
© 2008 Eaton Corporation. All rights reserved.

This is a photographic template – your
photograph should fit precisely within this rectangle.

Controlling Hybrid Vehicles with Haskell

2 2

Overview

• Eaton

• Hydraulics Hybrid Vehicles

• Haskell @ Eaton

• Atom: A DSL embedded in Haskell

• Functional Programming Challenges

3 3

Eaton: Powering Business Worldwide

• Diversified Power Management
• Cleveland, OH; 81,000 Employees; $13 Billon in Sales
• Markets & Products

• Electrical
• circuit beakers, power distribution assemblies, uninterruptible power systems

• Aerospace
• hydraulics, fuel systems, motion control, circuit protection

• Truck
• transmissions, clutches, electric hybrid powertrain systems
• cruise control, collision warning, traction control systems

• Automotive
• air, transmission, and fuel management controls
• superchargers, differentials

• Hydraulics
• valves, pumps, motors, cylinders, fluid conveyance, filtration
• Golf Grips???

• Eaton: Powering Business and Golf Balls Worldwide

4 4

Hydraulic Control Valves

• Proportional Valves for Directional Control

5 5

Hydraulic Accumulators

• Compressed Nitrogen Stores Energy

6 6

Hydraulic Pumps and Motors

• Axial Piston Pump
• Positive Displacement

• Variable Displacement

7 7

Hydraulic Pumps and Motors

• Bent-Axis Piston Pump

8 8

Building a Hydraulic Hybrid

Transmission Engine

Reservoir

Accumulator

• Parallel Hybrid: Hydraulic Launch Assist (HLA)
• Augments conventional drivetrain.

9 9

Building a Better Hydraulic Hybrid

Transmission Engine

High Pressure Accumulator

• Series Hybrid: Decouples Engine from Wheels
• Run engine at optimal RPM. Shut off when not needed.

• Opens door to alternative engines: Free piston, HCCI.

Low Pressure Accumulator

10 10

HLA (Parallel) System

11 11

Haskell for Day to Day Stuff

• Scripting, Data Conversion, Field Tools, etc.

• ECU Flash Programming

• Hardware-in-the-Loop Simulation

• Differential Cryptanalysis

• Remote Vehicle Management
• Data logging, calibration, and re-programming

through WiFi and cell modems.

• Fountain codes for forward error correction.
• Distributed download, multicast.

12 12

Atom DSL

• Inspired by...
• Bluespec (Arvind and friends)
• STM

• Atom: Atomic State Transition Rules
• For embedded hard-real-time control software.
• Haskell + Atom = Safer Software

• Concisely express safety related behavior.

• Atom Compiler Automates:
• Multi-Rate Thread Scheduling

• No need for RTOS task scheduler.

• Multi-Rate Thread Synchronization
• No need to program with locks and semaphores.

• Multi-ECU Software Partitioning*
• No need to explicitly program ECUs independently.
• * not implemented yet, but possible

13 13

Atom Semantics

Enabling Conditions

Actions

balance <- double 0

system “deposit” $ do
when depositRequest

balance <== value balance + amount

system “withdraw” $ do

when withdrawRequest
when $ value balance >=. amount

balance <== value balance - amount

Rules Execute Atomically

14 14

Atom Types and Values
data System a -- System monad collects variable and rule definitio ns.

data Var a -- State variables.

data Term a -- Combinational expressions of variables.

-- Term Bool, Term Word8, Term Int16, Term Double, e tc.

-- Variable declarations.

bool :: Bool -> System (Var Bool)

word8 :: Word8 -> System (Var Word8)

int32 :: Int32 -> System (Var Int32)

double :: Double -> System (Var Double)

-- Variable reference.

value :: Var a -> Term a

-- Term operations.

inv :: Term Bool -> Term Bool

(&&.) :: Term Bool -> Term Bool -> Term Bool

(==.) :: Term a -> Term a -> Term Bool

(<.) :: Term a -> Term a -> Term Bool

mux :: Term Bool -> Term a -> Term a -> Term a

-- Instances of Num, Fractional, Floating, Bits, etc .

15 15

Atom Types and Values
-- Building system hierarchy. Each hierarchal node could be rule.

-- Child system inherits parents execution rate.

system :: Name -> System a -> System a

-- Building hierarchy with timing information.

-- Child system executes at a factor of parent’s rat e.

systemPeriodic :: Name -> Int -> System a -> System a

-- Enabling conditions.

when :: Term Bool -> System ()

-- Variable assignment.

(<==) :: Var a -> Term a -> System ()

-- Compile an Atom description.

-- Specify top level name and base execution period.

compile :: Name -> Double -> System () -> IO ()

16 16

Atom Example: HLA Disengagement Fault

17 17

Compiling Atom: Rule Scheduling

• Each Rule Associated with an Execution Period
• “Threads” are sets of rules with same period.

• Schedule rules to balance processing.
• Returns single C function to be called at base rate.

rule A (1ms, 10 instructions)

rule B (2ms, 5 instructions)

rule C (2ms, 10 instructions)

rule D (2ms, 5 instructions)

sample 1

rule A # 10

rule B # 5

rule C # 10

rule D # 5

Total 30

sample 2

rule A # 10

Total 10

sample 1

rule A # 10

rule C # 10

Total 20

sample 2

rule A # 10

rule B # 5

rule D # 5

Total 20

• Advanced scheduling is possible.
• eg. Splitting a rule execution across multiple samples.

18 18

Compiling Atom: Rule Scheduling

• Thread Scheduling
• Compiler does the scheduling, not the OS.

• Timing semi-verified by compiler.

• Thread Synchronization
• Compiler adheres to rule atomicity.

• No need to program with locks and semaphores.
• Yeah! Life is Good!

19 19

Compiling Atom: Multi-ECU Partitioning

ECU ECUECU ECUAbstract ECU

• Program the system as a whole. Let the compiler handle...
• ECU allocation.
• ECU communication and synchronization.

• Multiple ECUs for redundancy (ie. safety).
• Requires new compiler constraints: availability and integrity.
• Which rules are important, and which are less so?

20 20

Challenges

• Limitations with Meta Programming
• instance Eq (Term a).

• Equality comparison of deep combinational expressions.

• GADTs only for Meta, not Object Language

• Considered direct compilation, via YHC.
• System, not IO, as top monad.

• Functional Programming is a Tough Sell
• No traction with former 2 employers.

• Eaton is different.

21 21

Succeeding with Functional Programming
at Work

• Declare what to compute, not how to compute it.
• It’s easier to ask forgiveness than to get permission.

22 22

Real Haskell Garbage Collection

• Mark and Sweep? No, Clump and Dump!

23 23

