
Theoretical Foundations of Cryptography
Georgia Tech, Spring 2010

Lecture 13
Many-Time Signatures

Instructor: Chris Peikert
Scribe: Anand Louis

1 One-Time Signatures

We recall the definition of unforgeability under chosen-message attack for a signature scheme, which requires
that for all nuppt F ,

Pr
(vk,sk)←Gen

[
FSignsk(·)(vk) forges

]
≤ negl(n).

Constructing a scheme that satisfies such a strong security notion is very involved, so we start with an
easier goal: unforgeability under a one-time chosen-message attack (uf-1cma). The definition is syntactically
identical to the one above, but F is restricted to make (at most) one query to its signing oracle.

Here we describe Lamport’s one-time signature scheme OTS for messages of length ` = poly(n), which
is based on a one-way function f :

• Gen: for i ∈ [`], b ∈ {0, 1}, choose independent xi,b ← {0, 1}n and let yi,b = f(xi,b). Output signing
key sk = {xi,b} and verification key vk = {yi,b}.
Visually, we can represent the keys as tables:

sk =
x1,0 x2,0 · · · x`,0

x1,1 x2,1 · · · x`,1
vk =

y1,0 y2,0 · · · y`,0

y1,1 y2,1 · · · y`,1

• Sign(sk,m ∈ {0, 1}`) reveals σ = (x1,m1 , x2,m2 , . . . , x`,m`). That is, for each bit of the message it
reveals one of the two preimages (either xi,0 or xi,1), as determined by the message bit.

• Ver(vk,m, σ) accepts if yi,mi = f(σi) for all i ∈ [`].

Correctness is by inspection.

Theorem 1.1. Lamport’s OTS is unforgable under a one-time chosen-message attack (uf-1cma-secure)
assuming that f is a OWF.

Proof. The idea is to give a reduction that uses a hypothetical forger F to the break the one-wayness
of f . More precisely, design a simulator S which, given y = f(x) for a uniformly random (but unknown)
x← {0, 1}n, uses F to find an x′ ∈ f−1(y) with non-negligible advantage. The simulator will do this by
“plugging” its given value of y into a random cell of the verification key vk (and constructing the rest of vk
as usual), and “hoping” that it will be able to answer F’s signing query while also extracting a preimage
x′ ∈ f−1(y) from the resulting forgery.

More formally, the simulator SF (y) works as follows. Given input y, it chooses i∗ ← [`] and b∗ ∈ {0, 1}.
Let yi∗,b∗ = y. For all other indices, pick xi,b ← {0, 1}n and let yi,b = f(xi,b). Give vk = {yi,b} to F . (We
note that vk is properly distributed as in the real scheme, and that conditioned on the value of vk, the indices
(i∗, b∗) are still uniformly random.)

Next, F is allowed at most one query to its signing oracle, which S must emulate. If F queries its signing
oracle on a message m ∈ {0, 1}`, then S does the following:

• If mi∗ = b∗, then S quits (outputs ⊥), as it does not know an inverse of yi∗,b∗ = y.

• Otherwise, S returns σ = (x1,m1 , . . . , x`,m`) as required.

• If m′i∗ = b∗ then output σ′i∗ else output ⊥.

1

http://wiki.cc.gatech.edu/theory/index.php/CS_8803TFC_-_Theoretical_Foundations_of_Cryptography%2C_Spring_2010
http://www.cc.gatech.edu/~cpeikert/

Finally, F outputs a forgery (m′, σ′). If m′i∗ = b∗, then S outputs σ′i∗ ; otherwise it quits (outputs ⊥).
Note that if m′i∗ = b∗ and σ′i∗ is a valid forgery for m′, then σ′i∗ ∈ f−1(yi∗,b∗ = y), as desired.

We now analyze SF . Clearly it is nuppt, hence Advf (SF) must be negligible. By the following claim,
AdvOTS(F) must therefore be negligible as well, as desired.

Claim 1.2. Advf (SF) ≥ 1
2` ·AdvOTS(F).

We prove the claim: first, since b∗ ∈ {0, 1} remains uniform (even given the vk), Pr[b∗ 6= mi∗] = 1
2 , so

S is able to answer the signature query with probability 1/2. Next, conditioned on a successful query phase,
the index i∗ ∈ [`] is still uniformly random. Thus, for any m′ 6= m output by F ,

Pr[m′i∗ = b∗ | b∗ 6= mi∗] ≥
1
`
,

because m′ and m must differ in at least one position. Finally, conditioned on m′i∗ = b∗ 6= mi∗ (which
occurs with probability at least 1/2` as argued above), the simulator outputs a valid preimage of y exactly
when F outputs a valid forgery for m′. This completes the proof.

Remark 1.3. Notice that the proof above showed standard unforgeability, not strong unforgeability. Is the
scheme strongly unforgeable?

2 From One-Time to Many-Time

Notice that the Lamport one-time signature schemes becomes trivially breakable if it is used to sign twice: a
forger can just ask for signatures of 0` and 1`, and will thereafter be able to forge a signature for any message!

Still, we might imagine a way to obtain a many-time signature by choosing a “fresh” one-time signature
key with each signed message, and authenticating it along with the message. However, this cannot work on
its own, because the verification key vk in the one-time signature is much longer than the messages it can
sign (about 2`n bits, for a length-preserving function f , versus ` bits).

We will now see a way to overcome this problem by “compressing” the fresh verification key using a
special kind of hash function.

2.1 Collision-Resistant Hash Functions

We want a function that “compresses” its input, but for which it is hard to find two inputs that hash to the
same output. This does not make much sense for a single fixed function, because a non-uniform adversary
can simply have two colliding inputs “hard-wired” into it. But it does make sense for a function chosen at
random from a family. We also want the function (i.e., its description) to be public, so that it can be run and
checked by anyone. This means that the adversary should be given the description of the function, rather than
just an oracle to it.

Definition 2.1. A family of hash functions {hs : D → R} (where |R| < |D|) is collision-resistant if for all
nuppt A,

Pr
h←{hs}

[A(s) outputs distinct x, x′ such that h(x) = h(x′)] ≤ negl(n).

Example 2.2 (Based on discrete logarithm). Consider the family {hp,g,y : Z∗p × {0, 1} → Z∗p} for prime p,
generator g of Z∗p, and y ∈ Z∗p:

hp,g,y(x, b) = ybgx mod p.

2

A function from this family shrinks its input by 1 bit. To get additional compression, we can simply
iterate the function by feeding its output (plus an additional bit) back to itself repeatedly. It is easy to check
that a collision in the basic function can always be extracted from any collision in the iterated function (even
if the colliding strings have different lengths).

Claim 2.3. Under the discrete log assumption (i.e., that computing logg(y) is hard), the family {hp,g,y} is a
collision-resistant hash family.

Proof. We will construct a reduction S(p, g, y) that uses a collision-finder for {hp,g,y} to compute logg(y),
i.e., finds the z ∈ Z∗p such that y = gz mod p. The reduction S simply asks for a collision (x, b), (x′, b′)
in hp,g,y, and returns x − x′ ∈ Z∗p. We claim that S succeeds whenever the collision is valid. To see why,
observe that we cannot have b = b′, as ybgx = ybgx′ ∈ Z∗p implies x = x′ ∈ Z∗p by cancellation and the fact
that exponentiation x 7→ gx is a permutation on Z∗p. Therefore, b 6= b′; without loss of generality, assume
b = 0 and b′ = 1. Then gx = ygx′ ⇒ y = gx−x′ , and x− x′ = logg(y), as desired.

Example 2.4 (Based on subset-sum). Let N = 2n, and for a vector a = (a1, a2, . . . , a2n) ∈ ZN , define
ha : {0, 1}2n → ZN as ha(x) =

∑
i xiai mod N . Finding distinct x, x′ ∈ {0, 1}2n such that ha(x) =

ha(x′) implies finding z = x − x′ ∈ {0,±1}2n such that
∑

i aizi = 0 mod N . This is widely believed
to be hard for a uniformly random a. (Moreover, there is some strong and surprising evidence of hardness
based on lattice problems, which we may return to later in the course.) Also note that the function already
compresses its input by a factor of 2; moreover, the input length can be made even larger (say, 100n) without
making collisions significantly easier to find.

2.2 Improved OTS

Using a collision-resistant hash family {hs : {0, 1}`′ → {0, 1}`}, we can now define a slightly modified
OTS′ that uses OTS to sign messages of length `′ > `:

• Gen: choose h← {hs} and (vk, sk)← OTS.Gen. Output vk′ = (vk, h) and sk′ = (sk, h).

• Sign(sk,h)(m ∈ {0, 1}`
′
): output σ ← OTS.Signsk(h(m)).

• Ver(vk,h)(m,σ): output OTS.Vervk(h(m), σ).

Correctness is apparent. The unforgeability of this scheme (under one-time chosen-message attack)
follows directly from the fact that to produce a valid forgery, F must either find a collision in h or break OTS,
both of which are hard.

2.3 Chaining Signatures

We will now see how to use a CRHF and the concept of chaining one-time signatures to obtain a secure
many-time signature scheme. The main idea is to generate a fresh key pair along with each signed message,
and to authenticate it along with the message. The next message is signed with the key generated with the
prior message (and a new key pair is generated and authenticated along with it, etc.). Notice, however, that
the signer must keep state to know which key to use and what to include in a given signature.

Assume we have a secure one-time signature scheme OTS, which we assume can sign messages that
are as long as a verification key vk of OTS, plus `. The full many-time signature scheme signs messages of
length `, and works as follows:

3

• Gen:

– generate (sk1, vk1)← OTS.Gen

– output sk = sk1 and vk = vk1

• Sign(ski,mi) (for i = 1, 2, . . .)

– generate a fresh (ski+1, vki+1)← OTS.Gen

– let σi = OTS.Signski
(mi‖vki+1)

– output (vki+1, σi,mi; . . . ; vk2, σ1,m1; vk1)
(The signature is the entire authentication chain; the message mi itself appears in the chain.)

• Vervk(vki+1, σi,mi; . . . ; vk2, σ1,m1; vk1)

– accept if vk1 = vk and OTS.Vervkj
(σj ,mj ||vkj+1) accepts for all j ∈ [i]; otherwise, reject.

Notice that not only does the signer keep state, but the signature size increases linearly in the number of
signatures ever generated by the signer. (The verification time also increases linearly, but at least the verifier
does not need to keep any state.) It can be shown that this signature scheme is uf-cma-secure. The intuition is
that a forgery must somewhere “break off” of the chain produced by the legitimate signer, and hence is a
forgery against one of the vki, which is hard to produce due to the uf-1cma security of OTS. A formal proof
is relatively routine.

2.4 Improvements

One way to improve the above many-message scheme is to authenticate two new verification keys instead of
one at each step. This new construction builds, in a depth-first manner, a binary tree of depth n, where each
node in the tree is associated with one key pair (sk, vk). Such a digital signature algorithm can perform up to
2n signatures with signature size that depends only linearly in n.

4

At any point of time, the signer maintains a special node which it calls the current node. To sign a
message m, if the current node is at a depth less than n in the tree, the signer generates and stores 2 more
key-pairs and sets them as the children of the current node. It uses the signing key in the current node to
sign the message together with the two new verification keys, and updates the current node as the left child.
Otherwise, (i.e., if the current node is already at a depth n), the signer uses the current node to sign the
message and updates the current node to be the successor in the preorder traversal of the tree.

Here the signer need only include a transcript of all the previously signed messages down the path from
the root to the current node. In addition, the signer need only keep state containing the keys along the path to
the current node, and their siblings.

Moreover, we can make the scheme entirely stateless by viewing the tree as implicitly fully determined
by a PRF fk. That is, in order to generate the key pair at a certain node, the signer computes fk on a
corresponding input, and uses the result as the random coins for OTS.Gen. Because fk always returns the
same output on the same input, the signer can consistently regenerate any desired node as needed. To sign a
message, the signer then just signs relative to a randomly chosen leaf node. With high probability, no leaf is
ever used more than once, so (intuitively, at least) the scheme is secure. A full proof is rather involved, but
not especially difficult.

5

	One-Time Signatures
	From One-Time to Many-Time
	Collision-Resistant Hash Functions
	Improved OTS
	Chaining Signatures
	Improvements

