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1. SUMMARY 

A NUMBER OF TECHNIQUES IN APPLIED MATHEMATICS AND STATISTICS involve 
what are called Monte Carlo calculations. Such calculations depend on having 
available sequences of numbers which appear to be drawn at random from par- 
ticular probability distributions. For convenience we will refer to any such 
numbers simply as random numbers. 

Our purpose is to survey the problem of obtaining these sequences of numbers, 
with particular emphasis on the procedures used for their generation on stored- 
program computers. The term "pseudo-random" is often used to describe the 
random numbers which are obtained on computers. 

We begin in section 2 with a brief indication of what types of calculations re- 
quire such a supply of random numbers. 

Then in section 3 we turn to the main topic, which is a thorough treatment of 
the number theoretic properties of the methods of generation called "mixed 
congruential", followed for comparison by a brief treatment of the older "multi- 
plicative congruential" methods. We find that the former have several theoretical 
advantages over the latter. We also refer briefly to some recent theoretical results 
concerning the serial correlation of the generated sequences. 

In section 4 we consider some of the statistical properties which must also be 
required of these sequences. Here the mixed methods lose some of their attractive- 
ness. Under certain circumstances they can produce sequences which fail to pass 
the required tests. On the other hand the multiplicative methods produce se- 
quences with consistently good statistical properties. 

In the final three sections we summarize other aspects of the subject. In 
section 5 we consider the problem of using numbers from the uniform distribution 
to obtain numbers from various other distributions. In section 6 we draw at- 
tention to several problems which seem to warrant further study. Finally, in 
section 7, we describe some of the historical development of the subject, and here 
we refer to other methods, and to other approaches to the problem. 

The bibliography is intended to be complete with respect to references con- 
cerned with the generation of random numbers on computers. It contains sub- 
stantially all such references to the open literature, as well as many references 
to government and company reports. In addition it contains a number of refer- 
ences concerning each of the related topics which are considered in this paper. 

2. CALCULATIONS REQUIRING RANDOM NUMBERS 

Random numbers are required in a wide variety of both commercial and 
scientific calculations. The term "Monte Carlo" is now commonly applied to any 
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calculation involving such numbers. The term was used first in 1946, in connection 
with a procedure developed by von Neumann and Ulam at Los Alamos [104]. 
Since then there has been a considerable growth of interest in Monte Carlo 
techniques, primarily because their potential has been so tremendously increased 
with the use of high-speed computers. 

Some types of calculations involve the use of random numbers in a natural 
way. For example, this is the case if one is following the path of a neutron or 
some other particle which is subjected to random collisions. Other examples 
occur in statistics, in the study of queues, in games of strategy, and in other 
competitive enterprises. In all these situations the randomness is inherent, and 
the calculations are simulations of the corresponding physical processes. Many 
examples of calculations of this sort will be found in the proceedings [83] of a 
symposium held at the University of Florida in 1954. An extensive bibliography, 
having abstracts with most of the references, has been added to these proceedings 
as an appendix. More recently a survey has been given by Bauer [4]. Nuclear 
reactor calculations are discussed by Richtmyer [104]. Applications to random 
walk problems are described in a book by Cashwell and Everett [15]. A unified 
approach to Monte Carlo methods for particle transport problems is presented 
by Spanier [113]. An interesting discussion of the general theory has been given 
by Hammersley [50]. Of course many other papers on individual problems 
have also appeared in recent years, in the social and in the life sciences, as well 
as in the physical sciences. 

Other types of calculations involve the use of random numbers in a much less 
natural way. Usually the situation is as follows. One requires a particular number 
which is the answer to some completely deterministic problem, such as the 

value of some definite integral f f(x) dx, where 0 < f (x) < 1. One then sets 

up a stochastic process with the property that the expected value of some random 
variable is the required number, and estimates this expected value on the basis 
of some (more or less sophisticated) sampling procedure. In the case of our 
integral, the process could be simply the drawing of two numbers a and b from 
the uniform distribution on the interval [0, 1). The random variable which is 1 if 
f(a) < b, and 0 otherwise, has the required expected value. 

Such stochastic processes have also been proposed for the solution of differ- 
ential and integral equations, for the finding of eigenvalues, and for the inversion 
of matrices. See particularly the bibliography in the proceedings [83] referred to 
above. A general theory has been discussed by Curtiss [20]. Experiments in com- 
puting multiple integrals have been carried out by Davis and Rabinowitz [21], 
while partial differential equations have been investigated by Ehrlich [25], and 
by Todd [125]. Several algorithms are presented in a book edited by Ralston 
and Wilf [99]. 

Generally speaking, Monte Carlo methods have not been particularly successful 
when applied to these less natural situations. However, they are indispensable 
in most of thoe natural applications, where there is often no alternative procedure. 

A characteristic of the Monte Carlo method is that the required solution 
is approached with an error which is 0(n112), where n is the number of trials, 
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or the number of elements in the sample. This means that each additional decimal 
digit in the result requires 100 times as much computing as the preceding one 
required. Ordinarily, then, one does not expect more than one or two significant 
digits in the result. Convergence can often be improved (although the - I power 
of n cannot be changed) by standard variance reducing techniques such as im- 
portance sampling. See, for example, the papers by Kahn [60] and by Marshall 
[79] at the Florida symposium; also [17, 18, 59]. 

3. THEORETICAL CONSIDERATIONS 

To handle the sort of problem we have mentioned briefly in the preceding 
section we would require sequences of numbers which at least appear to be drawn 
at random from certain probability distributions. The distributions may be uni- 
form, normal, Poisson, or some other. In section 5 we will indicate several ways 
in which a sequence from any such distribution can be obtained, once we have 
a sequence from the uniform distribution. Until then we will restrict our attention 
to sequences of numbers which might appear to be drawn from a uniform dis- 
tribution. 

There are many ways of generating such sequences. In this section we will 
concern ourselves only with the particular procedures which seem to be best for 
use on a stored-program computer. Our main objective will be to establish their 
basic number theoretic properties, and our results are summarized in the two 
theorems of this section. A second objective is to describe one other theoretical 
result which has recently been obtained. Questions concerning the statistical 
properties of our sequences will be dealt with in the next section. 

The computing scheme which defines the procedures is as follows. We begin 
with a positive integer x0, called the starting value, an integer a, called the 
multiplier, and another integer c. We also need a fourth integer m, called the 
modulus, which is positive and greater than the other three in magnitude. We 
then define a sequence {xi} of non-negative integers, each less than m, by 
means of the congruence relation 

(1) xi-axi-? + c (mod m). 

Finally, to obtain numbers in the interval [0, 1), we form the sequence {xl/m}. 
Of course any sequence generated in this way is completely determined in 

advance, and could hardly be called "truly random". However, for many values 
of the parameters defining such sequences, the resulting numbers might well 
seem to be quite haphazardly taken from the interval [0, 1). The extent to which 

they do appear to be drawn at random from the uniform distribution on this 
interval will be our concern in the next section. It turns out rather surprisingly 
that the statistical behavior of our sequences is good, with only a few exceptions, 
as long as they do not repeat too soon. We will therefore first concentrate on 

making sure that our sequences do not repeat too soon. 
Now it is clear that any sequence must repeat itself eventually, because it can 

contain at most m different numbers, each number in a particular sequence 
being ,determined solely by its predecessor. It happens to be quite easy to ensure 
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that we have the full period m in the general case, and to ensure that we have very 
nearly the full period in the important special case defined by c -0. Our two 
theorems will therefore prescribe conditions on xo, a, m, and, in the general case, 
c, which will ensure maximum possible period. 

We should point out that in practice we usually find it desirable to choose 
m to be a power of 2 on a binary machine, or a power of 10 on a decimal machine. 
We are then able to avoid the division which is implicit in the congruence, and 
also the division to form xi/m. Other choices are possible and will be referred to 
later. However, we can ordinarily take m as given, and then our problem is to 
find what choice of xo, a, and possibly c, will ensure a maximum period. 

The general case in which we do not require c to be zero is the simpler of the 
two and will be treated first. It appeared in 1960 in papers by Coveyou [19] and 
Rotenberg [107]. A more recent treatment has been given by Greenberger [41, 
42] and by Peach [97]. The method has also been tested by Kuehn [66]. A quite 
different approach to the essential idea had been given by Thomson [120] in 1958. 

The basic theorem is the following. 
THEOREM 1. The sequence defined by the congruence relation (1) has full period 

m, provided that 
(i) c is relatively prime to m; 

(ii) a -1 (mod p) if p is a prime factor of m; 
(iii) a 1 (mod 4) if 4isafactorofm. 
Thus with m a power of 2, as is natural on a binary machine, we need only 

have c odd, and a -1 (mod 4). With m a power of 10 we need only have c not 
divisible by 2 or 5, and a -1 (mod 20). 

For the proof of this theorem we first point ouit that when a 1, and c is 
relatively prime to m, the period is obviously m. We therefore need consider 
only the case a - 1, which we will henceforth assume. 

Using (1) with i = 1, 2, * , n - 1, we easily obtain 

xn =a nxo + (a' _ )C (mod m). 

and we are interested in the smallest value of n such that xn = xo, that is, such 
that 

(a - 1)(xo(a -1) + c) 0 (modi). 
a-i 

By the conditions of the theorem, xo(a - 1) + c is relatively prime to m. 
Thus we are interested in the smallest value of n such that 

2(2) (a -1)/(a- 1) 0 (mod m). 

We want to show that this smallest value of n is equal to m, provided the multi- 
plier a satisfies the conditions of the theorem. 

We will first prove this result for m = pa, where a is a positive integer, and p 
is an odd prime. When a = 1 condition (ii) leads us again to the trivial case 
with a 1. We therefore need only consider a > 2. 
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Because a satisfies the conditions of the theorem and a # 1, we can put 

(3) a= I+kp, 

where k is relatively prime to p and k - 0, and where 3 is a positive integer. 
To see that n = pa satisfies (2), we substitute this value of n into the left 

side of (2), along with the expression (3) for a. We easily obtain 

a - 1 a p (p ? 12 kp + P - l)(3 -2) (kp )2 

(4) a-i 1-2 1.243 

+ *** + (kp')Pa-l. 

We have to prove that this expression is divisible by pt. In fact it turns out 
that each term in this expression is divisible by pa. To see that this is the case 
we rewrite the jth term as follows 

~~ 1)] 1c~~1p~~~1~'3 (jIl> 1).. 
7 [ ~~1.2 ..(j - 1) 

p 
(j> ) 

The part of this term which precedes the factor kj3' is a binomial coefficient, 
and is therefore an integer. Each factor in the denominator of this part must 
therefore divide into the numerator of this part. But the part in square brackets 
is also a binomial coefficient, and hence an integer. Therefore j is the only factor 
in the denominator which, on dividing into the numerator, might "need" any- 
of the factor pa in the numerator. However the number of times the factor p can, 
appear in 3 is less than 

(5) -+-2 + 3 + 
P fi2 3P p-i 

and is therefore less than or equal to j - L. But the factor p appears at least 
this many times in p U-1), since e > 1. Thus the factor pa is not needed at all to 
enable j to divide into the numerator. Every term on the right side of (4) is 
therefore divisible by pa. This means that (2) is satisfied by n = pa, at least 
under the stated conditions. 

We must now show that no value of n smaller than pa will satisfy (2). It is 
easy to show that a value of n will satisfy (2) if and only if it is a multiple of the 
smallest such value; we use the idea in Ore [92, p. 280]. Knowing that it = p? 

does satisfy (2), we therefore need to consider only values of n which are powers 
of p. Indeed it is sufficient for ouir purposes to show that n = pa-l does not 

satisfy (2). 
Substituting n = pa- into the left side of (2), along with the expression (3) 

for a, we now obtain 

an a-1 Pa (pa -1) p + Pa1 (pa1 -1)(pa1 - 2) (kp)2 

a -1 p -+ 1.2 kp+12 3 

+ 
... 

+ (kp')P-1- 

We will show that the right side is not divisible by pa. The first term is obviously 
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not divisible by pa, and so it will be sufficient to show that each of the other 
terms is divisible by p'. The argument follows exactly the one given above for 
the jth term in (4), except for one small change. This time we have p'-, instead 
of pa, appearing as a factor in the binomial coefficient. We need another factor p. 
This other factor is to be found in p(jl)# provided we now make use of our assump- 
tion that p is odd, in which case (5) is less than or equal to j - 2, instead 
of j - 1. 

We have now completed the proof of the theorem when m = pa, and p is odd. 
The proof when mn = 2 is only slightly different. The case where a = I is again 
trivial. The case where a > 2 differs from the above in that in (3) the positive 
integer f must now be greater than 1. This restriction on / is needed only in the 
last sentence of the proof wvhich would become: "This other factor is to be found 
in p(j-]?)3 provided we now make use of our assumption that d > 1." 

Now that the theorem is established when m is restricted to being a power of 
a prime, it is quite easy to generalize to the case where m is composite. In fact 
we simply put 

M = PalPot2 ps a = 1 + kpiPp2.2 PS 

with pi prime, ao a positive integer, k - 0 and relatively prime to m, /i _ 1 or, 
if pi = 2 and ai _ 2, > > 2. Then the argument proceeds almost exactly as 
before, and the theorem is established in the general case. 

Before considering the merits of the random number generators suggested 
by the above theorem, we will consider briefly another class of generators. These 
others are obtained from (1) by taking c = 0, and are sometimes called multi- 
plicative congruential methods. They are also called power residue methods 
because, if we take xo to be relatively prime to mn, we are led to 

(6) an-1 (mod in) 

in place of (2). We are no longer able to choose a so that our sequence has full 
period m. We can, however, choose a so that the period is still quite large. 

The generators so obtained are the most widely used at the present time. The 
basic idea was introduced in 1949 by Lehmer [67]. In section 7 we will give more 
details of his special version. The version which is usually used has been discussed 
and tested by many authors including Bofinger and Bofinger [5], Certaine [16], 
Duparc, Lekkerkerker and Peremans [23], Gilbert [34], Hamming [51], Juncosa 
[58], Matteis and Faleschini [80], Meyer, Gephart and Rasmussen [84], Orcutt, 
Greenberger, Korbel and Rivlin [91], Taussky and Todd [118], and in an IBM 
report [56]. Such generators are also described in the surveys of Edmonds [24], 
Golenko [35], Page [94], Teichroew [119], Tocher [124], Votaw and Rafferty 
[134], and in a popular account by Spenser [114]. Only the decimal case is con- 
sidered by Moshman [85], while only the binary case is considered by Barnett 
[1], and Johnson [57]. Barnett corrects an error in a paper by Leslie and Gower [69], 

The basic theorem for the multiplicative congruential methods is more com- 
plicated arfd more difficult than for the mixed congruential methods. Because 
of this, and because special cases of the theorem have already appeared in a 
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number of the above papers, we will merely summarize the proof for the general 

case. For the details we will refer to standard results in number theory, as given 

for example by Ore [92, ch. 12]. 
We want to describe conditions on a which will ensure that the smallest value 

of n satisfying (6) is a maximum. This value of n is sometimes called the in- 

dicator of n, and will be denoted by X(mn). Any corresponding number a is said 

to belong to the indicator. 
We will reach the theorem in two stages. We first consider n to be composite 

m=p1 ip?t 2 2 
?3s 

where the p's are distinct primes. Then it is fairly easy to show [92, p. 293] that 

X(m) = l.c.m. (X(plal) X(p2a2), , X (Ps e)) I 

and that it is sufficient to have a belong simultaneously to each X(piai). Moreover 

it is a consequence of a theorem called the Chinese Remainder Theorem that 

there do exist such values of a [92, p. 294]. 
We therefore have only to consider the case where in is the power of a prime, 

say pa. But then the problem is a very well-known one in number theory. If p 

is odd it turns out that the indicator X (pa) = (p - 1) pal, and the corresponding 

values of a are the primitive roots for pa [92, pp. 284-288]. The result depends in 

part on a famous theorem of Euler's [92, p. 273]. It is in general extremely tedious 

to find primitive roots, but we will shortly describe a simple procedure which is 

sufficient for our purposes. 
If p = 2 we have primitive roots only when a = 1 (root is 1), and a = 2 

(root is 3). For other values of a it turns out that X(2 a) = 2`2, and 3 is a value 

of a belonging to this indicator. See [92, pp. 288-290]. It can also be shownl that, 

for a > 2, it is necessary and sufficient that a- ?3 (mod 8). For example, 

see [41]. 
We can summarize the main properties of multiplicative congruiential methods 

in the following theorem. 
THEOREM 2. The sequence defined by taking c = 0 in the congruence relation (1) 

has maximal period, provided that 
(i) x0 is relatively prime to in; 

(ii) a is a primitive root for pa, if pa is a factor of m, with p odd and a as large 

as possible, or with p = 2 and a = 1 or 2; 
(iii) a belongs to 2a-2, if 2 a is a factor of m, with a > 2. Moreover, for any m, 

there exist values of a satisfying these conditions, and, finally, the maximal period 

is the lowest common multiple of the periods, (p - 1) pa" or 2a-2, with respect to 

the prime power factors. 
In practice it is easy to satisfy condition (i). By insisting that a -4-3 (mod 8) 

we can also satisfy (iii). 
We still need a simple way to find primitive roots of prime powers when the 

prime is odd. One such way depends on the following result [92, p. 285-288]: 

if r'is a primitive root for p, and if r'-' = 1 + tp where t is not divisible by p, 

then r is a primitive root for pa. Moreover it is easy to see that if r satisfies the 

stated conditions then so will any iiumber which is congruent to r (mod p2). 
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Consider the case with p = 3. Here it is easy to verify that 2, 5, 8 are primitive 
roots for 3. It is also easy to verify that 2 and 5 satisfy the second condition re- 
quired of r, while 83-1 = 1 + (21)3, and so 8 does not. We conclude that, for 
ternary machines with word length a, we will obtain maximum period 2(3a-i) 

provided we choose xo to be not divisible by 3, and a (2 or 5) (mod 9). 
For the case p = 5, it is a straightforward matter to verify that the primitive 

roots are congruent to 2 or 3 (mod 5), and that it is sufficient to choose 
a -(2, 3, 8, 12, 13, 17, 22, or 23) (mod 25). 

For a decimal machine with word length a we can use the theorem to combine 
the effects of the factors 2' and 5a. We take x0 to be any number not divisible 
by 2 or 5. Then, for a = 1 we obtain the maximum period 4 by taking a = 3 or 7. 
For a 2 the maximum period is 20 and we can take a = 3, 23, 27, 47, 63, 67, 
83, 87. For a = 3 the maximum period is 100, while for a > 4 it is 5(10a2). For 
a > 3 we can take a -i (3, 13, 27, 37, 53, 67, 77, or 83) (mod 200). 

Perhaps we should emphasize that the conditions on a are sufficient, but by 
no means necessary. In fact for the decimal machine with a ? 3 it is also sufficient 
to take a = (19, 29, 59, or 69) (mod 200) for which the periods are only 
2(5 a-i), relative to the modulus 5a alone. It is even sufficient to take a _ i (11, 
21, 61, or 91) (mod 200) for which the periods are only 5a1, relative to 5a alone. 

Of the references on the multiplicative method which we have already men- 
tioned, the IBM report [56] and the report of Matteis and Faleschini [80] give 
the most complete prescriptions for choosing the multiplier a. Other authors have 
needed only a suitable value or two, and have sometimes presented a simple rule 
for choosing a. For example, a common rule for binary machines is to choose a 
to be an odd power of 5, such as 5i3. It is easily shown that any such a-- -3 
(mod 8). For decimal machines it is often suggested that a be a power of 3, 
where the power is relatively prime to 10, as in 317. It can be shown that such a 
multiplier will ensure maximum period. 

Let us now consider the relative merits of the mixed and multiplicative con- 
gruential methods. On the basis of the theoretical evidence obtained so far, it 
appears that the mixed have several small advantages over the multiplicative. 

The methods can both be made quite fast by choosing multipliers which are 
easily effected by "shift-and-add" operations. For example, with the mixed 
methods, we can use 2' + 1 on a binary machine, or 10' + 1 on a decimal ma- 
chine. One shift, and one add operation is needed in each case, followed by the 
addition of c. The simplest choice with the multiplicative methods is 2a + 3, or 
10a + 3, which in either case will involve one more operation. Incidentally such 
"'shift-and-add" procedures will leave the multiplier-quotient register unchanged. 

The mixed methods also of course have longer periods. But the periods are in 
either case extremely long, so this is not usually a real advantage. A case where it 
could be an advantage arises if one is using a computer with a variable word 
length. Then with the mixed methods one could use a shorter word length, for 
the period required, and consequently save on multiplication, or addition time. 

In some calculations we may want to use individual digits of our random num- 
bers as random digits. With multiplicative methods only the most significant 
digits have the maximum period, the other digits having periods which are pro- 
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gressively smaller as their significance decreases. Statistical evidence from some 
of the papers referred to in the next section indicates that only the first few digits 
can be relied upon. The situation is probably better with the mixed methods, 
although this point has not yet been investigated thoroughly. 

One final advantage of mixed methods lies in their relative simplicity. The 
basic theorem is much easier to establish, and the conditions are much easier to 
remember. 

The only disadvantage of mixed methods is in their statistical behavior. Their 
behavior in this respect is generally very good, but some cases are completely 
unacceptable. These cases constitute only a small fraction of the total, but there 
are no such cases among the multiplicative methods. 

Before considering the statistical properties any further, there is one more 
theoretical aspect of the problem which should be described. 

In the past, almost all theoretical work on random number generators has been 
concerned with number theoretical properties of the sequences generated, and 
in particular with period lengths. Very recently Coveyou [19] and Greenberger 
[41, 42] introduced some theoretical results of an entirely different nature. They 
calculated the serial correlation coefficient for a sequence with full period. The 
purpose was to show how this correlation coefficient depends on the param- 
eters involved; in this way we are led to choosing those parameters so that, be- 
sides having a long period, we also have a small serial correlation in the sequence 
generated. 

The most general expression for the serial correlation p is given by Greenberger 
[42]. It is 

p --(-)+ K, a am m 

where it can be shown that - a/m ? K _ a/m. Greenberger points out that very 
small or very large values of a are to be avoided. He also points out that values 
of a near to mi12 will yield small values of p, regardless of the value of c, and he 
gives details for a number of special cases. 

The above result is for a serial correlation of lag 1. Both Coveyou and Green- 
berger point out that correlations of lag k, for k > 1, can be obtained from the 
above. They show that the sequence consisting of every kth member of the original 
sequence is itself a sequence of the form (1), but with multiplier a", and additive 
constant (ak _ 1)c/(a - 1); both parameters should of course be calculated 
"cmod m". 

4. STATISTICAL TESTS 

Having completed a theoretical investigation of both the mixed congruential 
and the multiplicative congruential methods of random number generation, we 
now turn our attention to a study of their behavior from a statistical point 
of view. 

Our purpose all along has been to obtain sequences of numbers which can be 
consid,ered to be drawn at random from a uniform distribution. The key phrase 
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here is "can be considered to be". We know our numbers are not drawn at random 
from a uniform distribution, but for practical purposes it is sufficient that they 
have the appearance of being so drawn. This is of course not the first time in life 
where we meet a situation in which it is only the appearance of what we are 
doing that matters! 

Our congruential methods are completely deterministic. Our hope is that we 
will nevertheless be able to use them to simulate a random process. As a matter 
of fact the situation is not so very different from "random processes" like the 
rolling of dice. At least from the point of view of Newtonian mechanics the rolling 
of dice is completely deterministic. Nevertheless much of what happens is ade- 
quately described by a probabilistic model. 

Whether or not a set of numbers appears to have come from a particular 
distribution is a standard question for statistical techniques. Many tests have 
been devised and studied. When one does not have in mind any alternative to the 
particular distribution being considered, it is quite natural to use the well-known 
x2 test on some particular property of the distribution. 

For example, it is natural to require our sequence of numbers to be uniformly 
distributed over the interval [0, 1). To test them for this property we can divide 
the interval into a number of equal sub-intervals. We could use 10 sub-intervals 
with decimal arithmetic, perhaps 8 with binary arithmetic. The frequency fi, 
or the number of numbers in the ith interval, can then be obtained for a sequence 
of numbers. We then compute the statistic 

X2 k (fn) 

where n is the length of the sequence, and k is the number of sub-intervals. It is 
well-known that this statistic has, for large n, a x2 distribution with k - 1 degrees 
of freedom. This means, for k = 10 for example, that this statistic would be ex- 
pected to exceed 16.9 with probability only 5%, provided the sequence is actually 
drawn at random from the uniform distribution. 

One could also compare sample moments with those expected from the 
uniform distribution. These tests are like the frequency test just described in 
that they do not depend on the order in which the numbers are generated. 

Another class of tests does depend on the order. Perhaps the best known of 
these, at least in this context, is the serial test. We can define this test by first 
letting fij be the number of numbers in the ith interval which are followed by a 
number in the jth interval. Then we compute 

n k (f k 7)2 

It was shown by Good [38, 39] that x22 - x12 has asymptotically a x2 distribution 
with k12 - k degrees of freedom, and also that x22 - 2X12 is asymptotically x2 
with (k - 1)2 degrees of freedom. 

The frequency test and the serial test were proposed in two well-known papers 
by Kendall and Babington-Smith [61, 62], although they had in mind tests for 
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certain sequences of digits, rather than sequences of numbers. They also proposed 
a "poker test", and a "gap test". These papers appeared in 1938 and 1939, 
which was long before arithmetic processes were used in the generation of random 
numbers. The tests, especially the first two, are still widely used. However the 
correction by Good, of their statistic for the serial test, should be noted [38, 39], 
as has been pointed out by Tompkins [127]. 

At about the time of the Kendall and Babington-Smith papers there also 
appeared related papers by Nair [89], Yule [142], and Kermack and McKendrick 
[64, 65]. The latter introduced tests based on the expected occurrence of runs 
in a random sequence. An error in their procedure has been pointed out by Levene 
and Wolfowitz [70]. For examples of tests introduced in the early 1940's, refer- 
ence should also be made to Dodd [22], to Gage [32], to Rosander [106], and to 
Swed and Eisenhart [117]. 

In 1950 Gruenberger [45] gave a brief description of the tests proposed by 
Kendall and Babington-Smith. Since then a number of other tests have been 
proposed. Gruenberger and Mark [46] proposed a "d2 test" which was designed 
to test the suitability of random numbers as spatial coordinates in certain Monte 
Carlo calculations. Later there appeared a "coupon collector's test" by Green- 
wood [43], a "partition test" by Butcher [10], and a test for grouping by Wall 
[136]. The standard tests along with a number of variants are also described in 
most of the references which were given in section 3. 

For completeness we also mention a test for repeating cycles given by Hunter 
[55], but this test has nothing to do with the randomness itself. 

Of course tests for randomness are of interest apart from the context of random 
number generators, and there are many references on the subject. The most 
important source is probably the Annals of Mathematical Statistics. 

The term "pseudo-random" is often used to describe sequences of numbers 
which are able to pass tests for randomness, even though the sequences may have 
been generated by a completely deterministic process. In this way one may 
avoid becoming involved in any philosophical arguments about the meaning of 
randomness, arguments which, according to Kendall and Babington-Smith [61], 
are "of an abstract metaphysical character bordering at times on the theologi- 
cal". One may even avoid being accused of immorality! Indeed, von Neumann 
[133] stated that anyone who uses arithmetical methods to produce random num- 
bers "is, of course, in a state of sin". 

Lehmer [67] described a pseudo-random sequence as "a vague notion embody- 
ing the idea of a sequence in which each term is unpredictable to the uninitiated 
and whose digits pass a certain number of tests, traditional with statisticians 
and depending somewhat on the uses to which the sequence is to be put". 

We have already stated that the multiplicative methods behave well statisti- 
cally. Most of the references on these methods given in section 3 include the 
results of tests, and there are no examples reported of unsatisfactory behavior. 
We could add the favorable reports by Cameron [13], Forsythe [29], and a more 
recent one by Sobol' [111]. Information referred to in an abstract by Cameron 
[14] is,summarized by Taussky and Todd [118]. 
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Our own experience confirms this conclusion. We computed both x12 and x22 
for blocks of 1024 numbers, using eight equal sub-divisions of the interval [0, 1). 
The results for 100 consecutive blocks were compared with the expected dis- 
tribution of x2 values; here we divided the interval [0, oo) into percentiles, and 
calculated one x2 statistic for the x12 values, and another for the x22 values. The 
procedure was repeated for 513 different multipliers. We were using a binary 
machine with a = 35, and we took xo = (377777777777) 8, while the multipliers 
were a = (376003)8 + (10)8S, S = 0, 1, 2, ... , 512. These multipliers are near 
to M'12. The results were entirely consistent with the hypothesis that the sequence 
was drawn at random from the uniform distribution. 

The mixed congruential methods are much newer and experience with them 
has been reported in only a few cases. Rotenberg [107] reports satisfactory results 
with a very short sequence (4096 numbers) using a = 27 + 1 with a = 35. 
Kuehn [66] has had success with 500,000 numbers using a = 29 + 1 with a = 47. 
On the other hand Peach [97] has found evidence of some undesirable patterns, 
although he obtained satisfactory statistical results with over 250,000 numbers 
using a = 211 + 1 with a = 28. 

Our own experience using mixed generators has been with a decimal machine, 
usually with xo = 0, c = 1, and a = 10. Again we performed tests on the dis- 
tribution of the values of x12 and x22 for 100 consecutive blocks. This time each 
block consisted of 1000 numbers, and we used 10 equal subdivisions of the in- 
terval [0, 1). 

We performed tests on more than 600 different multipliers. We believe that 
about 1 percent of all possible multipliers may be completely unacceptable, in 
the sense that they lead to values of X2 which are ridiculously large. (We found 
some as large as 900.) While not complete, the evidence indicates strongly that 
any multiplier which is unacceptable in this sense, must be congruent to 1 (mod 
500). Of those that were not acceptable, some became acceptable when we used 
more complicated values of c. Others were found to have failed because the x2 
values for the individual blocks were too nearly the same, although the individual 
blocks themselves would have been considered quite acceptable. 

We were of course interested in simple multipliers, especially those which 
could easily be effected by "shift-and-add" instructions. For example, the multi- 
plier 105 + 1 was unacceptable, and was not sufficiently improved with more 
complicated values of c. On the other hand 103 + 1 was acceptable, even with 
c = 1. 

It should be emphasized that our criterion for acceptance has been quite 
arbitrary. Passing tests like the frequency test and the serial test would be con- 
sidered necessary in most applications, but hardly sufficient. The difficulty is to 
choose tests which reflect the requirements of the problem to be solved. In a 
private communication, R. R. Coveyou refers to experiences in which special 
correlation within a sequence has caused erroneous results in Monte Carlo calcu- 
lations, in spite of the fact that routine statistical tests did not reveal the existence 
of such correlation. He draws attention to the need for more quantitative infor- 
mation about the reliability of tests. 
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Another approach which suggests itself is to use sample problems on which 
to test Monte Carlo techniques. We have already referred to the experiments on 
multiple integration by Davis and Rabinowitz [21], and to the work on partial 
differential equations by Ehrlich [25], and by Todd [125]. The techniques have 
received further confirmation in an interesting study by Bazley and Davis [3] 
of the game of Chutes and Ladders. Several other examples are given by 
Todd [126]. 

5. NON-UNIFORM DISTRIBUTIONS 

So far we have been concerned only with the generation and testing of numbers 
which appear to be uniformly distributed. This restriction of our interest is 
justifiable because, in principle at least, it is easy to obtain any other distribution 
from the uniform distribution. For one dimensional distributions we need only 
solve the equation x = F(y) for y, where x is uniformly distributed, and where F 
is the required (cumulative) distribution function. 

For example, if y is to be normally distributed, with mean 0 and variance 1, 
we have 

x =%fY [ e-u2!2 du, - o < y < cc. 

Another example of interest is given by 

(7) x= 1-e-2, 0<y< oo. 

One could of course tackle the problem directly by entering a table of values 
of F(y) to find y for a given x. For example see Lytle [72]. Storage requirements 
on a computer would be prohibitive with this direct approach, if many significant 
digits were required. 

Alternatively one might try to find an expression giving y in terms of x, or at 
least an approximation to y in terms of x. The first extensive results in this area 
were given by Teichroew in his thesis in 1953 [119]. To obtain normal deviates 
he first takes a sum of a fixed number of uniform deviates. By the Central Limit 
Theorem this sum is approximately normally distributed. A Chebyshev poly- 
nomial is then used to improve this approximation. The relevant parts of his 
thesis are summarized in a book edited by Solomon [112]. 

Different Chebyshev approximations over different intervals are used by 
Muller [86] to obtain the normal distribution. A rational approximation is used 
by Juncosa [58]. 

The normal distribution has also been considered by Butcher [11], by Leslie 
and Gower [69], and by Page [94]. Muller [87] describes and compares a number 
of procedures for generating normal deviates, including a particularly attractive 
one by Box and Muller [8]. 

Marsaglia [75, 76, 77, 78] has recently developed an alternative approach. His 
approximations are in two parts. One part, consisting of the superposition of a 
number of simple distributions, is computed most of the time. The other part is 
quite complicated, but it rarely need be computed. 
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Thus Marsaglia's method depends on expressing y in the form afi(x) + 
b f2(x), approximately, where a >> b > 0, a + b = 1, and fi is simple. The ap- 
proximations are to be found by computing fi(x) with probability a, and f2(x) 
with probability b. 

Wendel [139] points out that we can avoid extracting roots to obtain y, where 
F(y) = y5, 0 ? y < 1. We need only take y to be the maximum of five inde- 
pendent values of x from the uniform distribution on [0, 1). 

A quite different approach was introduced by von Neumann [133] in 1951. It 
involves an acceptance-rejection technique, which we will illustrate by stating 
one of the results established by von Neumann. To obtain a sequence of numbers 
which appears to be drawn from the distribution in (7), we proceed as follows. 
We choose a sequence of numbers x1, x2, *** from the uniform distribution. 
There is a smallest n for which x1 > x2 > ... > xn while xn ? x,,1 . If this n is 
odd we accept Yi = xi . But if this n is even, we choose another sequence. If the 
next n is odd we accept y, = xi + 1 where now x1 is the first number in the new 
sequence. But if this second n is also even, we again repeat. We keep repeating 
the process until we obtain an n which is odd, say on the ith attempt. Then we 
accept y, = x1 + i - 1 where x1 is the first number of the ith attempt. We then 
start all over again to find Y2, and so on for y3, Y4, I e 

A general discussion of the acceptance-rejection technique, and others, is 
given by Butler [12], who refers to von Neumann's paper, and to another by 
Votaw and Rafferty [134]. Clark and Holz [18] give detailed proofs in the case of 
the above exponential distribution, along with an extensive table. See also 
Golenko [35], and Kahn [59]. The latter is not readily available, but it does con- 
tain a very extensive treatment of the problem of non-uniform distributions, 
including the idea exploited by Marsaglia, and many applications of acceptance- 
rejection techniques. 

A somewhat different problem, of interest in combinatorial situations, is that 
of generating random permutations. Here one would like to associate a particular 
permutation of a fixed number of integers 1, 2, * - *, n, with each of n! distinct 
numbers. For example, if n = 3 and our machine is a decimal machine, we could 
examine only the most significant digit in each random number. Our 6 permuta- 
tions could then be associated with 0, 1, 2, 3, 4, 5, while random numbers be- 
ginning with 6, 7, 8, or 9 would be ignored. The general "association" problem 
has been considered in detail by Lehmer [68] along with some related questions. 
See also Tompkins [129], and Rao [101]. 

Another problem of importance is that of generating points which are uni- 
formly distributed on an N-sphere. For an efficient way of deriving such a 
sequence from numbers which are uniformly distributed on [0, 1), see Muller [88]. 

For the generation of correlated numbers see Pakov [95]. 

6. FURTHER CONSIDERATIONS 

In this section we want to draw attention to several areas in which there seems 
to be a need for further research. 

More results are needed in the area recently opened up by Coveyou [19] and 
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Greenberger [41, 42], and already referred to at the end of section 3. Here the 
problem is to determine theoretically the way in which various statistical proper- 
ties of the generated sequences depend on the parameters. One might then learn 
how to choose these parameters so as to ensure good statistical properties of the 
sequences, as well as ensuring sufficiently long periods. 

This immediately raises another important question. What do we mean by 
good statistical properties? Just passing a fixed set of tests is rather arbitrary. 
It would seem desirable to insist that the tests at least reflect the requirements 
of the particular problem to be solved. For example, it is clear that only the 
frequency test need be passed if the application is independent of the order in 
which the numbers appear, as it is in numerical integration. On the other hand 
it is easy to think of situations in which the order would be extremely important. 

Thus a second area that might be worth investigating is one of showing that 
certain tests reflect the requirements of certain classes of problems. One could 
study certain canonical problems which might themselves be used for test pur- 
poses. Of course it would be particularly gratifying if the performance of particular 
generators with respect to any such tests could also be predicted theoretically. 
We must expect that the very best sequences for a particular purpose may be so 
carefully tailored to that purpose, that they are no longer random. Perhaps some 
systematic sampling procedures will be needed. One such possibility has already 
been considered by Richtmyer [102, 103]. See also Halton [47], Hammersley [50], 
Peck [98], and Richtmyer, Devaney and Metropolis [105]. 

A third area, which we have studied to some extent, concerns the question 
of what might be called "local" behavior of our random sequences. To explain, 
let us first point out that an idealized, completely random sequence can be ex- 
pected to fail a particular one of the usual statistical tests 5 per cent of the time, 
as long as we use the 5 per cent level of significance. Thus, if we needed blocks 
of random numbers for each of a large number of runs, we could expect one block 
in every twenty to exhibit what we might consider undesirable behavior. Of 
course what is desirable and what is not desirable must ultimately depend on 
the problem to be solved. 

This possibility of bad "local" behavior even in a sequence with good global 
behavior, was first mentioned by Kendall and Babington-Smith [61, 62]. 

We became concerned about the possibility of such bad local behavior occurring 
even more often than 5 per cent of the time. We conjectured that if this were 
the case it would be more likely to show up when smaller moduli were being used. 
The evidence so far is to the effect that with very small moduli, of the order of 
212, there is such a phenomenon associated with some of the multipliers which 
guarantee maximal periods, but not with the majority. We have so far found no 
such evidence with moduli of the more usual size (1010 and 235). 

The possibility of unsatisfactory local behavior occurring, even in a sequence 
which as a whole has passed all required tests, suggests that we take some pre- 
cautions. One such precaution is to have subroutines which not only generate 
random numbers, but which, when deemed necessary, can be required to accu- 
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mulate the counts needed for an eventual calculation of the relevant statistics. 
Perhaps these results could be made available along with the answer, to provide 
a measure of reliability for the answer. 

Some investigations have been made of another class of generators, called 
"additive". An example of such a generator is obtained if one begins with two 
integers xo and xi and then defines the rest of the sequence by means of 

Xn+i _xn + xn-1 (mod m). 

Results with this simple Fibonacci sequence have not been very satisfactory. A 
number of variants have been suggested, but they can be much more complicated 
than the simple one given here. In this case they lose the advantage in speed 
over our earlier methods. However, it is possible that this class of generators 
has not received sufficient attention. 

Additive generators of various kinds have been considered by Duparc, Lekker- 
kerker and Peremans [23], Farrington [26], Gilbert [33], Green, Smith and Klem 
[40], Gross and Johnson [44], Neovius [90], Taussky and Todd [118], 
van Wijngaarden [130], and Wall [136]. Related mathematical results have been 
considered by Wall [135], and Mamangakis [74]. 

Theoretical results regarding periods and other properties of a very general 
class of sequences, including both multiplicative and additive generators, have 
recently been given by Zierler [143]. 

7. HISTORY 

The idea of using arithmetic processes for the generation of random numbers 
is less than fifteen years old. Before describing any further the development 
that has taken place during this time, we will indicate very briefly what seem 
to be the main steps leading up to this development. 

The general idea of simulation is a very old one. Even the more specific idea 
of simulation with the help of some particular stochastic process can be traced 
back several hundred years, to near the beginningof probability theory, toBuffon's 
needle, and so on. 

But the idea of using random sampling to estimate distribution functions, and 
the beginning of a systematic development of this idea, is apparently due to 
Student [116] in 1908. Then, and for some time later, random numbers were ob- 
tained by drawing cards from a "well-shuffled" deck, by drawing counters from 
a "well-stirred" urn, or by rolling dice. For relatively recent examples see 
Hamaker [48], and Walsh [138]. In the last year or two, special icosehedral dice 
for the generation of decimal digits have been put on the market [128]. 

The use of cards, counters or dice is a very slow process. Moreover it is ex- 
tremely difficult to shuffle well, or even to know when you have shuffled well. 
At Karl Pearson's suggestion, L. H. C. Tippett therefore prepared a list of random 
digits which he had collected from census reports. Tippett describes his work 
in a paper [122], published in 1925 in which he states that his digits "were taken 
at random from census reports"! His table [123] of 41,600 digits first appeared 
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in 1927. In the foreword to this table, Karl Pearson shows how these uniformly 
distributed digits can be used to give random samples from a distribution which 
is non-uniform. 

A table of 100,000 digits was published in 1939 by Kendall and Babington- 
Smith [63]. These digits were the first to be produced by a machine. (See also 
Vickery [131].) Their machine is described in two papers [61, 62] which just pre- 
ceded the publication of the table. These papers are often referred to, mainly 
because they contain proposals for the frequency, serial, poker, and gap tests, 
which we mentioned in section 4. The question of local randomness is also dis- 
cussed by Kendall and Babington-Smith, and they indicate in their table which 
blocks do not pass all tests. (There are five such, of 1000 digits each.) 

Kendall and Babington-Smith also applied their tests to digits obtained from 

a telephone directory. They concluded that telephone numbers were an unsatis- 
factory source of random digits. On the other hand, Kermack and McKendrick 
had been satisfied with digits they had obtained from telephone numbers. Kendall 
and Babington-Smith are able to dismiss this apparent discrepancy with the 
simple remark that Kermack and McKendrick's result "stands in contrast to 
our results with London telephone numbers, but Kermack and McKendrick are 
apparently dealing with a five-figure Scottish exchange"! 

With Tippett's table as his starting point, Mahalanobis constructed, in 1934, 
a table of normal deviates [73], but the table contains a number of errors [108]. A 
corrected version has recently appeared [109]. In 1948 Wold published a table of 
normal deviates [141], which was based on the table of Kendall and Babington- 
Smith. Correlated normal deviates have since been published by Fieller [27]. 

Numerous other tables have been published but we will mention just one more. 
The most extensive to date was published in 1955 by the RAND Corporation 
under the title: "A Million Random Digits with 100,000 Normal Deviates" 
[100]. See also a review by Tompkins [127]. The digits were generated by ma- 
chinery, as described by Brown [9], and they have been thoroughly tested. They 
are available on punched cards. 

With the introduction of computing machines in the 1940's it became desirable 
to have more efficient ways of generating random numbers. One suggestion was 
to build apparatus which could use the "random" signals from some source of 

electrical noise to produce random numbers within the computer when required. 
Such apparatus is better known to users of analogue computers. For examples 
involving digital computers we refer to Golenko and Smiriagin [37], Pawlak 

[96], Sterzer [115], and von Hoerner [132]. Another machine in current use is 

ERNIE [7, 121], but this equipment is not part of a computer. It can produce 
digits at the rate of about fifty per second. But these digits are used solely to 

determine the numbers in the Premium Savings Bonds lottery, which is operated 
by the British Post Office. 

Although the numbers produced by some of these machines have satisfactorily 
passed tests for randomness, their use as attachments to general purpose com- 

puters is quite unusual. Early concern over maintenance of operation is probably 
no longer a valid reason, even though a substantial amount of apparatus might 
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be needed to provide numbers rapidly enough for fast machines. It does however 
seem to be extremely difficult to maintain the randomness itself. Suggestions 
for removing bias from a sequence of numbers which are not sufficiently random 
have been given by Horton [52], Horton and Smith [53], Tocher [124], 
von Neumann [133], Votaw and Rafferty [134], and Walsh [137]. However, to 
avoid any uncertainty, one might still waste time carrying out tests of the num- 
bers being produced. The cost of the extra equipment does not seem to be justi- 
fiable. One final objection arises because, in the course of debugging a program, it 
is usually advantageous to be able to reproduce calculations exactly. 

An alternative to generating numbers as needed is to put a table of random 
numbers on cards, or on magnetic tape, for use by the computer. The numbers 
would of course not be stored in the main memory of the computer, and it would 
be necessary to tie up one input device. Moreover, unless that device is well 
buffered, the time required will probably be longer than the time needed to 
generate a number by some arithmetic process. 

Thus, since the introduction of computers during the 1940's, there has been a 
steady interest in the development of efficient and reliable arithmetic generators. 
Perhaps we should add "at least for most purposes", because we cannot expect 
an arithmetic generator to replace ERNIE! 

The first suggestion for an arithmetic generator was due to von Neumann 
and Metropolis, in about 1946. This was the "middle-square" method, in which 
the next number in the sequence is obtained by using the middle digits of the 
square of the previous number. The method has been discussed by Forsythe 
[30], Hammer [49], Mauchly [81], Metropolis [82], Taussky and Todd [118], 
and others. This method is difficult to analyse, and it has not always produced 
satisfactory results. However runs of about 750,000 numbers were used success- 
fully at Los Alamos for many years [15]. 

As already mentioned, the invention of multiplicative congruential methods 
was due to Lehmer [67] in 1949. He first proposed the multiplier a = 23, with the 
modulus rn = 108 + 1, which produced sequences of more than 5 million, 8 
decimal digit numbers on ENIAC. Lehmer's method has recently been tested 
by Liniger [71]. A binary form of Lehmer's method had been tested earlier by 
Johnson [57]. A variant of the method has been proposed by Page [93]. 

An apparent advantage of Lehmer's method, over the more usual methods with 
in a power of 2 or 10, is that the least significant digits do not have short periods. 

A radically different generator was recently introduced by von Hoerner [132], 
and tested by Fisser [28]. It is complicated, and does not seem to offer any ad- 
vantages over the more usual procedures. 

Other alternatives have been based on certain ergodic theorems given by 
Weyl in 1916 [140]. For example, his theorems guarantee that the fractions 
1rn2 - [rn2], for n - 1, 2, - , are uniformly distributed in (0, 1). This suggests 
that rounded approximations to these fractions might furnish sequences of 
random numbers. Some work has been published in this area by Bass and 
Guilloud [2], Franklin [31], and Golenko [35, 36]. 

The randomness of the digits in the decimal expansions of e and wr has been 
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investigated. See Greenwood [43] and the references given by him. However, 
because of the difficulty of generating such digits, it is not seriously proposed that 
any method of generation be based on their apparent randomness. A new value 
of ir to 100,000 decimal places has just recently been published [110], but no 
statistics are reported. 

In conclusion it appears that, for Monte Carlo calculations on stored-program 
computers, the random numbers can be best supplied by an arithmetic generator 
of either the multiplicative or mixed type. (The only exception would seem to be 
when one's needs are limited, and when one has available an extra input device 
which is well buffered.) The mixed methods have a number of theoretical ad- 
vantages over the multiplicative, but more care is needed in choosing mixed 
methods which will satisfy the statistical requirements. 

Perhaps we can also look forward to a future in which we will be able to provide, 
on demand, generators to suit specific purposes. The ideal would be to know what 
statistical properties we required of a particular sequence, and then to design a 
generator to produce such a sequence. We would use only sequences which were 
carefully manufactured to suit our purposes. Under such circumstances, how 
could anyone manage to get along with sequences which were known only to be 
truly random! 
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SUPPLEMENTARY REFERENCES 

Added in Proof 

Several additional references have recently come to our attention. 
Franklin [3'] has given a very thorough theoretical study of the statistical properties of 

several sequences including the Weyl sequence, and the mixed congruential sequence (which 
he calls the multiply sequence). Although he does not consider the restrictions imposed by 
the finite word-length of a computer, his results are certainly suggestive of what might be 
expected in practice. 

A text on Monte Carlo methods has appeared in Russian [1']. Its first chapter is entitled 
"Construction of a set of random numbers on electronic digital computers". 

Isida and Ikeda [4'] describe apparatus for the generation of random digits. Pathria [5'] 
reports on the statistics of the first 10,000 digits in 7r. Clark [2'] reports errors in a paper by 
Muller [861. 
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