
The Linked Media Framework

Integrating and Interlinking Enterprise Media Content and Data

Sebastian Schaffert
Knowledge and Media

Technologies
Salzburg Research
Salzburg, Austria

sschaffe@salzburgresearch.at

Thomas Kurz
Knowledge and Media

Technologies
Salzburg Research
Salzburg, Austria

tkurz@salzburgresearch.at

Dietmar Glachs
Knowledge and Media

Technologies
Salzburg Research
Salzburg, Austria

dglachs@salzburgresearch.at

Christoph Bauer
Documentation and Archive
Österreichischer Rundfunk

Vienna, Austria
christoph.bauer@orf.at

Fabian Dorschel
Red Bull Media House

Salzburg, Austria
fabian.dorschel

@at.redbullmediahouse.com

Manuel Fernandez
Red Bull Media House

Salzburg, Austria
manuel.fernandez

@at.redbullmediahouse.com

ABSTRACT
This article presents the Linked Media Framework (LMF), a
platform for integrating and interlinking structured data and
media content in enterprises and on the Web. The Linked
Media Framework is based on the Linked Data principles,
but extends these on two important aspects: resource-
centric updating and uniform management of resource con-
tent and metadata. Both aspects are important for enter-
prise information integration but not implemented by cur-
rent Linked Data servers. In addition, the LMF offers the
query language LD Path, a path-based language that al-
lows intuitive resource-centric querying and traversal over
distributed Linked Data resources and is thus more suit-
able for querying Linked Data than SPARQL. Finally, we
describe two real-world scenarios where the LMF is already
used or will be used for interlinking and semantic search:
interlinking of multimedia fragments at the Red Bull Con-
tent Pool, and interlinking of news archive material at the
Austrian Television.

1. INTRODUCTION
Linked Data offers a big potential for enterprises in the me-
dia and knowledge management area. On the one hand,
more and more datasets are published following Linked Data
principles and thus give the opportunity to link enterprise
content with background information and also allow disam-
biguation of concepts. No single enterprise would be capable
of managing a standardised vocabulary the size of DBPedia
or a location database the size of GeoNames. On the other
hand, Linked Data can also offer a comparably simple solu-
tion for enterprise information integration inside companies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
I-SEMANTICS 2012 , 8th Int. Conf. on Semantic Systems, Sept. 5-7, 2012,
Graz, Austria
Copyright 2012 ACM 978-1-4503-1112-0 ...$10.00.

However, enterprises are still hesitating to use Linked
Data in their value chains. From our experience with work-
ing with industry partners, one of the main barriers in the
adoption of Linked Data is that the technology is still not
easy enough to use and does not integrate well with existing
information systems. Particularly, accessing data from the
Linked Data Cloud is still cumbersome, and Linked Data
has so far mostly been seen as a read-only and metadata-
only source, while enterprise data usually is highly dynamic
and involves both content and metadata. We are therefore
focussing in this article on the following aspects:

1. how to extend the Linked Data principles with REST-
ful principles for addition, modification, and deletion
of resources

2. how to extend the Linked Data principles by means to
manage content and meta-data alike using MIME to
URL mapping

3. how to offer straightforward, path-based querying over
the Linked Data Cloud to make Linked Data resources
more easily accessible

These issues are motivated by real-world scenarios that we
are investigating at Salzburg NewMediaLab in the areas
of enterprise integration and media asset management (see
also Section 5). In both scenarios, resources typically de-
scribe media or document content (so-called information re-
sources). So while most existing Linked Data services are
only concerned about structured data, our scenarios require
treatment of both content and metadata (e.g. the media
assets stored in an asset management system and the meta-
data about these assets). And whereas in most existing cases
publishing the datasets as Linked Data is a secondary ser-
vice where the main data source is still a proprietary or
non-standardised format (e.g. Wikipedia in the case of DB-
Pedia), in our scenarios Linked Data is the primary means
of publishing metadata. This immediately gives rise to the
question how to update and interact with the Linked Data
service in a resource-centred way beyond consuming. Be-
sides the use cases we are working on, both extensions also
give rise to new kinds of interactive Linked Data mashups.

The main contributions of this article are first a concrete
and detailed proposal for the extension of the Linked Data
principles for updates and for content access (Section 2),
second the proposal of a path-based language for querying
data on the Linked Data Cloud (Section 3), and third the
implementation of a Linked Data server (called the “Linked
Media Framework” or short “LMF”) that implements and
demonstrates these extensions (Section 4). Our approach is
currently validated in several applications, two of which are
described in Section 5. Section 6 compares our approach
with related work.

2. THE LINKED MEDIA PRINCIPLES
One of the core principles of Linked Data is that it builds
strongly on the HTTP protocol for content negotiation and
retrieval. As [7] describes, content negotiation in the Linked
Data world works as follows:

1. the client sends a HTTP GET request to a resource
identified by a URI, together with an Accept: header
of either application/rdf+xml or text/html

2. based on the header, the server decides whether
to send a human-readable (text/html) or machine-
readable (application/rdf+xml) representation of the
resource; it sends a response code of 303 See Other

pointing to the respective resource representation

3. the client performs a second HTTP GET request to
the location pointed to by the server response

4. the server responds with a 200 Ok response code and
delivers the requested representation

By applying this content negotiation, Linked Data remains
compatible with existing Web browsers and standards. Our
Linked Media Principles extend these Linked Data princi-
ples along two dimensions that are in principle independent
from each other but both motivated through our applica-
tion scenarios. The first extension is concerned with Linked
Data updates, while the second is concerned with managing
media content and metadata alike.

2.1 Extending Linked Data for Updates Using
REST

The main precondition of our extensions is that they must
remain fully backwards-compatible with existing Linked
Data implementations so that existing tools can be used.
Since Linked Data heavily builds upon HTTP as described
above, a natural way of implementing updates in Linked
Data is to make use of the HTTP PUT, POST and DELETE
commands in addition to the GET command.

While not specifically excluded, Linked Data servers in
their current implementations do not make use of these com-
mands. However, they are commonly used to build highly
interactive web applications using the REST (“Representa-
tional State Transfer”) architectural approach to build web
services as described in the thesis of Roy Fielding [3]. Like
in Linked Data, the central principle of REST is “the exis-
tence of resources (sources of specific information), each of
which is referenced with a global identifier (e.g., a URI in
HTTP)”.1 Combining REST and Linked Data is therefore a
natural choice.

1http://en.wikipedia.org/wiki/Representational_
State_Transfer

Our extension of Linked Data for Updates follows the
REST principles and applies them to resources on a Linked
Data server. In addition to the HTTP GET command, we
make use of POST, PUT and DELETE as follows:

• POST creates the resource represented by the URI
used in the request; optionally, the request body can
contain resource content or metadata, in which case
the Content-Type header defines the format and kind
of data that is sent (see PUT); the server will respond
with a 201 Created in case the resource is created and
200 Ok in case the resource already exists

• PUT replaces the content or metadata of the re-
source represented by the URI used in the request
with the data contained in the request body; the
Content-Type header indicates the format and kind
of the data that is sent; the server will respond with
a 300 Multiple Choices in case the resource exists,
rewriting the URI according to the content type as de-
scribed in the next section; a subsequent PUT to the
redirected URI will update the content or metadata
on the server; in case the resource does not exist, the
server will return a 404 Not Found

• DELETE deletes the resource represented by the URI
used in the request and all associated content and
meta-data; the response code will be either a 200 Ok

in case the resource exists and is successfully deleted
or a 404 Not Found in case the resource does not exist

Note that current HTTP client implementations often auto-
matically rewrite the request method from PUT to GET
when they receive a 303 See Other, which makes it un-
suitable for redirecting a resource update. The solu-
tion we chose to this problem is to use the status code
300 Multiple Choices. In this case the response is not
completely consistent with the Linked Data principles. In
our implementation, we address this problem by a configu-
ration option that switches between maximum Linked Data
compatibility and maximum HTTP conformance.

2.2 Extending Linked Data for Arbitrary Me-
dia Types using MIME Mapping

The second extension we propose is capable of handling con-
tent and metadata in a uniform way on the same server. This
is e.g. required when providing a Linked Data frontend to
existing content or media asset management systems so that
they can offer both the media content in different formats
(e.g. an image in jpeg and png format) and the metadata
about the media content (e.g. the EXIF metadata). In ad-
dition, our extension gives us the flexibility to deliver con-
tent and metadata in formats understood by the respective
clients. With the increasing use of Javascript for implement-
ing rich client applications, it is e.g. useful to deliver meta-
data in RDF/JSON2 or JSON-LD3 instead of RDF/XML.

Linked Data is currently only concerned about data and
does not take into account media content that is also as-
sociated with the resource: when requesting the media
type text/html, current servers will deliver a (usually tab-
ular) HTML representation of the metadata but not non-
metadata Web content. Likewise, it is not really possible to

2http://docs.api.talis.com/platform-api/
output-types/rdf-json
3http://json-ld.org/

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://docs.api.talis.com/platform-api/output-types/rdf-json
http://docs.api.talis.com/platform-api/output-types/rdf-json
http://json-ld.org/

distinguish between a document of type RDF/XML as con-
tent and the metadata about it as data. As a consequence,
a Linked Data server currently cannot be used as both, a
content management system and a Linked Data repository.
However, this would be desirable for systems that offer me-
dia content as well as meta-data, e.g. media asset manage-
ment systems or document management systems.

Our extension is based on the content negotiation using
Content-Type and Accept: headers as defined in the HTTP
protocol. The Linked Data principles already apply this ap-
proach for GET requests using the Accept: header, but they
leave open how exactly the server generates the redirect URI.
In the Linked Media Framework, we implement a uniform
mapping of resource URIs to redirect URIs depending on
the MIME type passed in the Content-Type (PUT/POST
commands) and Accept: (GET command) headers.

Distinguishing Content and Metadata. In our pro-
posal, we distinguish between metadata and content by ex-
tending the media type passed in the Content-Type: or
Accept: header with an additional rel=... parameter:

• a media type of type/subtype; rel=content indi-
cates that the client requests or sends the content as-
sociated with the resource in the given format

• a media type of type/subtype; rel=meta indicates
that the client requests or sends the metadata asso-
ciated with the resource in the given format

For backwards compatibility with existing Linked Data
clients, the default behaviour without rel-parameter is meta.
However, for interaction with users it might be desirable to
change this behaviour in certain configurations, as users are
mostly interested in the content and not in the metadata.

URI Rewriting. The generation of redirect URIs is based
on both the original URI and the extended media type. Re-
source URIs always have the form

http://<host>/<root>/resource/<id>

where <host> is the host name of the installation (with op-
tional port), <root> is the root directory where the Linked
Data server is installed and <id> is an arbitrary but unique
identifier (can also include subpaths separated by ’/’). Based
on the media type, these URIs are rewritten as follows:

http://<host>/<root>/<kind>/<type>/<subtype>/<id>

where <kind> is either content or meta, <type> is the pri-
mary MIME type (e.g. image or text) and <subtype> is the
subtype (e.g. jpeg or rdf+n3).

3. LDPATH: RESOURCE-CENTRIC
QUERYING OVER LINKED DATA

Even though resources on Linked Data servers are typically
interlinked and thus conceptually integrate data from many
different sources, querying such data is still very cumber-
some. The main reason is that existing query languages for
RDF like SPARQL are rather dataset-centric and do not eas-
ily query over distributed or even unknown sources. There
are currently three approaches to address this issue:

• a central index harvests the Web for RDF data and
stores it in a central repository and offers it for query-
ing, e.g. using SPARQL. This approach is followed e.g.
by Sindice,4 which offers a public SPARQL endpoint.

4http://sindice.com/

• a query is distributed over several query endpoints and
the results are then combined. This approach is pro-
posed in the SPARQL 1.1 Federation Extension [15].

• accepting the incompleteness of the results returned by
the query and trying to improve the recall by different
heuristics, as proposed e.g. by Hartig et.al. [6]

The first two approaches have obvious disadvantages: a cen-
tral repository is not always recent and a single point of
failure, while explicit federated queries are cumbersome to
write and need exact information on how and where to access
the SPARQL endpoint. They also require that all queried
servers implement the SPARQL 1.1 Federation Extensions.
The third approach is in our opinion not very user friendly,
since the user cannot easily determine whether the results
he will get are complete or not and important enterprise
decisions might depend on that information.

In this section, we therefore propose an alternative ap-
proach to querying Linked Data resources based on a path
traversal following RDF links between Linked Data re-
sources. Our approach is resource-centric and thus intuitive
to users of Linked Data. It also does not need any specific
extension beyond the Linked Data principles and the stan-
dard HTTP protocol: any existing Linked Data server can
be queried without modification. The path language has
originally been developed as a means to configure the LMF
Semantic Search component, but we believe it is a valuable
contribution in itself.

3.1 RDF Path Language
LDPath follows the same ideas and syntax as XPath 1.0 [14],
but instead of XML elements it allows traversal over the con-
ceptual RDF graph represented by interlinked Linked Data
servers. In its core, LDPath is thus similar to the SPARQL
1.1 Property Paths [18]. However, LDPath is deliberately re-
stricted in its expressiveness to syntactically disallow queries
that would be difficult to evaluate completely on the Linked
Data Cloud (e.g. following links backwards). The path lan-
guage supports a number of path selectors that start at the
current “context resource” and return a collection of nodes
based on the path specification. A full description of LD-
Path is available as part of the LMF documentation.5 The
following example shows the selection of the foaf:name of all
friends of the person represented by the queried resource:

friend = foaf:knows/foaf:name :: xsd:string;

The remainder of the section outlines the capabilities of
the LDPath language by providing a brief overview.

Property Selection. Property selections allow to follow a
triple (RDF link) to another node in the RDF graph. The
node may be either local or remote. Property selections have
the following form:

<URI> | PREFIX:LOCAL

i.e. either a URI enclosed in <..> or a property name in ab-
breviated notation using namespace prefix and local name
(prefix mapping has to be defined, cf. the online documen-
tation). The following two paths both select the name of a
person represented by the context resource as a string:

name = foaf:name :: xsd:string ;

name = <http://xmlns.com/foaf/0.1/name>::xsd:string;

5http://code.google.com/p/ldpath/

http://sindice.com/
http://code.google.com/p/ldpath/

Path Traversal. RDF links can be followed by separating
selectors with /. In this case, the left-hand selector is evalu-
ated first to select new context nodes, and for each of these
context nodes the right-hand selector is then evaluated. The
following LDPath expression first selects the resources rep-
resenting the persons known to the person represented by
the current resource, and then selects their names as string:

friend = foaf:knows/foaf:name :: xsd:string;

Path traversal transparently “hops over” to other Linked
Data servers when needed, because the querying can be per-
formed entirely by issuing Linked Data retrievals.

Path Connectors and Grouping. Several path selectors
can be connected with boolean operators, forming a union
(connector |) or intersection (connector &) of the selection
results. Parentheses can be used to change the operator
precedence. For example, the following LDPath expression
selects the names of all friends, regardless whether they are
represented using the FOAF or the RDFS vocabulary:

friend = foaf:knows/foaf:name

| foaf:knows/rdfs:label :: xsd:string;

The same query could be expressed by grouping the union
in the path traversal:

friend = foaf:knows/(foaf:name | rdfs:label)

Path connectors are a simple but powerful tool for coping
with the use of different vocabularies on different servers for
the same kind of information.

Path Tests. Path tests allow filtering the result nodes of a
selector based on a condition on their properties. Path tests
are added at the end of a selection and embraced in [...]

like in XPath. A path test can either test for the existance or
value of a property, in which case it is itself a selector, or on
the language of a literal. For example, the following LDPath
expression would select RDFS labels if they are either in
German or without language specification:

title = rdfs:label[@de] | rdfs:label[@none]

Similarly, the following RDF Path would only select interests
of a person that are a kind of food:

food = foaf:interest[rdf:type is ex:Food]

Path Functions. Functions can be used inside the path to
transform the results of path queries. For example, the fol-
lowing function selector concatenates the FOAF first name
and last name of a person and represents it as a string:

f = foaf:knows/fn:concat(foaf:given,foaf:surname)

Functions can thus also be used to cope with different
ways of representing the same kind of information on dif-
ferent servers. Currently, the LMF provides a number
of built-in functions, among them string concatenation
(fn:concat), HTML removal (fn:removeTags), and XPath
selection within XML literals (fn:xpath).

Path Types. LDPath expressions have an optional result
type that may be used to transform the selected nodes into
a different form, e.g. a string, a date, a URI, or a point.
Result types are added to a path selection with :: followed
by the type name. The following LDPath expression selects
the foaf:based_near property and converts the result nodes
into a special location type that holds latitude and longitude
in a complex object (for geo-indexing in the search index):

location = foaf:based_near :: lmf:location ;

Currently, the LMF offers the XML Schema base types as
well as a number of specialised datatypes used to configure
the semantic search index.

3.2 Linked Data Caching
Underlying the LDPath language is an implementation of

a Linked Data client that transparently retrieves and caches
resources and their triples when needed. The basic opera-
tion is as follows: whenever a navigation step of the path
language moves the context to a new resource, we check
whether the resource is already locally cached and not ex-
pired (i.e. the expiry time has not passed). If yes, we perform
the next part of the query using the cached version. If no, we
issue a HTTP request to retrieve the triples of that resource
and cache them locally using the expiry time sent by the
server as conforming to the HTTP standard. For retrieving
resources, we support the following three types of requests:

Linked Data Requests. The default way of retrieving a
resource is to issue a request conforming to the Linked Data
principles and rely on content negotiation and redirects to
get the triple representation. Our implementation currently
supports RDF/XML, Turtle, N3, and RDF/JSON.

SPARQL Requests. There is still much data on the Web
of Data that does not conform to the Linked Data principles.
To support querying also this data, it is possible to configure
that requests to certain resources should be handled using a
SPARQL endpoint instead of issuing a Linked Data request.
In this case, our implementation sends a simple SPARQL
query as follows:

SELECT ?p ?o WHERE { <RESOURCE> ?p ?o }

This query essentially returns all triples for a fixed resource
passed as argument. Another option would be to instead
issue a SPARQL DESCRIBE query, but the SPARQL spec-
ification is not very specific on what data would be returned.

Cache Requests. The third type of request is sent to a
cache server that contains a copy of a resource description
originating somewhere else. There are several justifications
for this type of requests: (1) requests to a specific server
might be very frequent and it is useful to have a local copy,
(2) a remote server might be unreliable or slow justifying a
local copy, (3) access should be only to a “trusted” or “cer-
tified” server where the data will not change unexpectedly,
and (4) there is a central repository like Sindice6 that har-
vests resource descriptions from the whole web of data and
can thus provide additional information about a resource.

Cache requests are simple mappings from resource URI
patterns to REST webservices that take as argument the
resource URI and return the triple data.

Beyond Linked Data. The Linked Data Caching com-
ponent goes beyond ordinary Linked Data by providing an
API that allows implementing wrappers around other data
sources on the Web (e.g. the YouTube or Vimeo API). Such
wrappers map proprietary data structures into standardized
RDF vocabularies (in the case of YouTube and Vimeo: the
Media Ontology) or try to extract structured information
out of unstructured content (e.g. EXIF information from im-
ages or more sophisticated information extraction). In this
way, proprietary data sources can be accessed transparently
using the same tools as Linked Data resources.

6http://sindice.com

http://sindice.com

Figure 1: Service-Oriented Architecture of the Linked Media Framework. The ResourceWebService in LMF
Core implements the proposed Linked Data extensions. LMF Search provides services for facetted semantic
search. LMF Sparql offers querying using a SPARQL endpoint. Services are interacting either via events or
via injection (loose coupling).

4. IMPLEMENTATION: THE LINKED
MEDIA FRAMEWORK

To evaluate the practicality of the suggested extensions, we
have developed a prototypical implementation in our Linked
Media Framework (LMF). We are implementing several real-
world scenarios based on this system (cf. Section 5).

The general architecture of the Linked Media Framework
is depicted in Figure 1. The architecture is service oriented
and strictly follows the principle of loose coupling of compo-
nents, making the system very extensible and configurable.
Most core components of the LMF are developed using Java
and were originally implemented in the KiWi System [12, 9].
The current implementation of the Linked Media Framework
consists of the following modules:

• LMF Core implements the Linked Data server includ-
ing the extensions we propose. Linked Data and ex-
tensions are handled by the ResourceWebService. The
ResourceWebService is backed by our own persistence
implementation that in addition to triple management
provides transactions and versioning, and is prepared
for storing provenance information and reason mainte-
nance information in conjunction with the reasoner.

• LMF Search offers semantic search over resources
based on Apache SOLR.7 The search component is
highly customizable and allows mapping “LD Paths”
to index fields; by default we include rulesets for RDF,
SKOS, and Dublin Core. The LMF Search compo-
nent can be accessed using a REST API conforming
to the OpenSearch standard and is compatible with
the Apache SOLR search API. Existing SOLR clients
can thus be used for accessing the search functionality.

• LMF Sparql provides a SPARQL endpoint for querying
and updating the data contained in the LMF installa-
tion. The implementation makes use of Sesame to offer
SPARQL 1.1 Query and Update support.

7http://lucene.apache.org/solr/

• LMF Linked Data Caching provides an implementa-
tion of transparent Linked Data Caching as described
in Section 3. Linked Data Caching is used for LDPath
queries as well as (in limited cases) for SPARQL.

• LMF Reasoner offers a subset of the rule-based rea-
soner sKWRL [8] developed in the KiWi project for
reasoning over triples contained in the LMF. Rules
can be added and updated by the user during run-
time and are evaluated using a forward chaining fix-
point algorithm. In addition to the inferred triples,
the LMF Reasoner also computes so-called justifica-
tions that give explanations (base triples and rules
used in the inference) why certain triples have been
inferred. Justifications are used for efficient updating
(so-called reason maintenance or truth maintenance)
and for displaying to the user.

Components of the LMF typically interact by sending
events. For example, upon completion of a transaction, all
transaction data is handed over to the search component
for indexing and to the reasoner for incremental inferencing.
Additional modules are currently under development. Par-
ticularly, we are working on an implementation of WebACL8

for managing access to resources, integration of content anal-
ysis and semantic enhancement based on Apache Stanbol9,
and on extending the reasoner to support full sKWRL as
well as event-condition-action rules, which are useful in our
application scenarios. With respect to performance and sta-
bility, we have tested the system with the GeoNames data
set, about 143 million triples. The response times were ac-
curate and the system stable.

5. APPLICATION SCENARIOS
We are evaluating our technology in a number of appli-

cation scenarios that are currently implemented together

8http://www.w3.org/wiki/WebAccessControl
9http://incubator.apache.org/stanbol/

http://lucene.apache.org/solr/
http://www.w3.org/wiki/WebAccessControl
http://incubator.apache.org/stanbol/

Figure 2: Video player interface of Red Bull scenario, displaying time-based as well as region-based media
fragment annotations based on the Media Fragments URI specification and the Media Ontology. Additional
information from internal and external Linked Data sources is displayed while the video is playing

with partner companies. The aim of the Linked Media
Framework is to integrate information in enterprises by us-
ing Linked Media. The first scenario shows the interlinking
of multimedia content with background information from
the Linked Data Cloud, whereas the second scenario out-
lines the seamless integration of the technology with exist-
ing systems and the annotation of human-readable content
with Linked Data concepts. In all applications, the Linked
Media Framework is used for provisioning a semantic search
service. Demonstrators of both scenarios are available at
http://labs.newmedialab.at/.

5.1 Red Bull: Interlinking Media Fragments
The Red Bull Content Pool10 designed and operated by

Red Bull Media House is the central repository of media
content related to sports events organised by Red Bull, e.g.
the Air Race, the Cliff Diving Competition, or the Red Bull
Rampage mountainbike race. Media content is mostly raw
or processed video material that Red Bull offers to other
media providers in different formats and quality for further
use. Typically, the content is also annotated with the event,
year, location, and athletes that are shown. The following
persona (Markus, the sports journalist) describes a typical
intended use of the Red Bull Content Pool:

Markus works as a sports journalist for a small regional
TV station. Since the cliff diving world championship also
tours through the region, he has to prepare a short TV report
on cliff diving in general, famous athletes and spectacular
scenes in known places. As a small TV station does not
have its own video material, he visits the Red Bull Content
Pool to acquire the content he needs from there.

Linked Media helps Markus in the following tasks:

• in finding videos and video fragments in the Red Bull
Content Pool (”Fort Boyard”, ”Helicopter Scene”), be-
cause videos and video fragments are annotated and

10http://www.redbullcontentpool.com

indexed for semantic search

• in finding relevant background information for videos,
e.g. about athletes and locations, because videos are
connected with background content and data from the
Linked Data Cloud and from Red Bull

• in finding the persons behind videos, because videos
are connected with the people that are related to them

The Red Bull Content Pool scenario makes use of Linked
Data for three purposes: (1) enriching own content with
higher-quality metadata from the Linked Data Cloud, e.g.
about athletes or locations, (2) publishing content and meta-
data as Linked Data for others, and (3) making multimedia
content available for cross-referencing and interlinking.

All three functionalities are implemented based on the
Linked Media Framework using sample media content from
the Cliff Diving events (see Figure 2). Media fragments
are identified by making use of the Media Fragments URI
1.0 specification [16]. Annotations of media resources and
fragments are represented in the LMF using the W3C Me-
dia Ontology [17].Media resources are annotated based on
(manually created) metadata sheets with basic information
(keywords, time, location), textual transcripts of spoken lan-
guage, and shotlists briefly describing scene settings. These
textual transcripts serve both, as textual annotation for mul-
timedia fragments and as input for named entity recognition
and semi-automatic interlinking with Linked Data concepts.

In addition to the Linked Data functionalities described
above, the LMF also offers semantic search over the media
content and metadata, and an interactive video player that
displays additional related information to videos while they
are playing (see Figure 2).

5.2 ORF Archive: Interlinking News
The ORF Archive is the central repository for all video and
audio material created by the Austrian Television in the last
60 years and contains a vast amount of media content in

http://labs.newmedialab.at/
http://www.redbullcontentpool.com

Figure 3: Annotation and interlinking interface for the ORF archive. Suggestions for interlinking are high-
lighted in the text; when clicking, a dialogue is opened recommending Linked Data resources for interlinking.
When confirmed, annotations are stored in the LMF for semantic search.

different formats. Its primary objective is to preserve video
material for potential future use and make it accessible to
editors. The main task is therefore to properly annotate and
organise video material so that it can be retrieved easily later
and the related context information is readily available. In
this scenario, we work with two types of content: news ma-
terial of the daily news magazine and sports content. The
news material typically is devided into short news reports
with a brief textual description of the content, the journalist,
and the location. The following persona describes a proto-
typical archivist working in the ORF archive:

Monika works as an archivist in the ORF archive. When
she receives video material from the editors, it already con-
tains base metadata as well as a textual description. Her
task is to annotate the content with metadata of consistently
high quality and connect it with the appropriate background
information for editors to later quickly get an overview of the
context. Of particular interest are locations and persons, be-
cause they are often ambiguous or written differently. The
time Monika has available for performing the annotation is
typically very limited – a news article of 3 minutes has to be
fully annotated in at most 15 minutes.

The LMF addresses Monika’s needs as follows:

• it performs automatic analysis of textual descriptions
of the video material using NLP methods and suggests
appropriate concepts from pre-configured Linked Data
servers (either internal or public)

• it provides quick access to background information by
transparently retrieving content from the Linked Data
Cloud as needed

• it allows to directly store the textual content as well as
the metadata for a news resource and make it available
to semantic search

• it does not require exhaustive adaptations of the
proven processes within the company. The annota-
tion and search facilities are optional addons for the
archivists and journalists.

This scenario is implemented by combining the LMF with
Apache Stanbol11, also developed at Salzburg Research. A
typical use case is shown in Figure 3 above: an archivist can
open a page describing a news report in his web browser,

11http://incubator.apache.org/stanbol/

which has a special annotation plugin installed. Clicking on
“annotate” sends the textual content to a special installation
of Apache Stanbol, configured with an index of both, trusted
Linked Data sources and an internal SKOS thesaurus. Stan-
bol analyses the text by applying natural language process-
ing and suggests annotations from the configured sources,
e.g. a concept from DBPedia or from the internal company
thesaurus. By clicking on a highlighted word, the archivist
can review the suggestion and select one or more of them
for annotation. Annotations are then stored in the LMF
using the resource-based updating mechanism or SPARQL
Update and available to semantic search.

6. RELATED WORK
There have been some proposals for updating Linked Data

and comparing and combining Linked Data with RESTful
architectures, as well as for uniform access to content and
data. In the following we summarise the most recent state-
of-the-art and describe how our approach differs from it.

Combining Linked Data and REST. The combination
of Linked Data and REST is quite natural and has been
implicitly present even in the original Linked Data princi-
ples proposed by Tim Berners-Lee [1]. Most articles are
however concerned only with retrieval of resources, not with
updating. The idea of also applying REST for updating has
gained more interest only recently: [2] e.g. mentions an in-
formation resource modification mechanism based on REST,
and [4] described an actual implementation of an approach
called Rhizomer that is similar to ours, but the authors do
not go into further detail. The article [10] provides a very in-
teresting comparison of similarities and differences between
Linked Data and REST. Finally, the article [5] also describes
the use of REST for updating Linked Data resources, albeit
based on SPARQL Updates.

From these approaches our proposal differs as follows: (1)
it treats Linked Data updates in a way that is analogous to
Linked Data retrieval ; (2) it provides a detailed and com-
plete specification of the content negotiation and protocol,
(3) it has been implemented and evaluated in real-world sce-
narios, and (4) it addresses both updates and uniform con-
tent and metadata management.

Updating Linked Data. Most of the research on Linked
Data so far is concerned with publishing and consuming
Linked Data, and there are only few proposals on how to

http://incubator.apache.org/stanbol/

update a Linked Data server. Updating currently typi-
cally means re-exporting the original dataset into RDF or
performing RDF triple store operations programmatically.
There are only few approaches that aim to provide a web-
service API for this purpose. For example, OpenLink Virtu-
oso offers a SPARQL endpoint that is capable of executing
updates using the SPARQL Update extension12 currently
under development. Most noteworthy is sparqlPuSH [11],
which is based on SPARQL Update and the PubSubHub-
bub protocol13. A very interesting aspect of this approach
is that it allows to proactively distribute updates using a
publish-subscribe mechanism.

SPARQL updates are well suited when updates are car-
ried out programmatically or distributed from a main data
source to secondary data sources. However, in contrast to
our approach, both the Virtuoso approach and the sparql-
PuSH approach are not resource-oriented in the same way
as the retrieval part of Linked Data.

Path Languages for RDF/Linked Data. A number
of path languages have been proposed for RDF,14 most of
them now dormant. Most prominent of the path languages
is SPARQL Property Paths, included in the SPARQL 1.1
Query working draft [18]. The path language proposed
in this article resembles SPARQL Property Paths in the
way basic navigation is carried out. LDPath differs from
SPARQL Property Paths in several aspects:

• it is a query language with restricted expressiveness;
Property Paths are part of full SPARQL and as such
not well suited for querying Linked Data, because
SPARQL allows queries that require complete knowl-
edge of the Linked Data Cloud to be carried out cor-
rectly; in LDPath, only queries can be expressed that
can be evaluated properly over Linked Data

• it extends Property Paths by some concepts from
XPath [14], particularly node tests for restricting re-
sult sets, functions for carrying out transformations,
and XML types for representing type information

• it is backed by a Linked Data client service that carries
out queries using only the Linked Data principles; no
knowledge of endpoint locations or existance is neces-
sary (but can be exploited if available)

Another very similar approach allowing a path-based
traversal through the Linked Data Cloud is Ripple, a “Se-
mantic Web Scripting Language” [13]. While Ripple aims
to be a complete functional programming environment for
Linked Data, LDPath concentrates on the single task of
querying Linked Data. It can thus be embedded in many dif-
ferent host environments easily, requires less learning effort
for developers, and its implementation is very lightweight.

7. ACKNOWLEDGMENTS
This research has been funded by the Republic of Aus-

tria within the COMET project Salzburg NewMediaLab and
by the the European Commission within the 7th Frame-
work Programme project KiWi - Knowledge in a Wiki (No.
211932). The latest version of the Linked Media Framework
source code is available with a permissive Open Source li-
cense at http://lmf.googlecode.com.

12http://www.w3.org/TR/sparql11-update/
13http://code.google.com/p/pubsubhubbub/
14http://www.w3.org/wiki/RdfPath

8. REFERENCES
[1] T. Berners-Lee. Linked Data, 2006.

[2] B. Ferris. A generalisation of the Linked Data
publishing guideline (blog post), 2011.

[3] R. Fielding. Architectural styles and the design of
network-based software architectures. 2000.

[4] R. Garćıa, J. M. Brunetti, A. López-Muzás, J. M.
Gimeno, and R. Gil. Publishing and Interacting with
Linked Data Categories and Subject Descriptors. In
1st Int. Conference on Web Intelligence, Mining and
Semantics, WIMS’11, Sogndal, Norway, 2011.

[5] A. Garrote and M. Moreno Garćıa. RESTful writable
APIs for the web of Linked Data using relational
storage solutions. In WWW2011 Workshop: Linked
Data on the Web (LDOW2011), Hyderabad, 2011.

[6] O. Hartig, C. Bizer, and J.-C. Freytag. Executing
SPARQL Queries over the Web of Linked Data. In
Proc. 8th International Semantic Web Conference
(ESWC20099), Washington DC, USA, 2009.

[7] T. Heath and C. Bizer. Linked Data: Evolving the
Web into a Global Data Space. Synthesis Lectures on
the Semantic Web: Theory and Technology, 1:1.
Morgan & Claypool, 1st edition, 2011.

[8] J. Kotowski and F. Bry. A Perfect Match for
Reasoning, Explanation, and Reason Maintenance:
OWL 2 RL and Semantic Wikis. Proc. of the 5th
Semantic Wiki Workshop (SemWiki 2010) at ESWC
2010, 2010.

[9] T. Kurz, S. Schaffert, T. Bürger, S. Stroka, and
R. Sint. KiWi - A Platform for building Semantic
Social Media Applications. In 9th Int. Semantic Web
Conference (ISWC2010), 2010.

[10] K. R. Page, D. C. De Roure, and K. Martinez. REST
and Linked Data. ACM Press, New York, New York,
USA, Mar. 2011.

[11] A. Passant and P. N. Mendes. sparqlPuSH : Proactive
notification of data updates in RDF stores using
PubSubHubbub. In Scripting for the Semantic Web
Workshop SFSW2010 at ESWC2010, 2010.

[12] S. Schaffert, J. Eder, S. Grünwald, T. Kurz,
M. Radulescu, R. Sint, and S. Stroka. KiWi - A
Platform for Semantic Social Software. In Proc. of the
4th Semantic Wiki Workshop (SemWiki 2009), at
ESWC 2009, 2009.

[13] J. Shinavier. Ripple: Functional programs as linked
data. In 3rd Workshop on Scripting for the Semantic
Web, Innsbruck, Austria, 2007.

[14] W3 Consortium. XML Path Language (XPath),
November 1999. http://www.w3.org/TR/xpath.

[15] W3 Consortium. SPARQL 1.1 Federation Extensions
(W3C Working Draft), June 2010.
http://www.w3.org/TR/sparql11-federated-query/.

[16] W3 Consortium. Media Fragments URI 1.0 (W3C
Working Draft), March 2011.
http://www.w3.org/TR/media-frags/.

[17] W3 Consortium. Ontology for Media Resources 1.0
(W3C Candidate Recommendation), July 2011.
http://www.w3.org/TR/mediaont-10/.

[18] W3 Consortium. SPARQL 1.1 Query (W3C Working
Draft), May 2011.
http://www.w3.org/TR/sparql11-query/.

http://lmf.googlecode.com
http://www.w3.org/TR/sparql11-update/
http://code.google.com/p/pubsubhubbub/
http://www.w3.org/wiki/RdfPath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/media-frags/
http://www.w3.org/TR/mediaont-10/
http://www.w3.org/TR/sparql11-query/

