Controlling Hybrid Vehicles with Haskell

EF.T-N

Powering Business Worldwide © 2008 Eaton Corporation. All rights reserved

Overview

Eaton

Hydraulics Hybrid Venhicles

Haskell @ Eaton

 Atom: A DSL embedded in Haskell
Functional Programming Challenges

-1°N
EF.
Powering Business Worldwide

Eaton: Powering Business Worldwide

« Diversified Power Management
« Cleveland, OH; 81,000 Employees; $13 Billon in Sales

e Markets & Products

* Electrical
» circuit beakers, power distribution assemblies, uninterruptible power systems

Aerospace
* hydraulics, fuel systems, motion control, circuit protection

Truck
* transmissions, clutches, electric hybrid powertrain systems
* cruise control, collision warning, traction control systems

Automotive
e air, transmission, and fuel management controls
* superchargers, differentials
Hydraulics
* valves, pumps, motors, cylinders, fluid conveyance, filtration
* Golf Grips???
» [Eaton: Powering Business and Golf Balls Worldwide

E:T-N

Powering Business Worldwide

Hydraulic Control Valves

* Proportional Valves for Directional Control

-1°N
EF.
wering Business Worldwide

Por

Hydraulic Accumulators

 Compressed Nitrogen Stores Energy

Por

-1°N
EF.
wering Business Worldwide

Hydraulic Pumps and Motors

« Axial Piston Pump
* Positive Displacement
« Variable Displacement

-1°N
EF.
Powering Busine. wide

Hydraulic Pumps and Motors

* Bent-Axis Piston Pump

-1°N
EF.
wering Business Worldwide

Por

Building a Hydraulic Hybrid

— q

Transmission Engine

« Parallel Hybrid: Hydraulic Launch Assist (HLA)
* Augments conventional drivetrain.

Reservoir

-1°N
EF.
wering Business Worldwide

Por

Building a Better Hydraulic Hybrid

High Pressure Accumulator

Low Pressure Accumulator

» Series Hybrid: Decouples Engine from Wheels
* Run engine at optimal RPM. Shut off when not needed.
e Opens door to alternative engines: Free piston, HCCI.

-1°N
EF:1-
wering B

Por usiness Worldwide

HLA (Parallel) System

10

Haskell for Day to Day Stuff

ECU Flash Programming
« Hardware-in-the-Loop Simulation
 Differential Cryptanalysis

 Remote Vehicle Management

e Data logging, calibration, and re-programming
through WiFi and cell modems.

 Fountain codes for forward error correction.
» Distributed download, multicast.

Por

-1°N
EF.
wering Business Worldwide

Scripting, Data Conversion, Field Tools, etc.

11

Atom DSL

e Inspired by...
* Bluespec (Arvind and friends)
« STM

e Atom: Atomic State Transition Rules
 For embedded hard-real-time control software.
 Haskell + Atom = Safer Software
» Concisely express safety related behavior.
 Atom Compiler Automates:
* Multi-Rate Thread Scheduling
* No need for RTOS task scheduler.

* Multi-Rate Thread Synchronization
* No need to program with locks and semaphores.
* Multi-ECU Software Partitioning*

* No need to explicitly program ECUs independently.

* *not implemented yet, but possible

E:T-N

Powering Business Worldwide

12

Atom Semantics

Enabling Conditions balance <- double 0

system “deposit” $ do
™ when depositRequest
p balance <== value balance + amount

system “withdraw” $ do
\ when withdrawRequest

when $ value balance >=. amount
— bpalance <== value balance - amount

Actions
Rules Execute Atomically

E:T-N

Powering Business Worldwide

13

Atom Types and Values

data System a -- System monad collects variable and rule definitio
data Var a -- State variables.
data Term a -- Combinational expressions of variables.

-- Term Bool, Term Word8, Term Intl6, Term Double, e

-- Variable declarations.

bool - Bool -> System (Var Bool)
word8 :: Word8 -> System (Var Word8)
INt32 :: Int32 -> System (Var Int32)
double :: Double -> System (Var Double)

-- Variable reference.
value :: Var a->Term a

-- Term operations.

inv :: Term Bool -> Term Bool

(&&.) :: Term Bool -> Term Bool -> Term Bool

(==.) : Terma ->Term a -> Term Bool

(<)) :Terma->Term a->Term Bool

mux - Term Bool ->Terma->Terma->Terma
-- Instances of Num, Fractional, Floating, Bits, etc

E:T-N

Powering Business Worldwide

ns.

tc.

14

Atom Types and Values

-- Building system hierarchy. Each hierarchal node
-- Child system inherits parents execution rate.
system :: Name -> System a -> System a

-- Building hierarchy with timing information.
-- Child system executes at a factor of parent’s rat
systemPeriodic :: Name -> Int -> System a -> System a

-- Enabling conditions.
when :: Term Bool -> System ()

-- Variable assignment.
(<==) :Var a->Term a-> System ()

-- Compile an Atom description.
-- Specify top level name and base execution period.
compile :: Name -> Double -> System () -> 10 ()

E:T-N

Powering Business Worldwide

could be rule.

15

Atom Example: HLA Disengagement Fault

=~ ~featonfatom

1 godule Faults (failedToDisengage) where

Atom

—— | Monitor of HLA clutch disengagement.
failedToDisengage :: Term Bool -»> Term Bool -»> System (Term Bool)
failedToDisengage clutchCommand clutchFeedback = system

armed <- bool False —— Fault armgd.
fault <- bool False —— Fault active.
timer <— timer —— Timer.

system $ do
when $ inv % value armed
when § inv clutchCommand &&%. clutchFeedback
armed <== true —— Arm fault.
startTimerSec timer —— Start timer for 1/2 second.

system {1 do
when § value armed
when $% clutchCommand ||. inv clutchFeedback
armed <== false
fault «== false

system { do
when % value armed
when % timerDone timer
fault <== true

return § wvalue fault

"Faults.hs" 31L, 836C written

I
E-T-N

Powering Business Worldwide

Compiling Atom: Rule Scheduling

e Each Rule Associated with an Execution Period

* “Threads” are sets of rules with same period.
e Schedule rules to balance processing.

* Returns single C function to be called at base rate.

rule A (Ims, 10 instructions)

rule B (2ms, 5 instructions)

rule C (2ms, 10 instructions)

sample 1
rule A# 10
rule B # B)
——-fdleG# 10
oD #26

sample 2
rule A# 10
—fdleB-# 5
oD #1G

rule D (2ms, 5 instructions)

Total 30

Total 20

* Advanced scheduling is possible.
* eg. Splitting a rule execution across multiple samples.

E:T-N

Powering Business Worldwide

17

Compiling Atom: Rule Scheduling

 Thread Scheduling
 Compiler does the scheduling, not the OS.

* Timing semi-verified by compiler.
e Thread Synchronization
e Compiler adheres to rule atomicity.

* No need to program with locks and semaphores.

 Yeah! Life is Good!

-1°N
EF.
wering Business Worldwide

Por

18

Compiling Atom: Multi-ECU Partitioning

* Program the system as a whole. Let the compiler handle...
* ECU allocation.
 ECU communication and synchronization.
* Multiple ECUs for redundancy (ie. safety).
* Requires new compiler constraints: availability and integrity.
* Which rules are important, and which are less so?

E:T-N

Powering Business Worldwide

19

Challenges

« Limitations with Meta Programming
* Instance Eqg (Term a).

« Equality comparison of deep combinational expressions.

 GADTSs only for Meta, not Object Language
e Considered direct compilation, via YHC.
e System, not 10, as top monad.
e Functional Programming is a Tough Sell
* No traction with former 2 employers.
e Eaton is different.

-1°N
EF.
wering Business Worldwide

Por

20

Succeeding with Functional Programming
at Work

e Declare what to compute, not how to compute It.
 It's easler to ask forgiveness than to get permission.

-1°N
EF.
wering Business Worldwide

Por

21

Real Haskell Garbage Collection

e Mark and Sweep? No, Clump and DumpI

E:T-N

Powering Business Worldwide

22

E.T-N

Fowering bBusiness Worldwide

