣ ≤ E
[
E
[
|Y |
∣∣X0, . . . , Xn

]]
= E[|Y |] <∞.

To verify the martingale condition, we write

E[Mn+1|X0, . . . , Xn] = E
[
E[Y |X0, . . . , Xn+1]

∣∣∣X0, . . . , Xn
]

= E[Y |X0, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.
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Solution to Exercise 2.23. Since Mn is non-negative we have E[|Mn|] = E[Mn] = µ ≤
M , by Exercise 2.19. Hence, according to Theorem 2.22 we have convergence to some
limiting random variable M∞.

Solution to Exercise 2.24. Since Xi ≥ 0, we have Mn =
∏n
i=0 Xi ≥ 0, hence the claim

is immediate from Exercise 2.23.

Solution to Exercise 2.25. First,

E[|Mn|] ≤
m∑
i=1

E[|M (i)
n |] <∞. (B.19)

Secondly, since E[max{X,Y }] ≥ max{E[X],E[Y ]}, we obtain

E[Mn+1|X0, . . . , Xn] = E
[

m
max
i=0

M (i)

n+1|X0, . . . , Xn
]
≥ m

max
i=0

E[M (i)

n+1|X0, . . . , Xn] (B.20)

=
m

max
i=0

M (i)
n = Mn, (B.21)

where we use that {M (i)
n }∞n=0 is a sequence of martingales with respect to {Xn}∞n=0.

Solution to Exercise 2.26. We can write

Mn =

n∑
i=1

Ii − p, (B.22)

where {Ii}∞i=1 are i.i.d. indicator variables with P(Ii = 1) = 1 − P(Ii = 0) = p. Then,
M−n has the same distribution as X−np, while, by Exercise 2.21, the sequence {Mn}∞n=0

is a martingale with

|Mn −Mn−1| = |In − p| ≤ max{p, 1− p} ≤ 1− p, (B.23)

since p ≤ 1/2. Thus, the claim follows from the Azuma-Hoeffding inequality (Theorem
2.24).

Solution to Exercise 2.27. Since E[Xi] = 0, we have, by Exercise 2.21, that Mn =∑n
i=1 Xi is a martingale, with by hypothesis,

−1 ≤Mn −Mn−1 = Xn ≤ 1,

so that the condition of Theorem 2.24 is satisfied with αi = βi = 1. Since E[Mn] = 0, we
have µ = 0 and

∑n
i=0(αi + βi)

2 = 4(n+ 1), hence from (2.5.18) we get (2.5.31).
We now compare the Azuma-Hoeffding bound (2.5.31) with the central limit approxi-

mation. With a = x
√
n+ 1, and σ2 = Var(Xi),

P(|Mn| ≥ a) = P(|Mn| ≥ x
√
n+ 1) = P(|Mn|/σ

√
n+ 1 ≥ x/σ)→ 2(1− Φ(x/σ)),

where Φ(t) = 1√
2π

∫ t
−∞ e

−u2/2 du. A well-known approximation tells us that

2(1− Φ(t)) ∼ 2φ(t)/t =

√
2

t
√
π
e−t

2/2,
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so that by the central limit theorem and this approximation

P(|Mn| ≥ a) ∼ σ
√

2

x
√
σπ

e−x
2/2σ2

=
σ
√

2(n+ 1)

a
√
π

e−a
2/2(n+1)σ2

Finally σ2 ≤ 1, so that the leading order term and with a = x
√
n+ 1, the inequality of

Azuma-Hoefding is quite sharp!
j

Solutions to the exercises of Chapter 3.

Solution to Exercise 3.1. When η = 0, then, since η is a solution of η = GX(η), we
must have that

p0 = GX(0) = 0. (B.24)

Solution to Exercise 3.2. We note that for p = {px}∞x=0 given in (3.1.15), and writing
q = 1− p, we have that E[X] = 2p, so that η = 1 when p ≤ 1/2, and

GX(s) = q + ps2. (B.25)

Since η satisfies η = G(η), we obtain that

η = q + pη2, (B.26)

of which the solutions are

η =
1±
√

1− 4pq

2p
. (B.27)

Noting further that 1− 4pq = 1− 4p(1− p) = 4p2 − 4p + 1 = (2p− 1)2, and p > 1/2, we
arrive at

η =
1± (2p− 1)

2p
. (B.28)

Since η ∈ [0, 1) for p > 1/2, we must have that

η =
1− (2p− 1)

2p
=

1− p
p

. (B.29)

Solution to Exercise 3.3. We compute that

GX(s) = 1− b/p+

∞∑
k=1

b(1− p)k−1sk = 1− b

p
+

bs

1− qs , (B.30)

so that

µ = G′X(1) =
b

p2
. (B.31)

As a result, η = 1 if µ = b/p2 ≤ 1 follows from Theorem 3.1. Now, when µ = b/p2 > 1,
then η < 1 is the solution of GX(η) = η, which becomes

1− b

p
+

bη

1− qη = η, (B.32)

which has the solution given by (3.1.18).
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Solution to Exercise 3.4. We note that s 7→ GX(s) in (B.30) has the property that for
any points s, u, v

GX(s)−GX(u)

GX(s)−GX(v)
=
s− u
s− v

1− qv
1− qu . (B.33)

Taking u = η, v = 1 and using that GX(η) = η by Theorem 3.1, we obtain that, if η < 1,

GX(s)− η
GX(s)− 1

=
s− η
s− 1

p

1− qη . (B.34)

By (3.1.18), we further obtain that

p

1− qη = µ−1 = p2/b, (B.35)

so that we arrive at
GX(s)− η
GX(s)− 1

=
1

µ

s− η
s− 1

. (B.36)

Since Gn(s) is the n-fold iteration of s 7→ GX(s), we thus arrive at

Gn(s)− η
Gn(s)− 1

=
1

µn
s− η
s− 1

, (B.37)

of which the solution is given by the first line of (3.1.19).
When µ = 1, then we have that b = p2, so that

GX(s) =
q − (q − p)s

1− qs . (B.38)

We now prove by induction that Gn(s) is equal to the second line of (3.1.19). For n = 1,
we have that G1(s) = GX(s), so that the induction is initialized by (B.38).

To advance the induction, we assume it for n and advance it to n+ 1. For this, we note
that, since Gn(s) is the n-fold iteration of s 7→ GX(s), we have

Gn+1(s) = Gn(GX(s)). (B.39)

By the induction hypothesis, we have that Gn(s) is equal to the second line of (3.1.19), so
that

Gn+1(s) =
nq − (nq − p)G(s)

p+ nq − nqGX(s)
=
nq(1− qs)− (nq − p)(q − (q − p)s)
(p+ nq)(1− qs)− nq(q − (q − p)s) . (B.40)

Note that, using p = 1− q,

nq(1− qs)− (nq − p)(q − (q − p)s) =
[
nq − (nq − p)q

]
+ s
[
(q − p)(nq − p)− nq2]

(B.41)

= (n+ 1)qp− s[qp(n+ 1)− p2],

while

(p+ nq)(1− qs)− nq(q − (q − p)s) =
[
(p+ nq)− nq2]+ s

[
(q − p)nq − (p+ nq)q

]
(B.42)

= [p+ nqp]− s(n+ 1)pq = p[p+ (n+ 1)q]− s(n+ 1)pq,

and dividing (B.41) by (B.42) advances the induction hypothesis.
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Solution to Exercise 3.5. We first note that

P(Zn > 0, ∃m > n such that Zm = 0) = P(∃m > n such that Zm = 0)−P(Zn = 0) = η−P(Zn = 0).
(B.43)

We next compute, using (3.1.19),

P(Zn = 0) = Gn(0) =

{
1− µn 1−η

µn−η when b 6= p2;
nq
p+nq

when b = p2.
(B.44)

Using that η = 1 when b ≤ p2 gives the first two lines of (3.1.20). When η < 1, so that
µ > 1, we thus obtain

P(Zn > 0, ∃m > n such that Zm = 0) = (1− η)
[ µn

µn − η − 1
]

=
(1− η)η

µn − η . (B.45)

This proves the third line of (3.1.20).

Solution to Exercise 3.6. By (B.25), we have that G(s) = q + ps2. Thus, by (3.1.23),
we obtain

GT (s) = s
(
q + pGT (s)2), (B.46)

of which the solutions are given by

GT (s) =
1±

√
1− 4s2pq

2sp
. (B.47)

Since GT (0) = 0, we must that that

GT (s) =
1−

√
1− 4s2pq

2sp
. (B.48)

Solution to Exercise 3.7. By (B.30), we have GX(s) = 1− b
p

+ bs
1−qs . Thus, by (3.1.23),

we obtain

GT (s) = s
[
1− b

p
+

bGT (s)

1− qGT (s)

]
. (B.49)

Multiplying by p(1− qGT (s)), and using that p+ q = 1, leads to

pGT (s)(1−qGT (s)) = s
[
(p−b)(1−qGT (s))+bpGT (s)

]
= s
[
(p−b)+(b−pq)GT (s)

]
. (B.50)

We can simplify the above to

pqGT (s)2 + (p+ s(b− pq))GT (s) + s(p− b) = 0, (B.51)

of which the two solutions are given by

GT (s) =
−(p+ sbq)±

√
(p+ s(b− pq))2 − 4pqs(p− b)

2pq
. (B.52)

Since GT (s) ≥ 0 for all s ≥ 0, we thus arrive at

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
. (B.53)
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Solution to Exercise 3.8. Compute

E[Zn|Zn−1 = m] = E[
∑Zn−1

i=1 Xn,i|Zn−1 = m] = E[
∑m
i=1 Xn,i|Zn−1 = m]

=
∑m
i=1 E[Xn,i] = mµ,

so that, by taking double expectations,

E[Zn] = E[E[Zn|Zn−1]] = E[µZn−1] = µE[Zn−1].

Solution to Exercise 3.9. Using induction we conclude from the previous exercise that

E[Zn] = µE[Zn−1] = µ2E[Zn−2] = . . . = µnE[Z0] = µn.

Hence,
E[µ−nZn] = µ−nE[Zn] = 1.

Therefore, we have that, for all n ≥ 0, E[|µ−nZn|] = E[µ−nZn] <∞
By the Markov property and the calculations in the previous exercise

E[Zn|Z1, . . . , Zn−1] = E[Zn|Zn−1] = µZn−1,

so that, with Mn = Zn/µ
n,

E[Mn|Z1, . . . , Zn−1] = E[Mn|Zn−1] =
1

µn
µZn−1 = Mn−1,

almost surely. Therefore, Mn = µ−nZn is a martingale with respect to {Zn}∞n=1.

Solution to Exercise 3.10. For a critical BP we have µ = 1, and so Zn is a martingale.
Therefore, for all n,

E[Zn] = E[Z0] = 1.

On the other hand, if P(X = 1) < 1, then, η = 1 by Theorem 3.1, and by monotonicity,

lim
n→∞

P(Zn = 0) = P( lim
n→∞

Zn = 0) = η = 1.

Solution to Exercise 3.11.

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn,

by Theorem 3.3.

Solution to Exercise 3.12. Since T = 1 +
∑∞
n=1 Zn, we obtain by (3.2.1) that

E[T ] = 1 +

∞∑
n=1

E[Zn] = 1 +

∞∑
n=1

µn = 1/(1− µ). (B.54)
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Solution to Exercise 3.13. For k = 1, we note that, in (3.3.2), {T = 1} = {X1 = 0},
so that

P(T = 1) = p0. (B.55)

On the other hand, in (3.1.21), T = 1 precisely when Z1 = X1,1 = 0, which occurs with
probability p0 as well.

For k = 2, since Xi ≥ 0, we have that {T = 2} = {X1 = 1, X2 = 0}, so that

P(T = 2) = p0p1. (B.56)

On the other hand, in (3.1.21), T = 2 precisely when Z1 = X1,1 = 1 and Z2 = X2,1 = 0,
which occurs with probability p0p1 as well, as required.

For k = 3, since Xi ≥ 0, we have that {T = 3} = {X1 = 2, X2 = X3 = 0} ∪ {X1 =
X2 = 1, X3 = 0}, so that

P(T = 3) = p2
0p2 + p0p

2
1. (B.57)

On the other hand, in (3.1.21),

{T = 3} = {Z1 = Z2 = 1, Z3 = 0} ∪ {Z1 = 2, Z2 = 0}, (B.58)

so that {T = 3} = {X1,1 = X2,1 = 1, X3,1 = 0}∪{X1,1 = 2, X2,1 = X2,2 = 0}, which occurs
with probability p2

0p2 + p0p
2
1 as well, as required. This proves the equality of P(T = k) for

T in (3.3.2) and (3.1.21) and k = 1, 2 and 3.

Solution to Exercise 3.14. We note that

P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
= pP

(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
, (B.59)

since the first step must be upwards. By (3.3.2),

P
(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
= P(T = k), (B.60)

which completes the proof.

Solution to Exercise 3.15. We note that p′x ≥ 0 for all x ∈ N. Furthermore,

∞∑
x=0

p′x =

∞∑
x=0

ηx−1px = η−1
∞∑
x=0

ηxpx = η−1G(η). (B.61)

Since η satisfies η = G(η), it follows also that p′ = {p′x}∞x=0 sums up to 1, so that p′ is a
probability distribution.

Solution to Exercise 3.16. We compute

Gd(s) =
∞∑
x=0

sxp′x =

∞∑
x=0

sxηx−1px = η−1
∞∑
x=0

(ηs)xpx =
1

η
GX(ηs). (B.62)

Solution to Exercise 3.17. We note that

E[X ′] =

∞∑
x=0

xp′x =

∞∑
x=0

xηx−1px = G′X(η). (B.63)

Now, η is the smallest solution of η = GX(η), and, when η > 0, GX(0) = p0 > 0 by
Exercise 3.1. Therefore, since s 7→ G′X(s) is increasing, we must have that G′X(η) < 1.
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Solution to Exercise 3.18. Since Mn = µ−nZn
a.s.−→W∞ by Theorem 3.9, by Lebesques

dominated convergence theorem and the fact that, for y ≥ 0 and s ∈ [0, 1], we have that
sy ≤ 1, it follows that

E[sMn ]→ E[sW∞ ]. (B.64)

However,

E[sMn ] = E[sZn/µn ] = Gn(sµ
−n

). (B.65)

Since Gn(s) = GX(Gn−1(s)), we thus obtain

E[sMn ] = GX
(
Gn−1(sµ

−n
)
)

= GX
(
Gn−1

(
(sµ
−1

)µ
−n−1))

→ GX
(
GW (s1/µ)

)
, (B.66)

again by (B.64).

Solution to Exercise 3.19. If Mn = 0, then Mm = 0 for all m ≥ n, so that

{M∞ = 0} = lim
n→∞

{Mn = 0} = ∩∞n=0{Mn = 0}.

On the other hand, {extinction} = {∃n : Mn = 0} or {survival} = {∀n,Mn > 0}. We
hence conclude that {survival} ⊂ {M∞ > 0} = ∪∞n=0{Mn > 0}, and so

P(M∞ > 0|survival) =
P(M∞ > 0 ∩ {survival})

P(survival)
=

P(M∞ > 0)

1− η = 1,

because it is given that P(W∞ > 0) = 1− η.

Solution to Exercise 3.20. By Theorem 3.9, we have that Mn = µ−nZn
a.s.−→W∞. By

Fubini’s theorem, we thus obtain that

E[W∞] ≤ lim
n→∞

E[Mn] = 1, (B.67)

where the equality follows from Theorem 3.3.

Solution to Exercise 3.30. The total offspring equals T = 1 +
∑∞
n=1 Zn, see (3.1.21).

Since we search for T ≤ 3, we must have
∑∞
n=1 Zn ≤ 2 or

∑2
n=1 Zn ≤ 2, because Zk > 0

for some k ≥ 3 implies Z3 ≥ 1, Z2 ≥ 1, Z1 ≥ 1, so that
∑∞
n=1 Zn ≥

∑3
n=1 Zn ≥ 3. Then,

we can write out

P(T = 1) = P(

2∑
n=1

Zn = 0) = P(Z1 = 0) = e−λ,

P(T = 2) = P(
2∑

n=1

Zn = 1) = P(Z1 = 1, Z2 = 0) = P(X1,1 = 1)P(X2,1 = 0) = λe−2λ

P(T = 3) = P(

2∑
n=1

Zn = 2) = P(Z1 = 1, Z2 = 1, Z3 = 0) + P(Z1 = 2, Z2 = 0)

= P(X1,1 = 1, X2,1 = 1, X3,1 = 0) + P(X1,1 = 2, X2,1 = 0, X2,2 = 0)

= (λe−λ)2 · e−λ + e−λ(λ2/2) · e−λ · e−λ = e−3λ 3λ2

2
.

These answers do coincide with P(T = n) = e−nλ (nλ)n−1

n!
, for n ≤ 3.
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Solutions to the exercises of Chapter 4.

Solution to Exercise 4.3. We start by computing P(T = m) for m = 1, 2, 3. For m = 1,
we get

P(T = 1) = P(S1 = 0) = P(X1 = 0) = P(Bin(n− 1, p) = 0) = (1− p)n−1.

For m = 2, we get

P(T = 2) = P(S1 > 0, S2 = 0) = P(X1 > 0, X1 +X2 = 1) = P(X1 = 1, X2 = 0)

= P(X1 = 1)P(X2 = 0|X1 = 1) = P(Bin(n− 1, p) = 1)P(Bin(n− 2, p) = 0)

= (n− 1)p(1− p)n−2 · (1− p)n−2 = (n− 1)p(1− p)2n−4.

For m = 3, we get

P(T = 3) = P(S1 > 0, S2 > 0, S3 = 0) = P(X1 > 0, X1 +X2 > 1, X1 +X2 +X3 = 2)

= P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 2, X2 = 0, X3 = 0)

= P(X3 = 0|X2 = 1, X1 = 1)P(X2 = 1|X1 = 1)P(X1 = 1)

+P(X3 = 0|X2 = 0, X1 = 2)P(X2 = 0|X1 = 2)P(X1 = 2)

= P(X3 = 0|S2 = 1)P(X2 = 1|S1 = 1)P(X1 = 1)

+P(X3 = 0|S2 = 1)P(X2 = 0|S1 = 2)P(X1 = 2)

= P(Bin(n− 3, p) = 0)P(Bin(n− 2, p) = 1)P(Bin(n− 1, p) = 1)

+P(Bin(n− 3, p) = 0)P(Bin(n− 3, p) = 0)P(Bin(n− 1, p) = 2)

= (1− p)n−3(n− 2)p(1− p)n−3(n− 1)p(1− p)n−2

+(1− p)n−3(1− p)n−3(n− 1)(n− 2)p2(1− p)n−3/2

= (n− 1)(n− 2)p2(1− p)3n−8 + (n− 1)(n− 2)p2(1− p)3n−9/2

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

We now give the combinatoric proof. For m = 1,

P(|C(v)| = 1) = (1− p)n−1,

because all connections from vertex 1 have to be closed. For m = 2,

P(|C(v)| = 2) = (n− 1)p(1− p)2n−4

because you must connect one of n − 1 vertices to vertex v and then isolate these two
vertices which means that 2n− 4 connections should not be present.

For m = 3, the first possibility is to attach one vertex a to 1 and then a second vertex
b to a, with the edge vb being closed. This gives

(n− 1)p(1− p)n−2(n− 2)p(1− p)n−3(1− p)n−3 = (n− 1)(n− 2)p2(1− p)3n−8.

The second possibility is to attach one vertex a to v and then a second vertex b to a, with
the edge vb being occupied. This gives(

n− 1

2

)
p(1− p)n−3p(1− p)n−3(1− p)n−3p =

(
n− 1

2

)
p3(1− p)3n−9.
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The final possibility is that you pick two vertices attached to vertex v, and then leave both
vertices without any further attachments to the other n − 3 and being unconnected (the
connected case is part of the second possibility)(

n− 1

2

)
p2(1− p)n−3 · (1− p)2n−5 =

(
n− 1

2

)
p2(1− p)3n−8.

In total, this gives

(n− 1)(n− 2)p2(1− p)3n−8 +

(
n− 1

2

)
p3(1− p)3n−9 +

(
n− 1

2

)
p2(1− p)3n−9 (B.68)

= (n− 1)(n− 2)p2(1− p)3n−9(1− p+
p

2
+

(1− p)
2

)

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

Solution to Exercise 4.5. We first pick 3 different elements i, j, k from {1, 2, . . . , n}
without order. This can be done in (

n

3

)
different ways. Then all three edges ij, ik, jk have to be present, which has probability
p3. The number of triangles is the sum of indicators running over all unordered triples.
These indicators are dependent, but that is of no importance for the expectation, because
the expectation of a sum of dependent random variables equals the sum of the expected
values. Hence the expected number of occupied triangles equals:(

n

3

)
p3.

Solution to Exercise 4.6. We pick 4 elements i, j, k, l from {1, 2, . . . , n} This kan be
done in (

n

4

)
different ways. This quadruple may form an occupied square in 3 different orders, that is
(i, j, k, l), (i, k, j, l) and (i, j, l, k). Hence there are

3 ·

(
n

4

)

squares in which all four sides should be occupied. Hence the expected number of occupied
squares equals

3

(
n

4

)
p4.
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Solution to Exercise 4.7. We define the sequence of random variables {Xn}∞n=1 where
Xn is the number of occupied triangles in an Erdős-Rényi random graph with edge prob-
ability p = λ/n. Next we introduce the indicator function

Ia,n :=

{
0 triangle a not connected;

1 triangle i connected.

Now, according to (2.1.21) we have

lim
n→∞

E[(Xn)r] = lim
n→∞

∑∗

a1,a2,...,ar∈I

P(Ia1,n = 1, Ia2,n = 1, . . . , Iar,n = 1). (B.69)

Now, there are two types of collections of triangles, namely, sets of triangles in which all
edges are distinct, or the set of triangles for which at least one edge occurs in two different
triangles. In the first case, we see that the indicators Ia1,n, Ia2,n, . . . , Iar,n are independent,
in the second case, they are not. We first claim that the collection of (a1, a2, . . . , ar) for
which all triangles contain different edges has size

(1 + o(1))

(
n

3

)r
. (B.70)

To see this, we note that the upper bound is obvious (since
((
n
3

))r
is the number of

collections of r triangles without any restriction). For the lower bound, we note that
ai = (ki, li,mi) for ki, li,mi ∈ [n] such that ki < li < mi. We obtain a lower bound on the
number of triangles containing different edges when we assume that all vertices ki, li,mi

for i = 1, . . . , r are distinct. There are precisely

r−1∏
i=0

(
n− i

3

)
(B.71)

of such combinations. When r is fixed, we have that

r−1∏
i=0

(
n− i

3

)
= (1 + o(1))

(
n

3

)r
. (B.72)

Thus, the contribution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar) for
which all triangles contain different edges is, by independence and (B.70), equal to

(1 + o(1))

(
n

3

)r(λ3

n3

)r
= (1 + o(1))

(λ3

6

)r
. (B.73)

We next prove that the contribution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar)
for which at least one edge occurs in two different triangles. We give a crude upper bound
for this. We note that each edge which occurs more that once reduces the number of
possible vertices involved. More precisely, when the collection of triangles (a1, a2, . . . , ar)
contains precisely 3r−l edges for some l ≥ 1, then the collection of triangles (a1, a2, . . . , ar)
contains at most 3r−2l vertices, as can easily be seen by induction. As a result, the contri-
bution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar) (a1, a2, . . . , ar) contains
precisely 3r − l edges is bounded by

n3r−2l(λ/n)3r−l = λ3r−ln−l = o(1). (B.74)
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Since this is negligible, we obtain that

lim
n→∞

E[(Xn)r] =
(λ3

6

)r
. (B.75)

Hence, due to Theorem 2.4 we have that the number of occupied triangles in an Erdős-
Rényi random graph with edge probability p = λ/n has an asymptotic Poisson distribution
with parameter λ3/6.

Solution to Exercise 4.8. We have

E[∆G] = E

 ∑
i,j,k∈G

1{ij,ik,jk occupied}

 =
∑

i,j,k∈G

E
[
1{ij,ik,jk occupied}

]
(B.76)

= n(n− 1)(n− 2)

(
λ

n

)3

,

and

E[WG] = E

 ∑
i,j,k∈G

I[ij, jk occupied]

 =
∑

i,j,k∈G

E
[
1{ij,jk occupied}

]
(B.77)

= n(n− 1)(n− 2)

(
λ

n

)2

.

This yields for the clustering coefficient

CCG = λ/n.

Solution to Exercise 4.9. We have E [WG] = n(n − 1)(n − 2)p2(1 − p). According to
the Chebychev inequality we obtain:

lim
n→∞

P[|WG − E[W]| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − (n)(n− 1)(n− 2)(
λ

n
)2(

n− λ
n

)| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − nλ2| > ε] ≤ 0.

Hence, WG/n
P−→ λ2 and, therefore, n/WG

P−→ 1/λ2. We have already shown in previous
exercise that the number of occupied triangles has an asymptotic Poisson distribution with

parameter λ3

6
. ∆G is three times the number of triangles and thus ∆G

d−→ 3 · Poi(λ
3

6
).

Slutsky’s Theorem states that

Xn
P−→ c and Yn

d−→ Y ⇒ XnYn
d−→ cY

Hence n∆G
WG

d−→ 3
λ2 Y where Y ∼ Poi(λ3/6).
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Solution to Exercise 4.10. We have to show that for each x, the event {|C(v)| ≥ x}
remains true if the the number of edges increases.

Obviously by increasing the number of edges the number |C(v)| increases or stays the
same depending on whether or not some of the added edges connect new vertices to the
cluster. In both cases {|C(v)| ≥ x} remains true.

Solution to Exercise 4.11. This is not true. Take two disjoint clusters which differ by
one in size, and suppose that the larger component equals Cmax, before adding the edges.
Take any v ∈ Cmax. Now add edges between the second largest component and isolated
vertices. If you add two of such edges, then the new Cmax equals the union of the second
largest component and the two isolated vertices. Since originally v did not belong to the
second largest component and v was not isolated, because it was a member of the previous
largest component, we now have v /∈ Cmax.

Solution to Exercise 4.12. As a result of (4.2.1) we have

Eλ[|C(v)|] =

∞∑
k=1

P(|C(v)| ≥ k) ≤
∞∑
k=1

Pn,p(T ≥ k) = E[T ] =
1

1− µ, (B.78)

where
µ = E[Offspring] = np = λ.

Hence,
Eλ[|C(v)|] ≤ 1/(1− λ).

Solution to Exercise 4.14. We recall that Z≥k =
∑n
i=1 1{|C(i)|≥k}.

|Cmax| < k ⇒ |C(i)| < k∀i, which implies that Z≥k = 0

|Cmax| ≥ k ⇒ |C(i)| ≥ k for at least k vertices ⇒ Z≥k ≥ k.

Solution to Exercise 4.15. Intuitively the statement is logical, for we can see M as
doing n trails with succes probability p and for each trial we throw an other coin with
succes probability q. The eventual amount of successes are the successes where both trails
ended in succes and is thus equal to throwing n coins with succes probability pq.
There are several ways to prove this, we give two of them.

Suppose we have two binomial trials N and Y both of length n and with succes rates
p, q respectively. We thus create two vectors filled with ones and zeros. For each index
i = 1, 2, . . . , n we compare the vectors and in case both entries are 1, we will see this as a
succes. The now counted amount of successes is of course Bin(n, pq) distributed.
Now we produce the first vector similarly by denoting ones and zeros for the successes
and losses in trail N . For each ’one’, we produce an other outcome by a Be(q) experi-
ment. We count the total number of successes of these experiments and those are of course
Bin(N, q) distributed. But now, this is the same as the experiment described above, since
all Bernoulli outcomes are independent. Hence if N ∼ Bin(n, p) and M ∼ Bin(N, q), then
M ∼ Bin(n, pq).
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We will also give an analytical proof, which is somewhat more enhanced. We wish to
show that P(M = m) =

(
n
m

)
(pq)m(1− pq)n−m. Off course we have

P(M = m) =

n∑
i=m

P(N = i) ·

(
i

m

)
· qm · (1− q)i −m,

=

n∑
i=m

(
n

i

)
· (p)i · (1− p)n−i ·

(
i

m

)
· qm · (1− q)i −m.

Rearranging terms yields

P(M = m) =
(1− p)nqm

(1− q)m
n∑

i=m

(
n

i

)(
i

m

)
pi

(1− p)i (1− q)
i.

Further analysis yields

P(M = m) = (1− p)n
( q

1− q

)m n∑
i=m

n!

i!(n− i)!
i!

m!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n

( q

1− q

)m n!

m!

n∑
i=m

1

(n− i)!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n(

q

1− q )m
n!m!∑ n−m

k=0

1

(n− k −m)!(m+ k −m)!

(p(1− q)
1− p

)k+m

= (1− p)n(
q

1− q )m
n!

m!(n−m)!

n−m∑
k=0

(n−m)!

(n− k −m)!k!

(p(1− q)
1− p

)k+m

=

(
n

m

)
n−m∑
k=0

(
n−m
k

)
pk+m(1− p)n−m−kqm(1− q)k+m−m

=

(
n

m

)
pmqm

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k

It is now sufficient to show that
∑n−m
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− pq)n−m.

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− p)n−m

n−m∑
k=0

(
n−m
k

)(p− pq
1− p

)k
= (1− p)n−m

(
1 +

p− pq
1− p

)n−m
= (1− p)n−m

(1− p+ p− pq
1− p

)n
−m

= (1− pq)n−m.
Now we can use this result to proof that Nt ∼ Bin(n, (1 − p)t) by using induction. The
initial value N0 = n− 1 is given, hence

N0 = n− 1;

N1 = Bin(n− 1, 1− p);
N2 = Bin(N1, 1− p) = Bin(n− 1, (1− p)2);

...

Nt = Bin(n− 1, (1− p)t).
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Solution to Exercise 4.17. The extinction probability η satisfies

ηλ = GX(ηλ) = E[ηXλ ] = e−λ+ληλ

Hence,
ζλ = 1− ηλ = 1− e−λ+λη = 1− e−λζλ .

This equation has only two solutions, one of which is ζλ = 0, the other must be the survival
probability.

Solution to Exercise 4.18. We compute that

χ(λ) = Eλ[|C(1)|] = Eλ

[
n∑
j=1

1{j∈C(1)}

]
= 1 +

n∑
j=2

Eλ[1{j∈C(1)}]

= 1 +

n∑
j=2

Eλ[1{1↔j}] = 1 +

n∑
j=2

Pλ(1↔ j) = 1 + (n− 1)Pλ(1↔ 2). (B.79)

Solution to Exercise 4.19. In this exercise we denote by |C(1)| ≥ |C(2)| ≥ . . ., the
components ordered by their size. Relation (4.4.1) reads that for ν ∈ ( 1

2
, 1):

P
(∣∣|Cmax| − nζλ

∣∣ ≥ nν) = O(n−δ).

Observe that

Pλ(1↔ 2) = Pλ(∃C(k) : 1 ∈ C(k), 2 ∈ C(k))

=
∑
l≥1

Pλ(1, 2 ∈ C(l)) = Pλ(1, 2 ∈ C(1)) +
∑
l≥2

Pλ(1, 2 ∈ C(l))

=
(nζλ ± nν)2

n2
+O(n−δ) +

∑
l≥2

Pλ(1, 2 ∈ C(l)).

For l ≥ 2, we have |C(l)| ≤ K logn with high probability, hence

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n2
+O(n−2),

so that ∑
l≥2

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n
+O(n−1)→ 0.

Together, this shows that
Pλ(1↔ 2) = ζ2

λ +O(n−δ),

for some δ > 0.

Solution to Exercise 4.20. Combining Exercise 4.18 and Exercise 4.19, yields

χ(λ) = 1 + (n− 1)ζ2
λ(1 + o(1)) = nζ2

λ(1 + o(1)).
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Solution to Exercise 4.16. We have that the cluster of i has size l. Furthermore, we
have Pλ

(
i←→ j

∣∣|C(i)| = l
)

+ Pλ
(
i←→/ j

∣∣|C(i)| = l
)

= 1 Of course i, j ∈ [n] and j 6= i. So,
having i fixed, gives us n− 1 choices for j in ERn(p) and l− 1 choices for j in C(i). Hence,

Pλ
(
i←→ j

∣∣|C(i)| = l
)

=
l − 1

n− 1
,

and thus

Pλ
(
i←→/ j

∣∣|C(i)| = l
)

= 1− l − 1

n− 1
.

Solution to Exercise 4.21. According to the duality principle we have that the random
graph obtained by removing the largest component of a supercritical Erdős-Rényi random
graph is again an Erdős-Rényi random graph of size m ∼ nηλ = µλn

λ
where µλ < 1 < λ are

conjugates as in (3.6.7) and the remaining graph is thus in the subcritical regime. Hence,
studying the second largest component in a supercritical graph is close to studying the
largest component in the remaining graph.
Now, as a result of Theorems 4.4 and 4.5 we have that for some ε > 0

lim
n→∞

(
P
( |Cmax|

logm
> I−1

µλ + ε
)

+ P
( |Cmax|

logm
< I−1

µλ − ε
))

= 0.

Hence, |Cmax|
logm

P−→ I−1
µλ . But since we have that n − m = ζλn(1 + o(1)) and thus m =

n(1− ζλ), we have that logm
logn

→ 1 as n→∞. Hence |Cmax|
logn

P−→ I−1
µλ .

Solution to Exercise 4.22. Denote

Zn =
Xn − anpn√
anpn(1− pn)

, (B.80)

so that we need to prove that Zn converges is distribution to a standard normal random
variable Z. For this, it suffices to prove that the moment generating function MZn(t) =
E[etZn ] of Zn converges to that of Z.

Since the variance of Xn goes to infinity, the same holds for an. Now we write Xn as
to be a sum of an Bernoulli variables Xn =

∑an
i=1 Yi, where {Yi}1≤i≤an are independent

random variables with Yi ∼ Be(pn). Thus, we note that the moment generating function
of Xn equals

MXn(t) = E[etXn ] = E[etY1 ]an . (B.81)

We further prove, using a simple Taylor expansion,

logE[etY1 ] = log
(
pne

t + (1− pn)
)

= pnt+
t2

2
pn(1− pn) +O(|t|3pn). (B.82)

Thus, with tn = t/
√
anpn(1− pn), we have that

MZn(t) = MXn(tt)e
anpntn = ean log E[etY1 ] = e

t2n
2
pn(1−pn)+O(|tn|3anpn) = et

2/2+o(1).
(B.83)

We conclude that limn→∞MZn(t) = et
2/2, which is the moment generating function of a

standard normal distribution. Theorem 2.3(b) implies that Zn
d−→ Z, as required. Hence,

the CLT follows and (4.5.14) implies (4.5.15).
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Solution to Exercise 4.25. We have that nλ/2 edges are added in a total system
of n(n − 1)/2 edges. This intuitively yields for p in the classical notation for the ER

graphs to be p = nλ/2
n(n−1)/2

and λ′ = n · p, so that one would expect subcritical behavior

|Cmax|/ logn
P−→ I−1

λ . We now provide the details of this argument.
We make use of the crucial relation (4.6.1), and further note that when we increase M ,

then we make the event |Cmax| ≥ k more likely. This is a related version of monotonicity
as in Section 4.1.1. In particular, from (4.6.1), it follows that for any increasing event E,
and with p = λ/n,

Pλ(E) =

n(n−1)/2∑
m=1

Pm(E)P
(
Bin(n(n− 1)/2, p) = m) (B.84)

≥
∞∑

m=M

Pm(E)P
(
Bin(n(n− 1)/2, p) = m)

≥ PM(E)P
(
Bin(n(n− 1)/2, p) ≥M).

In particular, when p is chosen such that P
(
Bin(n(n − 1)/2, p) ≥ M) = 1 − o(1), then

PM(E) = o(1) follows when Pλ(E) = o(1).
Take a > I−1

λ and let kn = a logn. Then we shall first show that Pn,M (|Cmax| ≥ kn) =
o(1). For this, we use the above monotonicity to note that, for every λ′,

Pn,M (|Cmax| ≥ kn) ≤ Pλ′(|Cmax| ≥ kn)/P
(
Bin(n(n− 1)/2, λ′/n) ≥M). (B.85)

For any λ′ > λ, we have P
(
Bin(n(n− 1)/2, λ′/n) ≥M) = 1 + o(1). Now, since λ 7→ I−1

λ is

continuous, we can take λ′ > λ such that I−1
λ′ < a, we further obtain by Theorem 4.4 that

Pλ′(|Cmax| ≥ kn) = o(1), so that Pn,M (|Cmax| ≥ kn) = o(1) follows.
Next, take a < I−1

λ , take kn = a logn, and we next wish to prove that Pn,M (|Cmax| ≤
kn) = o(1). For this, we make use of a related bound as in (B.84), namely, for a decreasing
event F , we obtain

Pλ(F ) =

n(n−1)/2∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = m) (B.86)

≥
M∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = M)

≥ PM(F )P
(
Bin(n(n− 1)/2, p) ≤M).

Now, we take p = λ′/n where λ′ < λ, so that P
(
Bin(n(n − 1)/2, p) ≤ M) = 1 − o(1).

Then, we pick λ′ < λ such that I−1
λ′ > a and use Theorem 4.5. We conclude that, with

high probability, |Cmax|/ logn ≤ I−1
λ + ε) for any ε > 0, and, again with high probability,

|Cmax|/ logn ≥ I−1
λ − ε) for any ε > 0. This yields directly that |Cmax|/ logn

P−→ I−1
λ .

Solutions to the exercises of Chapter 5.

Solution to Exercise ??. Using (3.6.20) we see that

P∗λ(T ∗ ≥ k) = (2π)−1/2
∞∑
n=k

n−3/2[1 +O(n−1)]. (B.87)
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The sum can be bounded from above and below by an integral as follows∫ ∞
k

x−3/2dx ≤
∞∑
n=k

n−3/2 ≤
∫ ∞
k−1

x−3/2dx

Computing these integrals gives

2k−1/2 ≤
∞∑
n=k

n−3/2 ≤ 2(k − 1)−1/2

Similar bounds can be derived such that

∞∑
n=k

n−3/2O(n−1) = O(k−3/2).

Combining both bounds, it follows that

P∗λ(T ∗ ≥ k) =
( 2

π

)1/2

k−1/2[1 +O(k−1)].

Solution to Exercise 5.1. Fix some r > 0, then

χ(1) ≥
rn2/3∑
k=1

P(|C(1)| ≥ k) =

rn2/3∑
k=1

P≥k(1). (B.88)

By Proposition 5.2, we have the bounds

P≥k(1) ≥ c1√
k
.

Substituting this bounds into (B.88) yields

χ(1) ≥
rn2/3∑
k=1

c1√
k
≥ c′1rn1/3,

where c′1 > 0 and r > 0.

Solution to Exercise ??. By Theorem 3.16, we have that

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ
e−(λ−1−log λ)t t

t−1

t!
e−t.

Rearranging the terms in this equation we get

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ

(
elog λ

)t tt−1

t!
e−λt =

(λt)t−1

t!
e−λt.
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Solution to Exercise ??. Let G(n) be the collection of all possible simple graphs on n
points. The set G(n,m) is the subset of G which contains all possible simple graphs on n
points which have m edges. Then,

P(1←→ 2) = |G(n)|−1

(n2)∑
m=1

∑
G∈G(n,m)

P(G)1{1←→2 in G}

= 2−(n2)
n∑

m=1

∑
G∈G(n,m)

(
λ

n

)m(
1− λ

n

)(n2)−m
1{1←→2 in G},

which is polynomial in λ. Furthermore, the maximal degree of the polynoom is
(
n
2

)
.

Solution to Exercise ??. Take some l ∈ N such that l < n, then χn−l(λ
n−l
n

) is the
expected component size in the graph ER(n − l, p). We have to prove that the expected
component size in the graph ER(n − l, p) is smaller than the expected component size in
the graph ER(n − l + 1, p) for all 0 < p ≤ 1. Consider the graph ER(n − l + 1, p). This
graph can be created from ER(n− l, p) by adding the vertex n− l + 1 and independently
connecting this vertex to each of the vertices 1, 2, . . . , n− l.

Let C′(1) denote the component of ER(n − l, p) which contains vertex 1 and C(1) rep-
resents the component of ER(n− l+ 1, p) which contains vertex 1. By the construction of
ER(n− l + 1, p), it follows that

P(|C(1)| = k) =

 (1− p)n−l+1 if k = 1,
P(|C′(1)| = k)(1− p)k + P(|C′(1)| = k − 1)(1− (1− p)k−1) if 2 ≤ k ≤ n,
P(|C′(1)| = n)(1− (1− p)n) if k = n+ 1.

Hence, the expected size of C(1) is

E[|C(1)|] =

n+1∑
k=1

P(|C(1)| = k)k

= (1− p)n−l+1 +

n∑
k=2

[
P(|C′(1)| = k)(1− p)k + P(|C′(1)| = k − 1)(1− (1− p)k−1)

]
k

+ P(|C′(1)| = n)(1− (1− p)n)(n+ 1).

Rewriting this expression for the expected size of C(1) yields

E[|C(1)|] = (1− p)n−l+1 + P(|C′(1)| = 1)2p+

n−1∑
k=2

P(|C′(1)| = k)k

+

n−1∑
k=2

P(C′(1) = k)(1− (1− p)k−1) + P(|C′(1)| = n)(n+ (1− (1− p)n))

≥ (1 + p)P(|C′(1)| = 1) +

n−1∑
k=2

kP(C′(1) = k) ≥ E[|C(1)′|].
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Solution to Exercise ??. By (??), we have that

∂

∂λ
χn(λ) = (n− 1)

∂

∂λ
τn(λ).

For the derivative of τn(λ) we use (??) to obtain

∂

∂λ
χn(λ) ≤

n∑
l=1

lPλ(|C(1)| = l)χn−l(λ
n− l
n

).

The function l 7→ χn−l(λ
n−l
n

) is decreasing (see Exercise ??), hence

∂

∂λ
χn(λ) ≤ χn(λ)

n∑
l=1

lPλ(|C(1)| = l) = χn(λ)2,

or
∂
∂λ
χn(λ)

χn(λ)2
≤ 1. (B.89)

The second part of the exercise relies on integration. Integrate both the left-hand and
the right-hand side of (B.89) between λ and 1.

1

χn(λ)
− 1

χn(1)
≤ 1− λ

Bring a term to the other side to obtain

1

χn(λ)
≤ 1

χn(1)
+ 1− λ,

which is equivalent to

χn(λ) ≥ 1

χn(1)−1 + (1− λ)
.

Solution to Exercise 5.2. Using (5.2.8) and (5.2.10) we see that

Eλ[Y 2] = nPλ(|C(1)| = 1) + n(n− 1)

(
λ

n(1− λ
n

)
+ 1

)
Pλ(|C(1)| = 1)2

= n

(
1− λ

n

)n−1

+ n(n− 1)

(
1− λ

n

)2n−3

= n

(
1− λ

n

)n−1
(

1 + (n− 1)

(
1− λ

n

)n−2
)
.

Consider the first power, taking the logarithm yields

logn+ (n− 1) log(1− λ

n
) = logn+ (n− 1) log(1− logn+ t

n
).

Taylor expanding the logarithm gives

logn+ (n− 1) log(1− logn+ t

n
) = logn− (n− 1)

[ logn+ t

n
+O

(( logn+ t

n

)2)]
.
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The latter expression can be simplified to

logn− (n− 1)
[ logn+ t

n
+O

(( logn+ t

n

)2)]
= log n− n− 1

n
logn− n− 1

n
t+O

( (logn+ t)2

n

)
= −t+

logn

n
+
t

n
+O

( (logn+ t)2

n

)
,

and, as n tends to infinity,

−t+
logn

n
+
t

n
+O

( (logn+ t)2

n

)
→ −t.

Hence,

lim
n→∞

n

(
1− λ

n

)n−1

= e−t.

A similar argument gives that as n→∞

lim
n→∞

(
1− λ

n

)n−2

= e−t.

Therefore, we conclude
lim
n→∞

Eλ[Y 2] = e−t(1− e−t),

which is the second moment of a Poisson random variable with mean e−t.

Solutions to the exercises of Chapter 6.

Solution to Exercise 6.1. By the definition of pij (6.1.1), the numerator of pij is
(nλ)2(n− λ)−2. The denominator of pij is

n∑
i=1

nλ

n− λ +

(
nλ

n− λ

)2

=
n2λ

n− λ +

(
nλ

n− λ

)2

=
n2λ(n− λ) + (nλ)2

(n− λ)2
=

n3λ

(n− λ)2
.

Dividing the numerator of pij by its denominator gives

pij =
(nλ)2

n3λ
=
λ

n
.

Solution to Exercise 6.2. Consider the distribution function Fn(x) = P(wU ≤ x) of a
uniformly chosen vertex U and let x ≥ 0. The law of total probability gives that

P(wU ≤ x) =

n∑
i=1

P(wU ≤ x|U = i)P(U = i)

=
1

n

n∑
i=1

1{wi≤x}, x ≥ 0, (B.90)

as desired.
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Solution to Exercise ??. By (6.1.13), Fn(x) = 1
n

(bnF (x)c+ 1)∧1. To prove pointwise
convergence of this function to F (x), we shall first examine its behavior when F (x) gets
close to 1. Consider the case where 1

n
(bnF (x)c+ 1) > 1, or equivalently, bnF (x)c > n− 1,

which is in turn equivalent to F (x) > n−1
n

. Now fixing x gives us two possibilities: either

F (x) = 1 or there is an n such that F (x) ≤ n−1
n

. In the first case, we have that∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣[ 1

n
(bnc+ 1) ∧ 1

]
− 1

∣∣∣∣
= |1− 1| = 0. (B.91)

In the second case, we have that for large enough n∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣ 1n (bnF (x)c+ 1)− nF (x)

n

∣∣∣∣
=

∣∣∣∣bnF (x)c − nF (x) + 1

n

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣→ 0, (B.92)

which proves the pointwise convergence of Fn to F , as desired.

Solution to Exercise 6.5. We note that x 7→ F (x) is non-decreasing, since it is a
distribution function. This implies that x 7→ 1 − F (x) is non-increasing, so that u 7→
[1− F ]−1(u) is non-increasing.

To see (6.1.15), we let U be a uniform random variable, and note that

1

n

n∑
i=1

h(wi) = E
[
h
(

[1− F ]−1(dUne/n)
)]
. (B.93)

Now, dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing, we obtain that
[1− F ]−1(dUne/n) ≤ [1− F ]−1(U) a.s. Further, again since x 7→ h(x) is non-decreasing,

h
(

[1− F ]−1(dUne/n)
)
≤ h

(
[1− F ]−1(U)

)
. (B.94)

Thus,

1

n

n∑
i=1

h(wi) ≤ E
[
h
(

[1− F ]−1(U)
)]

= E[h(W )], (B.95)

since [1 − F ]−1(U) has distribution function F when U is uniform on (0, 1) (recall the
remark below (6.1.12)).

Solution to Exercise 6.6. Using the non-decreasing function h(x) = xα in Exercise
6.5, we have that for a uniform random variable U

1

n

n∑
i=1

wαi =

∫ 1

0

[1− F ]−1

(
dune
n

)
1

n
du

= E
[(

[1− F ]−1(dUne/n)
)α]

. (B.96)

We also know that dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing by
Exercise 6.5 and x 7→ xα is non-decreasing, we obtain that

1

n

(
[1− F ]−1(dUne/n)

)α ≤ 1

n

(
[1− F ]−1(U)

)α
. (B.97)
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The right hand side function is integrable with value E[Wα], by assumption. Therefore,
by the dominated convergence theorem (Theorem A.42), we have that the integral of the
left hand side converges to the integral of its pointwise limit. Since dUne/n converges in
distribution to U , we get that [1− F ]−1(dUne/n)→ [1− F ]−1(U), as desired.

Solution to Exercise 6.7. By (6.1.10),

wi = [1− F ]−1(i/n). (B.98)

Now apply the function [1− F ] to both sides to get

[1− F ](wi) = i/n, (B.99)

which, by the assumption, can be bounded from above by

i/n = [1− F ](wi) ≤ cw−(τ−1)
i . (B.100)

This inequality can be rewritten to

i−
1

τ−1 (cn)
1

τ−1 ≥ wi, (B.101)

where the left hand side is a descending function in i for τ > 1. This implies

wi ≤ w1 ≤ c
1

τ−1 n
1

τ−1 , ∀i ∈ [n], (B.102)

giving the c′ = c
1

τ−1 as desired.

Solution to Exercise 6.9. A mixed Poisson variable X has the property that P(X =
0) = E[e−W ] is strictly positive, unless W is infinite whp. Therefore, the random variable
Y with P(Y = 1) = 1

2
and P(Y = 2) = 1

2
cannot be represented by a mixed Poisson

variable.

Solution to Exercise 6.10. By definition, the characteristic function of X is

E[eitX ] =

∞∑
n=0

eitnP(X = n) =

∞∑
n=0

eitn
(∫ ∞

0

fW (w)
e−wwn

n!
dw

)
,

where fW (w) is the density function of W evaluated in w. Since all terms are non-negative
we can interchange summation and integration. Rearranging the terms gives

E[eitX ] =

∫ ∞
0

fW (w)e−w
(
∞∑
n=0

(
eitw

)n
n!

)
dw =

∫ ∞
0

fW (w)e−w exp(eitw)dw

=

∫ ∞
0

fW (w) exp((eit − 1)w)dw.

The latter expression is the moment generating function of W evaluated in eit − 1.
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Solution to Exercise 6.11. By the tower rule, we have that E[E[X|W ]] = E[X]. Com-
puting the expected value on the left hand side gives

E[E[X|W ]] =
∑
w

E[X|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

ke−w
wk

k!

=
∑
w

w · P(W = w) · e−w
∑
k

w(k−1)

(k − 1)!

=
∑
w

w · P(W = w) = E[W ], (B.103)

so E[X] = E[W ]. For the second moment of X, we consider E[E[X(X−1)|W ]] = E[X(X−
1)]. Computing the expected value on the left hand side gives

E[E[X(X − 1)|W ]] =
∑
w

E[X(X − 1)|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

k(k − 1)e−w
wk

k!

=
∑
w

w2 · P(W = w) · e−w
∑
k

w(k−2)

(k − 2)!

=
∑
w

w2 · P(W = w) = E[W 2]. (B.104)

Now, we have that Var(X) = E[X2]− E[X]2 = E[W 2] + E[W ]− E[W ]2, which is the sum
of the variance and expected value of W .

Solution to Exercise 6.13. Suppose there exists a ε > 0 such that ε ≤ wi ≤ ε−1 for
every i. Now take the coupling D′i as in (??). Now, by (??), we obtain that

P
(

(D1, . . . , Dm) 6= (D̂1, . . . , D̂m)
)
≤ 2

m∑
i,j=1

pij

= 2

m∑
i,j=1

wiwj
ln + wiwj

. (B.105)

Now ln =
∑n
i=1 wi ≥ nε and ε2 ≤ wiwj ≤ ε−2. Therefore,

2

m∑
i,j=1

wiwj
ln + wiwj

≤ 2m2 ε−2

nε+ ε2
= o(1), (B.106)

since m = o(
√
n).

Solution to Exercise 6.14. We have to prove

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (B.107)
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We have
max
k
|E[P (n)

k ]− pk| ≤
ε

2
⇔ ∀k|E[p(n)

k ]− pk| ≤
ε

2
. (B.108)

Furthermore the following limit is given

lim
n→∞

E[P (n)

k ] = lim
n→∞

P(D1 = k) = pk. (B.109)

Hence we can write
∀ε>0∀k∃Mk∀n>Mk |E[P (n)

k ]− pk| ≤
ε

2
(B.110)

Taking M := maxkMk we obtain

∀ε>0∃M∀k∀n>M |E[P (n)

k ]− pk| ≤ ε
2

⇔
∀ε>0∃M∀n>M maxk |E[P (n)

k ]− pk| ≤ ε
2
.

Solution to Exercise 6.15. Using the hint, we get

P(
n

max
i=1

Wi ≥ εn) ≤
n∑
i=1

P(Wi ≥ εn)

= nP(W1 ≥ εn). (B.111)

This probability can be rewritten, and applying the Markov inequality now gives

nP(W1 ≥ εn) = nP(1{W1≥εn}W1 ≥ εn) ≤ P(W1 ≥ εn)E[W1]→ 0. (B.112)

Therefore, maxni=1 Wi is o(n) whp, and

1

n2

n∑
i=1

W 2
i ≤

1

n

n
max
i=1

W 2
i → 0, (B.113)

as desired.

Solution to Exercise 6.17. Using partial integration we obtain for the mean of W1

E[W1] =

∫ ∞
0

xf(x)dx = [xF (x)− x]∞x=0 −
∫ ∞

0

F (x)− 1dx =
(

lim
R→∞

RF (R)−R
)
− 0 +

∫ ∞
0

1− F (x)dx

=

∫ ∞
0

1− F (x)dx

Hence,

E[W1] =∞⇔
∫ ∞

0

[1− F (x)]dx =∞. (B.114)

Solution to Exercise 6.20. It suffices to prove that
∏

1≤i<j≤n(uiuj)
xij =

∏n
i=1 u

di(x)
i ,

where di(x) =
∑n
j=1 xij .

The proof will be given by a simple counting argument. Consider the powers of uk in the
left hand side, for some k = 1, . . . , n. For k < j ≤ n, the left hand side contains the terms
u
xkj
k , whereas for 1 ≤ i < k, it contains the terms u

xik
k . When combined, and using the fact

that xij = xji for all i, j, we see that the powers of uk in the left hand side can be written

as
∑
j 6=k

xkj . But since, xii = 0 for all i, this equals
∑n
j=1 xij = di(x), as required.
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Solution to Exercise 6.21. We pick tk = t and ti = 1 for all i 6= k. Then,

E[tDk ] =
∏

1≤i≤n:i 6=k

ln + wiwkt

ln + wiwk

= e
wk(t−1)

∑
1≤i≤n:i6=k

wi
ln

+Rn , (B.115)

where

Rn =
∑

1≤i≤n:i 6=k

log

(
1 +

wiwkt

ln

)
− log

(
1 +

wiwk
ln

)
− wk(t− 1)

∑
1≤i≤n:i 6=k

wi
ln

=
∑

1≤i≤n:i 6=k

log(ln + wiwkt)− log(ln + wiwk)− wk(t− 1)
∑

1≤i≤n:i 6=k

wi
ln
. (B.116)

A Taylor expansion of x 7→ log(a+ x) yields that

log(a+ x) = log(a) +
x

a
+O(

x2

a2
). (B.117)

Therefore, applying the above with a = ln and x = wiwk, yields that, for t bounded,

Rn = O(w2
k

n∑
i=1

w2
i

l2n
) = o(1), (B.118)

by (??), so that

E[tDk ] = e
wk(t−1)

∑
1≤i≤n:i6=k

wi
ln (1 + o(1))

= ewk(t−1)(1 + o(1)), (B.119)

since wk is fixed. Since the generating function of the degree converges, the degree of
vertex k converges in distribution to a random variable with generating function ewk(t−1)

(recall Theorem 2.3(c)). The probability generating function of a Poisson random variable

with mean λ is given by eλ(t−1), which completes the proof of Theorem 6.6(a).
For Theorem 6.6(b), we use similar ideas, now taking ti = ti for i ≤ m and ti = 0 for

i > m. Then,

E[
m∏
i=1

tDii ] =
∏

1≤i≤m,i<j≤n

ln + wiwjti
ln + wiwj

=

m∏
i=1

ewi(ti−1)(1 + o(1)), (B.120)

so that the claim follows.

Solution to Exercise 6.22. The degree of vertex k converges in distribution to a random
variable with generating function ewk(t−1). We take wi = λ

1−λ/n which yields for the

generating function e
λ(t−1)
1−λ/n . This gives us for the degree a Poi( λ

1−λ/n ) random variable,

which for large n is close to a Poi(λ) random variable.

Solution to Exercise 6.23. The Erdős-Rényi Random Graph is obtained by taking
Wi ≡ λ

1− λ
n

. Since pij = λ/n → 0, Theorem 6.6(b) states that the degrees are asymptoti-

cally independent.
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Solution to Exercise 6.24. Let X be a mixed Poisson random variable with mixing
distribution γW τ−1. The generating function of X now becomes

GX(t) = E[tX ] =

∞∑
k=0

tkP(X = k)

=

∞∑
k=0

tkE[e−γW
τ−1 (γW τ−1)k

k!
]

= E

[
e−γW

τ−1
∞∑
k=0

(γW τ−1t)k

k!

]
= E[e(t−1)γWτ−1

] (B.121)

Solution to Exercise 6.25. By using partial integration we obtain

E[h(X)] =

∫ ∞
0

h(x)f(x)dx

= [h(x)(F (x))− 1]∞x=0 −
∫ ∞

0

h′(x)[F (x)− 1]dx

=
(

lim
R→∞

h(R)(1− F (R))
)
− h(0)(1− F (0)) +

∫ ∞
0

h′(x)[1− F (x)]dx

=

∫ ∞
0

h′(x)[1− F (x)]dx.

Solution to Exercise 6.27. By definition, p(n) and q(n) are asymptotically equivalent
if for every sequence (xn) of events

lim
n→∞

p(n)
xn − q

(n)
xn = 0. (B.122)

By taking the sequence of events xn ≡ x ∈ X for all n, this means that asymptotical
equivalence implies that also

lim
n→∞

max
x∈X
|p(n)
x − q(n)

x | = lim
n→∞

dTV(p(n), q(n)) = 0. (B.123)

Conversely, if the total variation distance converges to zero, which means that the maximum
over all x ∈ X of the difference p(n)

x − q(n)
x converges in absolute value to zero. Since this

maximum is taken over all x ∈ X , it will certainly hold for all x ∈ (xn) ⊆ X as well.
Therefore, it follows that for any sequence of events, p(n)

xn − q
(n)
xn must converge to zero as

well, which implies asymptotical equivalence. /ensol

Solution to Exercise 6.28. We recall that

dTV(M,M ′) = sup
A⊂Z
|P(M ∈ A)− P(M ′ ∈ A)|. (B.124)

Now, for binomial random variables with the same m and with success probabilities p and
q respectively, we have that

P(M = k)

P(M ′ = k)
=
(p
q

)k(1− p
1− q

)m−k
=
(1− p

1− q
)m(p(1− q)

q(1− p)
)k
, (B.125)
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which is monotonically increasing or decreasing for p 6= q. As a result, we have that the
supremum in (B.124) is attained for a set A = {0, . . . , j} for some j ∈ N, i.e.,

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)|. (B.126)

Now assume that limN→∞m(p − q)/
√
mp = α ∈ (−∞,∞). Then, by Exercise 4.22,

(M−mp)/√mp d−→ Z ∼ N (0, 1) and (M ′−mp)/√mp d−→ Z′simN (α, 1), where N (µ, σ2)

denotes a normal random variable with mean µ and variance σ2. Therefore, we arrive at

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)| = sup

x∈R
|P(Z ≤ x)− P(Z′ ≤ x)|+ o(1)

→ Φ(α/2)− Φ(−α/2), (B.127)

where x 7→ Φ(x) is the distribution function of a standard normal random variable. Thus,
dTV(M,M ′) = o(1) precisely when α = 0, which implies that m(p− q)/√mp = o(1).

Solution to Exercise 6.29. We write

dTV(p, q) =
1

2

∑
x

|px − qx| =
1

2

∑
x

(
√
px +

√
qx)|√px −

√
qx|

=
1

2

∑
x

√
px|
√
px −

√
qx|+

1

2

∑
x

√
qx|
√
px −

√
qx|. (B.128)

By the Cauchy-Schwarz inequality, we obtain that

∑
x

√
px|
√
px −

√
qx| ≤

√∑
x

px

√∑
x

(
√
px −

√
qx)2 ≤ 2−1/2dH(p, q). (B.129)

The same bound applies to the second sum on the right-hand side of (B.128), which proves
the upper bound in (6.6.11).

For the lower bound, we bound

dH(p, q)2 =
1

2

∑
x

(
√
px −

√
qx)2 ≤ 1

2

∑
x

(
√
px +

√
qx)|√px −

√
qx| = dTV(p, q). (B.130)

Solution to Exercise 6.30. By exercise 6.27, we have that p(n) = {p(n)
x }x∈X and

q(n) = {q(n)
x }x∈X are asymptotically equivalent if and only if their total variation distance

converges to zero. By exercise 6.29, we know that (6.6.11) holds, and therefore also

2−1/2dTV(p(n), q(n)) ≤ dH(p(n), q(n)) ≤
√
dTV(p(n), q(n)). (B.131)

Both the left and right hand side of those inequalities converge to zero if dTV(p(n), q(n))→ 0,
which implies by the sandwich theorem that dH(p(n), q(n))→ 0. Conversely, if dH(p(n), q(n))→
0, by (6.6.11) we have that dTV(p(n), q(n))→ 0.

Solution to Exercise 6.31. We bound

ρ(p, q) =
(√
p−√q

)2
+
(√

1− p−
√

1− q
)2

= (p− q)2((√p+
√
q)−2 + (

√
1− p+

√
1− q)−2).

(B.132)
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Solution to Exercise 6.32. We wish to show that P(Y = k) = e−λp (λp)k

k!
. We will use

that in the case of X fixed, Y is simply a Bin(X, p) random variable. We have

P(Y = k) = P
( X∑
i=0

Ii = k
)

=

∞∑
x=k

P(X = x) · P
( x∑
i=0

Ii = k
)

=

∞∑
x=k

e−λ
λx

x!
·

(
x

k

)
pk(1− p)x−k = e−λ

∞∑
x=k

λx

x!
· x!

(x− k)!k!
pk(1− p)x−k

= e−λ
(λp)k

k!

∞∑
x=k

λx−k(1− p)x−k

(x− k)!
= e−λ

(λp)k

k!

∞∑
x=0

(λ− λp)x

x!

= e−λeλ−λp
(λp)k

k!
= e−λp

(λp)k

k!

If we define Y to be the number of edges between i and j at time t and X the same at
time t − 1. Furthermore we define Ik to be the decision of keeping edge k or not. It is

given that X ∼ Poi(
WiWj
Lt−1

) and Ik ∼ Be(1 − Wt
Lt

). According to what is shown above we

now obtain for Y to be a Poisson random variable with parameter

WiWj

Lt−1
· (1− Wt

Lt
) = WiWj

1

Lt−1

Lt −Wt

Lt
= WiWj

1

Lt−1

Lt−1

LT
=
WiWj

Lt
(B.133)

Solution to Exercise 6.33. A graph is simple when it has no self loops or double edges
between vertices. Therefore, the Norros-Reittu random graph is simple at time n if for all i
Xii = 0, and for all i 6= j Xij = 0 or Xij = 1. By Exercise 6.32, we know that the number
of edges Xij between i and j at time n are Poisson with parameter

wiwj
`n

. The probability

then becomes

P(NRn(w) simple) = P(0 ≤ Xij ≤ 1, ∀i 6= j)P(Xii = 0, ∀i)

=
∏

1≤i<j≤n

(P(Xij = 0) + P(Xij = 1))

n∏
k=1

P(Xkk = 0)

=
∏

1≤i<j≤n

e
−
wiwj
`n (1 +

wiwj
`n

)

n∏
k=1

e
−
w2
k
`n

= e
−

∑
1≤i≤j≤n

wiwj
`n

∏
1≤i<j≤n

(1 +
wiwj
`n

). (B.134)

Solution to Exercise 6.34. Let Xij ∼ Poi(
wiwj
`n

) be the number of edges between vertex

i and j at time n. The degree of vertex k at time n becomes

n∑
j=1

Xkj , and because Xkj is

Poisson with mean
wkwj
Ln

, the sum will be Poisson with mean

n∑
j=1

wkwj
`n

= wk

∑n
j=1 wj

`n
=

Wk. Therefore, since the wi are i.i.d, the degree at time n has a mixed Poisson distribution
with mixing distribution Fw
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Solution to Exercise 6.35. Couple Xn = X(Gn) and X ′n = X(G′n) by coupling the

edge occupation statuses Xij of Gn and X ′ij of G′n such that (6.7.11) holds. Let (X̂n, X̂
′
n)

be this coupling and let En and E′n be the sets of edges of the coupled versions of Gn and
G′n, respectively. Then, since X is increasing

P(X̂n ≤ X̂ ′n) ≥ P(En ⊆ E′n) = P(Xij ≤ X ′ij∀i, j ∈ [n]) = 1, (B.135)

which proves the stochastic domination by Lemma 2.12.

Solutions to the exercises of Chapter 7.

Solution to Exercise 7.1. Consider for instance the graph of size n = 4 with de-
grees {d1, . . . , d4} = {3, 3, 1, 1} or the graph of size n = 5 with degrees {d1, . . . , d5} =
{4, 4, 3, 2, 1}.

Solution to Exercise 7.2. For 2m vertices we use m pairing steps, each time pairing
two vertices with each other. For step i+ 1, we have already paired 2i vertices. The next
vertex can thus be paired with 2m−2i−1 other possible vertices. This gives for all pairing
steps the total amount of possibilities to be

(2m− 1)(2m− 3) · · · (2m− (2m− 2)− 1) = (2m− 1)!!. (B.136)

Solution to Exercise 7.8. We can write

P
(
Ln is odd

)
= P

(
(−1)Ln = −1

)
=

1

2

(
1− E[(−1)Ln ]

)
. (B.137)

To compute E[(−1)Ln ], we use the characteristic function φD1
(t) = E[eitD1 ] as follows:

φD1
(π) = E[(−1)D1 ] (B.138)

Since (−1)Ln = (−1)
∑
Di where {Di}ni=1 are i.i.d. random variables, we have for the

characteristic function of Ln, φLn(π) = (φD1(π))n. Furthermore, we have

φD1
(π) = −P(D1 is odd) + P(D1 is even). (B.139)

Now we assume P(D1 is odd) 6∈ {0, 1}. This gives us

− 1 < P(D1 is even)− P(D1 is odd) < 1, (B.140)

so that |φD1
(π)| < 1, which by (B.137) leads directly to the statement that P(Ln is odd)

is exponentially close to 1
2
.

Solution to Exercise 7.10. We compute

∞∑
k=1

kp(n)

k =

∞∑
k=1

k
( 1

n

n∑
i=1

1{d̃i=k}

)
=

1

n

n∑
i=1

∞∑
k=1

k1{d̃i=k} =
1

n

n∑
i=1

di =
ln
n
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Solution to Exercise ??. First we shall prove that the degrees P (n)

k converge to some
probability distribution {pk}∞k=1. Obviously,

P (n)

k =
1

n

n∑
i=1

1{Di=k}, (B.141)

and the variables {1{Di=k}}
n
i=1 are i.i.d. random variables with a Be(pk) distribution.

Thus, by the strong law of large numbers, P (n)

k

a.s.−→ pk.
To see (??), we note that the mean of the degree distribution is finite precisely when

E[Di] <∞. Since pk = P(Di = k), we have

µ =

∞∑
k=0

kpk. (B.142)

Now, by definition, the total degree equals

Ln =

n∑
i=1

Di, (B.143)

where, since the degrees are i.i.d. {Di}ni=1 is an i.i.d. sequence. Moreover, we have that
µ = E[Di] <∞. Thus, (??) follows from the strong law of large numbers, since

Ln/n =
1

n

n∑
i=1

Di
a.s.−→ E[Di] = µ. (B.144)

Solution to Exercise ??. We need to prove that (??) and (??) imply that

∞∑
k=1

kp(n)

k → µ =

∞∑
k=1

kpk. (B.145)

We note that, as m→∞,

µ =

∞∑
k=1

kpk =

m∑
k=1

kpk + o(1). (B.146)

Moreover, by (??), we have that

∞∑
k=m+1

kp(n)

k ≤ 1

m

∞∑
k=m+1

k(k − 1)p(n)

k ≤ 1

m

∞∑
k=1

k(k − 1)p(n)

k = O(1/m). (B.147)

Thus,
∞∑
k=1

kp(n)

k − µ =

m∑
k=1

k(p(n)

k − pk) + o(1). (B.148)

Now, for every m fixed, by (??),

lim
N→∞

m∑
k=1

k(p(n)

k − pk) = 0, (B.149)

and we conclude that, by first sending n → ∞ followed by m → ∞ that
∑∞
k=1 kp

(n)

k →
µ.
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Solution to Exercise 7.11. We start by evaluating (7.3.20) from the right- to the
left-hand side.

µE[(X + 1)r−1] = µ

∞∑
k=1

(k + 1)r−1 e
−µµk

k!
=

∞∑
k=1

(k + 1)r
e−µµk+1

(k + 1)!
;

=

∞∑
n=1

nr
e−µµn

n!
=

∞∑
x=0

xr
e−µµx

x!
= E[Xr].

Now we can use the independency of the two random variables and the result above for
the evaluation of (7.3.21).

E[XrY s] = E[Xr]E[Y s] = E[Xr]µY E[(Y + 1)s−1] = µY E[Xr(Y + 1)s−1].

Solution to Exercise 7.12. We use a two-dimensional extension of Theorem 2.3(e),
stating that when the mixed moments E[Xr

nY
s
n ] converge to the moments E[XrY s] for each

r, s = 0, 1, 2, . . ., and the moments of X and Y satisfy (2.1.8), then (Xn, Yn) converges in
distribution to (X,Y ). See also Theorem 2.6 for the equivalent statement for the factorial
moments instead of the normal moments, from which the above claim actually follows.
Therefore, we are left to prove the asymptotics of the mixed moments of (Sn,Mn).

To prove that E[SrnM
s
n] converge to the moments E[SrMs], we again make use of in-

duction, now in both r and s.
Proposition 7.9 follows when we prove that

lim
n→∞

E[Srn] = E[Sr] = µSE[(S + 1)r−1], (B.150)

and
lim
n→∞

E[SrnM
s
n] = E[SrMs] = µME[Sr(M + 1)s−1], (B.151)

where the second equalities in (B.150) and (B.151) follow from (7.3.20) and (7.3.21).
To prove (B.150), we use the shape of Sn in (7.2.20), which we restate here as

Sn =

n∑
i=1

∑
1≤a<b≤di

Iab,i. (B.152)

Then, we prove by induction on r that

lim
n→∞

E[Srn] = E[Sr]. (B.153)

The induction hypothesis is that (B.153) is true for all r′ ≤ r−1, for CMn(d) when n→∞
and for all {di}ni=1 satisfying (??). We prove (B.153) by induction on r. For r = 0, the
statement is trivial, which initializes the induction hypothesis.

To advance the induction hypothesis, we write out

E[Srn] =
n∑
i=1

∑
1≤a<b≤di

E[Iab,iS
r−1
n ]

=

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)E[Sr−1
n |Iab,i = 1]. (B.154)
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When Iab,i = 1, then the remaining stubs need to be paired in a uniform manner. The
number of self-loops in the total graph in this pairing has the same distribution as

1 + S′n, (B.155)

where S′n is the number of self-loops in the configuration model where with degrees {d′i}ni=1,
where d′i = di − 2, and d′j = dj for all j 6= i. The added 1 in (B.155) originates from Iab,i.
By construction, the degrees {d′i}ni=1 still satisfy (??). By the induction hypothesis, for all
k ≤ r − 1

lim
n→∞

E[(S′n)k] = E[Sk]. (B.156)

As a result,
lim
n→∞

E[(1 + S′n)r−1] = E[(1 + S)r−1]. (B.157)

Since the limit does not depend on i, we obtain that

lim
n→∞

E[Srn] = E[(1 + S)r−1] lim
n→∞

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)

E[(1 + S)r−1] lim
n→∞

n∑
i=1

di(di − 1)

2

=
ν

2
E[(1 + S)r−1] = E[Sr]. (B.158)

This advances the induction hypothesis, and completes the proof of (B.150).
To prove (B.151), we perform a similar induction scheme. Now we prove that, for all

r ≥ 0, E[SrnM
s
n] converges to E[SrMs] by induction on s. The claim for s = 0 follows from

(B.150), which initializes the induction hypothesis, so we are left to advance the induction
hypothesis. We follow the argument for Sn above. It is not hard to see that it suffices to
prove that, for every ij,

lim
n→∞

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] = E[Sr(1 +M)s−1]. (B.159)

Note that when Is1t1,s2t2,ij = 1, then we know that two edges are paired together to form a
multiple edge. Removing these two edges leaves us with a graph which is very close to the
configuration model with degrees {d′i}ni=1, where d′i = di − 2, and d′j = dj − 2 and d′t = dt
for all t 6= i, j. The only difference is that when a stub connected to i is attached to a stub
connected to j, then this creates an additional number of multiple edges. Ignoring this
effect creates the lower bound

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] ≥ E[Srn(Mn + 1)s−1], (B.160)

which, by the induction hypothesis, converges to E[Sr(1 +M)s−1, ] as required.
Let I ′s1t1,s2t2,ij denote the indicator that stub s1 is connected to t1, s2 to t2 and no

other stub of vertex i is connected to a stub of vertex j. Then,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

I ′s1t1,s2t2,ij ≤Mn ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij .

(B.161)
Hence,

E[SrnM
s
n] ≤ 1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)E
[
SrnM

s−1
n |Is1t1,s2t2,ij = 1

]
,

(B.162)
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and

E[SrnM
s
n] ≤ 1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)E
[
SrnM

s−1
n |I ′s1t1,s2t2,ij = 1

]
.

(B.163)
Now, by the above, E

[
SrnM

s−1
n |Is1t1,s2t2,ij = 1

]
and E

[
SrnM

s−1
n |I ′s1t1,s2t2,ij = 1

]
converge

to E
[
Sr(M+1)s−1

]
, independently of s1t1, s2t2, ij. Further,

1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)→ ν2/2, (B.164)

and also
1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)→ ν2/2. (B.165)

This implies that

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] = E[Srn−1M

s−1
n−1] + o(1). (B.166)

The remainder of the proof is identical to the one leading to (B.158).

Solution to Exercise 7.13. To obtain a triangle we need to three connected stubs say
(s1, t1), (s2, t2), (s3, t3) where s1 and t3 belong to some vertex i with degree di, s2 and t1
to vertex j with degree dj and s3, t2 to some vertex k with degree dk. Obviously we have

1 ≤ s1 ≤ di,

1 ≤ t1 ≤ dj ,

1 ≤ s2 ≤ dj ,

1 ≤ t2 ≤ dk,

1 ≤ s3 ≤ dk,

1 ≤ t3 ≤ di.

The probability of connecting s1 to t1 is 1/(ln − 1). Furthermore, connecting s2 to t2
appears with probability 1/(ln − 3) and s3 to t3 with probability 1/(ln − 5). Of course we
can pick all stubs of i to be s1, and we have di − 1 vertices left from which we may choose
t3. Hence, for the amount of triangles we obtain∑
i<j<k

didj
ln − 1

· (dj − 1)dk
ln − 3

· (dk − 1)(di − 1)

ln − 5
=
∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5

(B.167)

∼ 1

6

( n∑
i=1

di(di − 1)

ln

)3

.

We will show that∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5
∼ 1

6

( n∑
i=1

di(di − 1)

ln

)3

by expanding the righthand-side. We define

S :=
( n∑
i=1

di(di − 1)

ln

)3

. (B.168)
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Then, we have

S =

n∑
i=1

(di(di − 1)

ln

)3

+ 3

∞∑
i=1

∞∑
j=1,j 6=i

(di(di − 1)

ln

)2(dj(dj − 1)

ln

)
(B.169)

+
∑
i6=j 6=k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
, (B.170)

where the first part contains n terms, the second n(n− 1) and the third n(n− 1)(n− 2).
So for large n we can say that

S ∼
∑
i 6=j 6=k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
. (B.171)

Now there are six possible orderings of i, j, k, hence

1

6
S ∼

∑
i<j<k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
∼
∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5
.

(B.172)

Solution to Exercise 7.17. In this case we have di = r for all i ∈ [n]. This gives us

µ = lim
n→∞

n∑
i=1

di(di − 1)

ln
= lim
n→∞

n∑
i=1

r(r − 1)

nr
= r − 1. (B.173)

Furthermore we obtain
n∏
i=1

di! =

n∏
i=1

r! = (r!)n. (B.174)

Finally we have for the total number of stubs ln = rn. Substituting these variables in
(7.4.1) gives us for the number of simple graphs with constant degree sequence di = r

e−
(r−1)

2
− (r−1)2

4
(rn− 1)!!

(r!)n
(1 + o(1)). (B.175)

Solutions to the exercises of Chapter 8.

Solution to Exercise 8.1. At time t, we add a vertex vt, and connect it with each
vertex vi, 1 ≤ i < t with probability p. In the previous chapters, we had the relation
p = λ

n
, but since n is increasing over time, using this expression for p will not result in an

Erdős-Rényi random graph. We could off course wish to obtain a graph of size N , thus
stopping the algorithm at time t = N , and using p = λ

N
.

Solution to Exercise 8.2. We will use an induction argument over t. For t = 1 we have
a single vertex v1 with a self-loop, hence d1(1) = 2 ≥ 1.

Now suppose at time t we have di(t) ≥ 1 ∀i.
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At time t + 1 we add a vertex vt+1. We do not remove any edges, so we only have to
check whether the newly added vertex has a non-zero degree. Now the algorithm adds the
vertex having a single edge, to be connected to itself, in which case dt+1(t + 1) = 2, or
to be connected to another already existing vertex, in which case it’s degree is 1. In the
latter case, one is added to the degree of the vertex to which vt+1 is connected, thus that
degree is still greater than zero. Hence we can say that di(t+ 1) ≥ 1 ∀i
We can now conclude that di(t) ≥ 1 for all i and t. The statement di(t) + δ ≥ 0 for all
δ ≥ −1 follows directly.

Solution to Exercise 8.3. The statement

1 + δ

t(2 + δ) + (1 + δ)
+

t∑
i=1

di(t) + δ

t(2 + δ) + (1 + δ)
= 1 (B.176)

will follow directly if the following equation holds:

(1 + δ) +

t∑
i=1

(di(t) + δ) = t(2 + δ) + (1 + δ). (B.177)

Which is in its turn true if
t∑
i=1

(di(t) + δ) = t(2 + δ). (B.178)

But since
∑t
i=1 di(t) = 2t by construction, the latter equation holds. Hence, the upper

statement holds and the probabilities do sum up to one.

Solution to Exercise 8.6. We will again use an induction argument. At time t = 1 we
have a single vertex v1 with a self-loop, and the statement holds. At time t = 2 we add a
vertex v2 and connect it with v1 with the given probability

P
(
v2 → v1

∣∣PA1,δ(1)
)

=
2− 1

1
= 1. (B.179)

Now suppose at time t we have a graph with one vertex v1 containing a self-loop and
t − 1 other vertices having only one edge which connects it to v1. In that case d1(t) =
2 + (t− 1) = t+ 1 and all other vertices have degree 1.
At time t + 1 we add a vertex vt+1 having one edge which will be connected to v1 with
probability

P
(
vt+1 → v1

∣∣PA1,δ(t)
)

=
t+ 1− 1

t
= 1. (B.180)

Hence, the claim follows by induction.

Solution to Exercise 8.7. The proof is by induction on t ≥ 1. For t = 1, the statement
is correct, since, at time 2, both graphs consist of two vertices with two edges between
them. This initializes the induction hypothesis.

To advance the induction hypothesis, we assume that the law of {PA(b′)
1,α(t)}ts=1 is equal

to the one of {PA(b)

1,δ(s)}
t
s=1, and, from this, prove that the law of {PA(b′)

1,α(s)}ts=1 is equal

to the one of {PA(b)

1,δ(s)}
t
s=1. The only difference between PA(b)

1,δ(t + 1) and PA(b)

1,δ(t) and

between PA(b′)
1,α(t + 1) and PA(b′)

1,α(t) is to what vertex the (t + 1)st edge is attached. For
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{PA(b)

1,δ(t)}
∞
t=1 and conditionally on PA(b)

1,δ(t), this edge is attached to vertex i with proba-
bility

Di(t) + δ

t(2 + δ)
, (B.181)

while, for {PA′1,α(t)}∞t=1 and conditionally on PA′1,α(t), this edge is attached to vertex i
with probability

α
1

t
+ (1− α)

Di(t)

2t
. (B.182)

Bringing the terms in (B.182) onto a single denominator yields

Di(t) + 2 α
1−α

2
1−α t

, (B.183)

which agrees with (B.181) precisely when 2 α
1−α = δ, so that

α =
δ

2 + δ
. (B.184)

Solution to Exercise 8.9. We write

Γ(t+ 1) =

∫ ∞
0

xte−xdx. (B.185)

Using partial integration we obtain

Γ(t+ 1) = [−xte−x]∞x=0 +

∫ ∞
0

txt−1e−xdx = 0 + t ·
∫ ∞

0

xt−1e−xdx = tΓ(t).

In order to prove that Γ(n) = (n − 1)! for n = 1, 2, . . . we will again use an induction
argument. For n = 1 we have

Γ(1) =

∫ ∞
0

x0e−xdx =

∫ ∞
0

e−xdx = 1 = (0)!.

Now the upper result gives us for n = 2

Γ(2) = 1 · Γ(1) = 1 = (2− 1)!. (B.186)

Suppose now that for some n ∈ N we have Γ(n) = (n− 1)!. Again (8.2.2) gives us for n+ 1

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!. (B.187)

Induction yields Γ(n) = (n− 1)! for n = 1, 2, . . ..

Solution to Exercise 8.10. We rewrite (8.2.9) to be

e−ttt−
1
2
√

2π ≤ Γ(t+ 1) ≤ e−ttt
√

2π
(

1 +
1

12t

)
,

(
t

e
)t
√

2π

t
≤ Γ(t+ 1) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t
≤ tΓ(t) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t

1

t
≤ Γ(t) ≤ (

t

e
)t
√

2π

t

√
t(1 +

1

12t
).
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Using this inequality in the left-hand side of (8.2.8) we obtain

( t
e
)t
√

2π
t

1
t

( t−a
e

)t−a
√

2π
t−a
√
t− a(1 + 1

12(t−a)
)
≤ Γ(t)

Γ(t−a)
≤

( t
e
)t
√

2π
t

√
t(1 + 1

12t
)

( t−a
e

)t−a
√

2π
t−a

1
t−a

tt

(t− a)t−a
e−a

t
√
t(1 + 12/(t− a))

≤ Γ(t)
Γ(t−a)

≤ tt

(t− a)t−a
e−a(1 + 1/12t)√

t− a
.

We complete the proof by noting that t−a = t(1+O(1/t)) and 1+1/12t = 1+O(1/t).

Solution to Exercise 8.11. This result is immediate from the collapsing of the vertices
in the definition of PAt(m, δ), which implies that the degree of vertex v(m)

i in PAt(m, δ) is

equal to the sum of the degrees of the vertices v(1)

m(i−1)+1, . . . , v
(1)

mi in PAmt(1, δ/m).

Solution to Exercise 8.16. We wish to prove

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (B.188)

First of all we have P≥k(t) = 0 for k > mt. We define, similarly to the proof of Proposition
8.3 the martingale

Mn = E
[
P≥k(t)|PAm,δ(n)

]
. (B.189)

We have

E[Mn+1|PAm,δ(n)] = E
[
E
[
P≥k(t)|PAm,δ(n+ 1)

]∣∣∣PAm,δ(n)
]

= E
[
P≥k(t)|PAm,δ(n)

]
= Mn.

(B.190)

Hence Mn is a martingale. Furthermore, Mn satisfies the moment condition, since

E
[
Mn

]
= E

[
P≥k(t)

]
≤ t <∞. (B.191)

Clearly, PAm,δ(0) is the empty graph, hence for M0 we obtain

M0 = E
[
P≥k(t)|PAm,δ(0)

]
= E

[
P≥k(t)]. (B.192)

We obtain for Mt

Mt = E
[
P≥k(t)|PAm,δ(t)

]
=
[
P≥k(t), (B.193)

since P≥k(t) can be determined when PAm,δ(t) is known. Therefore, we have

P≥k(t)− E[P≥k(t)] = Mt −M0. (B.194)

To apply the Azuma-Hoeffding inequality, Theorem 2.24, we have to bound |Mn−Mn−1|.
In step n, m edges are added to the graph. Now P≥k only changes is an edge is added
to a vertex with degree k − 1. Now m edges have influence on the degree of at most 2m
vertices, hence, the maximum amount of vertices of which de degree is increased to k is at
most 2m. So we have |Mn −Mn−1| ≤ 2m. The Azuma-Hoeffding inequality now gives us

P
(
|P≥k(t)− E[P≥k(t)]| ≥ a

)
≤ 2e

− a2

8m2t . (B.195)

Taking a = C
√
t log t, C2 ≥ 8m, we obtain

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (B.196)
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Solution to Exercise 8.18. We have for κk(t) and γk(t) the following equation.

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1 −

( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk,

γk(t) = −1{k = 1} 1 + δ

t(2 + δ) + (1 + δ)
+ 1{k = 2} 1 + δ

t(2 + δ) + (1 + δ)
.

We start with Cγ . We have

|γk(t)| ≤ 1 + δ

t(2 + δ) + (1 + δ)
≤ 1

t( 2+δ
1+δ

) + 1
≤ 1

t+ 1
. (B.197)

So indeed Cγ = 1 does the job. For κk(t) we have

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k − 1 + δ)pk−1 − (k + δ)pk

)
. (B.198)

This gives us

|κk(t)| ≤
∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · ∣∣∣(k − 1 + δ)pk−1 − (k + δ)pk

∣∣∣,
≤

∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ t(2 + δ) + (1 + δ)− (2 + δ)t

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1 + δ

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1

2 + δ
· 1

t( 2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤
∣∣∣ 1

t( 2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤ 1

t+ 1
· sup
k≥1

(k + δ)pk.

Hence, Cκ = supk≥1(k + δ)pk

Solution to Exercise 8.17. We note that∑
i:Di(t)≥l

Di(t) ≥ lN≥l(t), (B.199)

where we recall that N≥l(t) = #{i ≤ t : Di(t) ≥ l} is the number of vertices with degree
at least l.

By the proof of Proposition 8.3 (see also Exercise 8.16), there exists C1 such that
uniformly for all l,

P
(
|N≥l(t)− E[N≥l(t)]| ≥ C1

√
t log t

)
= o(t−1). (B.200)

By Proposition 8.4, there exists a constant C2 such that

sup
l≥1
|E[Pl(t)]− tpl| ≤ C2. (B.201)
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Therefore, we obtain that, with probability exceeding 1− o(t−1),

N≥l(t) ≥ E[N≥l(t)]− C1

√
t log t ≥ E[N≥l(t)]− E[N≥2l(t)]− C1

√
t log t

≥
2l−1∑
l=l

[tpl − C2]− C1

√
t log t ≥ C3tl

1−τ − C2l − C1

√
t log t ≥ Btl2−τ , (B.202)

whenever l is such that

tl1−τ � l, and tl1−τt �
√
t log t. (B.203)

The first condition is equivalent to l � t
1
τ , and the second to l � t

1
2(τ−1) (log t)

− 1
2(τ−1) .

Note that 1
τ
≥ 1

2(τ−1)
for all τ > 2, so the second condition is the strongest, and follows

when tl2−τ ≥ K
√
t log t for some K sufficiently large.

Then, for l satisfying tl2−τ ≥ K
√
t log t, we have with probability exceeding 1− o(t−1),∑

i:Di(t)≥l

Di(t) ≥ Btl2−τ . (B.204)

Also, with probability exceeding 1− o(t−1), for all such l, N≥l(t)�
√
t.

Solution to Exercise 8.19. We prove (8.6.3) by induction on j ≥ 1. Clearly, for every
t ≥ i,

P(Di(t) = 1) =

t∏
s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

t∏
s=i+1

( s− 1

s− 1 + 1+δ
2+δ

)
=

Γ(t)Γ(i+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(i)
,

(B.205)
which initializes the induction hypothesis, since C1 = 1.

To advance the induction, we let s ≤ t be the last time at which a vertex is added to i.
Then we have that

P(Di(t) = j) =

t∑
s=i+j−1

P
(
Di(s− 1) = j− 1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ
P
(
Di(t) = j|Di(s) = j

)
.

(B.206)
By the induction hypothesis, we have that

P
(
Di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)
. (B.207)

Moreover, analogously to (B.205), we have that

P(Di(t) = j|Di(s) = j) =

t∏
q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(B.208)

=

t∏
q=s+1

(q − 1− j−1
2+δ

q − 1 + 1+δ
2+δ

)
=

Γ(t− j−1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)
.

Combining (B.207) and (B.208), we arrive at

P(Di(t) = j) ≤
t∑

s=i+j−1

(
Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)

)( j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)

×
(Γ(t− j−1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)

)
. (B.209)
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We next use that

Γ(s− 1 +
1 + δ

2 + δ
)((2 + δ)(s− 1) + (1 + δ)) = (2 + δ)Γ(s+

1 + δ

2 + δ
), (B.210)

to arrive at

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

t∑
s=i+j−1

Γ(s− 1)

Γ(s− j−1
2+δ

)
. (B.211)

We note that, whenever l + b, l + 1 + a > 0 and a− b+ 1 > 0,

t∑
s=l

Γ(s+ a)

Γ(s+ b)
=

1

a− b+ 1

[Γ(t+ 1 + a)

Γ(t+ b)
− Γ(l + 1 + a)

Γ(l + b)

]
≤ 1

a− b+ 1

Γ(t+ 1 + a)

Γ(t+ b)
.

(B.212)
Application of (B.212) for a = −1, b = − j−1

2+δ
, l = i + j − 1, so that a − b + 1 = j−1

2+δ
> 0

when j > 1, leads to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

1
j−1
2+δ

Γ(t)

Γ(t− j−1
2+δ

)
(B.213)

= Cj−1
j − 1 + δ

j − 1

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t)

Γ(t+ 1+δ
2+δ

)
.

Equation (B.213) advances the induction by (8.6.4).

Solution to Exercise 11.13. Suppose αδin + γ = 0, then, since all non-negative, we
have γ = 0 and either α = 0 or δin = 0.
Since γ = 0, no new vertices are added with non zero in-degree.
In case of α = 0 we have β = 1, and thus we only create edges in G0. Hence, no vertices
exist outside G0 and thus there cannot exist vertices outside G0 with in-degree non zero.
In case of δin = 0 (and γ = 0 still), vertices can be created outside G0, but in in it’s creation
phase we will only give it an outgöıng edge. And this edge will be connected to a vertex
inside G0, since δin = 0 and the possibility to is thus zero to create an ingoing edge to a
vertex with di(t) = 0. Similarly, in case edges are created within the existing graphs, all
ingoing edges will be in G0 for the same reason. So, during all stages all vertices outside
G0 will have in-degree zero.

Now suppose γ = 1. Then the only edges being created during the process are those
from inside the existing graph to the newly created vertex. So once a vertex is created and
connected to the graph, it will only be able to gain out-going edges. Hence, the in-degree
remains one for all vertices outside G0 at all times.

Solutions to the exercises of Chapter 9.

Solution to Exercise ??. Let κ(x, y) = [1−F ]−1(x)[1−F ]−1(y)/E[W ], which consists of
the product of two functions that are continuous a.e. on S, and therefore satisfies 9.27(a).
To see 9.27 is satisfied, consider the double integral∫∫

S2

κ(x, y)dµ(x)dµ(y) =
1

E[W ]

∫
S

[1− F ]−1(y)

∫
S

[1− F ]−1(x)dµ(x)dµ(y)

=
1

E[W ]

∫
S

[1− F ]−1(y)E[W ]dµ(y) = E[W ], (B.214)
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which is finite if and only if E[W ] is finite.
The expected number of edges in the graph is half of the sum of expected degrees over the
vertices, due to the handshaking lemma, which is nµ

2
in this case. Therefore,

1

n
E[E(IRGn(p(κ)))]→ 1

2

∫∫
S2

κ(x, y)dµ(x)dµ(y) =
1

2
µ, (B.215)

which proves 9.27(c), and thus the kernel is graphical exactly when E[W ] is finite.
For irreducibility, note that [1− F ]−1(x)[1− F ]−1(y) = 0 if and only if x = 1 or y = 1,

which gives rise to two sets that both have measure 0 in S2.

Solution to Exercise 9.31. Denote by p̃ and p the edge occupation probabilities for
CLn(w̃) and CLn(w), respectively, i.e.,

p̃ij = min{1, w̃iw̃j/ln} = min{1, wiwj/(nµ)} pij = min{1, wiwj/ln}. (B.216)

We assume without loss of generality that ln ≥ µn, when ln ≤ µn the argument can easily
be adapted. Then, pij ≤ p̃ij , and

p̃ij − pij ≤ (
µn

ln
− 1)p̃ij . (B.217)

We note that∑
1≤i<j≤n

(p̃ij − pij)2/p̃ij ≤ (
µn

ln
− 1)2

∑
1≤i<j≤n

p̃ij ≤ (
µn

ln
− 1)2ln = o(1), (B.218)

whenever (µn
ln
− 1)2 = o(n). Theorem 6.17 then proves the claim.

Solution to Exercise ??. Assume (9.5.13) holds. Note that this means that for each
i and j, κ(xi, xj)/n → 0 as well. Asymptotically, when considering min{κ(x, y)/n, 1}, we
get that κ(x, y)/n < 1, and we will write κij = κ(xi, xj). We now apply Theorem 6.17

with pij as in (9.5.7) and qij = p(NR)

ij (κ). To approximate qij = 1 − e−κij/n we use the

Taylor approximation κij/n− κ2
ij/2n

2 +O(κ3
ij/n

3).∑
i<j

(pij − qij)2

pij
=
∑
i<j

(κij/n− κij/n+ κ2
ij/2n

2 +O(κ3
ij/n

3))2

κij/n

=
∑
i<j

κ4
ij/4n

4 +O(κ3
ij/n

3)

κij/n
→ 0, (B.219)

as n → ∞, by (9.5.13). Therefore, the random graphs are asymptotically equivalent by
Theorem 6.17.
Now we apply Theorem 6.17 with pij as in (9.5.7) and qij = p(GRG)

ij (κ).

∑
i<j

(pij − qij)2

pij
=
∑
i<j

(
κij/n− κij

n+κij

)2

κij/n

=
∑
i<j

(
κ2
ij

n2+nκij

)2

κij/n

=
∑
i<j

κ3
ij

n(n+ κij)2
→ 0, (B.220)
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as n → ∞, by (9.5.13). Therefore, the random graphs are asymptotically equivalent by
Theorem 6.17, as desired.

Solution to Exercise 9.33. Definition 9.26(i) holds because S = {1, 2} is finite and
therefore a separable metric space, and because µ given by µ({1}) = µ({2}) = 1/2 is
a Borel probability measure. Since xn consists of n/2 vertices of each type, νn({1}) =
νn({2}) = (n/2)/n = 1/2 = µ({1}) = µ({2}), and Definition 9.26(ii) holds. Now, κ can be
written as an |S| × |S| matrix, which makes it a linear and therefore continuous function.
Since continuity implies Borel measurability, Definition 9.26(iii) holds as well.

We have seen that κ is continuous, so κ satisfies Definition 9.27(i)(a). As for Definition
9.27(i)(b) and (c), ∫∫

S2

κ(x, y)dµ(x)dµ(y) = λ/2 <∞ (B.221)

1

n
E[E(IRGn(p(κ)))] = (

n

2
)2 λ

n
=

1

2

∫∫
S2

κ(x, y)dµ(x)dµ(y). (B.222)

There are only two subsets A ⊆ S such that 0 < µ(A) < 1: {1} and {2}, and κ = λ 6= 0
on {1} × {2}. Therefore κ is irreducible.

Solution to Exercise 9.35. The proof goes by contraposition. Assume κ is reducible.
This means there is some nonempty proper subset A ⊂ S such that κ = 0 a.e. on A×(S\A).
Since S is finite, κ is an r× r matrix such that for each x ∈ A and y ∈ (S \A), the matrix
element κxy is zero. Therefore, the submatrix of κ restricted to A and the submatrix of κ
restricted to (S \ A) contain amongst them all nonzero elements of κ, the other elements
must be zero. Under the right permutation of rows and columns, κ will be of the form(

A B
C D

)
, (B.223)

where A is the |A|×|A| submatrix of κ restricted to A, D is the |(S\A)|×|(S\A)| submatrix
of κ restricted to (S \ A), and B and C are zero matrices. Repeatedly multiplying this
matrix with itself will not change the form of the matrix, because the blocks B and C
will always remain zero. Therefore, there is no m such that κm contains no zeros, as
desired.

Solution to Exercise 9.34. Consider the finite types case where r = 2, s1 = 1, s2 = 2,
and µ({i}) = 1/2 for i = 1, 2. Now take n even and take n1 = n/2 vertices of type 1 and
n2 = n/2 vertices of type 2. Then ni/n = 1/2 for both i = 1, 2 and for all n. Let

κ =

(
0 λ
λ 0

)
, (B.224)

be the 2× 2 matrix, such that vertices of the same type are not connected by an edge with
high probability, and vertices of differing types are connected by an edge with probability
λ/n, independently of the other edges. This is exactly the homogeneous bipartite random
graph, as desired.

Solution to Exercise 9.43. Assume that κ is irreducible, supx,y κ(x, y) < ∞ and ν =
‖Tκ‖ > 1. Now, by Theorem 9.31 and the irreducibility of κ, we have P(Hn < ∞) =
ζ2
κ + o(1). Furthermore, since supx,y κ(x, y) < ∞, Theorem 9.32(i) gives P(Hn ≤ (1 −
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ε) logν n) = o(1). Finally, since κ is irreducible and ν = ‖Tκ‖ > 1, Theorem 9.32(ii) gives
that P(Hn ≤ (1 + ε) logν n) = ζ2

κ + o(1). We now rewrite the probability

P(1− ε ≤ Hn
logν n

≤ 1 + ε|Hn ≤ ∞) = P(
Hn

logν n
≤ 1 + ε|Hn ≤ ∞)− P(

Hn
logν n

< 1− ε|Hn ≤ ∞)

=
P( Hn

logν n
≤ 1 + ε)

P(Hn <∞)
−

P( Hn
logν n

< 1− ε)
P(Hn <∞)

=
ζ2
κ + o(1)

ζ2
κ + o(1)

− o(1)

ζ2
κ + o(1)

→ 1, (B.225)

as n → ∞. Because loga b = log b/ log a, we now have that conditionally on Hn < ∞,
Hn

logn/ log ν

P−→ 1, or equivalently Hn/ logn
P−→ 1/ log ν, as desired.

Solution to Exercise 9.44. Under the assumptions, and using Theorem 9.31 and the
irreducibility of κ, we once again get that P(Hn <∞) = ζ2

κ + o(1). Furthermore, we have
that there exists a function f(n) = o(n) such that P(Hn ≤ f(n)) = ζ2

κ + o(1). When
rewriting this, and conditioning on Hn <∞, we get

P(Hn/ logn ≤ f(n)/ logn|Hn <∞) = P(Hn ≤ f(n)|Hn <∞)

=
ζ2
κ + o(1)

ζ2
κ + o(1)

→ 1, (B.226)

as n→∞. Since f(n) = o(n), we get that Hn/ logn
P−→ 0, as desired.

Solutions to the exercises of Chapter 10.

Solution to Exercise ??. We note that pk ≤ pk(n) when k ≤ na, while pk(n) = 0 for
k > na. Therefore, we obtain that

dTV(p, p(n)) =
1

2

na∑
k=1

pk
( 1

F (na)
−1
)

+
1

2

∑
k>na

pk =
1

2
F (na)

( 1

F (na)
−1
)

+
1

2
[1−F (na)] = 1−F (na).

Solution to Exercise ??. We use Exercise ?? and a coupling argument. We take
{Di}ni=1 and {D(n)

i }
n
i=1 to be two i.i.d. sequences of random variables, where Di has prob-

ability mass function {pk}∞k=1, while D(n)

i has probability mass function {pk(n)}∞k=1.

By the coupling in Section 2.2, we can couple each of the Di, D
(n)

i with (D̂i, D̂
(n)

i ) such
that

P(D̂i 6= D̂(n)

i ) = dTV(p, p(n)).

By Exercise ??, and (2.6.8), we obtain that

P(D̂i 6= D̂(n)

i ) ≤ na(1−τ).

Therefore, by Boole’s inequality,

P({D̂(n)

i }
n
i=1 6= {D̂i}ni=1) ≤

n∑
i=1

P(D̂i 6= D̂(n)

i )

= nP(D̂1 6= D̂(n)

1 ) ≤ n1+a(1−τ).
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Solutions to the exercises of Chapter 11.

Solution to Exercise 11.12. We follow the proof of (11.5.16), and adapt it to PA(b)

t (1, δ).

We start by computing E[(Di(t) + δ)] and E[(Di(t) + 1 + δ)(Di(t) + δ)] for PA(b)

t (1, δ), as
these expectations are needed in the proof. We rely on the recursion

E[(Di(t+ 1) + δ) | PA(b)

t (1, δ)] = (1 +
1

(2 + δ)t
)(Di(t) + δ), (B.227)

which implies that

E[(Di(t) + δ)] = (Di(i) + δ)

t−1∏
s=i

(1 +
1

(2 + δ)s
) = (1 + δ)

t−1∏
s=i

s+ 1/(2 + δ)

s
(B.228)

= (1 + δ)
Γ(i)Γ(t+ 1/(2 + δ)

Γ(i+ 1/(2 + δ)Γ(t)
.

Similarly,

E[(Di(t+ 1) + 1 + δ)(Di(t+ 1) + δ) | PA(b)

t (1, δ)] (B.229)

= (Di(t) + 1 + δ)(Di(t) + δ)
(
1− Di(t) + δ

(2 + δ)t

)
+ (Di(t) + 2 + δ)(Di(t) + 1 + δ)

(Di(t) + δ

(2 + δ)t

)
= (1 +

2

(2 + δ)t
)(Di(t) + 1 + δ)(Di(t) + δ),

which implies that

E[(Di(t) + 1 + δ)(Di(t) + δ)] = (Di(i) + δ)(Di(i) + 1 + δ)

t−1∏
s=i

(1 +
2

(2 + δ)s
) (B.230)

= (2 + δ)(1 + δ)

t−1∏
s=i

s+ 2/(2 + δ)

s

= (2 + δ)(1 + δ)
Γ(i)Γ(t+ 2/(2 + δ)

Γ(i+ 2/(2 + δ)Γ(t)
.

Take t2 > t1. We proceed with the proof of (11.5.27) by computing

P
(
g(t1) = s, g(t2) = s

)
(B.231)

= E
[
P
(
g(t1) = s, g(t2) = s

∣∣PA(b)

t2−1(1, δ)
)]

= E
[
1{g(t1)=s}

(
Ds(t2 − 1) + δ

(t2 − 1)(2 + δ)

)]
=

1

(t2 − 1)(2 + δ)

Γ(t1)Γ(t2 − 1 + 1/(2 + δ))

Γ(t1 + 1/(2 + δ))Γ(t2 − 1)
E
[
1{g(t1)=s} (Ds(t1) + δ)

]
=

Γ(t1)Γ(t2 − (1 + δ)/(2 + δ))

(2 + δ)Γ(t1 + 1/(2 + δ))Γ(t2)
E
[
1{g(t1)=s} (Ds(t1) + δ)

]
,

where we use the iteration, for t1 < u ≤ t2 − 1,

E
[
1{g(t1)=s} (Ds(u) + δ)

]
(B.232)

=
(

1 +
1

(2 + δ)(u− 1) + 1 + δ

)
E
[
1{g(t1)=s} (Ds(u− 1) + δ)

]
.
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We are lead to compute E
[
1{g(t1)=s} (Ds(t1) + δ)

]
. We again use recursion to obtain

E
[
1{g(t1)=s} (Ds(t1) + δ)

∣∣PA(b)

t1−1(1, δ)
]

(B.233)

= E
[
1{g(t1)=s} (Ds(t1)−Ds(t1 − 1))

∣∣PA(b)

t1−1(1, δ)
]

+ E
[
1{g(t1)=s} (Ds(t1 − 1) + δ)

∣∣PA(b)

t1−1(1, δ)
]

=
(Ds(t1 − 1) + δ)(Ds(t1 − 1) + 1 + δ)

(t1 − 1)(2 + δ)
.

By (B.230),

E[(Ds(t) + δ)(Ds(t) + 1 + δ)] = (2 + δ)(1 + δ)
Γ(s)Γ(t+ 2/(2 + δ)

Γ(s+ 2/(2 + δ)Γ(t)
. (B.234)

Consequently,

E
[
1{g(t1)=s} (Ds(t1) + δ)

]
(B.235)

= E[
(Ds(t1 − 1) + δ)(Ds(t1 − 1) + 1 + δ)

(t1 − 1)(2 + δ)
]

= (2 + δ)(1 + δ)
Γ(s)Γ(t1 − 1 + 2/(2 + δ)

(t1 − 1)(2 + δ)Γ(s+ 2/(2 + δ)Γ(t1 − 1)

= (1 + δ)
Γ(t1 − δ/(2 + δ))Γ(s)

Γ(t1)Γ(s+ 2/(2 + δ))
.

Combining (B.231) and (B.235), we arrive at

P
(
g(t1) = s, g(t2) = s

)
(B.236)

=
Γ(t1)Γ(t2 − (1 + δ)/(2 + δ))

(2 + δ)Γ(t1 + 1/(2 + δ))Γ(t2)
× (1 + δ)

Γ(t1 − δ/(2 + δ))Γ(s)

Γ(t1)Γ(s+ 2/(2 + δ))

= (1 + δ)
Γ(t1 − δ/(2 + δ))Γ(t2 − (1 + δ)/(2 + δ))Γ(s)

Γ(t1 + 1/(2 + δ))Γ(t2)Γ(s+ 2/(2 + δ))
,

as required.
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[122] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
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Library. Cambridge University Press, Cambridge, (1988). Reprint of the 1952 edition.

[145] T. Harris. The theory of branching processes. Die Grundlehren der Mathematischen
Wissenschaften, Bd. 119. Springer-Verlag, Berlin, (1963).

[146] H. Hatami and M. Molloy. The scaling window for a random graph with a given
degree sequence. In Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1403–1411. Society for Industrial and Applied
Mathematics, (2010).

[147] S. Havlin, L.A. Braunstein, S.V. Buldyrev, R. Cohen, T. Kalisky, S. Sreenivasan, and
H. Eugene Stanley. Optimal path in random networks with disorder: A mini review.
Physica A: Statistical Mechanics and its Applications, 346(1-2):82–92, (2005).

[148] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc., 58:13–30, (1963).

[149] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. Distances in random
graphs with finite variance degrees. Random Structures Algorithms, 27(1):76–123,
(2005).

[150] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. Size and weight of short-
est path trees with exponential link weights. Combin. Probab. Comput., 15(6):903–
926, (2006).

[151] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. The weight of the
shortest path tree. Random Structures Algorithms, 30(3):359–379, (2007).

[152] R. van der Hofstad, G. Hooghiemstra, and D. Znamenski. Distances in random graphs
with finite mean and infinite variance degrees. Electron. J. Probab., 12(25):703–766
(electronic), (2007).

[153] R. van der Hofstad, G. Hooghiemstra, and D. Znamenski. Random graphs with
arbitrary i.i.d. degrees. Preprint Mittag-Leffer Institute, (2004).

[154] R. van der Hofstad, S. Janson, and M. Luczak. The near-critical behavior for the
configuration model with finite-variance degrees. In preparation.

[155] R. van der Hofstad and M. Keane. An elementary proof of the hitting time theorem.
Amer. Math. Monthly, 115(8):753–756, (2008).

[156] R. van der Hofstad and J. Spencer. Counting connected graphs asymptotically.
European J. Combin., 27(8):1294–1320, (2006).

[157] F. den Hollander. Large deviations, volume 14 of Fields Institute Monographs. Amer-
ican Mathematical Society, Providence, RI, (2000).

[158] P. Jagers. Branching processes with biological applications. Wiley-Interscience [John
Wiley & Sons], London, (1975). Wiley Series in Probability and Mathematical
Statistics—Applied Probability and Statistics.

[159] P. Jagers and O. Nerman. The growth and composition of branching populations.
Adv. in Appl. Probab., 16(2):221–259, (1984).



470 REFERENCES

[160] P. Jagers and O. Nerman. The asymptotic composition of supercritical multi-type
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[213] T. F. Móri. The maximum degree of the Barabási-Albert random tree. Combin.
Probab. Comput., 14(3):339–348, (2005).

[214] A. Nachmias and Y. Peres. Component sizes of the random graph outside the scaling
window. ALEA Lat. Am. J. Probab. Math. Stat., 3:133–142, (2007).

[215] O. Nerman and P. Jagers. The stable double infinite pedigree process of supercritical
branching populations. Z. Wahrsch. Verw. Gebiete, 65(3):445–460, (1984).



REFERENCES 473

[216] M. E. J. Newman. Models of the small world. J. Stat. Phys., 101:819–841, (2000).

[217] M. E. J. Newman. The structure of scientific collaboration networks.
Proc.Natl.Acad.Sci.USA, 98:404, (2001).

[218] M. E. J. Newman. The structure and function of complex networks. SIAM Rev.,
45(2):167–256 (electronic), (2003).

[219] M. E. J. Newman. Random graphs with clustering. Phys. Rev. Lett., 103:058701,
Jul (2009).

[220] M. E. J. Newman, S. Strogatz, and D. Watts. Random graphs with arbitrary degree
distribution and their application. Phys. Rev. E, 64:026118, 1–17, (2000).

[221] M. E. J. Newman, S. Strogatz, and D. Watts. Random graph models of social
networks. Proc. Nat. Acad. Sci., 99:2566–2572, (2002).

[222] M. E. J. Newman, D. J. Watts, and A.-L. Barabási. The Structure and Dynamics of
Networks. Princeton Studies in Complexity. Princeton University Press, (2006).

[223] M.E.J. Newman. Properties of highly clustered networks. Physical Review E,
68(2):026121, (2003).

[224] M.E.J. Newman and J. Park. Why social networks are different from other types of
networks. Physical Review E, 68(3):036122, (2003).

[225] I. Norros and H. Reittu. On a conditionally Poissonian graph process. Adv. in Appl.
Probab., 38(1):59–75, (2006).

[226] M. Okamoto. Some inequalities relating to the partial sum of binomial probabilities.
Ann. Inst. Statist. Math., 10:29–35, (1958).

[227] R. Oliveira and J. Spencer. Connectivity transitions in networks with super-linear
preferential attachment. Internet Math., 2(2):121–163, (2005).

[228] E. Olivieri and M.E. Vares. Large deviations and metastability. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, (2005).

[229] R. Otter. The multiplicative process. Ann. Math. Statist., 20:206–224, (1949).

[230] V. Pareto. Cours d’Economie Politique. Droz, Geneva, Switserland, (1896).

[231] R. Pemantle. A survey of random processes with reinforcement. Probab. Surv.,
4:1–79 (electronic), (2007).

[232] J. Pickands III. Moment convergence of sample extremes. Ann. Math. Statistics,
39:881–889, (1968).

[233] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived
from a stable subordinator. Ann. Probab., 25(2):855–900, (1997).

[234] B. Pittel. On tree census and the giant component in sparse random graphs. Random
Structures Algorithms, 1(3):311–342, (1990).

[235] B. Pittel. Note on the heights of random recursive trees and random m-ary search
trees. Random Structures Algorithms, 5(2):337–347, (1994).

[236] B. Pittel. On the largest component of the random graph at a nearcritical stage. J.
Combin. Theory Ser. B, 82(2):237–269, (2001).



474 REFERENCES

[237] I. de S. Pool and M. Kochen. Contacts and influence. Social Networks, 1:5–51,
(1978).

[238] H. Reittu and I. Norros. On the power law random graph model of massive data
networks. Performance Evaluation, 55(1-2):3–23, (2004).

[239] S. Resnick. Extreme values, regular variation and point processes. Springer Series in
Operations Research and Financial Engineering. Springer, New York, (2008). Reprint
of the 1987 original.

[240] S. M. Ross. Stochastic processes. Wiley Series in Probability and Statistics: Proba-
bility and Statistics. John Wiley & Sons Inc., New York, second edition, (1996).
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