METALLURGICAL TECHNOLOGIES, Inc.

Engineering, Testing & Analysis – Scanning Electron Microscopy

160 Bevan Drive Mooresville, NC 28115 • Phone 704-663-5108 Fax 704-662-0898 • www.met-tech.com

Report No. 2010308

April 8, 2010

Mr. Eric Willis **EPRI Repair & Replacement Application Center** 3420 Hillview Ave. Palo Alto, Ca. 94304

Re: Chemical Analysis, Tensile Testing and Hardness Testing of SA508 Material (Reference P.O. No. EP501-0000035587)

Dear Mr. Willis:

A sample of SA508 steel was received for chemical analysis, tensile testing, and hardness testing.

Spectrographic chemical composition analysis was performed using an optical emission spectrometer in general accordance with ASTM E415. The sample met the compositional requirements for ASTM SA508, Grade 2, alloy steel. Results of the chemical composition analysis are provided in Table 1.

Table 1 Chemical Composition Analysis Results (wt. %)						
Element	SA508 Sample	ASTM SA508, Grade 2				
		Specification				
Carbon	0.23	0.27 max				
Manganese	0.74	0.50 - 1.00				
Phosphorous	0.008	0.025 max				
Sulfur	0.002	0.025 max				
Silicon	0.31	0.15 - 0.40				
Nickel	0.89	0.50 - 1.00				
Chromium	0.37	0.25 - 0.45				
Molybdenum	0.61	0.55 - 0.70				
Vanadium	0.01*	0.05 max				
Copper	0.05	Not Specified				
Aluminum	0.02*	Not Specified				
Tin	0.01*	Not Specified				
Niobium	<0.001*	Not Specified				
Titanium	0.002*	Not Specified				
Tungsten	0.06*	Not Specified				
Lead	0.02*	Not Specified				
Arsenic	0.06*	Not Specified				
Zirconium	0.004*	Not Specified				
Cesium	0.03*	Not Specified				
Boron	0.001*	Not Specified				
Zinc	0.03*	Not Specified				
Lanthanum	0.008*	Not Specified				

^{*} These elements are not standardized and are provided for informational purposes only.

A 0.505-in. round tensile specimen was prepared and tested per ASTM A370. The mechanical properties indicated the material met specification for ASTM SA508, Grade 2, Class 2, alloy steel. Results are presented in Table 2.

Table 2 Tensile Properties								
Sample	Diameter (in)	CS Area (in²)	Yield Strength * (ksi)	Ultimate Strength (ksi)	Elongation 2-inch Gage (%)	Reduction in Area (%)		
A	0.505	0.1987	68.6	91.9	25.2	62.0		
ASTM SA508, Grade 2, Class 2 Requirements			65 min	90 - 115	16 min	35 min		

^{*} Yield Strength at 0.2% offset

Danus C. Woke

Rockwell hardness testing was performed in accordance with ASTM E18. Four separate readings were taken for an average hardness value of 90 Rockwell B (HRBW). (W indicates a tungsten ball was used in HRB testing).

Prepared By:

Thomas R. Mathews Project Consultant

Edited and Approved By:

Debbie Fourney, P.E./CWI Senior Metallurgical Engineer

Debbie Fourey

CONFIDENTIALITY: The information contained in this report is confidential property of our client and is intended solely for the use of the named recipient(s). The information and statements in this report are derived from and related only to the material tested. This report shall not be reproduced except in full, without written approval of Metallurgical Technologies, Inc.