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PREFACE

Bases are essential tools in the study of Banach and Hilbert spaces. This manuscript presents
a quick and hopefully easy introduction to basis theory for readers with a modest background in
real and functional analysis. A short review of the relevant background from analysis is included.

This manuscript grew out of a set of notes originally prepared in 1987 at the instigation of my
Ph.D. thesis advisor, Professor John Benedetto of the University of Maryland, College Park. At
that time, the now-ubiquitous field of wavelets was in its infancy. An important goal of the new
theory was the construction of “good” bases or basis-like systems called frames for function spaces
such as L2(R). A solid understanding of basis theory was therefore needed, and these notes are the
offspring of that need. The results presented here were drawn from many sources, but especially
from the indispensable books by Lindenstrauss and Tzafriri [LT77], Marti [Mar69], Singer [Sin70],
and Young [You80]. Aside from a few minor results in connection with frame theory that are
clearly identified, no results presented in this manuscript are original or are claimed as original.

Outline. In the first part of the manuscript, consisting of Chapter 1, we present a review of
basic functional-analytic background material. We give the definitions and the statements of the
theorems that underlie the material in this manuscript, but we omit the proofs. Most of this
material can be found in standard texts on real analysis, functional analysis, or Hilbert space
theory, but it is collected here as a single, convenient source of reference.

The second part of the manuscript deals with the meaning of an infinite series
∑

xn in abstract
spaces. In Chapter 2, we define what it means for a series to converge, and study several more
restrictive forms of convergence, including unconditional convergence in particular. Chapter 3
presents some additional results on unconditional convergence that apply to the specific case of
Hilbert spaces.

The third part of the manuscript is devoted to the study of bases and related systems in Banach
spaces. In Chapter 4 we present the definitions and essential properties of bases in Banach spaces.
Chapter 5 discusses the special case of absolutely convergent bases. In Chapter 6 and 7 we discuss
properties of general biorthogonal systems. Chapter 8 considers the duality between bases and
their biorthogonal sequences. Chapter 9 presents in detail the important class of unconditional
bases. Chapter 10 is devoted to considering some generalizations of bases to the case of the weak
or weak∗ topologies.

The fourth and final part of this manuscript is devoted to the study of bases and basis-like
systems in Hilbert spaces. In Chapter 11 we consider unconditional bases in Hilbert space, and
characterize the class of bounded unconditional bases. In Chapter 12 we consider frames, which
share many of the properties of bounded unconditional bases, yet need not be bases. This final
chapter is adapted from my Ph.D. thesis [Hei90] and from my joint research-tutorial with Walnut
[HW89].

Acknowledgment. I would like to thank Professor Benedetto and fellow student David Walnut
for numerous invaluable discussions and insights on frames, wavelets, harmonic analysis, and all
other areas of mathematics, and for their continuing advice and friendship.

I also thank Jae Kun Lim and Georg Zimmermann for valuable comments and criticisms of this
manuscript.
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1. NOTATION AND FUNCTIONAL ANALYSIS REVIEW

In this chapter we shall briefly review the basic definitions and theorems that underlie the results

presented in this manuscript. Excellent references for this material are [Con85], [GG81], [RS80],

[Roy68], [Rud91], [WZ77], and related books.

1.1. GENERAL NOTATION. Z = {. . . ,−1, 0, 1, . . .} is the set of integers, N = {1, 2, 3, . . .} is the

natural numbers, Q is the set of rational numbers, R is the set of real numbers, and C is the set

of complex numbers. F will denote the current field of scalars, either R or C according to context.

The real part of a complex number z = a + ib is Re(z) = a, and the imaginary part is Im(z) = b.

The complex conjugate of z = a + ib is z̄ = a − ib. The modulus, or absolute value, of z = a + ib

is |z| =
√

zz̄ =
√

a2 + b2. On occasion, we use formally the extended real numbers R ∪ {−∞,∞}.
For example, the infimum and supremum of a set of real numbers {an} always exist as extended

real numbers, i.e., we always have −∞ ≤ inf an ≤ sup an ≤ ∞.

If S is a subset of a set X then X\S = {x ∈ X : x /∈ S}. The cardinality of a finite set F

is denoted by |F |. The Lebesgue measure of a subset S ⊂ R is denoted by |S|. The distinction

between these two meanings of | · | is always clear from context.

Sequences or series with unspecified limits are assumed to be over N. That is,

(cn) = (cn)∞n=1, {xn} = {xn}∞n=1,
∑

n

xn =
∞
∑

n=1

xn.

We generally use the notation (cn) to denote a sequence of scalars and {xn} to denote a sequence

of vectors. A series
∑

cn of complex numbers converges if limN→∞

∑N
n=1 cn exists as a complex

number. If (cn) is a sequence of nonnegative real scalars, we use the notation
∑

cn < ∞ to mean

that the series
∑

cn converges.

Let X and Y be sets. We write f :X → Y to denote a function with domain X and range Y .

The image or range of f is Range(f) = f(X) = {f(x) : x ∈ X}. A function f :X → Y is injective,

or 1-1, if f(x) = f(y) implies x = y. It is surjective, or onto, if f(X) = Y . It is bijective if it is

both injective and surjective.

Let E be a subset of the real line R and let f :E → C be a complex-valued function defined

on E. f is bounded if there exists a number M such that |f(x)| ≤ M for every x ∈ E. f is

essentially bounded if there exists a number M such that |f(x)| ≤ M almost everywhere, i.e., if the

set Z = {x ∈ E : |f(x)| > M} has Lebesgue measure zero. In general, a property is said to hold

almost everywhere (a.e.) if the Lebesgue measure of the set on which the property fails is zero.

The Kronecker delta is

δmn =

{

1, if m = n,

0, if m 6= n.

We use the symbol � to denote the end of a proof, and the symbol ♦ to denote the end of a

definition or the end of the statement of a theorem whose proof will be omitted.
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1.2. BANACH SPACES. We assume that the reader is familiar with vector spaces. The scalar

field associated with the vector spaces in this manuscript will always be either the real line R or

the complex plane C. We use the symbol F to denote the generic choice of one of these fields.

For simplicity, some definitions and examples are stated specifically for complex scalars, but the

required changes for the case of real scalars are always obvious.

Our first step is to define what we mean by the “size” or “norm” of a vector.

Definition 1.1. A vector space X is called a normed linear space if for each x ∈ X there is a real

number ‖x‖, called the norm of x, such that:

(a) ‖x‖ ≥ 0,

(b) ‖x‖ = 0 if and only if x = 0,

(c) ‖cx‖ = |c| ‖x‖ for every scalar c, and

(d) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

If only properties (a), (c), and (d) hold then ‖ · ‖ is called a seminorm. ♦

It is usually clear from context which normed linear space X and which norm ‖ · ‖ is being

referred to. However, when there is the possibility of confusion, we write ‖ · ‖X to specify which

norm we mean.

Definition 1.2. Let X be a normed linear space.

(a) A sequence of vectors {xn} in X converges to x ∈ X if limn→∞ ‖x − xn‖ = 0, i.e., if

∀ ε > 0, ∃N > 0, ∀n ≥ N, ‖x − xn‖ < ε.

In this case, we write xn → x, or limn→∞ xn = x.

(b) A sequence of vectors {xn} in X is Cauchy if limm,n→∞ ‖xm − xn‖ = 0, i.e., if

∀ ε > 0, ∃N > 0, ∀m, n ≥ N, ‖xm − xn‖ < ε.

(c) It is easy to show that every convergent sequence in a normed space is a Cauchy sequence.

However, the converse is not true in general. We say that X is complete if it is the case that

every Cauchy sequence in X is a convergent sequence. A complete normed linear space is

called a Banach space. ♦

Definition 1.3. A sequence {xn} in a Banach space X is:

(a) bounded below if inf ‖xn‖ > 0,

(b) bounded above if sup ‖xn‖ < ∞,

(c) normalized if ‖xn‖ = 1 for all n. ♦
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Sometimes, to emphasize that the boundedness discussed in Definition 1.3 refers to the norm of

the elements of the sequence, we will say that {xn} is norm-bounded below, etc. For example, it is

easy to show that if xn → x then ‖xn‖ → ‖x‖. Hence all convergent sequences are norm-bounded

above.

We sometimes use the term “bounded” without the qualification “above” or “below.” In most

cases, we mean only that the sequence is bounded above. However, in certain contexts we may re-

quire that the sequence be bounded both above and below. For example, this is what we mean when

we refer to a “bounded basis” (see Definition 4.2). This more restricted meaning for “bounded” is

always stated explicitly in a definition, and in general the exact meaning should always be clear

from context.

The simplest examples of Banach spaces are Rn (using real scalars) or Cn (using complex

scalars). There are many choices of norm for these finite-dimensional Banach spaces. In particular,

we can use any of the following norms:

|v|p =

{

(

|v1|p + · · · + |vn|p
)1/p

, 1 ≤ p < ∞,

max {|v1|, . . . , |vn|}, p = ∞,

where v = (v1, . . . , vn). The Euclidean norm of a vector v is the norm corresponding to the choice

p = 2, i.e.,

|v| = |v|2 =
√

|v1|2 + · · · + |vn|2.

This particular norm has some extra algebraic properties that will we discuss further in Section 1.3.

Definition 1.4. Suppose that X is a normed linear space with respect to a norm ‖ · ‖ and also

with respect to another norm ||| · |||. These norms are equivalent if there exist constants C1, C2 > 0

such that C1 ‖x‖ ≤ |||x||| ≤ C2 ‖x‖ for every x ∈ X. If ‖ · ‖ and ||| · ||| are equivalent then they define

the same convergence criterion, i.e.,

lim
n→∞

‖x − xn‖ = 0 ⇐⇒ lim
n→∞

|||x − xn||| = 0. ♦

Any two of the norms | · |p on Cn are equivalent. In fact, it can be shown that any two norms

on a finite-dimensional vector space are equivalent.

Example 1.5. The following are Banach spaces whose elements are complex-valued functions

with domain E ⊂ R.

(a) Fix 1 ≤ p < ∞, and define

Lp(E) =
{

f :E → C :

∫

E

|f(x)|p dx < ∞
}

.

This is a Banach space with norm

‖f‖Lp =

(
∫

E

|f(x)|p dx

)1/p

.
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(b) For p = ∞, define

L∞(E) =
{

f :E → C : f is essentially bounded on E
}

.

This is a Banach space under the “sup-norm” or “uniform norm”

‖f‖L∞ = ess sup
x∈E

|f(x)| = inf
{

M ≥ 0 : |f(x)| ≤ M a.e.
}

.

(c) Define

C(E) =
{

f :E → C : f is continuous on E
}

.

If E is a compact subset of R then any continuous function on E must be bounded. It can

be shown that, in this case, C(E) is a Banach space using the sup-norm

‖f‖L∞ = sup
x∈E

|f(x)|.

Note that for a continuous function, the supremum of |f(x)| coincides with the essential

supremum of |f(x)|. Therefore, C(E) is a subspace of L∞(E) that is itself a Banach space

using the norm of L∞(E). ♦

Example 1.6. The following are Banach spaces whose elements are sequences c = (cn) = (cn)∞n=1

of scalars.

(a) Fix 1 ≤ p < ∞, and define

ℓp =
{

c = (cn) :
∑

n∈Z

|cn|p < ∞
}

.

This is a Banach space with norm

‖c‖ℓp = ‖(cn)‖ℓp =

(

∑

n∈Z

|cn|p
)1/p

.

(b) For p = ∞, define

ℓ∞ =
{

c = (cn) : (cn) is a bounded sequence
}

.

This is a Banach space under the “sup-norm”

‖c‖ℓ∞ = ‖(cn)‖ℓ∞ =
(

sup
n∈Z

|cn|
)

.

(c) Define

c0 =
{

c = (cn) : lim
|n|→∞

cn = 0
}

.

This is a subspace of ℓ∞ that is itself a Banach space under the norm ‖ · ‖ℓ∞ . ♦

We have the following important inequalities on the norm of a product of two functions or

sequences.
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Theorem 1.7 (Hölder’s Inequality). Fix 1 ≤ p ≤ ∞, and define p′ by 1
p + 1

p′
= 1, where we

set 1/0 = ∞ and 1/∞ = 0.

(a) If f ∈ Lp(E) and g ∈ Lp′

(E) then fg ∈ L1(E), and

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lp′ .

For 1 < p < ∞ this is equivalent to the statement

∫

E

|f(x) g(x)| dx ≤
(
∫

E

|f(x)|p dx

)1/p(∫

E

|g(x)|p′

dx

)1/p′

.

(b) If (an) ∈ ℓp and (bn) ∈ ℓp′

then (anbn) ∈ ℓ1, and

‖(anbn)‖ℓ1 ≤ ‖(an)‖ℓp ‖(bn)‖ℓp′ .

For 1 < p < ∞ this is equivalent to the statement

∑

n

|an bn| ≤
(

∑

n

|an|
)1/p (∑

n

|bn|p
′

)1/p′

. ♦

Note that if p = 2 then we also have p′ = 2. Therefore, we have the following special cases of

Hölder’s inequality, which are usually referred to as the Schwarz or Cauchy–Schwarz inequalities:

‖fg‖L1 ≤ ‖f‖L2 ‖g‖L2 and ‖(anbn)‖ℓ1 ≤ ‖(an)‖ℓ2 ‖(bn)‖ℓ2 . (1.1)

L2(E) and ℓ2 are specific examples of Hilbert spaces, which are discussed more fully in Section 1.3.

In particular, Theorem 1.16 gives a generalization of (1.1) that is valid in any Hilbert space.

Next, we present some results related to the topology of X induced by the norm ‖ · ‖.

Definition 1.8. Let X be a Banach space.

(a) If x ∈ X and ε > 0, then the open ball in X centered at x with radius ε is

Bε(x) = {y ∈ X : ‖x − y‖ < ε}.

(b) A subset U ⊂ X is open if for each x ∈ U there exists an ε > 0 such that Bε(x) ⊂ U .

(c) Let E ⊂ X. Then x ∈ X is a limit point of E if there exist xn ∈ E such that xn → x.

(d) A subset E ⊂ X is closed if X\E is open. Equivalently, E is closed if it contains all its

limit points, i.e., if {xn} ⊂ E and xn → x always implies x ∈ E.

(e) The closure of a subset E ⊂ X is the smallest closed set Ē that contains E. Equivalently,

Ē is equal to E plus all the limit points of E.

(f) A subset E ⊂ X is dense in X if Ē = X. ♦
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Lemma 1.9. Let S be a subspace of a Banach space X. Then S is itself a Banach space under

the norm of X if and only if S is a closed subset of X. ♦

Example 1.10. If E is a compact subset of the real line R, then C(E) is a closed subspace of

L∞(E). If E = R, then the following are both closed subspaces of L∞(R):

Cb(R) = C(R) ∩ L∞(R),

C0(R) =
{

f :R → C : f is continuous and lim
|x|→∞

f(x) = 0
}

. ♦

We end this section with some important definitions.

Definition 1.11. A normed linear space X is separable if it contains a countable dense subset. ♦

Example 1.12. Lp(E) and ℓp are separable for 1 ≤ p < ∞, but not for p = ∞. ♦

Definition 1.13. Let {xn} be a sequence in a normed linear space X.

(a) The finite linear span, or simply the span, of {xn} is the set of all finite linear combinations

of elements of {xn}, i.e.,

span{xn} =

{ N
∑

n=1

cn xn : all N > 0 and all c1, . . . , cN ∈ F

}

.

(b) The closed linear span of {xn} is the closure in X of the finite linear span, and is denoted

span{xn}.

(c) {xn} is complete (or total or fundamental) in X if span{xn} = X, i.e., if span{xn} is dense

in X. ♦

Corollary 1.41 gives an equivalent characterization of complete sequences.

Note that the term “complete” has two distinct uses: (a) a normed linear space X is complete if

every Cauchy sequence in X is convergent, and (b) a sequence {xn} in a normed linear space X is

complete if span{xn} is dense in X. These two distinct uses should always be clear from context.

1.3. HILBERT SPACES. A Hilbert space is a Banach space with additional geometric properties.

In particular, the norm of a Hilbert space is obtained from an inner product that mimics the

properties of the dot product of vectors in Rn or Cn. Recall that the dot product of u, v ∈ Cn is

defined by

u · v = u1v̄1 + · · · + unv̄n.

Therefore, if we use the Euclidean norm |v| = (|v1|2 + · · · + |vn|2)1/2, then this norm is related

to the dot product by the equation |v| = (v · v)1/2. On the other hand, when p 6= 2 the norm



8 1. NOTATION AND FUNCTIONAL ANALYSIS REVIEW

|v|p = (|v1|p + · · ·+ |vn|p)1/p is not obtainable from the dot product of v with itself. In fact, there

is no way to define a “generalized dot product” u · v which has the same algebraic properties as

the usual dot product and which also satisfies |v|p = (v · v)1/2. The essential algebraic properties

of the dot product are given in the following definition.

Definition 1.14. A vector space H is an inner product space if for each x, y ∈ H we can define

a complex number 〈x, y〉, called the inner product of x and y, so that:

(a) 〈x, x〉 is real and 〈x, x〉 ≥ 0 for each x,

(b) 〈x, x〉 = 0 if and only if x = 0,

(c) 〈y, x〉 = 〈x, y〉, and

(d) 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉.
If 〈x, y〉 = 0, then x and y are said to be orthogonal. In this case, we write x ⊥ y.

If H is an inner product space, then it can be shown that ‖x‖ = 〈x, x〉1/2 defines a norm for H,

called the induced norm. Hence all inner product spaces are normed linear spaces. If H is complete

in this norm then H is called a Hilbert space. Thus Hilbert spaces are those Banach spaces whose

norms can be derived from an inner product. ♦

A given Hilbert space may have many possible inner products. We say that two inner products

for H are equivalent if the two corresponding induced norms are equivalent (compare Defini-

tion 1.4).

Example 1.15. The following are examples of Hilbert spaces.

(a) Lp(E) is a Hilbert space when p = 2, but not for p 6= 2. For p = 2 the inner product is

defined by

〈f, g〉 =

∫

E

f(x) g(x) dx.

The fact that this integral converges is a consequence of the Cauchy–Schwarz inequality

(1.1).

(b) Similarly, ℓp is a Hilbert space when p = 2, but not for p 6= 2. For p = 2 the inner product

is defined by
〈

(an), (bn)
〉

=
∞
∑

n=1

an bn.

Again, the convergence of this series is a consequence of the Cauchy–Schwarz inequality

(1.1). ♦

The following result generalizes the Cauchy–Schwarz inequality to any Hilbert space, and gives

some basic properties of the inner product.

Theorem 1.16. Let H be a Hilbert space, and let x, y ∈ H.

(a) (Cauchy–Schwarz Inequality) |〈x, y〉| ≤ ‖x‖ ‖y‖.
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(b) ‖x‖ = sup
‖y‖=1

|〈x, y〉|.

(c) (Parallelogram Law) ‖x + y‖2 + ‖x − y‖2 = 2
(

‖x‖2 + ‖y‖2
)

.

(d) (Pythagorean Theorem) If 〈x, y〉 = 0 then ‖x + y‖2 = ‖x‖2 + ‖y‖2. ♦

Sequences in a Hilbert space which possess the property that any two distinct elements are

orthogonal have a number of mathematically appealing and useful features, which the following

result describes. The precise meaning of the infinite series used in Definition 1.17(c) is explained

in Definition 2.1.

Definition 1.17. Let {xn} be a sequence in a Hilbert space H.

(a) {xn} is orthogonal if 〈xm, xn〉 = 0 whenever m 6= n.

(b) {xn} is orthonormal if 〈xm, xn〉 = δmn, i.e., if {xn} is orthogonal and ‖xn‖ = 1 for every n.

(c) {xn} is a basis for H if every x ∈ H can be written x =
∑∞

n=1 cnxn for a unique choice of

scalars cn.

(d) An orthonormal sequence {xn} is an orthonormal basis if it is both orthonormal and a

basis. In this case, the unique representation of x ∈ H in this basis is x =
∑ 〈x, xn〉xn

(see Theorem 1.20). ♦

Example 1.18. Here are some examples of orthonormal bases.

(a) Consider H = ℓ2, and define sequences en = (δmn)∞m=1 = (0, . . . , 0, 1, 0, . . . ), where the 1

is in the nth position. Then {en} is an orthonormal basis for ℓ2, often called the standard

basis for ℓ2.

(b) Consider H = L2[0, 1], the space of functions that are square-integrable on the interval

[0, 1]. Define functions en(x) = e2πinx, with n ranging through the set Z of all inte-

gers. Then {en}n∈Z is an orthonormal basis for H. If f ∈ L2[0, 1] then the expansion

f =
∑

n∈Z
〈f, en〉 en is called the Fourier series of f , and (〈f, en〉)n∈Z is the sequence of

Fourier coefficients of f . The Fourier coefficients are often denoted by f̂(n) = 〈f, en〉 =
∫ 1

0
f(x) e−2πinx dx. Note that we are only guaranteed that the Fourier series of f will con-

verge in L2-norm. There is no guarantee that it will converge pointwise, and indeed, there

exist continuous functions whose Fourier series do not converge at every point [Kat68].

We can also regard the functions en(x) = e2πinx as being 1-periodic functions defined on

the entire real line. In this case, we can again show that {en}n∈Z is an orthonormal basis

for the Hilbert space L2(T) consisting of all 1-periodic functions that are square-integrable

over a single period, i.e.,

L2(T) = {f :R → R : f(x + 1) = f(x) for all x, and

∫ 1

0

|f(x)|2 < ∞}. ♦
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In light of Example 1.18(b), if {en} is an orthonormal basis for an arbitrary Hilbert space

H, then the representation x =
∑ 〈x, en〉 en is sometimes called the generalized Fourier series of

x ∈ H, and (〈x, en〉) is called the sequence of generalized Fourier coefficients.

Theorem 1.19. Let {xn} be an orthonormal sequence in a Hilbert space H.

(a) The series x =
∑

cnxn converges if and only if (cn) ∈ ℓ2. In this case we have the Plancherel

Formula ‖x‖2 =
∑ |cn|2.

(b) If x =
∑

cnxn converges then cn = 〈x, xn〉. In particular, (cn) = (〈x, xn〉) is the unique

choice of coefficients such that x =
∑

cnxn.

(c) (Bessel Inequality) If x ∈ H then
∑ |〈x, xn〉|2 ≤ ‖x‖2. ♦

It is tempting to conclude from Theorem 1.19 that if {xn} is any orthonormal sequence in a

Hilbert space H, then every x ∈ H can be written x =
∑ 〈x, xn〉xn. This, however, is not always

the case, for there may not be “enough” vectors in the sequence to span all of H. In particular,

if {xn} is not complete then its closed span is only a proper closed subspace of H and not all

of H. For example, a finite sequence of orthonormal vectors {x1, . . . , xN} can only span a finite-

dimensional subspace of an infinite-dimensional Hilbert space, and therefore cannot be complete

in an infinite-dimensional space. As another example, if {xn} is an orthonormal sequence in H

then {x2n} is also an orthonormal sequence in H. However, x1 is orthogonal to every x2n, so it

follows from Corollary 1.41 that {x2n} is incomplete.

The next theorem presents several equivalent conditions which imply that an orthonormal se-

quence is complete in H.

Theorem 1.20. Let {xn} be an orthonormal sequence in a Hilbert space H. Then the following

statements are equivalent.

(a) {xn} is complete in H.

(b) {xn} is an orthonormal basis for H.

(c) (Plancherel Formula)
∑ |〈x, xn〉|2 = ‖x‖2 for every x ∈ H.

(d) x =
∑ 〈x, xn〉xn for every x ∈ H. ♦

Note that this theorem implies that every complete orthonormal sequence in a Hilbert space is

actually a basis for H. This need not be true for nonorthogonal sequences. Indeed, it is easy to

construct complete sequences that are not bases. Moreover, we show in Chapter 6 that there exist

complete sequences that are finitely linearly independent (i.e., such that no finite linear combination

is zero except the trivial combination), yet are not bases.

Suppose that H does have an orthonormal basis {xn}. Then

E =

{ N
∑

n=1

rncn : N > 0, Re(rn), Im(rn) ∈ Q

}
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is a countable, dense subset of H, so H is separable. The converse is also true, i.e., every separable

Hilbert space does possess an orthonormal basis. Moreover, by mapping one orthonormal basis for

one separable Hilbert space onto an orthonormal basis for another separable Hilbert space, it follows

that all separable Hilbert spaces are isomorphic. We state this explicitly in the following theorem

(see Definitions 1.22 and 1.45 for an explanation of the terms isomorphic and norm-preserving).

Theorem 1.21. If H is a Hilbert space, then there exists an orthonormal basis {xn} for H if and

only if H is separable. As a consequence, all separable Hilbert spaces are isometrically isomorphic,

and in fact are isomorphic to ℓ2. That is, if H is a separable Hilbert space, then there exists a

bijective, norm-preserving mapping S of H onto ℓ2. ♦

1.4. OPERATORS. Let X and Y be normed linear spaces. An operator is a simply a function

T :X → Y . If Y = F is the field of scalars, then an operator T :X → F is called a functional on X.

For simplicity, we will write either Tx or T (x) to denote the operator T applied to an element x.

Definition 1.22. Let X and Y be normed linear spaces, and let T :X → Y be an operator.

(a) T is linear if T (ax + by) = aTx + bTy for all x, y ∈ X and all scalars a, b ∈ F.

(b) T is injective, or 1 − 1, if Tx = Ty if and only if x = y.

(c) The range, or image, of T is Range(T ) = T (X) = {Tx : x ∈ X}.

(d) T is surjective, or onto, if Range(T ) = Y .

(e) T is bijective if it is both injective and surjective.

(f) T is continuous if xn → x in X implies T (xn) → Tx in Y .

(g) The operator norm, or simply the norm, of a linear operator T is

‖T‖ = sup
‖x‖X=1

‖Tx‖Y .

T is bounded if ‖T‖ < ∞.

(h) T is norm-preserving, or isometric, if ‖Tx‖Y = ‖x‖X for every x ∈ X.

(i) T is a functional if Y = F. ♦

A critical property of linear operators on normed linear spaces is that boundedness and conti-

nuity are equivalent!

Theorem 1.23. Let T :X → Y be a linear operator mapping a normed linear space X into another

normed linear space Y . Then:

T is continuous ⇐⇒ T is bounded. ♦
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As a consequence of this result, we use the terms continuous and bounded interchangeably when

speaking of linear operators.

1.5. DUAL SPACES.

Not all linear functionals on a Banach space X are continuous if X is infinite-dimensional (see

Example 4.1). The class of all continuous linear functionals on X is especially important. We

consider this dual space in this section.

Notation 1.24. We often use the symbol x∗ to denote a typical continuous linear functional on

X. It is important to note that x∗ is simply a functional on X, and is not somehow determined

from some specific element x ∈ X. That is, x∗ is a mapping from X to F, and the value of x∗ at

an arbitrary x ∈ X is x∗(x). For continuous linear functionals, we often denote the action of x∗

on x ∈ X by the notation

〈x, x∗〉 = x∗(x).

With this notation, the linearity of x∗ is expressed by the statement

∀x, y ∈ X, 〈ax + by, x∗〉 = a〈x, x∗〉 + b〈y, x∗〉.

Similarly, the continuity of x∗ is expressed in this notation by the statement

lim
n→∞

xn = x =⇒ lim
n→∞

〈xn, x∗〉 = 〈x, x∗〉.

Additionally, since since the norm on the scalar field F is simply absolute value, the operator norm

of a linear functional x∗ is given in this notation by the formula

‖x∗‖ = sup
‖x‖X=1

|〈x, x∗〉|. ♦

The collection of all continuous linear functionals on X is a key space in Banach space theory.

Definition 1.25. Let X be a normed linear space. Then the dual space of X is

X∗ = {x∗:X → F : x∗ is a continuous linear functional on X}. ♦

The dual space of a Banach space is itself Banach space.

Theorem 1.26. If X is a normed linear space, then its dual space X∗ is a Banach space when

equipped with the operator norm

‖x∗‖X∗ = sup
‖x‖X=1

|〈x, x∗〉|. ♦

By definition, the norm of a functional x∗ ∈ X is determined by its evaluations 〈x, x∗〉 on

elements of X. Conversely, the following result states that the norm of an element x ∈ X, can be

recovered from the evaluations 〈x, x∗〉 over functionals in X∗.
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Theorem 1.27. Let X be a Banach space, and let x ∈ X. Then

‖x‖X = sup
‖x∗‖X∗=1

|〈x, x∗〉|. ♦

In is often difficult to explicitly characterize the dual space X∗ of a general Banach space.

However, we can characterize the dual spaces of some particular Banach spaces.

Example 1.28. Fix 1 ≤ p ≤ ∞, and define p′ by 1
p + 1

p′
= 1, where we set 1/0 = ∞ and 1/∞ = 0.

For each g ∈ Lp′

(E), define µg:L
p(E) → C by

µg(f) =

∫

E

f(x) g(x) dx, f ∈ Lp(E).

Then, by Hölder’s Inequality (Theorem 1.7), |µg(f)| ≤ ‖f‖Lp ‖g‖Lp′ . Therefore, ‖µg‖ ≤ ‖g‖Lp′ <

∞, so µg is a continuous linear functional on Lp(E). In fact, it is easy to show that ‖µg‖ = ‖g‖Lp′ .

Thus, each element g ∈ Lp′

(E) determines a continuous linear functional µg ∈ (Lp(E))∗. Fur-

ther, it can be shown that if 1 ≤ p < ∞, then for each continuous linear functional µ ∈ (Lp(E))∗

there exists a unique function g ∈ Lp′

(E) such that µ = µg. Thus, if 1 ≤ p < ∞ then every function

g ∈ Lp′

(E) is associated with a unique continuous linear functional µg ∈ (Lp(E))∗, and conversely.

We therefore “identify” the functional µg with the function g, and write simply “µg = g.” The

fact that µg is a functional on Lp(E) while g is a function in Lp′

(E) usually causes no confusion,

as the meaning is clear from context. In the same way, we write (Lp(E))∗ = Lp′

(E), when we

actually mean that g 7→ µg is an isomorphism between Lp′

(E) and (Lp(E))∗. For the case p = ∞,

we have L1(E) ⊂ (L∞(E))∗, but we do not have equality.

Similar statements apply to the sequence spaces ℓp. In particular, each y = (yn) ∈ ℓp′

determines

a continuous linear functional µy ∈ (ℓp)∗ by the formula

µy(x) =
∑

n

xnyn, x = (xn) ∈ ℓp.

If 1 ≤ p < ∞ then (ℓp)∗ = ℓp′

, while ℓ1 ⊂ (ℓ∞)∗. Moreover, it can be shown that (c0)
∗ = ℓ1, and

therefore (c0)
∗∗ = (ℓ1)∗ = ℓ∞. ♦

Remark 1.29. Consider again the situation of Example 1.28. If we identify the function g ∈
Lp′

(E) with the functional µg ∈ (Lp(E))∗ and use the notation of Notation 1.24, we would write

〈f, g〉 = 〈f, µg〉 = µg(f) =

∫

E

f(x) g(x) dx. (1.2)

Consider in particular the case p = 2. We then have p′ = 2 as well, so in this case, f and g are

both elements of L2(E) in (1.2). Moreover, L2(E) is a Hilbert space, and therefore has an inner

product that is defined by the formula

〈f, g〉 =

∫

E

f(x) g(x) dx, f, g ∈ L2(E). (1.3)
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Hence there is a conflict of notation between the inner product of f and g and the action of g

as a linear functional on f . Therefore, in the case p = 2 we usually identify the function g with

the functional µḡ instead of µg, thus preserving the meaning of 〈·, ·〉 as an inner product. As a

consequence, if we are dealing with an arbitrary value of p then there is the possibility of confusion

in the meaning of 〈f, g〉, since it might refer to either (1.2) or (1.3). However, the meaning is

usually clear from context. An additional problem in the case p = 2 is that the identification

I: g 7→ µḡ is anti-linear, because I(cg) = µcg = c̄µḡ = c̄I(g). Again, this does not cause confusion

in practice, and we continue to write (L2(E))∗ = L2(E). ♦

We have seen that (L2(E))∗ can be identified with L2(E). The following result states that if

H is any Hilbert space, then H∗ can be identified with H. In particular, any continuous linear

functional on H is formed by taking the inner product with some unique element of H.

Theorem 1.30 (Riesz Representation Theorem). Let H be a Hilbert space. For each y ∈ H

let µy be the functional on H defined by µy(x) = 〈x, y〉.
(a) If y ∈ H then µy ∈ H∗, i.e., µy is a continuous linear functional on H, and ‖µy‖ = ‖y‖.

(b) If µ ∈ H∗, i.e., µ is a continuous linear functional on H, then there exists a unique y ∈ H

such that µ = µy. ♦

Remark 1.31. Thus, there is a 1− 1 correspondence between elements of H and elements of H∗.

Therefore, we usually “identify” the element y ∈ H with the functional µy ∈ H∗. We write simply

y = µy and say that y “is” a linear functional on H, when we actually mean that y determines

the functional µy(x) = 〈x, y〉. The fact that y is an element of H while µy is a functional on H

usually causes no confusion, and the meaning is clear from context. In the same way, we identify

H with H∗, and write H = H∗. In this sense, all Hilbert spaces are self-dual; this is not true for

non-Hilbert spaces. Again, there is the possible source of confusion deriving from the fact that if

µy(x) = 〈x, y〉 then the identification y 7→ µy is anti-linear (because µcy = c̄µy). However, this is

not a problem in practice. ♦

Since X∗ is a Banach space, we can consider its dual space.

Definition 1.32. Since X∗ is a Banach space, we can consider its dual space X∗∗ = (X∗)∗. Each

element x ∈ X determines an element π(x) ∈ X∗∗ by the formula 〈x∗, π(x)〉 = 〈x, x∗〉 for x∗ ∈ X∗.

This mapping π:X → X∗∗ is called the canonical embedding of X into X∗∗, since it identifies

X with a subspace π(X) ⊂ X∗∗. If π is a bijection then we write X = X∗∗ and say that X is

reflexive. ♦

Example 1.33. Lp(E) and ℓp are reflexive if 1 < p < ∞, but not for p = 1 or p = ∞. ♦
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1.6. ADJOINTS. The duality between Banach spaces and their dual spaces allows us to define

the “dual” of an operator S:X → Y .

Definition 1.34. Let X and Y be Banach spaces, and let S:X → Y be a bounded linear operator.

Fix y∗ ∈ Y ∗, and define a functional x∗:X → F by

〈x, x∗〉 = 〈Sx, y∗〉, x ∈ X.

Then x∗ is linear since S and y∗ are linear. Further,

|〈x, x∗〉| = |〈Sx, y∗〉| ≤ ‖Sx‖Y ‖y∗‖Y ∗ ,

so

‖x∗‖ = sup
‖x‖X=1

|〈x, x∗〉| ≤ ‖y∗‖Y ∗ sup
‖x‖X=1

‖Sx‖Y = ‖y∗‖Y ∗ ‖S‖ < ∞. (1.4)

Hence x∗ is bounded, so x∗ ∈ X∗. Thus, for each y∗ ∈ Y ∗ we have defined a functional x∗ ∈ X∗.

Therefore, we can define an operator S∗:Y ∗ → X∗ by setting S∗(y∗) = x∗. This mapping S∗ is

linear, and by (1.4) we have

‖S∗‖ = sup
‖y∗‖Y ∗=1

‖S∗(y∗)‖X∗ = sup
‖y∗‖Y ∗=1

‖x∗‖X∗ ≤ sup
‖y∗‖Y ∗=1

‖y∗‖Y ∗ ‖S‖ = ‖S‖.

In fact, it is true that ‖S∗‖ = ‖S‖. This operator S∗ is called the adjoint of S.

The fundamental property of the adjoint can be restated as follows: S∗ : Y ∗ → X∗ is the unique

mapping which satisfies

∀x ∈ X, ∀ y∗ ∈ Y ∗, 〈Sx, y∗〉 = 〈x, S∗(y∗)〉. ♦ (1.5)

Definition 1.35. Assume that X = H and Y = K are Hilbert spaces. Then H = H∗ and

K = K∗. Therefore, if S:H → K then its adjoint S∗ maps K back to H. Moreover, by (1.5), the

adjoint S∗:K → H is the unique mapping which satisfies

∀x ∈ H, ∀ y ∈ K, 〈Sx, y〉 = 〈x, S∗y〉. ♦ (1.6)

We make the following further definitions specifically for operators S:H → H which map a

Hilbert space H into itself.

Definition 1.36. Let H be a Hilbert space.

(a) S:H → H is self-adjoint if S = S∗. By (1.6),

S is self-adjoint ⇐⇒ ∀x, y ∈ H, 〈Sx, y〉 = 〈x, Sy〉.

It can be shown that if S is self-adjoint, then 〈Sx, x〉 is real for every x, and

‖S‖ = sup
‖x‖=1

|〈Sx, x〉|.

(b) S:H → H is positive, denoted S ≥ 0, if 〈Sx, x〉 is real and 〈Sx, x〉 ≥ 0 for every x ∈ H. It

can be shown that a positive operator on a complex Hilbert space is self-adjoint.
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(c) S:H → H is positive definite, denoted S > 0, if 〈Sx, x〉 is real and 〈Sx, x〉 > 0 for every

x 6= 0.

(d) If S, T :H → H, then we write S ≥ T if S − T ≥ 0. Similarly, S > T if S − T > 0. ♦

As an example, consider the finite-dimensional Hilbert spaces H = Cn and K = Cm. A linear

operator S:Cn → Cm is simply an m×n matrix with complex entries, and its adjoint S∗:Cm → Cn

is simply the n × m matrix given by the conjugate transpose of S. In this case, the matrix S∗ is

often called the Hermitian of the matrix S.

1.7. THE HAHN–BANACH THEOREM. In this section we list several extremely useful theo-

rems about Banach spaces. Our statements of these results are adapted from [RS80], where they

are stated for the case of complex scalars, and [Roy68], where they are stated for real scalars.

The following result is fundamental.

Theorem 1.37 (Hahn–Banach). Let X be a vector space, and let p be a real-valued function

on X such that

∀x, y ∈ X, ∀ a, b ∈ C, |a| + |b| = 1 =⇒ p(ax + by) ≤ |a| p(x) + |b| p(y).

Let λ be a linear functional on a subspace Y of X, and suppose that λ satisfies

∀x ∈ Y, |λ(x)| ≤ p(x).

Then there exists a linear functional Λ on X such that

∀x ∈ X, |Λ(x)| ≤ p(x) and ∀x ∈ Y, Λ(x) = λ(x). ♦

The following corollaries of the Hahn–Banach theorem are often more useful in practice than

Theorem 1.37 itself. Therefore, they are often referred to individually as “the” Hahn–Banach

Theorem, even though they are only consequences of Theorem 1.37.

Corollary 1.38. Let X be a normed linear space, let Y be a subspace of X, and let λ ∈ Y ∗.

Then there exists Λ ∈ X∗ such that

∀x ∈ Y, 〈x,Λ〉 = 〈x, λ〉 and ‖Λ‖X∗ = ‖λ‖Y ∗ . ♦

Corollary 1.39. Let X be a normed linear space, and let y ∈ X. Then there exists Λ ∈ X∗ such

that

〈y, Λ〉 = ‖Λ‖X∗ ‖y‖X .

In particular, there exists Λ ∈ X∗ such that

‖Λ‖X∗ = 1 and 〈y, Λ〉 = ‖y‖X . ♦
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Corollary 1.40. Let Z be a subspace of a normed linear space X, and let y ∈ X. Let d =

dist(y, Z) = infz∈Z ‖y − z‖X . Then there exists Λ ∈ X∗ such that:

(a) ‖Λ‖X∗ ≤ 1,

(b) 〈y, Λ〉 = d,

(c) ∀ z ∈ Z, 〈z,Λ〉 = 0. ♦

We will have occasion to use the following corollary often.

Corollary 1.41. Let X be a Banach space. Then {xn} ⊂ X is complete if and only if the only

x∗ ∈ X∗ satisfying 〈xn, x∗〉 = 0 for all n is x∗ = 0.

Proof. ⇒. Suppose that {xn} is complete, i.e., span{xn} = X, and suppose that x∗ ∈ X∗ satisfies

〈xn, x∗〉 = 0 for all n. Since x∗ is linear, we therefore have 〈x, x∗〉 = 0 for every x =
∑N

n=1 cnxn ∈
span{xn}. However, x∗ is continuous, so this implies 〈x, x∗〉 = 0 for every x ∈ span{xn} = X.

Hence x∗ is the zero functional.

⇐. Suppose now that the only x∗ ∈ X∗ satisfying 〈xn, x∗〉 = 0 for every n is x∗ = 0. Define

Z = span{xn}, and suppose that Z 6= X. Then we can find an element y ∈ X such that y /∈ Z.

Since Z is a closed subset of X, we therefore have d = dist(y, Z) > 0. By the Hahn–Banach

Theorem (Corollary 1.40), there exists a functional Λ ∈ X∗ satisfying 〈y, Λ〉 = d 6= 0 and 〈z,Λ〉 = 0

for every z ∈ Z. However, this implies that 〈xn,Λ〉 = 0 for every n. By hypothesis, Λ must then

be the zero functional, contradicting the fact that 〈y, Λ〉 6= 0. Hence, we must in fact have that

Z = X, so {xn} is complete in X. �

If H is a Hilbert space then H∗ = H. Therefore, Corollary 1.41 implies that a sequence {xn}
in a Hilbert space H is complete in H if and only if the only element y ∈ H satisfying 〈xn, y〉 = 0

for all n is y = 0.

Next we list several related major results.

Theorem 1.42 (Uniform Boundedness Principle). Let X be a Banach space and let Y be

a normed linear space. Let {Tγ}γ∈Γ be a family of bounded linear operators mapping X into Y .

Then,
(

∀x ∈ X, sup
γ∈Γ

‖Tγ(x)‖Y < ∞
)

=⇒ sup
γ∈Γ

‖Tγ‖ < ∞. ♦

Theorem 1.43 (Open Mapping Theorem). Let T :X → Y be a bounded linear operator from

a Banach space X onto another Banach space Y . Then T (U) = {T (x) : x ∈ U} is an open set in

Y whenever U is an open set in X. ♦

Theorem 1.44 (Inverse Mapping Theorem). A continuous bijection T :X → Y of one Banach

space X onto another Banach space Y has a continuous inverse T−1:Y → X. ♦
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Definition 1.45. A topological isomorphism between Banach spaces X and Y is a linear bijection

S:X → Y that is continuous. If S is a norm-preserving in addition, then we say that S is

an isometric isomorphism. Banach spaces X and Y are isomorphic if there exists a topological

isomorphism mapping X onto Y . ♦

For example, it can be shown that every finite-dimensional Banach space is topologically iso-

morphic to Cn for some n if the scalars are complex, or to Rn for some n if the scalars are

real.

By the Inverse Mapping Theorem (Theorem 1.44), a topological isomorphism must have a contin-

uous inverse. For simplicity, topological isomorphisms are sometimes simply called “isomorphisms”

or even just “invertible mappings.”

Theorem 1.46 (Closed Graph Theorem). Let T :X → Y be a linear mapping of one Banach

space X onto another Banach space Y . Then T is bounded if and only if

graph(T ) = {(x, y) ∈ X × Y : y = T (x)}

is a closed set in X × Y . That is, T is bounded if and only if for each {xn} ⊂ X we have

(

xn → x and T (xn) → y
)

=⇒ y = T (x). ♦

1.8. WEAK CONVERGENCE. In this section we discuss some types of “weak convergence” that

we will make use of in Chapter 10.

Definition 1.47. Let X be a Banach space.

(a) A sequence {xn} of elements of X converges to x ∈ X if Definition 1.2(a) holds, i.e., if

limn→∞ ‖x − xn‖ = 0. For emphasis, we sometimes refer to this type of convergence as

strong convergence or norm convergence.

(b) A sequence {xn} of elements of X converges weakly to x ∈ X if

∀x∗ ∈ X∗, lim
n→∞

〈xn, x∗〉 = 〈x, x∗〉.

In this case, we say that xn → x weakly.

(c) A sequence {x∗
n} of functionals in X∗ converges weak∗ to x∗ ∈ X∗ if

∀x ∈ X, lim
n→∞

〈x, x∗
n〉 = 〈x, x∗〉.

In this case, we say that xn → x weak∗, or in the weak∗ topology. ♦
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Note that weak∗ convergence only applies to convergence of functionals in a dual space X∗.

However, since X∗ is itself a Banach space, we could consider strong or weak convergence of

functionals in X∗ as well as weak∗ convergence of these functionals. In particular, if X is reflexive

then X = X∗∗, and therefore x∗
n → x∗ weakly in X∗ if and only if x∗

n → x∗ weak∗ in X∗. For

general Banach spaces, we have the following implications.

Lemma 1.48. Let X be a Banach space.

(a) Strong convergence in X implies weak convergence in X.

(b) Weak convergence in X∗ implies weak∗ convergence in X∗.

Proof. (a) Suppose that xn, x ∈ X and that xn → x strongly. Fix any x∗ ∈ X∗. Since x∗ is

continuous, we have limn→∞ 〈xn, x∗〉 = 〈x, x∗〉, so xn → x weakly by definition.

(b) Suppose that x∗
n, x∗ ∈ X∗ and that x∗

n → x∗ weakly. Let x ∈ X. Then π(x) ∈ X∗∗, where

π:X → X∗∗ is the canonical embedding of X into X∗∗ defined in Definition 1.32. By definition of

weak convergence, we have limn→∞ 〈x∗
n, x∗∗〉 = 〈x∗, x∗∗〉 for every x∗∗ ∈ X∗∗. Taking x∗∗ = π(x)

in particular, we therefore have

lim
n→∞

〈x, x∗
n〉 = lim

n→∞
〈x∗

n, π(x)〉 = 〈x∗, π(x)〉 = 〈x, x∗〉.

Thus x∗
n → x∗ in the weak∗ topology. �

It is easy to see that strongly convergent sequences are norm-bounded above. It is more difficult

to prove that the same is true of weakly convergent sequences.

Lemma 1.49. All weakly convergent sequences are norm-bounded above. That is, if {xn} ⊂ X

and xn → x ∈ X weakly, then sup ‖xn‖ < ∞. ♦

Strong, weak, and weak∗ convergence can all be defined in terms of topologies on X or X∗.

For example, the strong topology is defined by the norm ‖ · ‖ on X. The weak topology on X is

defined by the family of seminorms px∗(x) = |〈x, x∗〉|, with x∗ ranging through X∗. The weak∗

topology on X∗ is defined by the family of seminorms px(x∗) = |〈x, x∗〉|, with x ranging through

X. These are only three specific examples of topologies on a Banach space X. There are many

other topologies that are useful in specific applications. Additionally, there are many other useful

vector spaces which are not Banach spaces, but for which topologies can still be defined. We shall

not deal with such topological vector spaces, but instead refer the reader to [Con85] or [Hor66] for

more information.
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II. CONVERGENCE OF SERIES
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2. UNCONDITIONAL CONVERGENCE OF SERIES IN BANACH SPACES

Definition 2.1. Let {xn} be a sequence in a Banach space X.

(a) The series
∑

xn is convergent and equals x ∈ X if the partial sums sN =
∑N

n=1 xn converge

to x in the norm of X, i.e., if

∀ ε > 0, ∃N0 > 0, ∀N ≥ N0, ‖x − sN‖ =

∥

∥

∥

∥

x −
N
∑

n=1

xn

∥

∥

∥

∥

< ε.

(b) The series
∑

xn is Cauchy if the sequence {sN} of partial sums is a Cauchy sequence in

X, i.e., if

∀ ε > 0, ∃N0 > 0, ∀N > M ≥ N0, ‖sN − sM‖ =

∥

∥

∥

∥

N
∑

n=M+1

xn

∥

∥

∥

∥

< ε.

Since X is a Banach space, a series
∑

xn converges if and only if it is a Cauchy series. ♦

Here are some additional, more restrictive, types of convergence of series.

Definition 2.2. Let {xn} be a sequence in a Banach space X.

(a) A series
∑

xn is unconditionally convergent if
∑

xσ(n) converges for every permutation σ

of N.

(b) A series
∑

xn is absolutely convergent if
∑ ‖xn‖ < ∞. ♦

Although Definition 2.2 does not require that
∑

xσ(n) must converge to the same value for every

permutation σ, we show in Corollary 2.9 that this is indeed the case.

If (cn) is a sequence of real or complex numbers, then
∑

cn converges unconditionally if and

only if it converges absolutely (Lemma 2.3). In a general Banach space, it is true that absolute

convergence implies unconditional convergence (Lemma 2.4), but the converse is not always true

(Example 2.5). In fact, it can be shown that unconditional convergence is equivalent to absolute

convergence only for finite-dimensional Banach spaces.

Lemma 2.3. [Rud64, p. 68]. Let (cn) be a sequence of real or complex scalars. Then,

∑

n

cn converges absolutely ⇐⇒
∑

n

cn converges unconditionally.

Proof. ⇒. Suppose that
∑ |cn| < ∞, and choose any ε > 0. Then there exists N0 > 0 such that

∣

∣

∑N
n=M+1 cn

∣

∣ < ε whenever N > M ≥ N0. Let σ be any permutation of N, and let

N1 = max {σ−1(1), . . . , σ−1(N0)}.
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Suppose that N > M ≥ N1. If M +1 ≤ n ≤ N , then n > N1. Therefore n 6= σ−1(1), . . . , σ−1(N0),

so σ(n) 6= 1, . . . , N0. Hence σ(n) > N0. In particular, K = min {σ(M + 1), . . . , σ(N)} > N0 and

L = max {σ(M + 1), . . . , σ(N)} ≥ K, so
∣

∣

∣

∣

N
∑

n=M+1

cσ(n)

∣

∣

∣

∣

≤
N
∑

n=M+1

|cσ(n)| ≤
L
∑

n=K

|cn| < ε.

Hence
∑

cσ(n) is a Cauchy series of scalars, and therefore must converge.

⇐. Suppose first that
∑

cn is a sequence of real scalars that does not converge absolutely. Let

(pn) be the sequence of nonnegative terms of (cn) in order, and let (qn) be the sequence of negative

terms of (cn) in order. If
∑

pn and
∑

qn both converge, then it is easy to see that
∑ |cn| converges

and equals
∑

pn −∑ qn, which is a contradiction. Hence either
∑

pn or
∑

qn must diverge.

Suppose that
∑

pn diverges. Since pn ≥ 0 for every n, there must exist an m1 > 0 such that

p1 + · · · + pm1
> 1.

Then, there must exist an m2 > m1 such that

p1 + · · · + pm1
− q1 + pm1+1 + · · · + pm2

> 2.

Continuing in this way, we see that

p1 + · · · + pm1
− q1 + pm1+1 + · · · + pm2

− q2 + · · ·
is a rearrangement of

∑

cn which diverges. Hence
∑

cn cannot converge unconditionally. A similar

proof applies if
∑

qn diverges.

Thus we have shown, by a contrapositive argument, that if
∑

cn is a series of real scalars

that converges unconditionally, then it must converge absolutely. Suppose now that
∑

cn is a

series of complex scalars that converges unconditionally. We will show that the real part and

the imaginary part of
∑

cn must each converge unconditionally as well. Write cn = an + ibn,

and let σ be any permutation of N. Then c =
∑

cσ(n) must converge. Write c = a + ib. Then
∣

∣a − ∑N
n=1 aσ(n)

∣

∣ ≤
∣

∣c − ∑N
n=1 cσ(n)

∣

∣, so a =
∑

aσ(n) converges. Since this is true for every

permutation σ, the series
∑

an must converge unconditionally. Since this is a series of real scalars,

it therefore must converge absolutely. Similarly,
∑

bn must converge absolutely. Hence,
∑ |cn| =

∑ |an + ibn| ≤
∑ |an| +

∑ |bn| < ∞, so
∑

cn converges absolutely. �

Lemma 2.4. Let {xn} be a sequence of elements of a Banach space X. If
∑

xn converges

absolutely then it converges unconditionally.

Proof. Assume that
∑ ‖xn‖ < ∞. If M < N , then

∥

∥

∥

∥

N
∑

n=M+1

xn

∥

∥

∥

∥

≤
N
∑

n=M+1

‖xn‖.

Since
∑ ‖xn‖ is a Cauchy series of real numbers, it follows that

∑

xn is a Cauchy series in X.

Hence
∑

xn must converge in X. Moreover, we can repeat this argument for any permutation

σ of N since we always have
∑ ‖xσ(n)‖ < ∞ by Lemma 2.3. Therefore

∑

xn is unconditionally

convergent. �
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Example 2.5. Let {en} be an infinite orthonormal sequence in an infinite-dimensional Hilbert

space H. Then by Theorem 1.19(a),
∑

cnen converges if and only if
∑ |cn|2 < ∞. However, by

Lemma 2.3, this occurs if and only if
∑ |cσ(n)|2 < ∞ for every permutation σ of N. Since {eσ(n)}

is also an orthonormal sequence, this implies that
∑

cnen converges if and only if it converges

unconditionally, and that this occurs exactly for (cn) ∈ ℓ2.

On the other hand, since ‖en‖ = 1, we have that
∑

cnen converges absolutely if and only if
∑ |cn| < ∞. Hence absolute convergence holds exactly for (cn) ∈ ℓ1. Since ℓ1 is a proper subset of

ℓ2, it follows that there are series
∑

cnen which converge unconditionally but not absolutely. ♦

Note that in this example, we were able to exactly characterize the collection of coefficients

(cn) such that
∑

cnen converges, because we knew that {en} was an orthonormal sequence in a

Hilbert space. For arbitrary sequences {xn} in Hilbert or Banach spaces, it is usually much more

difficult to characterize explicitly those coefficients (cn) such that
∑

cnxn converges or converges

unconditionally.

Next, we define another restricted form of convergence of the series
∑

xn. We will see in

Theorem 2.8 that this notion of convergence is equivalent to unconditional convergence.

Definition 2.6. The finite subsets of N form a net when ordered by inclusion. We can therefore

define a convergence notion with respect to the net. If {∑n∈F xn : all finite F ⊂ N} has a limit

with respect to this net of finite subsets of N, then we denote the limit by limF

∑

n∈F xn. To be

precise, x = limF

∑

n∈F xn exists if and only if

∀ ε > 0, ∃ finite F0 ⊂ N, ∀ finite F ⊃ F0,

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

< ε. ♦

Proposition 2.7. If x = limF

∑

n∈F xn exists, then
∑

xn is convergent and x =
∑

xn.

Proof. Suppose x = limF

∑

n∈F xn exists, and choose ε > 0. Then there is a finite set F0 ⊂ N

such that

∀ finite F ⊃ F0,

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

< ε.

Let N0 = max(F0). Then, if N > N0 then F0 ⊂ {1, . . . , N}. Hence ‖x −∑N
n=1 xn‖ < ε, so

x =
∑

xn. �

We collect in the following result several equivalent definitions of unconditional convergence,

including the fact that limF

∑

n∈F xn exists if and only if
∑

xn converges unconditionally.

Theorem 2.8. Given a sequence {xn} in a Banach space X, the following statements are equiv-

alent.

(a)
∑

xn converges unconditionally.

(b) limF

∑

n∈F xn exists.

(c) ∀ ε > 0, ∃N > 0, ∀ finite F ⊂ N, min(F ) > N =⇒ ‖∑n∈F xn‖ < ε.
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(d)
∑

xnj
converges for every increasing sequence 0 < n1 < n2 < · · · .

(e)
∑

εnxn converges for every choice of signs εn = ±1.

(f)
∑

λnxn converges for every bounded sequence of scalars (λn).

(g)
∑ |〈xn, x∗〉| converges uniformly with respect to the unit ball {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} in X∗.

That is,

lim
N→∞

sup

{ ∞
∑

n=N

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

= 0.

Proof. (a) ⇒ (b). Suppose x =
∑

xn converges unconditionally but that limF

∑

n∈F xn does not

exist. Then there is an ε > 0 such that

∀ finite F0, ∃ finite F ⊃ F0 such that

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

≥ ε. (2.1)

Since
∑

xn converges, there is an integer M1 > 0 such that

∀N ≥ M1,

∥

∥

∥

∥

x −
N
∑

1

xn

∥

∥

∥

∥

<
ε

2
.

Define F1 = {1, . . . , M1}. Then, by (2.1), there is a G1 ⊃ F1 such that ‖x −∑n∈G1
xn‖ ≥ ε. Let

M2 be the largest integer in G1 and let F2 = {1, . . . , M2}. Continuing in this way we obtain a

sequence of finite sets F1 ⊂ G1 ⊂ F2 ⊂ G2 ⊂ · · · such that

∥

∥

∥

∥

x −
∑

n∈FN

xn

∥

∥

∥

∥

<
ε

2
and

∥

∥

∥

∥

x −
∑

n∈GN

xn

∥

∥

∥

∥

≥ ε.

Hence

∥

∥

∥

∥

∑

n∈GN\FN

xn

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈GN

xn −
∑

n∈FN

xn

∥

∥

∥

∥

≥
∥

∥

∥

∥

x −
∑

n∈GN

xn

∥

∥

∥

∥

−
∥

∥

∥

∥

x −
∑

n∈FN

xn

∥

∥

∥

∥

≥ ε − ε

2
=

ε

2
.

Therefore, we must have FN 6= GN , so |FN | < |GN |. Let σ be any permutation of N obtained by

enumerating in turn the elements of F1, then G1\F1, then F2\G1, then G2\F2, etc. Then for each

N we have
∥

∥

∥

∥

|GN |
∑

n=|FN |+1

xσ(n)

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈GN\FN

xn

∥

∥

∥

∥

≥ ε

2
.

Since |FN |, |GN | → ∞ as N increases, we see that
∑

xσ(n) is not Cauchy, and hence not convergent,

a contradiction.
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(b) ⇒ (c). Suppose x = limF

∑

n∈F xn exists, and choose ε > 0. By definition, there must be a

finite set F0 ⊂ N such that

∀ finite F ⊃ F0,

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

<
ε

2
.

Let N = max(F0), and suppose we have a finite G ⊂ N with min(G) > N . Then since F0 ∩G = ∅,
∥

∥

∥

∥

∑

n∈G

xn

∥

∥

∥

∥

=

∥

∥

∥

∥

(

x −
∑

n∈F0

xn

)

−
(

x −
∑

n∈F0∪G

xn

)
∥

∥

∥

∥

≤
∥

∥

∥

∥

x −
∑

n∈F0

xn

∥

∥

∥

∥

+

∥

∥

∥

∥

x −
∑

n∈F0∪G

xn

∥

∥

∥

∥

<
ε

2
+

ε

2
= ε.

Therefore statement (c) holds.

(c) ⇒ (a). Assume that statement (c) holds, and let σ be any permutation of N. We need

only show that
∑

xσ(n) is Cauchy. So, choose ε > 0, and let N be the number whose existence is

implied by statement (c). Define

N0 = max {σ−1(1), . . . , σ−1(N)}.

Assume that L > K ≥ N0, and set F = {σ(K + 1), . . . , σ(L)}. Then

min(F ) = min {σ(K + 1), . . . , σ(L)} > N,

since if k ≥ K + 1 then k > N0, so k 6= σ−1(1), . . . , σ−1(N) and therefore σ(k) 6= 1, . . . , N .

Hypothesis (c) therefore implies that

∥

∥

∥

∥

L
∑

n=K+1

xσ(n)

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈F

xn

∥

∥

∥

∥

< ε,

so
∑

xσ(n) is Cauchy and therefore must converge.

(c) ⇒ (d). Assume that statement (c) holds, and let 0 < n1 < n2 < · · · be any increasing set of

integers. We will show that
∑

xni
is Cauchy, hence convergent. Given ε > 0 let N be the number

whose existence is implied by statement (c). Let j be such that nj > N . If ℓ > k ≥ j then

min {nk+1, . . . , nℓ} ≥ nj > N,

so statement (c) implies
∥

∥

∑ℓ
i=k+1 xni

∥

∥ < ε, as desired.

(c) ⇒ (g). Assume that statement (c) holds, and choose ε > 0. Let N be the integer whose

existence is guaranteed by statement (c). Given L ≥ K > N and any x∗ ∈ X∗ with ‖x∗‖ ≤ 1,

define

F+ = {n ∈ N : K ≤ n ≤ L and Re(〈xn, x∗〉) ≥ 0},

F− = {n ∈ N : K ≤ n ≤ L and Re(〈xn, x∗〉) < 0}.



26 2. UNCONDITIONAL CONVERGENCE OF SERIES IN BANACH SPACES

Note that min(F+) ≥ K > N , so

∑

n∈F+

|Re(〈xn, x∗〉)| = Re

(

∑

n∈F+

〈xn, x∗〉
)

= Re

(〈

∑

n∈F+

xn, x∗

〉)

≤
∣

∣

∣

∣

〈

∑

n∈F+

xn, x∗

〉∣

∣

∣

∣

≤ ‖x∗‖
∥

∥

∥

∥

∑

n∈F+

xn

∥

∥

∥

∥

< ε.

A similar inequality holds for F−, so
∑L

n=K |Re(〈xn, x∗〉)| < 2ε. Working then with the imaginary

parts, we obtain
∑L

n=K |〈xn, x∗〉| < 4ε. Letting L → ∞, we conclude that

K > N =⇒ sup

{ ∞
∑

n=K

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

≤ 4ε,

from which statement (g) follows.

(d) ⇒ (c) and (a) ⇒ (c). Assume that statement (c) does not hold. Then there exists an ε > 0

such that for each N ∈ N there exists a finite set of integers FN such that min(FN ) > N yet
∥

∥

∑

n∈FN
xn

∥

∥ ≥ ε.

Let G1 = F1 and N1 = max(G1). Then let G2 = FN1
and N2 = max(G2). Continuing in this

way, we obtain a sequence of finite sets GK such that for each K,

max(GK) < min(GK+1) and

∥

∥

∥

∥

∑

n∈GK

xn

∥

∥

∥

∥

≥ ε. (2.2)

Now let 0 < n1 < n2 < · · · be the complete listing of
⋃

GK . It is clear then from (2.2) that
∑

xnj
is not Cauchy, hence not convergent, so statement (d) does not hold.

Finally, let σ be any permutation of N obtained by enumerating in turn the elements of

G1, {1, . . . ,max(G1)}\G1, G2, {max(G1) + 1, . . . ,max(G2)}\G2, G3, . . .

As this is a complete listing of N, it follows from (2.2) that
∑

xσ(n) is not Cauchy, so statement

(a) does not hold either.

(d) ⇒ (e). Assume that statement (d) holds and let (εn) be any sequence of signs εn = ±1.

Define

F+ = {n : εn = 1} and F− = {n : εn = −1}.

Let F+ = {n+
j } and F− = {n−

j } be the complete listing of elements of F+ and F− in increasing

order, respectively. By hypothesis, both
∑

xn+

j
and

∑

xn−

j
converge, whence

∑

εnxn =
∑

xn+

j
−

∑

xn−

j
converges as well. Thus statement (e) holds.
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(e) ⇒ (d). Suppose that statement (e) holds, and that we are given an increasing sequence of

integers 0 < n1 < n2 < · · · . Define εn = 1 for all n, and set

ηn =

{

1, if n = nj for some j,

−1, if n 6= nj for any j.

By hypothesis, both
∑

εnxn and
∑

ηnxn converge, whence

∑

j

xnj
=

1

2

(

∑

n

εnxn +
∑

n

ηnxn

)

converges as well. Thus statement (d) holds.

(f) ⇒ (e). Every sequence of signs (εn) is a bounded sequence of scalars.

(g) ⇒ (f). Suppose that statement (g) holds, and let (λn) be any sequence of scalars with each

|λn| ≤ 1. Given ε > 0, there exists by hypothesis a number N0 such that

∀N ≥ N0, sup

{ ∞
∑

n=N

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

< ε.

Suppose that N > M ≥ N0. By the Hahn–Banach theorem (Corollary 1.39), we can find a

functional x∗ ∈ X∗ such that ‖x∗‖ = 1 and

〈 N
∑

n=M+1

λnxn, x∗

〉

=

∥

∥

∥

∥

N
∑

n=M+1

λnxn

∥

∥

∥

∥

.

Therefore,
∥

∥

∥

∥

N
∑

n=M+1

λnxn

∥

∥

∥

∥

=
N
∑

n=M+1

λn 〈xn, x∗〉 ≤
N
∑

n=M+1

|λn| |〈xn, x∗〉| ≤
N
∑

n=M+1

|〈xn, x∗〉| < ε.

Hence
∑

λnxn is Cauchy, and therefore must converge. Thus statement (f) holds. �

Corollary 2.9. If the series
∑

xn is unconditionally convergent, then
∑

xσ(n) =
∑

xn for every

permutation σ of N.

Proof. Suppose that
∑

xn is unconditionally convergent. Then x = limF

∑

n∈F xn exists by The-

orem 2.8. Let σ be any permutation of N, and choose ε > 0. Then, by Definition 2.6, there is a

finite set F0 ⊂ N such that

∀ finite F ⊃ F0,

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

< ε. (2.3)

Let N0 be large enough that F0 ⊂ {σ(1), . . . , σ(N0)}. Choose any N ≥ N0, and define F =

{σ(1), . . . , σ(N)}. Then F ⊃ F0, so by (2.3),

∥

∥

∥

∥

x −
N
∑

n=1

xσ(n)

∥

∥

∥

∥

=

∥

∥

∥

∥

x −
∑

n∈F

xn

∥

∥

∥

∥

< ε.

Hence x =
∑

xσ(n), with x independent of σ. �
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Notation 2.10. Given a sequence {xn} in a Banach space X, we will let R, RE , and RΛ denote

the following numbers (defined in the extended real sense):

R = sup

{
∥

∥

∥

∥

∑

n∈F

xn

∥

∥

∥

∥

: all finite F ⊂ N

}

,

RE = sup

{
∥

∥

∥

∥

∑

n∈F

εnxn

∥

∥

∥

∥

: all finite F ⊂ N and all E = (εn) with every εn = ±1

}

,

RΛ = sup

{∥

∥

∥

∥

∑

n∈F

λnxn

∥

∥

∥

∥

: all finite F ⊂ N and all Λ = (λn) with every |λn| ≤ 1

}

.

Note that we always have 0 ≤ R ≤ RE ≤ RΛ ≤ +∞. ♦

We will show in Theorem 2.13 that each of R, RE , and RΛ are finite if
∑

xn converges uncon-

ditionally. However, Example 2.14 shows that the finiteness of any or all of R, RE , or RΛ does not

imply that
∑

xn converges unconditionally.

The following standard result is due to Caratheodory.

Theorem 2.11. Given real numbers λ1, . . . , λN , each with |λn| ≤ 1, there exist real numbers

ck ≥ 0 and signs εn
k = ±1, where k = 1, . . . , N + 1 and n = 1, . . . , N , such that

(a)
N+1
∑

k=1

ck = 1, and

(b)
N+1
∑

k=1

εn
k ck = λn for n = 1, . . . , N . ♦

Proposition 2.12. Given a sequence {xn} in a Banach space X, the following relations hold in

the extended real sense:

(a) R ≤ RE ≤ 2R,

(b) RE = RΛ if the scalar field is R,

(c) RE ≤ RΛ ≤ 2RE if the scalar field is C.

As a consequence, any one of R, RE , RΛ is finite if and only if the other two are.

Proof. Recall that we always have the inequalities 0 ≤ R ≤ RE ≤ RΛ ≤ +∞.

(a) Given any finite set F ⊂ N and any sequence of signs εn = ±1, define

F+ = {n : εn = 1} and F− = {n : εn = −1}.

Then
∥

∥

∥

∥

∑

n∈F

εnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈F+

xn −
∑

n∈F−

xn

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

n∈F+

xn

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

n∈F−

xn

∥

∥

∥

∥

≤ 2R.

Taking suprema, we obtain RE ≤ 2R.
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(b) Choose any finite F ⊂ N and any sequence Λ = (λn) of real scalars such that |λn| ≤ 1

for every n. Let N be the cardinality of F . Since the λn are real, it follows from Caratheodory’s

Theorem (Theorem 2.11) that there exist real numbers ck ≥ 0 and signs εn
k = ±1, where the indices

range over k = 1, . . . , N + 1 and n ∈ F , such that

N+1
∑

k=1

ck = 1 and
N+1
∑

k=1

εn
kck = λn for n ∈ F.

Therefore,

∥

∥

∥

∥

∑

n∈F

λnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈F

N+1
∑

k=1

εn
kckxn

∥

∥

∥

∥

≤
N+1
∑

k=1

ck

∥

∥

∥

∥

∑

n∈F

εn
kxn

∥

∥

∥

∥

≤
N+1
∑

k=1

ckRE = RE .

Taking suprema, we obtain RΛ ≤ RE .

(c) Choose any finite F ⊂ N and any sequence Λ = (λn) of complex scalars such that |λn| ≤ 1

for every n. Write λn = αn + iβn with αn, βn real. Then, as in the proof for part (b), we obtain

∥

∥

∥

∥

∑

n∈F

αnxn

∥

∥

∥

∥

≤ RE and

∥

∥

∥

∥

∑

n∈F

βnxn

∥

∥

∥

∥

≤ RE .

Therefore ‖∑n∈F λnxn‖ ≤ 2RE , from which it follows that RΛ ≤ 2RE .

Alternative proof of (b) and (c). We will give another proof of statements (b) and (c) which uses

the Hahn–Banach Theorem instead of Caratheodory’s Theorem. Assume first that the scalar field

is real. Let F ⊂ N be finite, and let Λ = (λn) be any sequence of real scalars such that |λn| ≤ 1

for each n. By the Hahn–Banach theorem (Corollary 1.39), there exists an x∗ ∈ X∗ such that

‖x∗‖ = 1 and

〈

∑

n∈F

λnxn, x∗

〉

=

∥

∥

∥

∥

∑

n∈F

λnxn

∥

∥

∥

∥

.

Since x∗ is a real-valued functional, we have that 〈xn, x∗〉 is real for every n. Define

εn =

{

1, if 〈xn, x∗〉 ≥ 0,

−1, if 〈xn, x∗〉 < 0.

Then

∥

∥

∥

∥

∑

n∈F

λnxn

∥

∥

∥

∥

=
∑

n∈F

λn 〈xn, x∗〉

≤
∑

n∈F

|λn 〈xn, x∗〉|

≤
∑

n∈F

|〈xn, x∗〉|
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=
∑

n∈F

εn 〈xn, x∗〉

=

〈

∑

n∈F

εnxn, x∗

〉

≤ ‖x∗‖
∥

∥

∥

∥

∑

n∈F

εnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

n∈F

εnxn

∥

∥

∥

∥

.

Taking suprema, we obtain RΛ ≤ RE , as desired.

The complex case is now proved as before by splitting into real and imaginary parts. The only

trouble is finding a real-valued functional x∗ with the desired properties. This is accomplished by

considering X as a Banach space over the real field instead of the complex field. �

Theorem 2.13. If
∑

xn converges unconditionally then R, RE , and RΛ are all finite.

Proof. By Proposition 2.12, we need only show that any one of R, RE , or RΛ is finite. However,

we choose to give separate proofs of the finiteness of R and RΛ.

Proof that R < ∞. Assume that
∑

xn converges unconditionally. Then, by Theorem 2.8(c), we

can find an N > 0 such that

∀ finite G ⊂ N, min(G) > N =⇒
∥

∥

∥

∥

∑

n∈G

xn

∥

∥

∥

∥

< 1.

Define F0 = {1, . . . , N} and set

M = max
F⊂F0

∥

∥

∥

∥

∑

n∈F

xn

∥

∥

∥

∥

.

Note that M < ∞ since F0 contains only finitely many subsets.

Now choose any finite F ⊂ N, and write F = (F ∩ F0) ∪ (F\F0). Then

∥

∥

∥

∥

∑

n∈F

xn

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

n∈F∩F0

xn

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

n∈F\F0

xn

∥

∥

∥

∥

≤ M + 1.

Hence R ≤ M + 1 < ∞, as desired.

Proof that RΛ < ∞. Assume that
∑

xn converges unconditionally. For each finite F ⊂ N and

each sequence Λ = (λn) satisfying |λn| ≤ 1 for all n, define a functional TF,Λ:X∗ → F by

TF,Λ(x∗) =

〈

∑

n∈F

λnxn, x∗

〉

.

Then, by definition of the operator norm and by Theorem 1.27, we have

‖TF,Λ‖ = sup
‖x∗‖=1

|TF,Λ(x∗)| = sup
‖x∗‖=1

∣

∣

∣

∣

〈

∑

n∈F

λnxn, x∗

〉
∣

∣

∣

∣

=

∥

∥

∥

∥

∑

n∈F

λnxn

∥

∥

∥

∥

.
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Therefore, RΛ is realized by the formula

RΛ = sup
F,Λ

‖TF,Λ‖.

Now let x∗ ∈ X∗ be fixed. Then, by the continuity of x∗ and the unconditional convergence

of
∑

xn, we have that
∑ 〈xσ(n), x

∗〉 =
〈
∑

xσ(n), x∗
〉

converges for every permutation σ of N.

Therefore, the series
∑ 〈xn, x∗〉 converges unconditionally. However, the terms 〈xn, x∗〉 in this

series are scalars. By Lemma 2.3, unconditional convergence of a series of scalars is equivalent to

absolute convergence of the series. Therefore,

|TF,Λ(x∗)| =

∣

∣

∣

∣

〈

∑

n∈F

λnxn, x∗

〉
∣

∣

∣

∣

≤
∑

n∈F

|λn| |〈xn, x∗〉| ≤
∑

n∈F

|〈xn, x∗〉| < ∞.

Hence

sup
F,Λ

|TF,Λ(x∗)| ≤
∞
∑

n=1

|〈xn, x∗〉| < ∞.

The Uniform Boundedness Principle (Theorem 1.42) therefore implies that RΛ = supF,Λ ‖TF,Λ‖ <

∞. �

The following example shows that the converse of Theorem 2.13 is false in general, i.e., finiteness

of R, RE , or RΛ need not imply that the series
∑

xn converges unconditionally, or even that the

series converges at all.

Example 2.14. Let X be the Banach space ℓ∞, and let en = (δmn)m∈N be the sequence in ℓ∞

consisting of all zeros except for a single 1 at position n. Then for every finite set F ⊂ N we have

‖∑n∈F en‖ℓ∞ = 1. Thus R = 1 (and similarly RE = RΛ = 1). However, by the same reasoning,
∑

en is not a Cauchy series, hence does not converge in ℓ∞. ♦
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3. UNCONDITIONAL CONVERGENCE OF SERIES IN HILBERT SPACES

The following result provides a necessary condition for the unconditional convergence of a series

in a Hilbert space [Orl33].

Theorem 3.1 (Orlicz’s Theorem). If {xn} is a sequence in a Hilbert space H, then

∞
∑

n=1

xn converges unconditionally =⇒
∞
∑

n=1

‖xn‖2 < ∞. ♦

The analogue of Orlicz’s Theorem for Banach spaces is false in general. Further, the following

example shows that, even in a Hilbert space, the converse of Orlicz’s Theorem is false in general.

Example 3.2. Let H be a Hilbert space, and fix any x ∈ H with ‖x‖ = 1. Then
∥

∥

∥

∥

N
∑

n=M+1

cnx

∥

∥

∥

∥

=

∣

∣

∣

∣

N
∑

n=M+1

cn

∣

∣

∣

∣

‖x‖ =

∣

∣

∣

∣

N
∑

n=M+1

cn

∣

∣

∣

∣

,

so
∑

cnx converges in H if and only if
∑

cn converges as a series of scalars. Likewise,
∑

cnx

converges unconditionally in H if and only if
∑

cn converges unconditionally. Therefore, if (cn) ∈
ℓ2 is such that

∑

cn converges conditionally, then
∑

cnx converges conditionally even though
∑ ‖cnx‖2 =

∑ |cn|2 < ∞. For example, this is the case if cn = (−1)n/n. �

We will give three proofs of Orlicz’s Theorem. The first is simpler, but the second and third

give improved bounds on the value of
∑ ‖xn‖2. We will use the numbers R, RE , and RΛ defined

in Notation 2.10. By Theorem 2.13, if
∑

xn converges unconditionally, then R, RE , and RΛ are

all finite.

The first proof requires the following simple lemma.

Lemma 3.3. [GK69, p. 315]. Let H be a Hilbert space, and suppose x1, . . . , xN ∈ H. Then there

exist scalars λ1, . . . , λN , each with |λn| ≤ 1, such that

N
∑

n=1

‖xn‖2 ≤
∥

∥

∥

∥

N
∑

n=1

λnxn

∥

∥

∥

∥

2

.

Proof. This is clear for N = 1. For N = 2, define λ1 = 1 and λ2 = ei arg(〈x1,x2〉). Then

‖λ1x1 + λ2x2‖2 = ‖x1‖2 + 2 Re
(

λ1λ̄2 〈x1, x2〉
)

+ ‖x2‖2

= ‖x1‖2 + 2 |〈x1, x2〉| + ‖x2‖2

≥ ‖x1‖2 + ‖x2‖2.

An easy induction establishes the full result. �

We can now give our first proof of Orlicz’s Theorem.
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Theorem 3.4. [GK69, p. 315]. If {xn} is a sequence in a Hilbert space H then

∞
∑

n=1

‖xn‖2 ≤ RΛ
2.

In particular, if
∑

xn converges unconditionally then both of these quantities are finite.

Proof. Fix any N > 0. Then by Lemma 3.3, we can find scalars λn with |λn| ≤ 1 such that

N
∑

n=1

‖xn‖2 ≤
∥

∥

∥

∥

N
∑

n=1

λnxn

∥

∥

∥

∥

2

≤ RΛ
2.

Letting N → ∞ therefore gives the result. �

The second proof uses the following lemma.

Lemma 3.5. [LT77, p. 18]. If x1, . . . , xN are elements of a Hilbert space H, then

Average

{∥

∥

∥

∥

N
∑

n=1

εnxn

∥

∥

∥

∥

2

: all εn = ±1

}

=
N
∑

n=1

‖xn‖2. (3.1)

Proof. For each N , define SN = {(ε1, . . . , εN ) : all εn = ±1}. Note that |SN | = 2N .

We will proceed by induction on N . For N = 1 we have

Average

{
∥

∥

∥

∥

1
∑

n=1

εnxn

∥

∥

∥

∥

2

: (εn) ∈ S1

}

=
1

2

(

‖x1‖2 + ‖ − x1‖2
)

= ‖x1‖2.

Therefore (3.1) holds when N = 1.

Suppose now that (3.1) holds for some N ≥ 1. Recall the Parallelogram law in Hilbert spaces

(Theorem 1.16):

∀x, y ∈ H, ‖x + y‖2 + ‖x − y‖2 = 2
(

‖x‖2 + ‖y‖2
)

.

Therefore,

Average

{∥

∥

∥

∥

N+1
∑

n=1

εnxn

∥

∥

∥

∥

2

: (εn) ∈ SN+1

}

=
1

2N+1

∑

(εn)∈SN+1

∥

∥

∥

∥

N+1
∑

n=1

εnxn

∥

∥

∥

∥

2

=
1

2N+1

∑

(εn)∈SN

∑

εN+1=±1

∥

∥

∥

∥

N+1
∑

n=1

εnxn

∥

∥

∥

∥

2
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=
1

2N+1

∑

(εn)∈SN

(

∥

∥

∥

∥

N
∑

n=1

εnxn + xN+1

∥

∥

∥

∥

2

+

∥

∥

∥

∥

N
∑

n=1

εnxn − xN+1

∥

∥

∥

∥

2
)

=
1

2N+1

∑

(εn)∈SN

2

(

∥

∥

∥

∥

N
∑

n=1

εnxn

∥

∥

∥

∥

2

+ ‖xN+1‖2

)

=
1

2N

∑

(εn)∈SN

∥

∥

∥

∥

N
∑

n=1

εnxn

∥

∥

∥

∥

2

+
1

2N

∑

(εn)∈SN

‖xN+1‖2

=

( N
∑

n=1

‖xn‖2

)

+ ‖xN+1‖2,

the last equality following from the induction hypothesis. Thus (3.1) holds for N + 1 as well. �

We can now give a second proof of Orlicz’s Theorem. Since RE ≤ RΛ, the bound on the value

of
∑ ‖xn‖2 in the following is sharper in general than the corresponding bound in Theorem 3.4.

Theorem 3.6. [LT77, p. 18]. If {xn} is a sequence in a Hilbert space H then

∑

‖xn‖2 ≤ RE
2.

In particular, if
∑

xn converges unconditionally then both of these quantities are finite.

Proof. Fix any N > 0. Then by Lemma 3.5,

N
∑

n=1

‖xn‖2 = Average

{
∥

∥

∥

∥

N
∑

n=1

εnxn

∥

∥

∥

∥

2

: all εn = ±1

}

≤ Average{RE
2 : all εn = ±1} = RE

2.

Letting N → ∞ therefore gives the result. �

Our final proof uses the Rademacher system (a sequence of orthonormal functions in L2[0, 1])

to derive Orlicz’s Theorem in the special case H = L2(E). However, since all separable Hilbert

spaces are isometrically isomorphic, this proves Orlicz’s Theorem for all separable Hilbert spaces.

The first four Rademacher functions are pictured in Figure 3.1.

Definition 3.7. The Rademacher system is the sequence of functions {Rn}∞n=0, each with domain

[0, 1], defined by

Rn(t) = sign(sin 2nπt) =



















































1, t ∈
2n−1−1
⋃

k=0

(

2k

2n
,
2k + 1

2n

)

,

0, t =
k

2n
, k = 0, . . . , 2n,

−1, t ∈
2n−1−1
⋃

k=0

(

2k + 1

2n
,
2k + 2

2n

)

. ♦
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1

-1

1

1

-1

1

R0 R1

1

-1

1

1

-1

1

R2 R3

Figure 3.1. The Rademacher functions R0, R1, R2, and R3.

Proposition 3.8. The Rademacher system is a orthonormal sequence in L2[0, 1], but it is not

complete in L2[0, 1].

Proof. Since |Rn(t)| = 1 almost everywhere on [0, 1] we have ‖Rn‖2 = 1. Thus, Rademacher

functions are normalized. To show the orthogonality, define

S+
n = {t ∈ [0, 1] : Rn(t) > 0} and S−

n = {t ∈ [0, 1] : Rn(t) < 0}.

If m 6= n then we have

〈Rm, Rn〉 = |S+
m ∩ S+

n | − |S+
m ∩ S−

n | − |S−
m ∩ S+

n | + |S−
m ∩ S−

n | =
1

4
− 1

4
− 1

4
+

1

4
= 0.

Thus {Rn}∞n=0 is an orthonormal sequence in L2[0, 1].

Finally, consider the function w(t) = R1(t) R2(t), pictured in Figure 3.2. Reasoning similar to

the above shows that 〈w, Rn〉 = 0 for every n ≥ 0. Hence {Rn}∞n=0 is incomplete in L2[0, 1]. �
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1

-1

1

Figure 3.2. The function w(t) = R1(t) R2(t).

Although the Rademacher system is not complete, it is the starting point for the construction

of the Walsh system, which is a complete orthonormal basis for L2[0, 1]. Elements of the Walsh

system are formed by taking finite products of Rademacher functions. The Rademacher and Walsh

systems are closely related to the Haar system, which is the simplest wavelet orthonormal basis

for L2(R) [Dau92].

We can now give our final proof of Orlicz’s Theorem.

Theorem 3.9. [Mar69, p. 83]. Let E ⊂ R. If {fn} is a sequence of functions in L2(E) then
∑

‖fn‖2
L2(E) ≤ RE

2.

In particular, if
∑

fn converges unconditionally then both of these quantities are finite.

Proof. Let {Rn}∞n=0 be the Rademacher system (Definition 3.7). Let Z =
⋃∞

n=1{x ∈ E : |fn(x)| =

+∞}. Then Z has Lebesgue measure zero, i.e., |Z| = 0, since each fn is square-integrable. Since

{Rn} is an orthonormal system, we have by the Plancherel formula (Theorem 1.20) that

∀x /∈ Z,

∥

∥

∥

∥

N
∑

n=1

fn(x) Rn

∥

∥

∥

∥

2

L2[0,1]

=
N
∑

n=1

|fn(x)|2.

Moreover, since Rn(t) = ±1 for a.e. t, we have

∥

∥

∥

∥

N
∑

n=1

Rn(t) fn

∥

∥

∥

∥

L2(E)

≤ RE for a.e. t. (3.2)

Therefore,

N
∑

n=1

‖fn‖2
L2(E) =

∫

X

N
∑

n=1

|fn(x)|2 dx

=

∫

X

∥

∥

∥

∥

N
∑

n=1

fn(x) Rn

∥

∥

∥

∥

2

L2[0,1]

dx
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=

∫

X

∫ 1

0

∣

∣

∣

∣

N
∑

n=1

fn(x) Rn(t)

∣

∣

∣

∣

2

dt dx

=

∫ 1

0

∫

X

∣

∣

∣

∣

N
∑

n=1

fn(x) Rn(t)

∣

∣

∣

∣

2

dx dt (by Tonelli’s theorem)

=

∫ 1

0

∥

∥

∥

∥

N
∑

n=1

Rn(t) fn

∥

∥

∥

∥

2

L2(E)

dt

≤
∫ 1

0

RE
2 dt

= RE
2,

where Tonelli’s Theorem [WZ77, p. 92] allows us to interchange the order of integration at the point

indicated because the integrands are nonnegative. Letting N → ∞ therefore gives the result. �

Suppose that in the proof of Theorem 3.9, we substitute for the Rademacher system any or-

thonormal basis {en} for L2[0, 1] whose elements are uniformly bounded, say ‖en‖L∞ ≤ M for

all n. Then in place of (3.2), we would have
∥

∥

∑N
n=1 en(t) fn

∥

∥

L2(E)
≤ MRΛ for almost every t.

The remainder of the proof would then remain valid if Rn is changed to en, except that the final

conclusion would be that
∑N

n=1 ‖fn‖2
L2(E) ≤ (MRΛ)2. For example, if we took en(t) = e2πint, then

we would have M = 1.
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4. BASES IN BANACH SPACES

Since a Banach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e.,

a subset {xγ}γ∈Γ whose finite linear span is all of X and which has the property that every finite

subcollection is linearly independent. Any element x ∈ X can therefore be written as some finite

linear combination of xγ . However, even a separable infinite-dimensional Banach space would

require an uncountable Hamel basis. Moreover, the proof of the existence of Hamel bases for

arbitrary infinite-dimensional spaces requires the Axiom of Choice (in fact, in can be shown that

the statement “Every vector space has a Hamel basis” is equivalent to the Axiom of Choice). Hence

for most Banach spaces there is no constructive method of producing a Hamel basis.

Example 4.1. [Gol66, p. 101]. We will use the existence of Hamel bases to show that if X

is an infinite-dimensional Banach space, then there exist linear functionals on X which are not

continuous. Let {xγ}γ∈Γ be a Hamel basis for an infinite-dimensional Banach space X, normalized

so that ‖xγ‖ = 1 for every γ ∈ Γ. Let Γ0 = {γ1, γ2, . . .} be any countable subsequence of Γ. Define

µ:X → C by setting µ(γn) = n for n ∈ N and µ(γ) = 0 for γ ∈ Γ\Γ0, and then extending µ

linearly to X. Then this µ is a linear functional on X, but it is not bounded. ♦

More useful than a Hamel basis is a countable sequence {xn} such that every element x ∈ X

can be written as some unique infinite linear combination x =
∑

cnxn. This leads to the following

definition.

Definition 4.2.

(a) A sequence {xn} in a Banach space X is a basis for X if

∀ x ∈ X, ∃ unique scalars an(x) such that x =
∑

n

an(x) xn. (4.1)

(b) A basis {xn} is an unconditional basis if the series in (4.1) converges unconditionally for

each x ∈ X.

(c) A basis {xn} is an absolutely convergent basis if the series in (4.1) converges absolutely for

each x ∈ X.

(d) A basis {xn} is a bounded basis if {xn} is norm-bounded both above and below, i.e., if

0 < inf ‖xn‖ ≤ sup ‖xn‖ < ∞.

(e) A basis {xn} is a normalized basis if {xn} is normalized, i.e, if ‖xn‖ = 1 for every n. ♦

Absolutely convergent bases are studied in detail in Chapter 5. Unconditional bases are studied

in detail in Chapter 9.

Note that if {xn} is a basis, then the fact that each x ∈ X can be written uniquely as x =
∑

an(x) xn implies that xn 6= 0 for every n. As a consequence, {xn/‖xn‖} is a normalized basis

for X.
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If X possesses a basis {xn} then X must be separable, since the set of all finite linear combina-

tions
∑N

n=1 cnxn with rational cn (or rational real and imaginary parts if the cn are complex) forms

a countable, dense subset of X. The question of whether every separable Banach space possesses

a basis was a longstanding problem known as the Basis Problem. It was shown by Enflo [Enf73]

that there do exist separable, reflexive Banach spaces which do not possess any bases.

Notation 4.3. Note that the coefficients an(x) defined in (4.1) are linear functions of x. More-

over, they are uniquely determined by the basis, i.e., the basis {xn} determines a unique collection

of linear functionals an:X → F. We therefore call {an} the associated sequence of coefficient func-

tionals. Since these functionals are uniquely determined, we often do not declare them explicitly.

When we do need to refer explicitly to both the basis and the associated coefficient functionals,

we will write “({xn}, {an}) is a basis” to mean that {xn} is a basis with associated coefficient

functionals {an}. We show in Theorem 4.11 that the coefficient functionals for any basis must be

continuous, i.e., {an} ⊂ X∗.

Further, note that since xm =
∑

an(x) xn and xm =
∑

δmn xn are two expansions of xm, we

must have am(xn) = δmn for every m and n. We therefore say that the sequences {xn} ⊂ X and

{an} ⊂ X∗ are biorthogonal, and we often say that {an} is the biorthogonal system associated with

{xn}. General biorthogonal systems are considered in more detail in Chapter 7. In particular, we

show there that the fact that {xn} is a basis implies that {an} is the unique sequence in X∗ that

is biorthogonal to {xn}. ♦

Example 4.4. Fix 1 ≤ p < ∞, and consider the space X = ℓp defined in Example 1.6. Define

sequences en = (δmn)∞m=1 = (0, . . . , 0, 1, 0, . . . ), where the 1 is in the nth position. Then {en} is a

basis for ℓp, often called the standard basis for ℓp. Note that {en} is its own sequence of coefficient

functionals.

On the other hand, {en} is not a basis for ℓ∞, and indeed ℓ∞ has no bases whatsoever since

it is not separable. Using the ℓ∞ norm, the sequence {en} is a basis for the space c0 defined in

Example 1.6(c). ♦

We are primarily interested in bases for which the coefficient functionals {an} are continuous.

We therefore give such bases a special name.

Definition 4.5. A basis ({xn}, {an}) is a Schauder basis if each coefficient functional an is con-

tinuous. In this case, each an is an element of the dual space, i.e., an ∈ X∗ for every n. ♦

We shall see in Theorem 4.11 that every basis is a Schauder basis, i.e., the coefficient functionals

an are always continuous. First, however, we require some definitions and miscellaneous facts. In

particular, the following operators play a key role in analyzing bases.

Notation 4.6. The partial sum operators, or the natural projections, associated with the basis

({xn}, {an}) are the mappings SN :X → X defined by

SNx =
N
∑

n=1

an(x) xn. ♦
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The partial sum operators are clearly linear. We will show in Corollary 4.8 that if {xn} is a

basis then each partial sum operator SN is a bounded mapping of X into itself. Then the fact

that all bases are Schauder bases will follow from the continuity of the partial sum operators

(Theorem 4.11). The next proposition will be a key tool in this analysis. It states that if {xn} is

a basis, then it is possible to endow the space Y of all sequences (cn) such that
∑

cnxn converges

with a norm so that it becomes a Banach space isomorphic to X. In general, however, it is difficult

or impossible to explicitly describe the space Y . One exception was discussed in Example 2.5: if

{en} is an orthonormal basis for a Hilbert space H, then
∑

cnen converges if and only if (cn) ∈ ℓ2.

Recall that a topological isomorphism between Banach spaces X and Y is a linear bijection

S:X → Y that is continuous. By the Inverse Mapping Theorem (Theorem 1.44), every topological

isomorphism has a continuous inverse S−1:Y → X.

Proposition 4.7. [Sin70, p. 18]. Let {xn} be a sequence in a Banach space X, and assume that

xn 6= 0 for every n. Define Y =
{

(cn) :
∑

cnxn converges in X
}

, and set

‖(cn)‖Y = sup
N

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Then the following statements hold.

(a) Y is a Banach space.

(b) If {xn} is a basis for X then Y is topologically isomorphic to X via the mapping (cn) 7→
∑

cnxn.

Proof. (a) It is clear that Y is a linear space. If (cn) ∈ Y then
∑

cnxn = limN→∞

∑N
n=1 cnxn

converges. Since convergent sequences are bounded, we therefore have ‖(cn)‖Y < ∞ for each

(cn) ∈ Y . Thus ‖ · ‖Y is well-defined. It is easy to see that ‖(cn) + (dn)‖Y ≤ ‖(cn)‖Y + ‖(dn)‖Y

and ‖a (cn)‖Y = |a| ‖(cn)‖Y for every scalar a, so ‖ · ‖Y is at least a seminorm on Y . Suppose that

‖(cn)‖Y = 0. Then ‖∑N
n=1 cnxn‖ = 0 for every N . In particular, ‖c1x1‖ = 0, so we must have

c1 = 0 since we have assumed x1 6= 0, But then ‖c2x2‖ = ‖∑2
n=1 cnxn‖ = 0, so c2 = 0, etc. Hence

‖ · ‖Y is a norm on Y .

It remains only to show that Y is complete in this norm. Let AN = (cN
n ) be any collection of

sequences from Y which form a Cauchy sequence with respect to the norm ‖ ·‖Y . Then for n fixed,

we have

|cM
n −cN

n | ‖xn‖ = ‖(cM
n −cN

n ) xn‖ ≤
∥

∥

∥

∥

n
∑

k=1

(cM
k −cN

k ) xk

∥

∥

∥

∥

+

∥

∥

∥

∥

n−1
∑

k=1

(cM
k −cN

k ) xk

∥

∥

∥

∥

≤ 2 ‖AM−AN‖Y .

Since {AN} is Cauchy and xn 6= 0, we conclude that (cN
n )∞N=1 is a Cauchy sequence of scalars, so

must converge to some scalar cn as N → ∞.

Choose now any ε > 0. Then since {AN} is Cauchy in Y , there exists an integer N0 > 0 such

that

∀ M, N ≥ N0, ‖AM − AN‖Y = sup
L

∥

∥

∥

∥

L
∑

n=1

(cM
n − cN

n ) xn

∥

∥

∥

∥

< ε. (4.2)
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Fix N ≥ N0 and any L > 0, and set yM =
∑L

n=1(c
M
n − cN

n ) xn. Then ‖yM‖ < ε for each M ≥ N0

by (4.2). However, yM → y =
∑L

n=1(cn − cN
n ) xn, so we must have ‖y‖ ≤ ε. Thus, we have shown

that

∀ N ≥ N0, sup
L

∥

∥

∥

∥

L
∑

n=1

(cn − cN
n ) xn

∥

∥

∥

∥

≤ ε. (4.3)

Further, (cN0
n )∞n=1 ∈ Y , so

∑

n cN0
n xn converges by definition. Hence, there is an M0 > 0 such that

∀ N > M ≥ M0,

∥

∥

∥

∥

N
∑

n=M+1

cN0

n xn

∥

∥

∥

∥

< ε.

Therefore, if N > M ≥ M0, N0 then
∥

∥

∥

∥

N
∑

n=M+1

cnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

N
∑

n=1

(cn − cN0

n ) xn −
M
∑

n=1

(cn − cN0

n ) xn +
N
∑

n=M+1

cN0

n xn

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=1

(cn − cN0

n ) xn

∥

∥

∥

∥

+

∥

∥

∥

∥

M
∑

n=1

(cn − cN0

n ) xn

∥

∥

∥

∥

+

∥

∥

∥

∥

N
∑

n=M+1

cN0

n xn

∥

∥

∥

∥

≤ ε + ε + ε = 3ε.

Therefore
∑

cnxn converges in X, so A = (cn) ∈ Y . Finally, by (4.3), we know that AN → A in

the norm of Y , so Y is complete.

(b) Suppose now that {xn} is a basis for X. Define the map T :Y → X by T (cn) =
∑

cnxn.

This mapping is well-defined by the definition of Y . It is clearly linear, and it is bijective because

{xn} is a basis. Finally, if (cn) ∈ Y then

‖T (cn)‖ =

∥

∥

∥

∥

∞
∑

n=1

cnxn

∥

∥

∥

∥

= lim
N→∞

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ sup
N

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

= ‖(cn)‖Y .

Therefore T is bounded, hence is a topological isomorphism of Y onto X. �

An immediate consequence of Proposition 4.7 is that the partial sum operators SN are bounded.

Corollary 4.8. Let ({xn}, {an}) be a basis for a Banach space X. Then:

(a) sup ‖SNx‖ < ∞ for each x ∈ X,

(b) C = sup ‖SN‖ < ∞, and

(c) |||x||| = sup ‖SNx‖ forms a norm on X equivalent to the initial norm ‖·‖ for X, and satisfies

‖ · ‖ ≤ ||| · ||| ≤ C ‖ · ‖.

Proof. (a) Let Y be as in Proposition 4.7. Then T :X → Y defined by T (cn) =
∑

cnxn is a

topological isomorphism of X onto Y . Suppose that x ∈ X. Then we have by definition that

x =
∑

an(x) xn and that the scalars an(x) are unique, so we must have T−1x = (an(x)). Hence

sup
N

‖SNx‖ = sup
N

∥

∥

∥

∥

N
∑

n=1

an(x) xn

∥

∥

∥

∥

=
∥

∥(an(x))
∥

∥

Y
= ‖T−1x‖Y ≤ ‖T−1‖ ‖x‖ < ∞. (4.4)

(b) From (4.4), we see that sup ‖SN‖ ≤ ‖T−1‖ < ∞.
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(c) It is easy to see that ||| · ||| has the properties of at least a seminorm. Now, given x ∈ X we

have

|||x||| = sup
N

‖SNx‖ ≤ sup
N

‖SN‖ ‖x‖ = C ‖x‖

and

‖x‖ = lim
N→∞

‖SNx‖ ≤ sup
N

‖SNx‖ = |||x|||.

It follows from these two statements that ||| · ||| is in fact a norm, and is equivalent to ‖ · ‖. �

The number C appearing in Corollary 4.8 is important enough to be dignified with a name of

its own.

Definition 4.9. If ({xn}, {an}) is a basis for a Banach space X, then its basis constant is the

finite number C = sup ‖SN‖. The basis constant satisfies C ≥ 1. If the basis constant is C = 1,

then the basis is said to be monotone. ♦

The basis constant does depend on the norm. Unless otherwise specified, the basis constant

is always taken with respect to the original norm on X. Changing to an equivalent norm for X

will not change the fact that {xn} is a basis, but it can change the basis constant for {xn}. For

example, we show now that the basis constant in the norm ||| · ||| is always 1.

Proposition 4.10. Every basis is monotone with respect to the equivalent norm ||| · ||| defined in

Corollary 4.8(c).

Proof. Note first that the composition of the partial sum operators SM and SN satisfies the rule

SM SN =

{

SM , if M ≤ N,

SN , if M ≥ N.

Therefore,

|||SNx||| = sup
M

‖SMSNx‖ = sup {‖S1x‖, . . . , ‖SNx‖}.

Hence,

sup
N

|||SNx||| = sup
N

‖SNx‖ = |||x|||.

It follows from this that sup |||SN ||| = 1. �

Now we can prove our main result: the coefficient functionals for every basis are continuous!

Theorem 4.11. [Sin70, p. 20]. Every basis ({xn}, {an}) for a Banach space X is a Schauder basis

for X. In fact, the coefficients functionals an are continuous linear functionals on X which satisfy

1 ≤ ‖an‖ ‖xn‖ ≤ 2C, (4.5)

where C is the basis constant for ({xn}, {an}).
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Proof. Since each an is a linear functional on X, we need only show that each an is bounded and

that (4.5) is satisfied. Given x ∈ X, we compute

|an(x)| ‖xn‖ = ‖an(x) xn‖ =

∥

∥

∥

∥

n
∑

n=1

ak(x) xk −
n−1
∑

n=1

ak(x) xk

∥

∥

∥

∥

≤
∥

∥

∥

∥

n
∑

n=1

ak(x) xk

∥

∥

∥

∥

+

∥

∥

∥

∥

n−1
∑

n=1

ak(x) xk

∥

∥

∥

∥

= ‖Snx‖ + ‖Sn−1x‖

≤ 2C ‖x‖.

Since each xn is nonzero, we conclude that ‖an‖ ≤ 2C/‖xn‖ < ∞. The final inequality follows

from computing 1 = an(xn) ≤ ‖an‖ ‖xn‖. �

Since the coefficient functionals an are therefore elements of X∗, we use the notations an(x) =

〈x, an〉 interchangeably. In fact, from this point onward our preferred notation is 〈x, an〉.
We end this chapter with several useful results concerning the invariance of bases under topo-

logical isomorphisms.

Lemma 4.12. [You80, p. 30]. Bases are preserved by topological isomorphisms. That is, if {xn}
is a basis for a Banach space X and S:X → Y is a topological isomorphism, then {Sxn} is a basis

for Y .

Proof. If y is any element of Y then S−1y ∈ X, so there are unique scalars (cn) such that S−1y =
∑

cnxn. Since S is continuous, this implies y = S(S−1y) =
∑

cnSxn. Suppose that y =
∑

bnSxn

was another representation of y. Then the fact that S−1 is also continuous implies that S−1y =
∑

bnxn, and hence that bn = cn for each n. Thus {Sxn} is a basis for Y . �

This lemma motivates the following definition.

Definition 4.13. Let X and Y be Banach spaces. A basis {xn} for X is equivalent to a basis

{yn} for Y if there exists a topological isomorphism S:X → Y such that Sxn = yn for all n. If

X = Y then we write {xn} ∼ {yn} to mean that {xn} and {yn} are equivalent bases for X. ♦

It is clear that ∼ is an equivalence relation on the set of all bases of a Banach space X.

Note that we could define, more generally, that a basis {xn} for X is equivalent to a sequence

{yn} in Y if there exists a topological isomorphism S:X → Y such that Sxn = yn. However, by

Lemma 4.12, it follows immediately that such a sequence must be a basis for Y .

Pelczynski and Singer showed in 1964 that there exist uncountably many nonequivalent normal-



45

ized conditional bases in every infinite dimensional Banach space which has a basis.

We show below in Corollary 4.15 that all orthonormal bases in a Hilbert space are equivalent.

More generally, we show in Chapter 11 that all bounded unconditional bases in a Hilbert space are

equivalent (and hence must be equivalent to orthonormal bases). Lindenstrauss and Pelczynski

showed in 1968 that a non-Hilbert space H in which all bounded unconditional bases are equivalent

must be isomorphic either to the sequence space c0 or to the sequence space ℓ1.

We can now give a characterization of equivalent bases.

Theorem 4.14. [You80, p. 30]. Let X and Y be Banach spaces. Let {xn} be a basis for X and

let {yn} be a basis for Y . Then the following two statements are equivalent.

(a) {xn} is equivalent to {yn}.
(b)

∑

cnxn converges in X if and only if
∑

cnyn converges in Y .

Proof. (a) ⇒ (b). Suppose that {xn} is equivalent to {yn}. Then there is a topological isomorphism

S:X → Y such that Sxn = yn for every n. Since S is continuous, the convergence of
∑

cnxn in X

therefore implies the convergence of
∑

cnSxn in Y . Similarly, S−1 is continuous, so the convergence

of
∑

cnyn in Y implies the convergence of
∑

cnS−1yn in X. Therefore (b) holds.

(b) ⇒ (a). Suppose that (b) holds. Let {an} ⊂ X∗ be the coefficient functionals for the basis

{xn}, and let {bn} ⊂ Y ∗ be the coefficient functionals for the basis {yn}. Suppose that x ∈ X is

given. Then x =
∑ 〈x, an〉xn converges in X, so Sx =

∑ 〈x, an〉 yn converges in Y . Clearly S

defined in this way is linear. The fact that the expansion x =
∑ 〈x, an〉xn is unique ensures that S

is well-defined. Further, if Sx = 0 then
∑

0 yn = 0 = Sx =
∑ 〈x, an〉 yn, and therefore 〈x, an〉 = 0

for every n since {yn} is a basis. This implies x =
∑ 〈x, an〉xn = 0, so we conclude that S is

injective. Next, if y is any element of y, then y =
∑ 〈y, bn〉 yn converges in Y , so x =

∑ 〈y, bn〉xn

converges in X. Since x =
∑ 〈x, an〉xn and {xn} is a basis, this forces 〈y, bn〉 = 〈x, an〉 for every

n. Hence Sx = y and therefore S is surjective. Thus S is a bijection of X onto Y .

It remains only to show that S is continuous. For each N , define TN :X → Y by TNx =
∑N

n=1 〈x, an〉 yn. Since each functional an is continuous, we conclude that each TN is continuous.

In fact,

‖TNx‖ =

∥

∥

∥

∥

N
∑

n=1

〈x, an〉 yn

∥

∥

∥

∥

≤
N
∑

n=1

|〈x, an〉| ‖yn‖ ≤ ‖x‖
N
∑

n=1

‖an‖ ‖yn‖.

Since TNx → Sx, we conclude that ‖Sx‖ ≤ sup ‖TNx‖ < ∞ for each individual x ∈ X. By

the Uniform Boundedness Principle (Theorem 1.42), it follows that sup ‖TN‖ < ∞. However,

‖S‖ ≤ sup ‖TN‖, so S is a bounded mapping. �

Corollary 4.15. All orthonormal bases in a Hilbert space are equivalent.

Proof. Suppose that {en} and {fn} are both orthonormal bases for a Hilbert space H. Then, by

Theorem 1.19(a),
∑

n

cnen converges ⇐⇒
∑

n

|cn|2 < ∞ ⇐⇒
∑

n

cnfn converges.

Hence {en} ∼ {fn} by Theorem 4.14. �
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5. ABSOLUTELY CONVERGENT BASES IN BANACH SPACES

It is often desirable to have a basis {xn} such that the series x =
∑ 〈x, an〉xn has some special

convergence properties. In this section we study those bases which have the property that this

series is always absolutely convergent. We will see that this is a highly restrictive condition, which

implies that X is isomorphic to ℓ1. In Chapter 9 we will study those bases for which the series

x =
∑ 〈x, an〉xn is always unconditionally convergent.

Definition 5.1. A basis ({xn}, {an}) for a Banach space X is absolutely convergent if the series

x =
∑ 〈x, an〉xn converges absolutely in X for each x ∈ X. That is, we require that

∀x ∈ X,
∑

n

|〈x, an〉| ‖xn‖ < ∞. ♦

Theorem 5.2. [Mar69, p. 42]. If a Banach space X possesses an absolutely convergent basis then

X is topologically isomorphic to ℓ1.

Proof. Suppose that ({xn}, {an}) is an absolutely convergent basis for X. Define the mapping

T :X → ℓ1 by Tx = (〈x, an〉 ‖xn‖). Certainly T is a well-defined, injective, and linear map.

Suppose that yN ∈ X, that yN → y ∈ X, and that TyN → (cn) ∈ ℓ1. Then

lim
N→∞

∑

n

∣

∣

∣
〈yN , an〉 ‖xn‖ − cn

∣

∣

∣
= lim

N→∞
‖TyN − (cn)‖ℓ1 = 0. (5.1)

Since the coefficient functionals an are continuous, we have by (5.1) that

〈y, an〉 ‖xn‖ = lim
N→∞

〈yN , an〉 ‖xn‖ = cn.

Therefore Ty = (cn), so T is a closed mapping. We conclude from the Closed Graph Theorem

(Theorem 1.46) that T is continuous.

Now choose any (cn) ∈ ℓ1. Then (‖cn xn‖/‖xn‖) ∈ ℓ1, so x =
∑ cn

‖xn‖xn ∈ X. However,

Tx = (cn), so T is surjective. Therefore T is a topological isomorphism of X onto ℓ1. In particular,

it follows from the Inverse Mapping Theorem (Theorem 1.44) that T−1 is continuous. Alternatively,

we can see this directly from the calculation

‖x‖ =

∥

∥

∥

∥

∑

n

〈x, an〉xn

∥

∥

∥

∥

≤
∑

n

|〈x, an〉| ‖xn‖ = ‖Tx‖ℓ1 . �

Example 5.3. Let H be a separable, infinite-dimensional Hilbert space, and let {en} be any

orthonormal basis for H. We saw in Example 2.5 that
∑

cnen converges if and only if (cn) ∈ ℓ2,

and that in this case the convergence is unconditional. On the other hand, since ‖en‖ = 1, we see

that
∑

cnen converges absolutely if and only if (cn) ∈ ℓ1. Since ℓ1 is a proper subset of ℓ2, this

implies that {en} is not an absolutely convergent basis for H. Moreover, since H is topologically

isomorphic to ℓ2, and since ℓ2 is not topologically isomorphic to ℓ1, it follows from Theorem 5.2

that H does not possess any absolutely convergent bases. ♦
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6. SOME TYPES OF LINEAR INDEPENDENCE OF SEQUENCES

In an infinite-dimensional Banach space, there are several possible types of linear independence

of sequences. We list three of these in the following definition. We will consider minimal sequences

in particular in more detail in Chapter 7.

Definition 6.1. A sequence {xn} in a Banach space X is:

(a) finitely independent if
∑N

n=1 cnxn = 0 implies c1 = · · · = cN = 0,

(b) ω-independent if
∑∞

n=1 cnxn converges and equals 0 only when cn = 0 for every n,

(c) minimal if xm /∈ span{xn}n 6=m for every m. ♦

Theorem 6.2. Let {xn} be a sequence in a Banach space X. Then:

(a) {xn} is a basis =⇒ {xn} is minimal and complete.

(b) {xn} is minimal =⇒ {xn} is ω-independent.

(c) {xn} is ω-independent =⇒ {xn} is finitely independent.

Proof. (a) Assume that ({xn}, {an}) is a basis for a Banach space X. Then {xn} is certainly

complete, so we need only show that it is minimal. Fix m, and define E = span{xn}n 6=m. Then,

since {xn} and {an} are biorthogonal, we have 〈x, am〉 = 0 for every x ∈ E. Since am is continuous,

this implies 〈x, am〉 = 0 for every x ∈ Ē = span{xn}n 6=m. However, we know that 〈xm, am〉 = 1,

so we conclude that xm /∈ Ē. Hence {xn} is minimal.

(b) Suppose that {xn} is minimal and that
∑

cnxn converges and equals 0. Let m be such that

cm 6= 0. Then xm = − 1
cm

∑

m6=n cnxn ∈ span{xn}n 6=m, a contradiction.

(c) Clear. �

None of the implications in Theorem 6.2 are reversible, as the following examples show.

Example 6.3. [Sin70, p. 24]. Minimal and complete =⇒/ basis.

Define C(T) =
{

f ∈ C(R) : f(t + 1) = f(t)
}

, the space of all continuous, 1-periodic functions.

Then C(T) is a Banach space under the uniform norm ‖·‖L∞ . Consider the functions en(t) = e2πint

for n ∈ Z. Not only are these functions elements of C(T), but they define continuous linear

functionals on C(T) via the inner product 〈f, en〉 =
∫ 1

0
f(t) e−2πint dt. Further, {en}n∈Z is its own

biorthogonal system since 〈em, en〉 = δmn. Lemma 7.2 below therefore implies that {en}n∈Z is

minimal in C(T). The Weierstrass Approximation Theorem [Kat68, p. 15] states that if f ∈ C(T)

then
∥

∥f −∑N
n=−N cnen

∥

∥

L∞
< ε for some scalars cn. Hence span{en}n∈Z is dense in C(T), and

therefore {en}n∈Z is complete in C(T). Alternatively, we can demonstrate the completeness as

follows. Suppose that f ∈ C(T) satisfies 〈f, en〉 = 0 for every n. Since C(T) ⊂ L2(T) and since

{en}n∈Z is an orthonormal basis for L2(T), this implies that f is the zero function in the space
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L2(T), hence is zero almost everywhere. Since f is continuous, it follows that f(t) = 0 for all t.

Hence {en}n∈Z is complete both C(T) and L2(T) by Corollary 1.41.

Thus, {en}n∈Z is both minimal and complete in C(T). Further, if f =
∑

cnen converges in

C(T), then it is easy to see from the orthonormality of the en that cn = 〈f, en〉. However, it is

known that there exist continuous functions f ∈ C(T) whose Fourier series f =
∑ 〈f, en〉 en do

not converge uniformly [Kat68, p. 51]. Therefore, {en}n∈Z cannot be a basis for C(T). ♦

Example 6.4. [Sin70, p. 24]. ω-independent =⇒/ minimal.

Let X be a Banach space such that there exists a sequence {xn} that is both minimal and

complete in X but is not a basis for X (for example, we could use X = C(T) and xn(t) = en(t) =

e2πint as in Example 6.3). Since {xn} is minimal, it follows from Lemma 7.2 that there exists a

sequence {an} ⊂ X∗ that is biorthogonal to {xn}. Since {xn} is not a basis, there must exist some

y ∈ X such that the series
∑ 〈y, an〉xn does not converge in X. Consider the sequence {y}∪{xn}.

This new sequence is certainly complete, and since y ∈ span{xn}, it cannot be minimal. However,

we will show that {y}∪{xn} is ω-independent. Assume that cy +
∑

cnxn = 0, i.e., the summation

converges and equals zero. If c 6= 0 then we would have y = − 1
c

∑

cnxn. The biorthogonality

of {xn} and {an} then implies that 〈y, an〉 = −cn/c. But then
∑ 〈y, an〉xn converges, which is

a contradiction. Therefore, we must have c = 0, and therefore
∑

cnxn = 0. However, {xn} is

minimal, and therefore is ω-independent, so this implies that every cn is zero. Thus {y} ∪ {xn} is

ω-independent and complete, but not minimal.

Alternatively, we can give a Hilbert space example of a complete ω-independent sequence that

is not minimal [VD97]. Let {en} be any orthonormal basis for any separable Hilbert space H, and

define f1 = e1 and fn = e1 + en/n for n ≥ 2. Then {fn} is certainly complete since span{fn} =

span{en}. However, ‖f1 − fn‖ = ‖en/n‖ = 1/n → 0. Therefore f1 ∈ span{fn}n≥2, so {fn} is

not minimal. To see that {fn} is ω-independent, suppose that
∑

cnfn converges and equals zero.

Then
N
∑

n=1

cnfn =

( N
∑

n=1

cn

)

e1 +
N
∑

n=2

cnen → 0.

Therefore,
∥

∥

∥

∥

( N
∑

n=1

cn

)

e1 +
N
∑

n=2

cnen

∥

∥

∥

∥

2

=

∣

∣

∣

∣

N
∑

n=1

cn

∣

∣

∣

∣

2

+
N
∑

n=2

|cn|2 → 0.

This implies immediately that cn = 0 for each n ≥ 2, and therefore c1 = 0 as well. ♦

Example 6.5. [Sin70, p. 25]. Finitely independent =⇒/ ω-independent.

Let ({xn}, {an}) be a basis for a Banach space X, and let x ∈ X be any element such that

〈x, an〉 6= 0 for every n. For example, we could take x =
∑ xn

2n ‖xn‖ . Note that x cannot equal

any xn because 〈xn, am〉 = 0 when m 6= n. Consider then the new sequence {x} ∪ {xn}. This

is certainly complete, and −x +
∑ 〈x, an〉xn = 0, so it is not ω-independent. However, we will

show that it is finitely independent. Suppose that cx +
∑N

n=1 cnxn = 0. Substituting the fact that
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x =
∑ 〈x, an〉xn, it follows that

N
∑

n=1

(

c〈x, an〉 + cn

)

xn +
∞
∑

n=N+1

c〈x, an〉xn = 0.

However, {xn} is a basis, so this is only possible if c〈x, an〉+cn = 0 for n = 1, . . . , N and c〈x, an〉 = 0

for n > N . Since no 〈x, an〉 is zero we therefore must have c = 0. But then c1 = · · · = cN = 0, so

{x} ∪ {xn} is finitely independent. ♦
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7. BIORTHOGONAL SYSTEMS IN BANACH SPACES

A basis {xn} and its associated coefficient functionals {an} are an example of biorthogonal

sequences. We study the properties of general biorthogonal systems in this chapter.

Definition 7.1. Given a Banach space X and given sequences {xn} ⊂ X and {an} ⊂ X∗, we say

that {an} is biorthogonal to {xn}, or that ({xn}, {an}) is a biorthogonal system, if 〈xm, an〉 = δmn

for every m, n. We associate with each biorthogonal system ({xn}, {an}) the partial sum operators

SN :X → X defined by

SNx =
N
∑

n=1

〈x, an〉xn. ♦

We show now that the existence of sequence biorthogonal to {xn} is equivalent to the statement

that {xn} is minimal.

Lemma 7.2. [You80, p. 28], [Sin70, p. 53]. Let X be a Banach space, and let {xn} ⊂ X. Then:

(a) ∃ {an} ⊂ X∗ biorthogonal to {xn} ⇐⇒ {xn} is minimal.

(b) ∃ unique {an} ⊂ X∗ biorthogonal to {xn} ⇐⇒ {xn} is minimal and complete.

Proof. (a) ⇒. Suppose that {an} ⊂ X∗ is biorthogonal to {xn}. Fix any m, and choose z ∈
span{xn}n 6=m, say z =

∑N
j=1 cnj

xnj
. Then 〈z, am〉 =

∑N
j=1 cnj

〈xnj
, am〉 = 0 since xnj

6= xm

for all j. Since am is continuous, we then have 〈z, am〉 = 0 for all z ∈ span{xn}n 6=m. However

〈xm, am〉 = 1, so we must have xm /∈ span{xn}n 6=m. Therefore {xn} is minimal.

⇐. Suppose that {xn} is minimal. Fix m, and define E = span{xn}n 6=m. This is a closed sub-

space of X which does not contain xm. Therefore, by the Hahn–Banach Theorem (Corollary 1.40)

there is a functional am ∈ X∗ such that

〈xm, am〉 = 1 and 〈x, am〉 = 0 for x ∈ E.

Repeating this for all m we obtain a sequence {an} that is biorthogonal to {xn}.

(b) ⇒. Suppose there is a unique sequence {an} ⊂ X∗ that is biorthogonal to {xn}. We know

that {xn} is minimal by part (a), so it remains only to show that {xn} is complete. Suppose that

x∗ ∈ X∗ is a continuous linear functional such that 〈xn, x∗〉 = 0 for every n. Then

〈xm, x∗ + an〉 = 〈xm, x∗〉 + 〈xm, an〉 = 0 + δmn = δmn.

Thus {x∗ +an} is also biorthogonal to {xn}. By our uniqueness assumption, we must have x∗ = 0.

The Hahn–Banach Theorem (Corollary 1.41) therefore implies that span{xn} = X, so {xn} is

complete.
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⇐. Suppose that {xn} is both minimal and complete. By part (a) we know that there exists

at least one sequence {an} ⊂ X∗ that is biorthogonal to {xn}, so we need only show that this

sequence is unique. Suppose that {bn} ⊂ X∗ is also biorthogonal to {xn}. Then 〈xn, am − bm〉 =

δmn − δmn = 0 for every m and n. However, {xn} is complete, so the Hahn–Banach Theorem

(Corollary 1.41) implies that am − bm = 0 for every m. Thus {an} is unique. �

Next, we characterize the additional properties that a minimal sequence must possess in order

to be a basis.

Theorem 7.3. [Sin70, p. 25]. Let {xn} be a sequence in a Banach space X. Then the following

statements are equivalent.

(a) {xn} is a basis for X.

(b) There exists a biorthogonal sequence {an} ⊂ X∗ such that

∀x ∈ X, x =
∑

n

〈x, an〉xn.

(c) {xn} is complete and there exists a biorthogonal sequence {an} ⊂ X∗ such that

∀x ∈ X, sup
N

‖SNx‖ < ∞.

(d) {xn} is complete and there exists a biorthogonal sequence {an} ⊂ X∗ such that

sup
N

‖SN‖ < ∞.

Proof. (a) ⇒ (b). Follows immediately from the definition of basis and the fact that every basis is

a Schauder basis (Theorem 4.11).

(b) ⇒ (a). Assume that statement (b) holds. We need only show that the representation

x =
∑ 〈x, an〉xn is unique. However, each am is continuous, so if x =

∑

cnxn, then 〈x, am〉 =
∑

cn 〈xn, am〉 =
∑

cn δmn = cm.

(b) ⇒ (c). Assume that statement (b) holds. Then the fact that every x can be written

x =
∑ 〈x, an〉xn implies that span{xn} is dense is X, hence that {xn} is complete. Further, it

implies that x = limN→∞ SNx, i.e., that the sequence {SNx} is convergent. Therefore statement

(c) holds since all convergent sequences are bounded.

(c) ⇒ (d). Each SN is a bounded linear operator mapping X into itself. Therefore, this

implication follows immediately from the Uniform Boundedness Principle (Theorem 1.42).

(d) ⇒ (b). Assume that statement (d) holds, and choose any x ∈ span{xn}, say x =
∑M

n=1 cnxn.

Then, since SN is linear and {xn} and {an} are biorthogonal, we have for each N ≥ M that

SNx = SN

( M
∑

m=1

cmxm

)

=
M
∑

m=1

cm SNxm =
M
∑

m=1

cm

N
∑

n=1

〈xm, an〉xn =
M
∑

m=1

cmxm = x.
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Therefore, we trivially have x = limN→∞ SNx =
∑ 〈x, an〉xn when x ∈ span{xn}.

Now we will show that x = limN→∞ SNx for arbitrary x ∈ X. Let C = sup ‖SN‖, and let x

be an arbitrary element of X. Since {xn} is complete, span{xn} is dense in X. Therefore, given

ε > 0 we can find an element y ∈ span{xn} with ‖x− y‖ < ε/(1 + C), say y =
∑M

m=1 cmxm. Then

for N ≥ M we have

‖x − SNx‖ ≤ ‖x − y‖ + ‖y − SNy‖ + ‖SNy − SNx‖

≤ ‖x − y‖ + 0 + ‖SN‖ ‖x − y‖

≤ (1 + C) ‖x − y‖

< ε.

Thus x = limN→∞ SNx =
∑ 〈x, an〉xn for arbitrary x ∈ X, as desired. �

The next two theorems give a characterization of minimal sequences and bases in terms of the

size of finite linear combinations of the sequence elements.

Theorem 7.4. [Sin70, p. 54]. Given a sequence {xn} in a Banach space X with all xn 6= 0, the

following two statements are equivalent.

(a) {xn} is minimal.

(b) ∀M, ∃CM ≥ 1 such that

∀N ≥ M, ∀ c0, . . . , cN ,

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

≤ CM

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Proof. (a) ⇒ (b). Assume that {xn} is minimal. Then there exists a sequence {an} ⊂ X∗ that

is biorthogonal to {xn}. Let {SN} be the partial sum operators associated with ({xn}, {an}).
Suppose that N ≥ M , and that c0, . . . , cN are any scalars. Then

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

SM

( N
∑

n=1

cnxn

)
∥

∥

∥

∥

≤ ‖SM‖
∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Therefore statement (b) follows with CM = ‖SM‖.

(b) ⇒ (a). Assume that statement (b) holds, and let E = span{xn}. Given x =
∑N

n=1 cnxn ∈ E

and M ≤ N , we have

|cM | ‖xM‖ = ‖cMxM‖ ≤
∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

+

∥

∥

∥

∥

M−1
∑

n=1

cnxn

∥

∥

∥

∥

≤ CM

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

+ CM−1

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

= (CM + CM−1) ‖x‖.
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As xM 6= 0, we therefore have

|cM | ≤ (CM + CM−1) ‖x‖
‖xM‖ . (7.1)

In particular, x = 0 implies c1 = · · · = cN = 0. Thus {xn} is finitely linearly independent. Since E

is the finite linear span of {xn}, this implies that every element of E has a unique representation

of the form x =
∑N

n=1 cnxn. As a consequence, we can define a scalar-valued mapping am on the

set E by am

(
∑N

n=1 cnxn

)

= cm (where we set cm = 0 if m > N). By (7.1), we have |am(x)| ≤
(Cm + Cm−1) ‖x‖/‖xm‖ for every x ∈ E, so am is continuous on E. Since E is dense in X, the

Hahn–Banach Theorem (Corollary 1.38) implies that there is a continuous extension of am to all

of X. This extended am is therefore a continuous linear functional on X which is biorthogonal to

{xn}. Lemma 7.2 therefore implies that {xn} is minimal. �

For an arbitrary minimal sequence, the constants CM is Theorem 7.4 need not be uniformly

bounded. Compare this to the situation for bases given in the following result.

Theorem 7.5. [LT77, p. 2]. Let {xn} be a sequence in a Banach space X. Then the following

statements are equivalent.

(a) {xn} is a basis for X.

(b) {xn} is complete, xn 6= 0 for all n, and there exists C ≥ 1 such that

∀N ≥ M, ∀ c1, . . . , cN ,

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

. (7.2)

In this case, the best constant C in (7.2) is the basis constant C = sup ‖SN‖.

Proof. (a) ⇒ (b). Suppose that {xn} is a basis for X, and let C = sup ‖SN‖ be the basis constant.

Then {xn} is complete and xn 6= 0 for every n. Fix N ≥ M , and choose any c1, . . . , cN . Then

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

SM

( N
∑

n=1

cnxn

)∥

∥

∥

∥

≤ ‖SM‖
∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

(b) ⇒ (a). Suppose that statement (b) holds. It then follows from Theorem 7.4 that {xn} is

minimal, so by Lemma 7.2 there exists a biorthogonal system {an} ⊂ X∗. Let SN denote the partial

sum operators associated with ({xn}, {an}). Since {xn} is complete, it suffices by Theorem 7.3 to

show that sup ‖SN‖ < ∞.

So, suppose that x =
∑M

n=1 cnxn ∈ span{xn}. Then:

N ≤ M =⇒ ‖SNx‖ =

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

= C ‖x‖,

N > M =⇒ ‖SNx‖ =

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

= ‖x‖.
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As C ≥ 1 we therefore have ‖SNx‖ ≤ C ‖x‖ for all N whenever x ∈ span{xn}. However, each SN

is continuous and span{xn} is dense in X, so this inequality must therefore hold for all x ∈ X.

Thus sup ‖SN‖ ≤ C < ∞, as desired. This inequality also shows that the smallest possible value

for C in (7.2) is C = sup ‖SN‖. �

The following result is an application of Theorem 7.5. Given a basis {xn} for a Banach space X,

it is often useful to have some bound on how much the elements xn can be perturbed so that the

resulting sequence remains a basis for X, or at least a basis for its closed linear span. The following

result is classical, and is a typical example of perturbation theorems that apply to general bases.

For specific types of bases in specific Banach spaces, it is often possible to derive sharper results.

For a survey of results on basis perturbations, we refer to [RH71].

Theorem 7.6. Let ({xn}, {an}) be a basis for a Banach space X, with basis constant C. If

{yn} ⊂ X is such that

R =
∑

n

‖an‖ ‖xn − yn‖ < 1,

then {yn} is a basis for span{yn}, and has basis constant C ′ ≤ 1+R
1−R C. Moreover, in this case, the

basis {xn} for X and the basis {yn} for Y = span{yn} are equivalent in the sense of Definition 4.13.

Proof. Note that, by definition, {yn} is complete in Y = span{yn}. Further, if some yn = 0 then

we would have R ≥ ‖an‖ ‖xn‖ ≥ 1 by (4.5), which contradicts the fact that R < 1. Therefore, each

yn must be nonzero. By Theorem 7.5, it therefore suffices to show that there exists a constant B

such that

∀N ≥ M, ∀ c1, . . . , cN ,

∥

∥

∥

∥

M
∑

n=1

cnyn

∥

∥

∥

∥

≤ B

∥

∥

∥

∥

N
∑

n=1

cnyn

∥

∥

∥

∥

. (7.3)

Further, if (7.3) holds, then Theorem 7.5 also implies that the basis constant C ′ for {yn} satisfies

C ′ ≤ B.

So, assume that N ≥ M and that c1, . . . , cN are given. Before showing the existence of the con-

stant B, we will establish several useful inequalities. First, since {xn} and {an} are biorthogonal,

we have that

∀K ≥ m, |cm| =
∣

∣

∣

〈

K
∑

n=1

cnxn, am

〉
∣

∣

∣
≤ ‖am‖

∥

∥

∥

∥

K
∑

n=1

cnxn

∥

∥

∥

∥

.

Therefore, for each K > 0 we have

∥

∥

∥

∥

K
∑

m=1

cm (xm − ym)

∥

∥

∥

∥

≤
K
∑

m=1

|cm| ‖xm − ym‖

≤
K
∑

m=1

(

‖am‖
∥

∥

∥

∥

K
∑

n=1

cnxn

∥

∥

∥

∥

)

‖xm − ym‖
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=

∥

∥

∥

∥

K
∑

n=1

cnxn

∥

∥

∥

∥

K
∑

m=1

‖am‖ ‖xm − ym‖

≤ R

∥

∥

∥

∥

K
∑

n=1

cnxn

∥

∥

∥

∥

. (7.4)

As a consequence,

∥

∥

∥

∥

M
∑

n=1

cnyn

∥

∥

∥

∥

≤
∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

+

∥

∥

∥

∥

M
∑

n=1

cn(yn − xn)

∥

∥

∥

∥

≤ (1 + R)

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

. (7.5)

Further, (7.4) implies that

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=1

cnyn

∥

∥

∥

∥

+

∥

∥

∥

∥

N
∑

n=1

cn(xn − yn)

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=1

cnyn

∥

∥

∥

∥

+ R

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Therefore,
∥

∥

∥

∥

N
∑

n=1

cnyn

∥

∥

∥

∥

≥ (1 − R)

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

. (7.6)

Finally, since {xn} is a basis with basis constant C, Theorem 7.5 implies that

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

. (7.7)

Combining (7.5), (7.6), and (7.7), we obtain

∥

∥

∥

∥

M
∑

n=1

cnyn

∥

∥

∥

∥

≤ (1 + R)

∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

≤ (1 + R)C

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ 1 + R

1 − R
C

∥

∥

∥

∥

N
∑

n=1

cnyn

∥

∥

∥

∥

.

Hence (7.3) holds with B = 1+R
1−RC, and therefore {yn} is a basis for span{yn} with basis constant

C ′ ≤ B.

Finally, calculations similar to (7.5) and (7.6) imply that

(1 − R)

∥

∥

∥

∥

N
∑

n=M+1

cnxn

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=M+1

cnyn

∥

∥

∥

∥

≤ (1 + R)

∥

∥

∥

∥

N
∑

n=M+1

cnxn

∥

∥

∥

∥

.

Hence
∑

cnxn converges if and only if
∑

cnyn converges. It therefore follows from Theorem 4.14

that {xn} is equivalent to {yn}. �
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Let π denote the canonical embedding of X into X∗∗ described in Definition 1.32. That is, if

x ∈ X then π(x) ∈ X∗∗ is the continuous linear functional on X∗ defined by 〈x∗, π(x)〉 = 〈x, x∗〉
for x∗ ∈ X∗.

Suppose that ({xn}, {an}) is a biorthogonal system in a Banach space X. Then ({an}, {π(xn)})
is a biorthogonal system in X∗. Suppose in addition that ({xn}, {an}) is a basis for X. Then it is

natural to ask whether ({an}, {π(xn)}) is a basis for X∗. In general the answer must be no, since

X∗ may be nonseparable even though X is separable (e.g., X = ℓ1, X∗ = ℓ∞), and therefore {an}
could not be complete in X∗ in this case. However, {an} is always complete in its closed linear

span span{an} in X∗, and the next theorem shows that ({an}, {π(xn)}) is always a basis for the

subspace span{an} in X∗.

Theorem 8.1. Let X be a Banach space.

(a) If ({xn}, {an}) is a basis for X, then ({an}, {π(xn)}) is a basis for span{an} in X∗.

(b) If ({xn}, {an}) is an unconditional basis for X, then ({an}, {π(xn)}) is an unconditional

basis for span{an} in X∗.

(c) If ({xn}, {an}) is a bounded basis for X, then ({an}, {π(xn)}) is a bounded basis for

span{an} in X∗.

Proof. (a) Suppose that ({xn}, {an}) is a basis for X. By definition, {an} is complete in the

closed subspace span{an} ⊂ X∗. Further, ({an}, {π(xn)}) is a biorthogonal system in X∗ since

〈am, π(xn)〉 = 〈xn, am〉 = δmn. Therefore, by Theorem 7.3, we need only show that sup ‖TN‖ < ∞,

where the TN are the partial sum operators associated with ({an}, {π(xn)}), i.e.,

TN (x∗) =
N
∑

n=1

〈x∗, π(xn)〉 an =
N
∑

n=1

〈xn, x∗〉 an, for x∗ ∈ span{an}.

As usual, let SN denote the partial sum operators associated with the basis ({xn}, {an}) for X.

Since SN is a continuous linear mapping of X into itself, it has an adjoint mapping S∗
N

:X∗ → X∗.

Since the norm of an adjoint equals the norm of the original operator, we have ‖S∗
N
‖ = ‖SN‖ (see

Definition 1.34). Now, if x ∈ X and x∗ ∈ X∗ then we have by (1.5) that

〈x, S∗
N

(x∗)〉 = 〈SNx, x∗〉 =

〈 N
∑

n=1

〈x, an〉xn, x∗

〉

=

〈

x,
N
∑

n=1

〈xn, x∗〉 an

〉

= 〈x, TN (x∗)〉.

Therefore TN = S∗
N

, so sup ‖TN‖ = sup ‖S∗
N
‖ = sup ‖SN‖ < ∞.

(b) Suppose that ({xn}, {an}) is an unconditional basis for X. Then by part (a), we know that

({an}, {π(xn)}) is a basis for span{an}. So, we need only show that this basis is unconditional.

Therefore, fix any x∗ ∈ span{an}. Then x∗ =
∑ 〈x∗, π(xn)〉 an is the unique representation of x∗
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in the basis ({an}, {π(xn)}). We must show that this series converges unconditionally. Let σ be

any permutation of N. Then for any x ∈ X,

〈x, x∗〉 =
〈

x,
∑

n

〈x∗, π(xn)〉 an

〉

since x∗ =
∑ 〈x∗, π(xn)〉 an

=
∑

n

〈x∗, π(xn)〉 〈x, an〉

=
∑

n

〈xn, x∗〉 〈x, an〉 by definition of π

=
〈

∑

n

〈x, an〉xn, x∗
〉

=
〈

∑

n

〈x, aσ(n)〉xσ(n), x∗
〉

since x =
∑ 〈x, an〉xn converges unconditionally

=
∑

n

〈x, aσ(n)〉 〈xσ(n), x
∗〉

=
〈

x,
∑

n

〈x∗, π(xσ(n))〉 aσ(n)

〉

.

Therefore x∗ =
∑ 〈x∗, π(xσ(n))〉 aσ(n), so the series x∗ =

∑ 〈x∗, π(xn)〉 an converges uncondition-

ally.

(c) Assume that ({xn}, {an}) is a bounded basis for X. Then, by definition, 0 < inf ‖xn‖ ≤
sup ‖xn‖ < ∞. Further, by (4.5) we have 1 ≤ ‖an‖ ‖xn‖ ≤ 2C, where C is the basis constant for

({xn}, {an}). Therefore 0 < inf ‖an‖ ≤ sup ‖an‖ < ∞. Combined with part (a), this implies that

({an}, {π(xn)}) is a bounded basis. �

Corollary 8.2. If ({xn}, {an}) is a basis, unconditional basis, or bounded basis for a reflexive

Banach space X, then ({an}, {π(xn)}) is a basis, unconditional basis, or bounded basis for X∗.

Proof. Assume ({xn}, {an}) is a basis for X. Then Theorem 8.1 implies that ({an}, {π(xn)}) is

a basis for for span{an} in X∗, so we need only show that {an} is complete in X∗. Suppose

that x∗∗ ∈ X∗∗ satisfied 〈an, x∗∗〉 = 0 for every n. Since X is reflexive, X∗∗ = π(X). Therefore

x∗∗ = π(x) for some x ∈ X. But then 〈x, an〉 = 〈an, π(x)〉 = 〈an, x∗∗〉 = 0 for every n. Therefore

x =
∑ 〈x, an〉xn = 0, so x∗∗ = π(x) = 0. The Hahn–Banach Theorem (Corollary 1.41) therefore

implies that {an} is complete in X∗. The statements for an unconditional or bounded basis then

follow as an immediate consequence. �

Corollary 8.3. Let H be a Hilbert space. Then ({xn}, {yn}) is a basis, unconditional basis, or

bounded basis for H if and only if the same is true of ({yn}, {xn}).

Proof. The result follows from Corollary 8.2 and the fact that Hilbert spaces are self-dual, i.e.,

H∗ = H. �
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Recall from Definition 4.2 that a basis ({xn}, {an}) is unconditional if the series x =
∑ 〈x, an〉xn

converges unconditionally for every x ∈ X. Additionally, a basis is bounded if 0 < inf ‖xn‖ ≤
sup ‖xn‖ < ∞.

Lemma 9.1. [Sin70, p. 461]. Given a sequence {xn} in a Banach space X, the following two

statements are equivalent.

(a) {xn} is an unconditional basis for X.

(b) {xσ(n)} is a basis for X for every permutation σ of N.

Proof. (a) ⇒ (b). Assume that ({xn}, {an}) is an unconditional basis for X, and let σ be any

permutation of N. Choose any x ∈ X. Then the series x =
∑ 〈x, an〉xn converges unconditionally,

so x =
∑ 〈x, aσ(n)〉xσ(n) converges by Corollary 2.9. We must show that this is the unique

representation of x in terms of the xσ(n). Suppose that we also had x =
∑

cnxσ(n) for some scalars

(cn). Then, since {xn} and {an} are biorthogonal, we have

〈x, aσ(m)〉 =
∑

n

cn 〈xσ(n), aσ(m)〉 =
∑

n

cn δσ(n),σ(m) =
∑

n

cn δnm = cm.

which shows that the representation is unique.

(b) ⇒ (a). Assume that {xσ(n)} is a basis for every permutation σ of N. Let {an} be the

sequence of coefficient functionals associated with the basis {xn}. We must show that for each

x ∈ X the representation x =
∑ 〈x, an〉xn converges unconditionally. Fix any permutation σ of

N. Since {xσ(n)} is a basis, there exist unique scalars cn such that x =
∑

cn xσ(n). However, each

am is continuous and {an} is biorthogonal to {xn}, so

〈x, aσ(m)〉 =
∑

n

cn 〈xσ(n), aσ(m)〉 =
∑

n

cn δσ(n),σ(m) =
∑

n

cn δnm = cm.

Therefore x =
∑

cnxn =
∑ 〈x, aσ(n)〉xσ(n) converges for every permutation σ, so x =

∑ 〈x, an〉xn

converges unconditionally. �

Example 9.2. [Mar69, p. 83]. Let H be a Hilbert space. We will show that every orthonormal

basis {en} for H is a bounded unconditional basis for H.

Let σ be any permutation of N. Then {eσ(n)} is still an orthonormal sequence in H. Choose any

x ∈ H. Then
∑ |〈x, en〉|2 = ‖x‖2 < ∞ by Theorem 1.20. The series of real numbers

∑ |〈x, xn〉|2
therefore converges absolutely, and hence converges unconditionally by Lemma 2.3. Therefore

∑

n

|〈x, eσ(n)〉|2 =
∑

n

|〈x, en〉|2 = ‖x‖2.
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Theorem 1.20 therefore implies that {eσ(n)} is an orthonormal basis for H. As this is true for every

σ, we have by Lemma 9.1 that {en} is an unconditional basis for H. Finally, this basis is bounded

since ‖en‖ = 1 for every n. ♦

We will study bounded unconditional bases in Hilbert spaces in detail in Chapter 11.

Recall from Lemma 4.12 that bases are preserved by topological isomorphisms. We next show

that the same is true of unconditional bases.

Lemma 9.3.

(a) Unconditional bases are preserved by topological isomorphisms. That is, if {xn} is an

unconditional basis for a Banach space X and S:X → Y is a topological isomorphism,

then {Sxn} is an unconditional basis for Y .

(b) Bounded unconditional bases are likewise preserved by topological isomorphisms.

Proof. (a) If σ is any permutation of N then we know that {xσ(n)} is a basis for X. However,

bases are preserved by topological isomorphisms (Lemma 4.12), so {Sxσ(n)} is a basis for Y . As

this is true for every σ, the basis {Sxσ(n)} is unconditional.

(b) In light of part (a), we need only show that {Sxn} is bounded if {xn} is bounded. This

follows from the facts ‖Sxn‖ ≤ ‖S‖ ‖xn‖ and ‖xn‖ = ‖S−1Sxn‖ ≤ ‖S−1‖ ‖Sxn‖. �

Recall from Definition 4.13 that two bases are equivalent if there exists a topological isomorphism

S such that Sxn = yn for every n. We will see in Chapter 11 that all bounded unconditional bases

in a Hilbert space are equivalent, and are equivalent to orthonormal bases. Up to isomorphisms,

the only other Banach spaces in which all bounded unconditional bases are equivalent are the

sequence spaces c0 and ℓ1.

Notation 9.4. We associate three types of partial sum operators with each unconditional basis

({xn}, {an}). First, with each finite set F ⊂ N we associate the partial sum operator SF :X → X

defined by

SF (x) =
∑

n∈F

〈x, an〉xn, x ∈ X.

Second, with each finite set F ⊂ N and each set E = {εn}n∈F satisfying εn = ±1 for each n, we

associate the operator SF,E :X → X defined by

SF,E(x) =
∑

n∈F

εn 〈x, an〉xn, x ∈ X.

Finally, with each finite set F ⊂ N and each collection of bounded scalars Λ = {λn}n∈F satisfying

|λ| ≤ 1 for each n, we associate the operator SF,Λ:X → X defined by

SF,Λ(x) =
∑

n∈F

λn 〈x, an〉xn, x ∈ X. ♦
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Although the operators SF are projections, the operators SF,E and SF,Λ are not projections

since they are not idempotent, i.e., (SF,E)2 need not equal SF,E .

The following result is the analogue of Corollary 4.8 for the case of unconditional bases.

Theorem 9.5. Let ({xn}, {an}) be an unconditional basis for a Banach space X. Then the

following statements hold.

(a) The following three quantities are finite for each x ∈ X:

|||x||| = sup
F

‖SF (x)‖, |||x|||E = sup
F,E

‖SF,E(x)‖, |||x|||Λ = sup
F,Λ

‖SF,Λ(x)‖.

(b) The following three numbers are finite:

K = sup
F

‖SF ‖, KE = sup
F,E

‖SF,E‖, KΛ = sup
F,Λ

‖SF,Λ‖.

(c) ||| · ||| ≤ ||| · |||E ≤ 2 ||| · ||| and K ≤ KE ≤ 2K.

(d) If F = R then ||| · |||E = ||| · |||Λ and KE = KΛ.

(e) If F = C then ||| · |||E ≤ ||| · |||Λ ≤ 2 ||| · |||E and KE ≤ KΛ ≤ 2KE .

(f) ||| · |||, ||| · |||E , and ||| · |||Λ form norms on X equivalent to the initial norm ‖ · ‖. In fact,

‖ · ‖ ≤ ||| · ||| ≤ K ‖ · ‖, ‖ · ‖ ≤ ||| · |||E ≤ KE ‖ · ‖, ‖ · ‖ ≤ ||| · |||Λ ≤ KΛ ‖ · ‖.

Proof. (a), (c), (d), (e). These follow from the fact that x =
∑ 〈x, an〉xn and that this series

converges unconditionally.

(b) Follows from (a) by the Uniform Boundedness Principle (Theorem 1.42).

(f) Follows from (a) and (b). �

Notation 9.6. If ({xn}, {an}) is an unconditional basis for a Banach space X, then we let ||| · |||,
||| · |||E , and ||| · |||Λ denote the equivalent norms for X defined in Theorem 9.5(a), and we let K, KE ,

and KΛ be the numbers defined in Theorem 9.5(b). In particular, KE is the unconditional basis

constant for ({xn}, {an}). ♦

Comparing the number K and the unconditional basis constant KE to the basis constant C

from Definition 4.9, we see that C ≤ K ≤ KE . In fact, if we let Cσ be the basis constant for the

permuted basis {xσ(n)}, then K = sup Cσ.

Just as for the basis constant C, the unconditional basis constant KE does depend implicitly on

the norm for X, and changing the norm to some other equivalent norm may change the value of the

basis constant. For example, the unconditional basis constant for ({xn}, {an}) in the equivalent

norm ||| · |||E is 1 (compare Proposition 4.10 for the analogous statement for the basis constant).

Next we give several equivalent definitions of unconditional bases.

Theorem 9.7. [Sin70, p. 461]. Let {xn} be a complete sequence in a Banach space X such that

xn 6= 0 for every n. Then the following statements are equivalent.

(a) {xn} is an unconditional basis for X.
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(b) ∃C1 ≥ 1, ∀ c1, . . . , cN , ∀ ε1, . . . , εN = ±1,

∥

∥

∥

∥

N
∑

n=1

εncnxn

∥

∥

∥

∥

≤ C1

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

(c) ∃C2 ≥ 1, ∀ b1, . . . , bN , ∀ c1, . . . , cN ,

|b1| ≤ |c1|, . . . , |bN | ≤ |cN | =⇒
∥

∥

∥

∥

N
∑

n=1

bnxn

∥

∥

∥

∥

≤ C2

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

(d) ∃ 0 < C3 ≤ 1 ≤ C4 < ∞, ∀ c1, . . . , cN ,

C3

∥

∥

∥

∥

N
∑

n=1

|cn|xn

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ C4

∥

∥

∥

∥

N
∑

n=1

|cn|xn

∥

∥

∥

∥

.

(e) {xn} is a basis, and for each bounded sequence of scalars Λ = (λn) there exists a continuous

linear operator TΛ:X → X such that TΛ(xn) = λnxn for all n.

Proof. (a) ⇒ (b). Suppose that ({xn}, {an}) is an unconditional basis for X. Choose any scalars

c1, . . . , cN and any signs ε1, . . . , εN = ±1, and set x =
∑N

n=1 cnxn. Then 〈x, an〉 = cn if n ≤ N

while 〈x, an〉 = 0 if n > N . Therefore

N
∑

n=1

εncnxn =
∑

n∈F

εn 〈x, an〉xn = SF,E(x),

where F = {1, . . . , N} and E = {ε1, . . . , εN}. By definition of ||| · |||E and by Theorem 9.5(f), we

therefore have

∥

∥

∥

∥

N
∑

n=1

εncnxn

∥

∥

∥

∥

= ‖SF,E(x)‖ = |||x|||E ≤ KE ‖x‖ = KE

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Thus statement (b) holds with C1 = KE .

(b) ⇒ (a). Suppose that statement (b) holds, and let σ be any permutation of N. We must

show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is complete with every element nonzero.

Therefore, by Theorem 7.5 it suffices to show that there is a constant Cσ such that

∀N ≥ M, ∀ cσ(1), . . . , cσ(N),

∥

∥

∥

∥

M
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

≤ Cσ

∥

∥

∥

∥

N
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define cn = 0 for n /∈
{σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)}, and define

εn = 1 and ηn =

{

1, if n ∈ {σ(1), . . . , σ(M)},
0, otherwise.
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Then,

∥

∥

∥

∥

M
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

=

∥

∥

∥

∥

L
∑

n=1

(

εn + ηn

2

)

cnxn

∥

∥

∥

∥

≤ 1

2

∥

∥

∥

∥

L
∑

n=1

εncnxn

∥

∥

∥

∥

+
1

2

∥

∥

∥

∥

L
∑

n=1

ηncnxn

∥

∥

∥

∥

≤ C1

2

∥

∥

∥

∥

L
∑

n=1

cnxn

∥

∥

∥

∥

+
C1

2

∥

∥

∥

∥

L
∑

n=1

cnxn

∥

∥

∥

∥

= C1

∥

∥

∥

∥

N
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

.

This is the desired result, with Cσ = C1.

(a) ⇒ (c). Suppose that ({xn}, {an}) is an unconditional basis for X. Choose any scalars

c1, . . . , cN and b1, . . . , bN such that |bn| ≤ |cn| for every n. Define x =
∑N

n=1 cnxn, and note that

cn = 〈x, an〉. Let λn be such that bn = λncn. Since |bn| ≤ |cn| we have |λn| ≤ 1 for every n.

Therefore, if we define F = {1, . . . , N} and Λ = {λ1, . . . , λN}, then

N
∑

n=1

bnxn =
∑

n∈F

λncnxn =
∑

n∈F

λn 〈x, an〉xn = SF,Λ(x).

Hence
∥

∥

∥

∥

N
∑

n=1

bnxn

∥

∥

∥

∥

= ‖SF,Λ(x)‖ = |||x|||Λ ≤ KΛ ‖x‖ = KΛ

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Thus statement (c) holds with C2 = KΛ.

(c) ⇒ (a). Suppose that statement (c) holds, and let σ be any permutation of N. We must

show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is complete in X and every element

xσ(n) is nonzero. Therefore, by Theorem 7.5 it suffices to show that there is a constant Cσ such

that

∀N ≥ M, ∀ cσ(1), . . . , cσ(N),

∥

∥

∥

∥

M
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

N
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define cn = 0 for n /∈
{σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)} and define

λn =

{

1, if n ∈ {σ(1), . . . , σ(M)},
0, otherwise.

Then,

∥

∥

∥

∥

M
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

=

∥

∥

∥

∥

L
∑

n=1

λncnxn

∥

∥

∥

∥

≤ C2

∥

∥

∥

∥

L
∑

n=1

cnxn

∥

∥

∥

∥

= C2

∥

∥

∥

∥

N
∑

n=1

cσ(n)xσ(n)

∥

∥

∥

∥

.
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This is the desired result, with Cσ = C2.

(c) ⇒ (b). Clear.

(b) ⇒ (c). Suppose that statement (b) holds. Choose any N > 0, and any scalars bn, cn

such that |bn| ≤ |cn| for each n = 1, . . . , N . Let λn be such that bn = λncn. Then we certainly

have |λn| ≤ 1 for each n. Let αn = Re(λn) and βn = Im(λn). Since the αn are real and satisfy

|αn| ≤ 1, Caratheodory’s Theorem (Theorem 2.11) implies that we can find scalars tn ≥ 0 and

signs εn
m = ±1, for m = 1, . . . , N + 1 and n = 1, . . . , N , such that

N+1
∑

m=1

tm = 1 and
N+1
∑

m=1

εn
m tm = αn for n = 1, . . . , N.

Hence,

∥

∥

∥

∥

N
∑

n=1

αncnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

N
∑

n=1

N+1
∑

m=1

εn
mtmcnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

N+1
∑

m=1

tm

N
∑

n=1

εn
mcnxn

∥

∥

∥

∥

≤
N+1
∑

m=1

tm

∥

∥

∥

∥

N
∑

n=1

εn
mcnxn

∥

∥

∥

∥

≤
N+1
∑

m=1

tm C1

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

= C1

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

A similar formula holds for the imaginary parts βn, so

∥

∥

∥

∥

N
∑

n=1

bnxn

∥

∥

∥

∥

=

∥

∥

∥

∥

N
∑

n=1

λncnxn

∥

∥

∥

∥

≤
∥

∥

∥

∥

N
∑

n=1

αncnxn

∥

∥

∥

∥

+

∥

∥

∥

∥

N
∑

n=1

βncnxn

∥

∥

∥

∥

≤ 2C1

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Therefore statement (c) holds with C2 = 2C1.

(c) ⇒ (d). Assume that statement (c) holds, and choose any scalars c1, . . . , cN . Let bn = |cn|.
Then we have both |bn| ≤ |cn| and |cn| ≤ |bn|, so statement (c) implies

∥

∥

∥

∥

N
∑

n=1

bnxn

∥

∥

∥

∥

≤ C2

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

and

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

≤ C2

∥

∥

∥

∥

N
∑

n=1

bnxn

∥

∥

∥

∥

.

Therefore (d) holds with C3 = 1/C2 and C4 = C2.

(d) ⇒ (c). Assume that statement (d) holds. Choose any scalars c1, . . . , cN and any signs

ε1, . . . , εN = ±1. Then, by statement (d),

∥

∥

∥

∥

N
∑

n=1

εncnxn

∥

∥

∥

∥

≤ C4

∥

∥

∥

∥

N
∑

n=1

|εncn|xn

∥

∥

∥

∥

= C4

∥

∥

∥

∥

N
∑

n=1

|cn|xn

∥

∥

∥

∥

≤ C4

C3

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Hence statement (c) holds with C1 = C4/C3.
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(a) ⇒ (e). Let ({xn}, {an}) be an unconditional basis for X. Let (λn) be any bounded sequence

of scalars, and let M = sup |λn|. Fix any x ∈ X. Then the series x =
∑ 〈x, an〉xn converges

unconditionally. Hence, by Theorem 2.8(f), the series TΛ(x) =
∑

λn 〈x, an〉xn converges. Clearly

TΛ:X → X defined in this way is linear, and we have

‖TΛ(x)‖ = M

∥

∥

∥

∥

∑

n

λn

M
〈x, an〉xn

∥

∥

∥

∥

≤ MKΛ

∥

∥

∥

∥

∑

n

〈x, an〉xn

∥

∥

∥

∥

= MKΛ ‖x‖.

Therefore TΛ is continuous. Finally, the biorthogonality of {xn} and {an} ensures that TΛ(xn) =

λnxn for every n.

(e) ⇒ (a). Suppose that statement (e) holds. Since {xn} is a basis, there exists a biorthogonal

sequence {an} ⊂ X∗ such that the series x =
∑ 〈x, an〉xn converges and is the unique expansion

of x in terms of the xn. We must show that this series converges unconditionally. Therefore, let

Λ = (λn) be any sequence of scalars such that |λn| ≤ 1 for every n. Then, by hypothesis, there

exists a continuous TΛ:X → X such that TΛ(xn) = λnxn for every n. Since TΛ is continuous, we

therefore have that

TΛ(x) = TΛ

(

∑

n

〈x, an〉xn

)

=
∑

n

〈x, an〉TΛ(xn) =
∑

n

λn 〈x, an〉xn

converges. Hence, by Theorem 2.8(f), the series x =
∑ 〈x, an〉xn converges unconditionally. �
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10. WEAK AND WEAK∗ BASES IN BANACH SPACES

To this point we have considered sequences that are bases with respect to the strong, or norm,

topology of a Banach space X. In this chapter we will briefly survey the natural generalization

of bases to the case of the weak or weak∗ topologies. We will content ourselves with considering

these topologies only, although it is clearly possible to generalize the notion of basis further to

the setting of abstract topological vector spaces. We refer to [Mar69] and related sources for such

generalizations,

Definition 10.1. Let X be a Banach space.

(a) A sequence {xn} of elements of X is a basis for X if Definition 4.2 holds. That is, for each

x ∈ X there must exist unique scalars an(x) such that x =
∑

an(x) xn, with convergence

of this series in the strong topology, i.e.,

lim
N→∞

∥

∥

∥

∥

x −
N
∑

n=1

an(x) xn

∥

∥

∥

∥

= 0.

In this chapter, in order to emphasize the type of convergence required, we will often refer

to a basis as a strong basis or a norm basis. By Theorem 4.11, each coefficient functional

am associated with a strong basis is strongly continuous, i.e., if yn → y strongly in X, then

am(yn) → am(y). Hence every strong basis is a strong Schauder basis.

(b) A sequence {xn} of elements of X is a weak basis for X if for each x ∈ X there exist

unique scalars an(x) such that x =
∑

an(x) xn, with convergence of this series in the weak

topology, i.e.,

∀x∗ ∈ X∗, lim
N→∞

〈

N
∑

n=1

an(x) xn, x∗
〉

= 〈x, x∗〉. (10.1)

A weak basis is a weak Schauder basis if each coefficient functional am is weakly continuous

on X, i.e., if yn → y weakly in X implies am(yn) → am(y).

(c) A sequence {x∗
n} of functionals in X∗ is a weak∗ basis for X∗ if for each x∗ ∈ X∗ there

exist unique scalars a∗
n(x∗) such that x∗ =

∑

a∗
n(x∗) x∗

n, with convergence of this series in

the weak∗ topology, i.e.,

∀x ∈ X, lim
N→∞

〈

x,
N
∑

n=1

a∗
n(x∗) x∗

n

〉

= 〈x, x∗〉.

A weak∗ basis is a weak∗ Schauder basis if each coefficient functional a∗
m is weak∗ continuous

on X∗, i.e., if y∗
n → y∗ weak∗ in X∗ implies a∗

m(y∗
n) → a∗

m(y∗). ♦
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As noted above, if ({xn}, {an}) is a strong basis then each coefficient functional is an element

of X∗. Therefore we usually write 〈x, an〉 = an(x) when dealing with the coefficient functionals

associated with a strong basis. However, when dealing with functionals which are not known to

be strongly continuous, we write only an(x).

Not surprisingly, we can show that all strong bases are weak bases.

Theorem 10.2. Let X be a Banach space. If {xn} is a strong basis for X, then {xn} is a weak

basis for X. Further, in this case {xn} is a weak Schauder basis for X with coefficient functionals

that are strongly continuous on X.

Proof. Assume that {xn} is a strong basis for X. Then {xn} is a strong Schauder basis by

Theorem 4.11, so the associated coefficient functionals {an} are all strongly continuous linear

functionals on X. We will show that {xn} is a weak basis and that {an} is the sequence of coefficient

functionals associated with this weak basis. Since we already know that these functionals are

strongly continuous, they are necessarily weakly continuous, and hence it will follow automatically

from this that {xn} is a weak Schauder basis.

Therefore, fix any x ∈ X. Then x =
∑ 〈x, an〉xn converges strongly. Since strong convergence

implies weak convergence, this series must also converge weakly to x. Or, to see this explicitly,

simply note that if x∗ is an arbitrary element of X∗ then, by the continuity of x∗,

lim
N→∞

〈

N
∑

n=1

〈x, an〉xn, x∗
〉

=
〈

lim
N→∞

N
∑

n=1

〈x, an〉xn, x∗
〉

=
〈

∞
∑

n=1

〈x, an〉xn, x∗
〉

= 〈x, x∗〉.

It therefore remains only to show that the representation x =
∑ 〈x, an〉xn is unique. Suppose that

we also had x =
∑

cnxn, with weak convergence of this series. Fix any particular m. Then since

am ∈ X∗, we have by the weak convergence of the series x =
∑

cnxn that

〈x, am〉 = lim
N→∞

〈

N
∑

n=1

cnxn, am

〉

= lim
N→∞

N
∑

n=1

cn 〈xn, am〉 = lim
N→∞

N
∑

n=1

cnδnm = cm.

Hence the representation is unique, and therefore {xn} is a weak basis for X. �

Surprisingly, the converse of this result is also true: every weak basis for a Banach space X is a

strong basis for X. We prove this in Theorem 10.6 below, after establishing some basic properties

of weak bases.

We let the partial sum operators for a weak basis {xn} be defined in the usual way, i.e., SNx =
∑N

n=1 an(x) xn (compare Notation 4.6). The following result is the analogue of Proposition 4.7 for

weak bases instead of strong bases.

Proposition 10.3. Let {xn} be a sequence in a Banach space X, and assume that xn 6= 0 for

every n. Define Y =
{

(cn) :
∑

cnxn converges weakly in X
}

, and set

‖(cn)‖Y = sup
N

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

.

Then the following statements hold.

(a) Y is a Banach space.
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(b) If {xn} is a weak basis for X then Y is topologically isomorphic to X via the mapping

(cn) 7→∑

cnxn.

Proof. (a) Recall that weakly convergent sequences are bounded (Lemma 1.49). Therefore, if

(cn) ∈ Y then ‖(cn)‖Y < ∞ since
∑

cnxn = limN→∞

∑N
n=1 cnxn converges weakly. The remainder

of the proof is now identical to the proof of Proposition 4.7(a).

(b) Suppose that {xn} is a weak basis for X. Define the map T :Y → X by T (cn) =
∑

cnxn,

where this series converges weakly. This mapping is well-defined by the definition of Y . It is clearly

linear, and it is bijective because {xn} is a weak basis. Finally, if (cn) ∈ Y then

‖T (cn)‖ =

∥

∥

∥

∥

∞
∑

n=1

cnxn

∥

∥

∥

∥

≤ sup
N

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

= ‖(cn)‖Y ,

again since weakly convergent series are bounded. Therefore T is bounded, hence is a topological

isomorphism of Y onto X. �

An immediate consequence is that the partial sum operators for a weak basis are strongly

continuous (compare Corollary 4.8).

Corollary 10.4. Let ({xn}, {an}) be a weak basis for a Banach space X. Then:

(a) sup ‖SNx‖ < ∞ for each x ∈ X,

(b) Each SN is strongly continuous and C = sup ‖SN‖ < ∞, and

(c) |||x||| = sup ‖SNx‖ forms a norm on X equivalent to the initial norm ‖·‖ for X, and satisfies

‖ · ‖ ≤ ||| · ||| ≤ C ‖ · ‖.

Proof. (a) Let Y be as in Proposition 10.3. Then T :X → Y defined by T (cn) =
∑

cnxn (converging

weakly) is a topological isomorphism of X onto Y . Suppose that x ∈ X. Then we have by definition

that x =
∑

an(x) xn converges weakly and that the scalars an(x) are unique, so we must have

T−1x = (an(x)). Hence

sup
N

‖SNx‖ = sup
N

∥

∥

∥

∥

N
∑

n=1

an(x) xn

∥

∥

∥

∥

=
∥

∥(an(x))
∥

∥

Y
= ‖T−1x‖Y ≤ ‖T−1‖ ‖x‖ < ∞. (10.2)

(b) From (10.2), we see that sup ‖SN‖ ≤ ‖T−1‖ < ∞.

(c) It is easy to see that ||| · ||| has the properties of at least a seminorm. Now, given x ∈ X we

have

|||x||| = sup
N

‖SNx‖ ≤ sup
N

‖SN‖ ‖x‖ = C ‖x‖

and

‖x‖ = lim
N→∞

‖SNx‖ ≤ sup
N

‖SNx‖ = |||x|||.

It follows from these two statements that ||| · ||| is in fact a norm, and is equivalent to ‖ · ‖. �
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The finite number C = sup ‖SN‖ is the weak basis constant.

Next, we show now that all weak bases are weak Schauder bases, just as all strong bases are

strong Schauder bases (Theorem 4.11). In Theorem 10.6 we will further improve this, showing that

all weak bases are strong bases.

Theorem 10.5. Every weak basis for a Banach space X is a weak Schauder basis for X. In fact,

the coefficients functionals an are strongly continuous linear functionals on X which satisfy

1 ≤ ‖an‖ ‖xn‖ ≤ 2C,

where C is the weak basis constant.

Proof. By Corollary 10.4, we know that C < ∞, even though ({xn}, {an}) is only assumed to be

a weak basis for X. Since each an is linear, to show that an is strongly continuous we need only

show that it is bounded. Given x ∈ X, we compute

|an(x)| ‖xn‖ = ‖an(x) xn‖ =

∥

∥

∥

∥

n
∑

n=1

ak(x) xk −
n−1
∑

n=1

ak(x) xk

∥

∥

∥

∥

≤
∥

∥

∥

∥

n
∑

n=1

ak(x) xk

∥

∥

∥

∥

+

∥

∥

∥

∥

n−1
∑

n=1

ak(x) xk

∥

∥

∥

∥

= ‖Snx‖ + ‖Sn−1x‖

≤ 2C ‖x‖.

Since each xn is nonzero, we conclude that ‖an‖ ≤ 2C/‖xn‖ < ∞. The final inequality follows

from computing 1 = an(xn) ≤ ‖an‖ ‖xn‖. �

Now we can prove that all weak bases are strong bases.

Theorem 10.6 (Weak Basis Theorem). Every weak basis for a Banach space X is a strong

basis for X, and conversely.

Proof. We showed in Theorem 10.2 that all strong bases are weak bases. For the converse, assume

that ({xn}, {an}) is a weak basis for X. By Theorem 10.5, each am is strongly continuous, and

therefore am ∈ X∗. Moreover, by the uniqueness of the representations in (10.1), we must have

〈xn, am〉 = δmn for every m and n. Hence ({xn}, {an}) is a biorthogonal system in the sense

of Definition 7.1. Further, it follows from Corollary 10.4 that sup ‖SN‖ < ∞. Therefore, by

Theorem 7.3, it suffices to show that {xn} is complete in X. Assume therefore that x∗ ∈ X∗

satisfies 〈xn, x∗〉 = 0 for every n. Then for each x ∈ X, we have by (10.1) that

〈x, x∗〉 = lim
N→∞

〈

N
∑

n=1

〈x, an〉xn, x∗
〉

= lim
N→∞

N
∑

n=1

〈x, an〉 〈xn, x∗〉 = 0.

Hence x∗ = 0, so {xn} is complete. �



10. WEAK AND WEAK∗ BASES IN BANACH SPACES 69

We turn our attention to weak∗ bases for the remainder of this chapter. First, we give an

example showing that a Banach space can possess a weak∗ basis even though it is not separable.

By contrast, a nonseparable space cannot possess any strong bases (and therefore by Theorem 10.6

cannot possess any weak bases either).

In the following examples, we will use the sequence spaces c0, ℓ1, and ℓ∞ defined in Example 1.6.

Recall from Example 1.28 that (ℓ1)∗ = ℓ∞, in the sense that every element y = (yn) ∈ ℓ∞

determines a continuous linear functional on ℓ1 by the formula

〈x, y〉 =
∑

n

xnyn, x = (xn) ∈ ℓ1, (10.3)

and that all continuous linear functionals on ℓ1 are obtained in this way. Additionally, (c0)
∗ = ℓ1,

with the duality defined analogously to (10.3), i.e., y = (yn) ∈ ℓ1 acts on x = (xn) ∈ c0 by

〈x, y〉 =
∑

xnyn.

The sequences en = (δmn)∞m=1 = (0, . . . , 0, 1, 0, . . . ) will be useful. By Example 4.4, {en} is a

strong basis for ℓp for each 1 ≤ p < ∞. This basis is called the standard basis for ℓp. Since ℓ∞ is

not separable, it does not possess any strong bases.

Example 10.7. Let X = ℓ1, so that X∗ = ℓ∞ is not separable. We will show that {en} is a weak∗

basis for ℓ∞, even though it cannot be a strong or weak basis for ℓ∞. To see this, let y = (yn) be

any element of ℓ∞. Then for any x = (xn) ∈ ℓ1, we have

lim
N→∞

〈

x,
N
∑

n=1

ynen

〉

= lim
N→∞

N
∑

n=1

〈x, en〉 yn = lim
N→∞

N
∑

n=1

xnyn = 〈x, y〉.

Hence y =
∑

ynen in the weak∗ topology (even though this series need not converge strongly),

and it easy to see that this representation is unique. Therefore {en} is a weak∗ basis for ℓ∞. ♦

Although any strong or weak basis is a strong Schauder bases, the following example shows that

a weak∗ basis need not be a weak∗ Schauder basis.

Lemma 10.8. [Sin70, p. 153]. Let X = c0, so that X∗ = ℓ1. Let {en} be the standard basis for

ℓ1, and define

x1 = e1,

xn = (−1)n+1e1 + en = ((−1)n+1, 0, . . . , 0, 1, 0, . . . ), n > 1.

Then:

(a) {xn} is a strong basis for ℓ1.

(b) {xn} is a weak∗ basis for ℓ1.

(c) {xn} is not a Schauder weak∗ basis for ℓ1.
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Proof. (a) Define yn ∈ ℓ∞ by

y1 = e1 +
∞
∑

n=2

(−1)n en = (1, 1,−1, 1,−1, 1,−1, . . . ),

yn = en, n > 1.

The series defining y1 is only meant in the obvious formal way, and does not converge in the norm

of ℓ∞. It is easy to check that 〈xm, yn〉 = δmn, so ({xn}, {yn}) is a biorthogonal system for ℓ1.

Now, if x ∈ ℓ1 then
∑ |〈x, en〉| < ∞. Therefore, we can write

N
∑

n=1

〈x, yn〉xn = 〈x, y1〉x1 +
N
∑

n=2

〈x, yn〉xn

=
(

〈x, e1〉 +
∞
∑

n=2

〈x, en〉
)

e1 +
N
∑

n=2

〈x, en〉
(

(−1)n+1e1 + en

)

=
N
∑

n=1

〈x, en〉 en +
∑

n>N

(−1)n 〈x, en〉e1, (10.4)

where the infinite series appearing in (10.4) do converge in the norm of ℓ1. Therefore,

∥

∥

∥

∥

N
∑

n=1

〈x, en〉 en −
N
∑

n=1

〈x, yn〉xn

∥

∥

∥

∥

ℓ1
=

∥

∥

∥

∥

∑

n>N

(−1)n 〈x, en〉e1

∥

∥

∥

∥

ℓ1
≤
∑

n>N

|〈x, en〉|.

Choose any ε > 0. Then since
∑ |〈x, en〉| < ∞, there exists an N > 0 such that

∑

n>N

|〈x, en〉| < ε.

Since x =
∑ 〈x, en〉 en, it follows that

∥

∥

∥

∥

x −
N
∑

n=1

〈x, en〉 en

∥

∥

∥

∥

ℓ1
=

∥

∥

∥

∥

∑

n>N

〈x, en〉 en

∥

∥

∥

∥

ℓ1
≤
∑

n>N

|〈x, en〉| < ε.

Therefore,

∥

∥

∥

∥

x −
N
∑

n=1

〈x, yn〉xn

∥

∥

∥

∥

ℓ1
≤
∥

∥

∥

∥

x −
N
∑

n=1

〈x, en〉 en

∥

∥

∥

∥

ℓ1
+

∥

∥

∥

∥

N
∑

n=1

〈x, en〉 en −
N
∑

n=1

〈x, yn〉xn

∥

∥

∥

∥

ℓ1
< 2ε.

Hence x =
∑ 〈x, yn〉xn, with strong convergence of this series. Since {xn} and {yn} are biorthog-

onal, it therefore follows from Theorem 7.3 that {xn} is a strong basis for ℓ1.
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(b) Let x ∈ ℓ1. Then it follows from part (a) that x =
∑ 〈x, yn〉xn, with strong convergence

of the series. Since strong convergence implies weak∗ convergence by Lemma 1.48, it follows that

x =
∑ 〈x, yn〉xn in the weak∗ topology. Therefore, we need only show that this representation

is unique. Suppose we also had x =
∑

cnxn for some scalars cn, with weak∗ convergence of this

series. Then
∑

dnxn = 0 in the weak∗ topology, where dn = cn − 〈x, yn〉. In particular, since

em ∈ c0, we have for m > 1 that

0 = lim
N→∞

〈

em,
N
∑

n=1

dnxn

〉

= lim
N→∞

N
∑

n=1

dn〈em, xn〉

= lim
N→∞

N
∑

n=1

dn

(

〈em, (−1)n+1e1〉 + 〈em, en〉
)

= dm.

Therefore dm = 0 for m > 1. Since
∑

dnxn = 0, this implies d1x1 = 0 as well. However,

x1 = e1 6= 0, so d1 = 0. Hence cn = 〈x, yn〉 for every n, as desired.

(c) We showed in part (b) that {xn} is a weak∗ basis for ℓ1, and that {yn} is the associated

sequence of coefficient functionals. However, y1 /∈ c0, and therefore y1 cannot be weak∗ continuous.

To see this directly, note that en → 0 weak∗ in ℓ1, since if z = (zn) ∈ c0 then 〈z, en〉 = zn → 0.

However, 〈en, y1〉 = (−1)n 6→ 0 = 〈0, y1〉, so y1 is not weak∗ continuous. Therefore {xn} is not a

Schauder weak∗ basis for ℓ1. �

We close this chapter by quoting the following example, which shows that a strong basis for X∗

need not be a weak∗ basis for X∗.

Lemma 10.9. [Sin70, p. 150]. Let X = c0, so that X∗ = ℓ1. Let {en} be the standard basis for

ℓ1, and define

x1 = e1,

xn = en−1 − en = (0, . . . , 0, 1,−1, 0, . . . ), n > 1.

Then {xn} is a strong basis for ℓ1, but {xn} is not a weak∗ basis for ℓ1.
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11. RIESZ BASES IN HILBERT SPACES

Let H be a Hilbert space. Recall from Definition 4.13 that a basis {xn} for H is equivalent to

a basis {yn} for H if there exists a topological isomorphism S:H → H such that Sxn = yn for all

n. In this case, we write {xn} ∼ {yn}. It is clear that ∼ is an equivalence relation on the set of all

bases for H. In particular, we saw in Corollary 4.15 that all orthonormal bases in H are equivalent.

We will show in this chapter that the class of all bases that are equivalent to orthonormal bases

coincides with the class of all bounded unconditional bases for H, and we will discuss some of the

properties of such bases.

Definition 11.1. A basis {xn} for a Hilbert space H is a Riesz basis for H if it is equivalent to

some (and therefore every) orthonormal basis for H. ♦

Clearly, all Riesz bases are equivalent since all orthonormal bases are equivalent.

Remark 11.2. We show in Theorem 11.9 that bounded unconditional bases and Riesz bases are

equivalent. Hence a bounded basis is a Riesz basis if and only if it is unconditional. It is very

difficult to exhibit a bounded basis for a Hilbert space H that is not a Riesz basis for H. Babenko

[Bab48] proved that if 0 < α < 1/2, then {|t|αe2πint}n∈Z is a bounded basis for L2[0, 1] that is not

a Riesz basis. It is easy to see that {|t|αe2πint}n∈Z is minimal in L2[0, 1], since {|t|−αe2πint}n∈Z is

contained in L2[0, 1] and is biorthogonal to {|t|αe2πint}n∈Z. However, the proof that {|t|αe2πint}n∈Z

is a conditional basis is difficult. ♦

As with bases or unconditional bases, we can show that Riesz bases are preserved by topological

isomorphisms.

Lemma 11.3. Riesz bases are preserved by topological isomorphisms. That is, if {xn} is a Riesz

basis for a Hilbert space H and S:H → K is a topological isomorphism, then {Sxn} is a Riesz

basis for K.

Proof. Since H possesses a basis, it is separable. Therefore K, being isomorphic to H, is separable

as well. By Theorem 1.21, all separable Hilbert spaces are isometrically isomorphic, so there

exists an isometry Z that maps H onto K. Further, by definition of Riesz basis, there exists an

orthonormal basis {en} for H and a topological isomorphism T :H → H such that Ten = xn. Since

Z is an isometric isomorphism, the sequence {Zen} is an orthonormal basis for K. Hence, STZ−1

is a topological isomorphism of K onto itself which has the property that STZ−1(Zen) = STen =

Sxn. Hence {Sxn} is equivalent to an orthonormal basis for K, so we conclude that {Sxn} is a

Riesz basis for K. �

This yields one half of our characterization of Riesz bases.

Corollary 11.4. All Riesz bases are bounded unconditional bases.
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Proof. Let {xn} be a Riesz basis for a Hilbert space H. Then there exists an orthonormal basis {en}
for H and a topological isomorphism S:H → H such that Sen = xn for every n. However, {en}
is a bounded unconditional basis, and bounded unconditional bases are preserved by topological

isomorphisms by Lemma 9.3(b), so {xn} must be a bounded unconditional basis for H. �

Before presenting the converse to this result, we require some basic facts about Riesz bases.

Lemma 11.5. Let ({xn}, {an}) and ({yn}, {bn}) be bases for a Hilbert space H. If {xn} ∼ {yn},
then {an} ∼ {bn}.
Proof. By Corollary 8.3, ({an}, {xn}) and ({bn}, {yn}) are both bases for H. Suppose now that

{xn} ∼ {yn}. Then there exists a topological isomorphism S:H → H such that Sxn = yn for

every n. The adjoint mapping S∗ is also a topological isomorphism of H onto itself, and we have

〈xm, S∗bn〉 = 〈Sxm, bn〉 = 〈ym, bn〉 = δmn = 〈xm, an〉.

Since {xn} is complete, it follows that S∗bn = an for every n, and therefore {an} ∼ {bn}. �

We obtain as a corollary a characterization of Riesz bases as those bases which are equivalent

to their own biorthogonal systems.

Corollary 11.6. Let ({xn}, {yn}) be a basis for a Hilbert space H. Then the following statements

are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {yn} is a Riesz basis for H.

(c) {xn} ∼ {yn}.

Proof. (a) ⇒ (b), (c). Assume that {xn} is a Riesz basis for H. Then {xn} ∼ {en} for some

orthonormal basis {en} of H. By Lemma 11.5, it follows that {xn} and {en} have equivalent

biorthogonal systems. However, {en} is biorthogonal to itself, so this implies {yn} ∼ {en} ∼ {xn}.
Hence {yn} is equivalent to {xn}, and {yn} is a Riesz basis for H.

(b) ⇒ (a), (c). By Corollary 8.3, ({yn}, {xn}) is a basis for H. Therefore, this argument follows

symmetrically.

(c) ⇒ (a), (b). Assume that {xn} ∼ {yn}. Then there exists a topological isomorphism S:H →
H such that Sxn = yn for every n. Since ({xn}, {yn}) is a basis, it follows that for each x ∈ H,

x =
∑

n

〈x, yn〉xn =
∑

n

〈x, Sxn〉xn,

whence

Sx =
∑

n

〈x, Sxn〉Sxn.

Therefore,

〈Sx, x〉 =
∑

n

|〈x, Sxn〉|2 ≥ 0.



11. RIESZ BASES IN HILBERT SPACES 75

Thus S is a continuous and positive linear operator on H, and therefore has a continuous and

positive square root S1/2 [Wei80, Theorem 7.20]. Similarly, S−1 is positive and has a positive

square root, which must be S−1/2 = (S1/2)−1. Thus S1/2 is a topological isomorphism of H onto

itself. Moreover, S1/2 is self-adjoint, so

〈S1/2xm, S1/2xn〉 = 〈xm, S1/2S1/2xn〉 = 〈xm, Sxn〉 = 〈xm, yn〉 = δmn.

Hence {S1/2xn} is an orthonormal sequence in H, and it must be complete since {xn} is complete

and S1/2 is a topological isomorphism. Therefore {xn} is the image of the orthonormal basis

{S1/2xn} under the topological isomorphism S−1/2. Hence {xn} is a Riesz basis. By symmetry,

{yn} is a Riesz basis as well. �

Definition 11.7. A sequence {xn} in a Hilbert space H is a Bessel sequence if

∀x ∈ H,
∑

n

|〈x, xn〉|2 < ∞. ♦

Lemma 11.8. If {xn} is a Bessel sequence, then the coefficient mapping Ux = (〈x, xn〉) is a

continuous linear mapping of H into ℓ2. In other words, there exists a constant B > 0 such that

∀x ∈ H,
∑

n

|〈x, xn〉|2 ≤ B ‖x‖.

Proof. We will use the Closed Graph Theorem (Theorem 1.46) to show that U is continuous.

Suppose that yN → y ∈ H, and that UyN → (cn) ∈ ℓ2. Then for each fixed m,

∣

∣cm − 〈yN , xm〉
∣

∣ ≤
(

∑

n

∣

∣cn − 〈yN , xn〉
∣

∣

)1/2

=
∥

∥(cn) − UyN

∥

∥

ℓ2
→ 0 as N → ∞.

Therefore cm = limN→∞ 〈yN , xm〉 = 〈y, xm〉 for every m. Hence (cn) = (〈y, xm〉) = Uy, so U has

a closed graph, and therefore is continuous. �

The constant B in Lemma 11.8 is sometimes referred to as a Bessel bound or upper frame bound

for {xn} (compare Definition 12.1).

Now we can prove that Riesz bases and bounded unconditional bases are equivalent.

Theorem 11.9. [GK69, p. 320], [You80, p. 32]. If {xn} be a sequence in a Hilbert space H, then

the following statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {xn} is a bounded unconditional basis for H.
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(c) {xn} is a basis for H, and

∑

n

cnxn converges ⇐⇒
∑

n

|cn|2 < ∞.

(d) {xn} is complete in H and there exist constants A, B > 0 such that

∀ c1, . . . , cN , A
N
∑

n=1

|cn|2 ≤
∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|cn|2.

(e) There is an equivalent inner product (·, ·) for H such that {xn} is an orthonormal basis for

H with respect to (·, ·).

(f) {xn} is a complete Bessel sequence and possesses a biorthogonal system {yn} that is also

a complete Bessel sequence.

Proof. (a) ⇒ (b). This is the content of Corollary 11.4.

(a) ⇔ (c). Assume that {xn} is a basis for H, and let {en} be any orthonormal basis for H.

Then {xn} is a Riesz basis for H if and only if {xn} ∼ {en}. By Theorem 4.14, {xn} ∼ {en} if

and only if
∑

n

cnxn converges ⇐⇒
∑

n

cnen converges.

However, by Theorem 1.19(a),

∑

n

cnen converges ⇐⇒
∑

n

|cn|2 < ∞.

Hence, statement (a) holds if and only if statement (d) holds.

(a) ⇒ (d). Suppose that {xn} is a Riesz basis for H. Then there exists an orthonormal basis

{en} for H and a topological isomorphism S:H → H such that Sen = xn for every n. Therefore,

for any scalars c1, . . . , cN we have

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

=

∥

∥

∥

∥

S

( N
∑

n=1

cnen

)
∥

∥

∥

∥

2

≤ ‖S‖2

∥

∥

∥

∥

N
∑

n=1

cnen

∥

∥

∥

∥

2

= ‖S‖2
N
∑

n=1

|cn|2,

the last equality following from the Plancherel formula (Theorem 1.20). Similarly,

N
∑

n=1

|cn|2 =

∥

∥

∥

∥

N
∑

n=1

cnen

∥

∥

∥

∥

2

=

∥

∥

∥

∥

S−1

( N
∑

n=1

cnxn

)∥

∥

∥

∥

2

≤ ‖S−1‖2

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

.

Hence statement (d) holds with A = ‖S−1‖−2 and B = ‖S‖2.
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(a) ⇒ (e). Suppose that {xn} is a Riesz basis for H. Then there exists an orthonormal basis

{en} for H and a topological isomorphism S:H → H such that Sen = xn for every n. Define

(x, y) = 〈Sx, Sy〉 and |||x|||2 = (x, x) = 〈Sx, Sx〉 = ‖Sx‖2.

It is easy to see that (·, ·) is an inner product for H, and that ||| · ||| is the corresponding induced

norm. Further,

|||x|||2 = ‖Sx‖2 ≤ ‖S‖2 ‖x‖2 and ‖x‖2 = |||S−1x|||2 ≤ |||S−1|||2 |||x|||2, (11.1)

where |||S−1||| is the operator norm of S−1 with respect to the norm ||| · |||. In fact, we have

|||S−1||| = sup
|||x|||=1

|||S−1x||| = sup
‖Sx‖=1

‖x‖ = sup
‖y‖=1

‖S−1y‖ = ‖S−1‖,

although this equality is not needed for our proof. It follows from (11.1) that ||| · ||| is an equivalent

norm to ‖ · ‖. By definition, (·, ·) is therefore an equivalent inner product to 〈·, ·〉.
It remains to show that {xn} is an orthonormal basis with respect to the inner product (·, ·).

By Theorem 1.19, it suffices to show that {xn} is a complete orthonormal sequence with respect

to (·, ·). The orthonormality follows from the calculation

(xm, xn) = 〈Sxm, Sxn〉 = 〈em, en〉 = δmn.

For the completeness, suppose that there is an x ∈ H such that (x, xn) = 0 for every n. Then

0 = (x, xn) = 〈Sx, Sxn〉 = 〈Sx, en〉 for every n. Since {en} is complete with respect to 〈·, ·〉, this

implies that Sx = 0. Since S is a topological isomorphism, we therefore have x = 0. Hence {xn}
is complete with respect to (·, ·).

(a) ⇒ (f). Suppose that {xn} is a Riesz basis for H. Then, by Corollary 11.6, {xn} possesses

a biorthogonal sequence {yn} which is itself a Riesz basis for H. Suppose now that x ∈ H. Then

since ({xn}, {yn}) is a basis, we have that x =
∑ 〈x, yn〉xn. Since we have already shown that

statement (a) implies statement (c), the convergence of this series implies that
∑ |〈x, yn〉|2 < ∞.

Therefore {yn} is a Bessel sequence. Further, {yn} is complete since ({yn}, {xn}) is also a basis

for H (Corollary 8.3). A symmetric argument implies that {xn} is a complete Bessel sequence as

well.

(b) ⇒ (f). Suppose that ({xn}, {yn}) is a bounded unconditional basis for H. Then, by Corol-

lary 8.3, ({yn}, {xn}) is also a bounded unconditional basis for H. Therefore, if x ∈ H then

x =
∑ 〈x, xn〉 yn, with unconditional convergence of this series. By Orlicz’s Theorem (Theo-

rem 3.1), this implies that
∑ |〈x, xn〉|2 ‖yn‖2 < ∞. However, by definition of bounded basis, there

exist constants C1, C2 so that 0 < C1 ≤ ‖yn‖ ≤ C2 < ∞ for all n. Hence
∑ |〈x, xn〉|2 < ∞,

so {xn} is a Bessel sequence, and it must be complete since it is a basis. A symmetric argument

implies that {yn} is also a complete Bessel sequence.
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(d) ⇒ (a). Suppose that statement (d) holds, and let {en} be any orthonormal basis for H.

Choose any x ∈ H. Then, by Theorem 1.20, x =
∑ 〈x, en〉 en, and

∑ |〈x, en〉|2 = ‖x‖2 < ∞.

Choose M < N , and define c1 = · · · = cM = 0 and cn = 〈x, en〉 for n = M + 1, . . . , N . Then, by

hypothesis (d),

∥

∥

∥

∥

N
∑

n=M+1

〈x, en〉xn

∥

∥

∥

∥

2

=

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|cn|2 = B
N
∑

n=M+1

|〈x, en〉|2.

Since
∑ |〈x, en〉|2 is a Cauchy series of real numbers, it follows that

∑ 〈x, en〉xn is a Cauchy series

in H and hence must converge in H. Therefore, we can define Sx =
∑ 〈x, en〉xn. Clearly S defined

in this way is a linear mapping of H into itself, and we claim that S is a topological isomorphism

of H onto itself.

By applying hypothesis (d) and taking the limit as N → ∞, we have

A ‖x‖2 = A
∑

n

|〈x, en〉|2 ≤ ‖Sx‖2 ≤ B
∑

n

|〈x, en〉|2 = B ‖x‖2. (11.2)

It follows that S is continuous and injective, and that S−1: Range(S) → H is continuous as well.

Further, Sem =
∑ 〈em, en〉xn = xn for every n, so Range(S) contains every xm, and therefore

contains span{xn}, which is dense in H since {xn} is complete. Therefore, if we show that Range(S)

is closed, then it will follow that Range(S) = H and hence that S is a topological isomorphism of

H onto itself.

Suppose then that yn ∈ Range(S) and that yn → y ∈ H. Then there exist xn ∈ H such that

Sxn = yn. Hence {Sxn} is a Cauchy sequence in H. However, by (11.2) we have A ‖xm − xn‖ ≤
‖Sxm − Sxn‖, so {xn} is Cauchy as well, and therefore must converge to some x ∈ H. Since

S is continuous, it follows that yn = Sxn → Sx. Since we also have yn → y, we must have

y = Sx ∈ Range(S). Hence Range(S) is closed.

Thus S is a topological isomorphism of H onto itself. Finally, since S maps {en} onto {xn}, we

conclude that {xn} is a Riesz basis for H.

(d) ⇒ (b). Suppose that statement (d) holds. Choose N > 0, and define an = δNn. Then, by

hypothesis (d),

A = A
N
∑

n=1

|an|2 ≤
∥

∥

∥

∥

N
∑

n=1

anxn

∥

∥

∥

∥

2

= ‖xN‖2 =

∥

∥

∥

∥

N
∑

n=1

anxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|an|2 = B.

Hence {xn} is norm-bounded above and below. In particular, each xn is nonzero.

It remains to show that {xn} is an unconditional basis. Therefore, choose any scalars c1, . . . , cN

and any signs ε1, . . . , εN = ±1. Then by hypothesis (d),

∥

∥

∥

∥

N
∑

n=1

εncnxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|εncn|2 = B
N
∑

n=1

|cn|2 ≤ B

A

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

.

This, combined with the fact that {xn} is complete and that every xn is nonzero, implies by

Theorem 9.7 that {xn} is an unconditional basis for H.
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(d) ⇒ (c). Suppose that statement (d) holds. Choose N > 0, and define an = δNn. Then by

hypothesis (d),

‖xN‖2 =

∥

∥

∥

∥

N
∑

n=1

anxn

∥

∥

∥

∥

2

≥ A
N
∑

n=1

|an|2 = A.

Hence {xn} is norm-bounded below. In particular, each xn is nonzero.

We will show now that {xn} is a basis for H. To do this, choose any M < N , and any scalars

c1, . . . , cN . Then, by hypothesis (d),
∥

∥

∥

∥

M
∑

n=1

cnxn

∥

∥

∥

∥

2

≤ B
M
∑

n=1

|cn|2 ≤ B
N
∑

n=1

|cn|2 ≤ B

A

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

.

This, combined with the fact that {xn} is complete and that every xn is nonzero, implies by

Theorem 7.3 that {xn} is a basis.

It therefore only remains to show that
∑

cnxn converges if and only if
∑ |cn|2 < ∞. To do

this, let (cn) be any sequence of scalars. Choose any M < N , and define a1 = · · · = aM = 0 and

an = cn for n = M + 1, . . . , N . Then, by hypothesis (d),

A
N
∑

n=1

|an|2 ≤
∥

∥

∥

∥

N
∑

n=1

anxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|an|2.

However, by the definition of an, this simply states that

A
N
∑

n=M+1

|cn|2 ≤
∥

∥

∥

∥

N
∑

n=M+1

cnxn

∥

∥

∥

∥

2

≤ B
N
∑

n=M+1

|cn|2.

Therefore,
∑

cnxn is a Cauchy series in H if and only if
∑ |cn|2 is a Cauchy series of real numbers.

Hence one series converges if and only if the other series converges.

(e) ⇒ (d). Suppose that (·, ·) is an equivalent inner product for H such that {xn} is an

orthonormal basis with respect to (·, ·). Let ||| · ||| denote the norm induced by (·, ·). Then, by

definition of equivalent inner product, ||| · ||| and ‖ ·‖ are equivalent norms, i.e., there exist constants

A, B > 0 such that

∀x ∈ H, A |||x|||2 ≤ ‖x‖2 ≤ B |||x|||2. (11.3)

Since {xn} is complete in the norm ||| · ||| and since ‖ · ‖ is equivalent to ||| · |||, we must have that

{xn} is complete in H with respect to ‖ · ‖. To see this explicitly, suppose that x ∈ H and that

ε > 0 is given. Then since span{xn} is dense in H with respect to the norm ||| · |||, there must

exist y ∈ span{xn} such that |||x − y||| < ε. By (11.3), we therefore have ‖x − y‖ < B1/2ε. Hence

span{xn} is also dense in H with respect to ‖ · ‖, and therefore {xn} is complete with respect to

this norm.

Now choose any scalars c1, . . . , cN . Since {xn} is orthonormal with respect to (·, ·), we have by

the Plancherel formula (Theorem 1.20) that |||∑N
n=1 cnxn|||

2
=
∑N

n=1 |cn|2. Combined with (11.3),

this implies that

A
N
∑

n=1

|cn|2 ≤
∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

2

≤ B
N
∑

n=1

|cn|2.

Hence statement (d) holds.
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(f) ⇒ (c). Suppose that statement (f) holds. Since {xn} and {yn} are both Bessel sequences, it

follows from Lemma 11.8 that there exist constants C, D > 0 such that

∀x ∈ H,
∑

n

|〈x, xn〉|2 ≤ C ‖x‖2 and
∑

n

|〈x, yn〉|2 ≤ D ‖x‖2. (11.4)

We will show now that ({xn}, {yn}) is a basis for H. Since {xn} is assumed to be complete and

since {yn} is biorthogonal to {xn}, it suffices by Theorem 7.3 to show that sup ‖SN‖ < ∞, where

SN is the partial sum operator SNx =
∑N

n=1 〈x, yn〉xn. We compute:

‖SNx‖2 = sup
‖y‖=1

|〈SNx, y〉|2 by Theorem 1.16(b)

= sup
‖y‖=1

∣

∣

∣

∣

N
∑

n=1

〈x, yn〉 〈xn, y〉
∣

∣

∣

∣

2

≤ sup
‖y‖=1

( N
∑

n=1

|〈x, yn〉|2
)( N

∑

n=1

|〈xn, y〉|2
)

by Cauchy–Schwarz

≤ sup
‖y‖=1

D ‖x‖2 C ‖y‖2 by (11.4)

= CD ‖x‖2.

Hence sup ‖SN‖2 ≤ CD < ∞, as desired.

Finally, we must show that
∑

cnxn converges if and only if
∑ |cn|2 < ∞. Suppose first that

x =
∑

cnxn converges. Then we must have cn = 〈x, yn〉 since ({xn}, {yn}) is a basis for H. It

therefore follows from (11.4) that
∑ |cn|2 =

∑ |〈x, yn〉|2 ≤ D ‖x‖2 < ∞.

Conversely, suppose that
∑ |cn|2 < ∞. Then for any M < N ,

∥

∥

∥

∥

N
∑

n=M+1

cnxn

∥

∥

∥

∥

2

= sup
‖y‖=1

∣

∣

∣

∣

〈

N
∑

n=M+1

cnxn, y
〉

∣

∣

∣

∣

2

by Theorem 1.16(b)

= sup
‖y‖=1

∣

∣

∣

∣

N
∑

n=M+1

cn 〈xn, y〉
∣

∣

∣

∣

2

≤ sup
‖y‖=1

( N
∑

n=M+1

|cn|2
)( N

∑

n=M+1

|〈xn, y〉|2
)

by Cauchy–Schwarz

≤ sup
‖y‖=1

( N
∑

n=M+1

|cn|2
)

C ‖y‖2 by (11.4)

= C
N
∑

n=M+1

|cn|2.

Hence
∑

cnxn is a Cauchy series in H, and therefore must converge. �
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12. FRAMES IN HILBERT SPACES

Frames were introduced by Duffin and Schaeffer in the context of nonharmonic Fourier series

[DS52]. They were intended as an alternative to orthonormal or Riesz bases in Hilbert spaces. Much

of the abstract theory of frames is elegantly laid out in that paper. Frames for L2(R) based on time-

frequency or time-scale translates of functions were later constructed by Daubechies, Grossmann,

and Meyer in [DGM86]. Such frames play an important role in Gabor and wavelet analysis.

Expository discussions of these connections can be found in [Dau92] and [HW89]. Gröchenig has

given the nontrivial extension of frames to Banach spaces [Grö91].

This chapter is an essentially expository review of basic results on frames in Hilbert spaces.

We have combined results from many sources, including [Dau90], [DGM86], [DS52], [You80] and

others, with remarks, examples, and minor results of our own. This chapter is based on [Hei90]

and [HW89].

Definition 12.1. A sequence {xn} in a Hilbert space H is a frame for H if there exist constants

A, B > 0 such that the following pseudo–Plancherel formula holds:

∀x ∈ H, A ‖x‖2 ≤
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2. (12.1)

The constants A, B are frame bounds; A is the lower bound and B is the upper bound. The frame

is tight if A = B. The frame is exact if it ceases to be a frame whenever any single element is

deleted from the sequence. ♦

If {xn} is a frame then
∑ |〈x, xn〉|2 is an absolutely convergent series of nonnegative real num-

bers. It therefore converges unconditionally by Lemma 2.4. Hence
∑ |〈x, xσ(n)〉|2 =

∑ |〈x, xn〉|2 <

∞ for any permutation σ of N. As a consequence, every rearrangement of a frame is also a frame,

and therefore we could use any countable set to index a frame if we wished.

Example 12.2. By the Plancherel formula (Theorem 1.20), every orthonormal basis {en} is a

tight frame with A = B = 1. Moreover, {en} is an exact frame since if we delete any element em,

then
∑

n 6=m |〈em, en〉|2 = 0, and therefore {en}n 6=m cannot be a frame. ♦

We will see in Theorem 12.21 that the class of exact frames for H coincides with the class of

Riesz bases for H. Further, we shall see in Proposition 12.10 that even though an inexact frame

is not a basis, the pseudo-Plancherel formula (12.1) implies that every element x ∈ H can be

expressed as x =
∑

cnxn with specified cn. However, in this case the scalars cn will not be unique.

The following example shows that tightness and exactness are distinct concepts.

Example 12.3. Let {en} be an orthonormal basis for a separable Hilbert space H.

(a) {en} is a tight exact frame for H with frame bounds A = B = 1.
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(b) {e1, e1, e2, e2, e3, e3, . . .} is a tight inexact frame with bounds A = B = 2, but it is not

orthogonal and it is not a basis, although it does contain an orthonormal basis. Similarly,

if {fn} is another orthonormal basis for H then {en} ∪ {fn} is a tight inexact frame.

(c) {e1, e2/2, e3/3, . . .} is a complete orthogonal sequence and it is a basis for H, but it does

not possess a lower frame bound and hence is not a frame.

(d) {e1, e2/
√

2, e2/
√

2, e3/
√

3, e3/
√

3, e3/
√

3, . . .} is a tight inexact frame with bounds A = B =

1, and no nonredundant subsequence is a frame.

(e) {2e1, e2, e3, . . .} is a nontight exact frame with bounds A = 1, B = 2. ♦

We show now that all frames must be complete, although part (c) of the preceding example

shows that there exist complete sequences which are not frames.

Lemma 12.4. If {xn} is a frame for a Hilbert space H, then {xn} is complete in H.

Proof. If x ∈ H satisfies 〈x, xn〉 = 0 for all n, then A ‖x‖2 ≤∑ |〈x, xn〉|2 = 0. �

As a consequence of this result, if H possesses a frame {xn} then it must be separable, since

the set of all finite linear combinations
∑N

n=1 cnxn with rational cn (or rational real and imaginary

parts if the cn are complex) will form a countable, dense subset of H. Conversely, every separable

Hilbert space does possess a frame since it possesses an orthonormal basis, which is a tight exact

frames.

Example 12.5. Let a, b > 0 be fixed. If the collection {e2πimbxg(x−na)}m,n∈Z of time-frequency

translates of a single g ∈ L2(R) forms a frame for L2(R) then it is called a Gabor frame. Similarly,

if the collection {an/2g(anx−mb)}m,n∈Z of time-scale translates of g ∈ L2(R) forms a frame then

it is called a wavelet frame. We refer to [Dau92], [HW89] for expository treatments of these types

of frames. ♦

Recall from Definition 11.7 that {xn} is a Bessel sequence if
∑ |〈x, xn〉|2 < ∞ for every x ∈ H.

By Lemma 11.8, or directly from the Uniform Boundedness Principle, every Bessel sequence must

possess an upper frame bound B > 0, i.e.,

∀x ∈ H,
∑

|〈x, xn〉|2 ≤ B‖x‖2.

The number B is sometimes called the Bessel bound, or simply the upper frame bound for {xn}
(even though an arbitrary Bessel sequence need not satisfy a lower frame bound and therefore need

not be a frame). In applications, a sequence which is a frame is often easily shown to be a Bessel

sequence, while the lower frame bound is often more difficult to establish.

We now prove some basic properties of Bessel sequences and frames. Part (a) of the following

lemma is proved in [DS52].
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Lemma 12.6. Let {xn} be a Bessel sequence with Bessel bound B.

(a) If (cn) ∈ ℓ2 then
∑

cnxn converges unconditionally in H, and

∥

∥

∥

∑

n

cnxn

∥

∥

∥

2

≤ B
∑

n

|cn|2.

(b) Ux = (〈x, xn〉) is a continuous mapping of H into ℓ2, with ‖U‖ ≤ B1/2. Its adjoint is the

continuous mapping U∗: ℓ2 → H given by U∗(cn) =
∑

cnxn.

(c) If {xn} is a frame then U is injective and U∗ is surjective.

Proof. (a) Let F be any finite subset of N. Then,

∥

∥

∥

∑

n∈F

cnxn

∥

∥

∥

2

= sup
‖y‖=1

∣

∣

∣

〈

∑

n∈F

cnxn, y
〉
∣

∣

∣

2

by Theorem 1.16(b)

= sup
‖y‖=1

∣

∣

∣

∑

n∈F

cn 〈xn, y〉
∣

∣

∣

2

≤ sup
‖y‖=1

(

∑

n∈F

|cn|2
)(

∑

n∈F

|〈xn, y〉|2
)

by Cauchy–Schwarz

≤ sup
‖y‖=1

(

∑

n∈F

|cn|2
)

B‖y‖2 by definition of frame

= B
∑

n∈F

|cn|2. (12.2)

Since
∑ |cn|2 is an absolutely and unconditionally convergent series of real numbers, it therefore

follows from (12.2) and Theorem 2.8 that
∑

cnxn converges unconditionally in H. Setting F =

{1, . . . , N} in (12.2) and taking the limit as N → ∞ then yields the desired inequality ‖∑ cnxn‖2 ≤
B
∑ |cn|2.

(b) By definition of Bessel bound, we have ‖Ux‖2
ℓ2 =

∑ |〈x, xn〉|2 ≤ B ‖x‖2. Hence U is a

continuous mapping of H into ℓ2, and ‖U‖ ≤ B1/2.

The adjoint U∗: ℓ2 → H of H is therefore well-defined and continuous, so we need only verify

that it has the correct form. Now, if (cn) ∈ ℓ2 then we know by part (a) that
∑

cnxn converges to

an element of H. Therefore, given x ∈ H we can compute

〈x, U∗(cn)〉 = 〈Ux, (cn)〉ℓ2 =
〈

(〈x, xn〉), (cn)
〉

ℓ2
=
∑

n

〈x, xn〉 c̄n =
〈

x,
∑

n

cnxn

〉

.

Hence U∗(cn) =
∑

cnxn.

(b) The fact that U is injective follows immediately from the fact that frames are complete. The

fact that U∗ is surjective follows from the fact that U is injective. �
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Definition 12.7. Let {xn} be a frame for a Hilbert space H.

(a) The coefficient mapping for {xn} is the continuous mapping U :H → ℓ2 defined by Ux =

(〈x, xn〉) for x ∈ H.

(b) The synthesis mapping for {xn} is the continuous mapping U∗: ℓ2 → H defined by U∗(cn) =
∑

cnxn for (cn) ∈ ℓ2.

(c) The frame operator for {xn} is the continuous mapping S:H → H defined by

Sx = U∗Ux =
∑

n

〈x, xn〉xn, x ∈ H. ♦

Proposition 12.8. [DS52]. Given a sequence {xn} in a Hilbert space H, the following statements

are equivalent.

(a) {xn} is a frame with frame bounds A, B.

(b) Sx =
∑ 〈x, xn〉xn is a positive, bounded, linear mapping of H into H which satisfies

AI ≤ S ≤ BI.

Proof. (a) ⇒ (b). Assume that {xn} is a frame. Then S = U∗U is continuous by Lemma 12.6. In

fact, we have ‖S‖ ≤ ‖U∗‖ ‖U‖ ≤ B. Note that

〈AIx, x〉 = A ‖x‖2, 〈Sx, x〉 =
∑

n

|〈x, xn〉|2, 〈BIx, x〉 = B ‖x‖2. (12.3)

Therefore, 〈AIx, x〉 ≤ 〈Sx, x〉 ≤ 〈BIx, x〉 by definition of frame, so AI ≤ S ≤ BI. Additionally,

〈Sx, x〉 ≥ 0 for every x, so S is a positive operator.

(b) ⇒ (a). Assume that statement (b) holds. Then 〈AIx, x〉 ≤ 〈Sx, x〉 ≤ 〈BIx, x〉 for every

x ∈ H. By (12.3), this implies that {xn} is a frame for H. �

Our next goal is to show that the frame operator S is a topological isomorphism of H onto

itself. We will require the following lemma. To motivate this lemma, note that if T :H → H is

a positive definite operator, i.e., 〈Tx, x〉 > 0 for all x 6= 0, then (x, y) = 〈Tx, y〉 defines an inner

product on H that is equivalent to the original inner product. If we let |||x||| = (x, x)1/2 denote the

corresponding induced norm, then the Cauchy–Schwarz inequality applied to (·, ·) states that

|〈Tx, y〉|2 = |(x, y)|2 ≤ |||x|||2 |||y|||2 = (x, x) (y, y) = 〈Tx, x〉 〈Ty, y〉.

The following lemma states that this inequality remains valid even if T is only assumed to be a

positive operator, rather than positive definite. In this case, (x, x) = 〈Tx, x〉 ≥ 0 for all x, but we

may have (x, x) = 0 when x 6= 0. Hence (·, ·) need not be an inner product in this case. However,

the proof of the Cauchy–Schwarz inequality does adapt to this more general situation.
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Lemma 12.9 (Generalized Cauchy–Schwarz). Let H be a Hilbert space. If T :H → H is a

positive operator, then

∀x, y ∈ H, |〈Tx, y〉|2 ≤ 〈Tx, x〉 〈Ty, y〉. ♦

Proposition 12.10. [DS52]. If {xn} is a frame for a Hilbert space H, then the following state-

ments hold.

(a) The frame operator S is a topological isomorphism of H onto itself. Moreover, S−1 satisfies

B−1I ≤ S−1 ≤ A−1I.

(b) {S−1xn} is a frame for H, with frame bounds B−1, A−1.

(c) The following series converge unconditionally for each x ∈ H:

x =
∑

n

〈x, S−1xn〉xn =
∑

n

〈x, xn〉S−1xn. (12.4)

(d) If the frame is tight, i.e., A = B, then S = AI, S−1 = A−1I, and

∀x ∈ H, x = A−1
∑

〈x, xn〉xn.

Proof. (a) We know that S is continuous since S = U∗U and U is continuous. Further, it follows

from AI ≤ S ≤ BI that A ‖x‖2 = 〈AIx, x〉 ≤ 〈Sx, x〉 ≤ ‖Sx‖ ‖x‖. Hence,

∀x ∈ H, A ‖x‖ ≤ ‖Sx‖. (12.5)

This implies immediately that S is injective, and that S−1: Range(S) → H is continuous. Hence,

if we show that S is surjective then it follows that S is a topological isomorphism.

Before showing that Range(S) = H, we will show that Range(S) is closed. Suppose that

yn ∈ Range(S) and that yn → y ∈ H. Then yn = Sxn for some xn ∈ H. Hence {Sxn} is a Cauchy

sequence in H. However, by (12.5), we have A ‖xm − xn‖ ≤ ‖Sxm − Sxn‖, so {xn} is Cauchy as

well. Therefore xn → x for some x ∈ H. Since S is continuous, we therefore have yn = Sxn → Sx.

Since we also have yn → y, we conclude that y = Sx ∈ Range(S), so Range(S) is closed.

Now we will show that Range(S) = H. Suppose that y ∈ H was orthogonal to Range(S), i.e.,

〈y, Sx〉 = 0 for every x ∈ H. Then A ‖y‖2 = 〈AIy, y〉 ≤ 〈Sy, y〉 = 0, so y = 0. Since Range(S)

is a closed subspace of H, it follows that Range(S) = H. Thus S is surjective, and therefore is a

topological isomorphism.

Finally, we will show that S−1 satisfies B−1I ≤ S−1 ≤ A−1I. First, note that S−1 is positive

since S is positive. This also follows from the computation

0 ≤ A ‖S−1x‖2 = 〈AI(S−1x), S−1x〉 ≤ 〈S(S−1x), S−1x〉 = 〈x, S−1x〉 ≤ ‖x‖ ‖S−1x‖.
As a consequence, ‖S−1‖ ≤ A−1. Hence 〈S−1x, x〉 ≤ ‖S−1x‖ ‖x‖ ≤ A−1 ‖x‖2 = 〈A−1Ix, x〉, so

S−1 ≤ A−1I. Lastly, by Lemma 12.9,

‖x‖4 = 〈x, x〉2 = 〈S−1(Sx), x〉2 ≤ 〈S−1(Sx), Sx〉 〈S−1x, x〉

= 〈x, Sx〉 〈S−1x, x〉

≤ B ‖x‖2 〈S−1x, x〉.
Therefore 〈S−1x, x〉 ≥ B−1 ‖x‖2 = 〈B−1Ix, x〉, so S−1 ≥ B−1I.
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(b) The operator S−1 is self-adjoint since it is positive. Therefore,

∑

n

〈x, S−1xn〉S−1xn =
∑

n

〈S−1x, xn〉S−1xn

= S−1

(

∑

n

〈S−1x, xn〉xn

)

= S−1S(S−1x) = S−1x.

Since we also have B−1I ≤ S−1 ≤ A−1I, it therefore follows from Proposition 12.8 that {S−1xn}
is a frame.

(c) We compute

x = S(S−1x) =
∑

n

〈S−1x, xn〉xn =
∑

n

〈x, S−1xn〉xn

and

x = S−1(Sx) = S−1

(

∑

n

〈x, xn〉xn

)

=
∑

n

〈x, xn〉S−1xn.

The unconditionality of the convergence follows from the fact that {xn} and {S−1xn} are both

frames.

(d) Follows immediately from parts (a)–(c). �

Definition 12.11. Let {xn} be a frame with frame operator S. Then {S−1xn} is the dual frame

of {xn}.

We now prove some results relating to the uniqueness of the series expressions in (12.4). The

following proposition shows that among all choices of scalars (cn) for which x =
∑

cnxn, the scalars

cn = 〈x, S−1xn〉 have the minimal ℓ2-norm.

Proposition 12.12. [DS52]. Let {xn} be a frame for a Hilbert space H, and let x ∈ H. If

x =
∑

cnxn for some scalars (cn), then

∑

n

|cn|2 =
∑

n

|〈x, S−1xn〉|2 +
∑

n

|〈x, S−1xn〉 − cn|2.

In particular, the sequence (〈x, S−1xn〉) has the minimal ℓ2-norm among all such sequences (cn).

Proof. By (12.4), we have x =
∑

anxn, where an = 〈x, S−1xn〉. Let (cn) be any sequence of

scalars such that x =
∑

cnxn. Since
∑ |an|2 < ∞, we may assume without loss of generality that

∑ |cn|2 < ∞. Then (cn) ∈ ℓ2, and we have

〈x, S−1x〉 =
〈

∑

n

anxn, S−1x
〉

=
∑

n

an 〈S−1xn, x〉 =
∑

n

anān =
〈

(an), (an)
〉

ℓ2

and

〈x, S−1x〉 =
〈

∑

n

cnxn, S−1x
〉

=
∑

n

cn 〈S−1xn, x〉 =
∑

n

cnān =
〈

(cn), (an)
〉

ℓ2
.
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Therefore (cn − an) is orthogonal to (an) in ℓ2, whence

‖(cn)‖2
ℓ2 = ‖(cn − an) + (an)‖2

ℓ2 = ‖(cn − an)‖2
ℓ2 + ‖(an)‖2

ℓ2 . �

The following result will be play an important role in characterizing the class of exact frames.

Proposition 12.13. [DS52]. Let {xn} be a frame for a Hilbert space H.

(a) For each m,

∑

n 6=m

|〈xm, S−1xn〉|2 =
1 − |〈xm, S−1xm〉|2 − |1 − 〈xm, S−1xm〉|2

2
. (12.6)

(b) If 〈xm, S−1xm〉 = 1, then 〈xm, S−1xn〉 = 0 for n 6= m.

(c) The removal of a vector from a frame leaves either a frame or an incomplete set. In fact,

〈xm, S−1xm〉 6= 1 =⇒ {xn}n 6=m is a frame,

〈xm, S−1xm〉 = 1 =⇒ {xn}n 6=m is incomplete.

Proof. (a) Fix any m, and let an = 〈xm, S−1xn〉. Then xm =
∑

anxn by (12.4). However, we also

have xm =
∑

δmnxn, so Proposition 12.12 implies that

1 =
∑

n

|δmn|2 =
∑

n

|an|2 +
∑

n

|an − δmn|2

= |am|2 +
∑

n 6=m

|an|2 + |am − 1|2 +
∑

n 6=m

|an|2.

Therefore,
∑

n 6=m

|an|2 =
1 − |am|2 − |am − 1|2

2
.

(b) Suppose that 〈xm, S−1xm〉 = 1. Then we have
∑

n 6=m |〈xm, S−1xn〉|2 = 0 by (12.6). Hence

〈S−1xm, xn〉 = 0 for n 6= m.

(c) Suppose that 〈xm, S−1xm〉 = 1. Then by part (b), S−1xm is orthogonal to xn for every

n 6= m. However, S−1xm 6= 0 since 〈S−1xm, xm〉 = 1 6= 0. Therefore {xn}n 6=m is incomplete in

this case.

On the other hand, suppose that 〈xm, S−1xm〉 6= 1, and set an = 〈xm, S−1xn〉. We have

xm =
∑

anxn by (12.4). Since am 6= 1, we therefore have xm = 1
1−am

∑

n 6=m anxn. Hence, for

each x ∈ H,

|〈x, xm〉|2 =

∣

∣

∣

∣

1

1 − am

∑

n 6=m

an 〈x, xn〉
∣

∣

∣

∣

2

≤ C
∑

n 6=m

|〈x, xn〉|2,
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where C = |1 − am|−2
∑

n 6=m |an|2. Therefore,

∑

n

|〈x, xn〉|2 = |〈x, xm〉|2 +
∑

n 6=m

|〈x, xn〉|2 ≤ (1 + C)
∑

n 6=m

|〈x, xn〉|2.

Hence,
A

1 + C
‖x‖2 ≤ 1

1 + C

∑

n

|〈x, xn〉|2 ≤
∑

n 6=m

|〈x, xn〉|2 ≤ B ‖x‖2.

Thus {xn}n 6=m is a frame with bounds A/(1 + C), B. �

As a consequence, we find that a frame is exact if and only if it is biorthogonal to its dual frame.

Corollary 12.14. If {xn} is a frame for a Hilbert space H, then the following statements are

equivalent.

(a) {xn} is an exact frame.

(b) {xn} and {S−1xn} are biorthogonal.

(c) 〈xn, S−1xn〉 = 1 for all n.

As a consequence, if the frame is tight, i.e., A = B, then the following statements are equivalent.

(a’) {xn} is an exact frame.

(b’) {xn} is an orthogonal sequence.

(c’) ‖xn‖2 = A for all n.

Proof. (a) ⇒ (c). If {xn} is an exact frame, then, by definition, {xn}n 6=m is not a frame for any

m. It therefore follows from Proposition 12.13 that 〈xm, S−1xm〉 = 1 for every m.

(c) ⇒ (a). Suppose that 〈xm, S−1xm〉 = 1 for every m. Proposition 12.13 then implies that

{xn}n 6=m is not complete, and hence is not a frame. Therefore {xn} is exact by definition.

(b) ⇒ (c). This follows immediately from the definition of biorthogonality.

(c) ⇒ (b). This follows immediately from Proposition 12.13(b). �

In Example 12.3(d), we constructed a frame that is not norm-bounded below. The follow-

ing result shows that all frames are norm-bounded above, and that only inexact frames can be

unbounded below.

Proposition 12.15. Let {xn} be a frame for a Hilbert space H. Then the following statements

hold.

(a) {xn} is norm-bounded above, and sup ‖xn‖2 ≤ B.

(b) If {xn} is exact then it is norm-bounded below, and A ≤ inf ‖xn‖2.

Proof. (a) With m fixed, we have

‖xm‖4 = |〈xm, xm〉|2 ≤
∑

n

|〈xm, xn〉|2 ≤ B ‖xm‖2.
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(b) If {xn} is an exact, then {xn} and {S−1xn} are biorthogonal by Corollary 12.15. Therefore,

for each fixed m,

A ‖S−1xm‖2 ≤
∑

n

|〈S−1xm, xn〉|2 = |〈S−1xm, xm〉|2 ≤ ‖S−1xm‖2 ‖xm‖2.

Since {xn} is exact we must have xm 6= 0. Since S is a topological isomorphism, we therefore have

S−1xm 6= 0 as well, so we can divide by ‖S−1xm‖2 to obtain the desired inequality. �

We collect now some remarks on the convergence of
∑

cnxn for arbitrary sequences of scalars.

Recall that if {xn} is a frame and
∑ |cn|2 < ∞, then

∑

cnxn converges (Lemma 12.6). The

following example shows that the converse is not true in general.

Example 12.16. [Hei90].
∑

cnxn converges =⇒/ ∑ |cn|2 < ∞.

Let {xn} be any frame which includes infinitely many zero elements. Let cn = 1 whenever

xn = 0, and let cn = 0 when xn 6= 0. Then
∑

cnxn = 0, even though
∑ |cn|2 = ∞.

Less trivially, let {en} be an orthonormal basis for a Hilbert space H. Define fn = n−1en and

gn = (1 − n−2)1/2en. Then {fn} ∪ {gn} is a tight frame with A = B = 1. Let x =
∑

n−1en.

This is an element of H since
∑

n−2 < ∞. However, in terms of the frame {fn} ∪ {gn} we have

x =
∑

(1 · fn + 0 · gn), although
∑

(12 + 02) = ∞. ♦

By Lemma 12.6, if (cn) ∈ ℓ2 then
∑

cnxn converges unconditionally. The preceding example

shows that
∑

cnxn may converge even though (cn) /∈ ℓ2. However, we show next that if {xn} is

norm-bounded below, then
∑

cnxn converges unconditionally exactly for (cn) ∈ ℓ2.

Proposition 12.17. [Hei90]. If {xn} be a frame that is norm-bounded below, then

∑

n

|cn|2 < ∞ ⇐⇒
∑

n

cnxn converges unconditionally.

Proof. ⇒. This is the content of Lemma 12.6.

⇐. Assume that
∑

cnxn converges unconditionally. Then Orlicz’s Theorem (Theorem 3.1)

implies that
∑ |cn|2 ‖xn‖2 =

∑ ‖cnxn‖2 < ∞. Since {xn} is norm-bounded below, it therefore

follows that
∑ |cn|2 < ∞. �

We shall see in Example 12.23 that, for an exact frame,
∑

cnxn converges if and only if it

converges unconditionally. The next example shows that, for an inexact frame,
∑

cnxn may

converge conditionally, even if the frame is norm-bounded below.

Example 12.18. [Hei90]. We will construct a frame {xn} which is norm-bounded below and a

sequence of scalars (cn) such that
∑

cnxn converges but
∑ |cn|2 = ∞.

Let {en} be any orthonormal basis for a separable Hilbert space H. Then {e1, e1, e2, e2, . . .} is

a frame that is norm-bounded below. The series

e1 − e1 +
e2√
2

− e2√
2

+
e3√
3

− e3√
3

+ · · · (12.7)
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converges strongly in H to 0. However, the series

e1 + e1 +
e2√
2

+
e2√
2

+
e3√
3

+
e3√
3

+ · · ·

does not converge. Therefore, the series in (12.7) converges conditionally by Theorem 2.8. Since

(n−1/2) /∈ ℓ2, the conditionality of the convergence also follows from Proposition 12.17. ♦

In the remainder of this chapter, we will determine the exact relationship between frames and

bases.

Proposition 12.19. An inexact frame is not a basis.

Proof. Assume that {xn} is an inexact frame. Then, by definition, {xn}n 6=m is a frame for some m,

and is therefore complete. However, no proper subset of a basis can be complete, so {xn} cannot

be a basis. Additionally, we have xm =
∑ 〈xm, S−1xn〉xn by (12.4), and also xm =

∑

δmnxn. By

Proposition 12.13, the fact that {xn}n 6=m is a frame implies that 〈xm, S−1xn〉 6= 1. Hence these are

two distinct representations of xm in terms of the frame elements, so {xn} cannot be a basis. �

We show now that frames are preserved by topological isomorphisms (compare Lemmas 4.12,

9.3, and 11.3 for bases, unconditional bases, or Riesz bases, respectively).

Lemma 12.20. Frames are preserved by topological isomorphisms. That is, if {xn} is a frame

for a Hilbert space H and T :H → K is a topological isomorphism, then {Txn} is a frame for K.

In this case, we have the following additional statements:

(a) If {xn} has frame bounds A, B, then {Txn} has frame bounds A ‖T−1‖−2, B ‖T‖2.

(b) If {xn} has frame operator S, then {Txn} has frame operator TST ∗.

(c) {xn} is exact if and only if {Txn} is exact.

Proof. Note that for each y ∈ K,

TST ∗y = T

(

∑

n

〈T ∗y, xn〉xn

)

=
∑

n

〈y, Txn〉Txn.

Therefore, the fact that {Txn} is a frame and both statements (a) and (b) will follow from Propo-

sition 12.8 if we show that A ‖T−1‖−2I ≤ TST ∗ ≤ B ‖T‖2I. Now, if y ∈ H then 〈TST ∗y, y〉 =

〈S(T ∗y), (T ∗y)〉, so it follows from AI ≤ S ≤ BI that

A ‖T ∗y‖2 ≤ 〈TST ∗y, y〉 ≤ B ‖T ∗y‖2. (12.8)

Further, since T is a topological isomorphism, we have

‖y‖
‖T−1‖ =

‖y‖
‖T ∗−1‖

≤ ‖T ∗y‖ ≤ ‖T ∗‖ ‖y‖ = ‖T‖ ‖y‖. (12.9)
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Combining (12.8) and (12.9), we find that

A ‖y‖2

‖T−1‖2
≤ 〈TST ∗y, y〉 ≤ B ‖T‖2 ‖y‖2,

which is equivalent to the desired statement A ‖T−1‖−2I ≤ TST ∗ ≤ B ‖T‖2I.

Finally, statement (c) regarding exactness follows from the fact that topological isomorphisms

preserve complete and incomplete sequences. �

We can now show that the class of exact frames for H coincides with the class of bounded

unconditional bases for H. By Theorem 11.9, this further coincides with the class of Riesz bases

for H. The statement and a different proof of the following result can be found in [You80].

Theorem 12.21. Let {xn} be a sequence in a Hilbert space H. Then {xn} is an exact frame for

H if and only if it is a bounded unconditional basis for H.

Proof. ⇒. Assume that {xn} is an exact frame for H. Then {xn} is norm-bounded both above

and below by Proposition 12.15. We have from (12.4) that x =
∑ 〈x, S−1xn〉xn for all x, with

unconditional convergence of this series. To see that this representation is unique, suppose that

we also had x =
∑

cnxn. By Corollary 12.5, {xn} and {S−1xn} are biorthogonal sequences.

Therefore,

〈x, S−1xm〉 =
〈

∑

n

cnxn, S−1xm

〉

=
∑

n

cn 〈xn, S−1xm〉 =
∑

n

cnδnm = cm.

Hence the representation x =
∑ 〈x, S−1xn〉xn is unique, so {xn} is a bounded unconditional basis

for H.

⇐. Assume that {xn} is a bounded unconditional basis for H. Then {xn} is a Riesz basis by

Theorem 11.9. Therefore, by definition of Riesz basis, there exists an orthonormal basis {en} for

H and a topological isomorphism T :H → H such that Ten = xn for all n. However, {en} is an

exact frame and exact frames are preserved by topological isomorphisms (Lemma 12.20), so {xn}
must be an exact frame for H. �

We can exhibit directly the topological isomorphism T used in the proof of Theorem 12.21. Since

S is a positive operator that is a topological isomorphism of H onto itself, it has a square root

S1/2 that is a positive topological isomorphism of H onto itself [Wei80, Theorem 7.20]. Similarly,

S−1 has a square root S−1/2, and it is easy to verify that (S1/2)−1 = S−1/2. Since {xn} is exact,

{xn} and {S−1xn} are biorthogonal by Corollary 12.15. Therefore,

〈S−1/2xm, S−1/2xn〉 = 〈xm, S−1/2S−1/2xn〉 = 〈xm, S−1xn〉 = δmn.

Thus {S−1/2xn} is an orthonormal sequence. Moreover, it is complete since topological isomor-

phisms preserve complete sequences. Therefore, {S−1/2xn} is an orthonormal basis for H by

Theorem 1.20, and the topological isomorphism T = S1/2 maps this orthonormal basis onto the

frame {xn}.
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We can consider the sequence {S−1/2xn} for any frame, not just exact frames. If {xn} is inexact

then {S−1/2xn} will not be an orthonormal basis for H, but we show next that it will be a tight

frame for H.

Corollary 12.22. Every frame is equivalent to a tight frame. That is, if {xn} is a frame with

frame operator S then S−1/2 is a positive topological isomorphism of H onto itself, and {S−1/2xn}
is a tight frame with bounds A = B = 1.

Proof. Since S−1/2 is a topological isomorphism, it follows from Lemma 12.20 that {S−1/2xn} is

a frame for H. Note that for each x ∈ H we have

∑

n

〈x, S−1/2xn〉S−1/2xn = S−1/2SS−1/2x = x = Ix.

Proposition 12.8 therefore implies that the frame is tight and has frame bounds A = B = 1. �

Example 12.23. If {xn} is an exact frame then it is a Riesz basis for H. Hence by Theorem 11.9

and Proposition 12.17, we have that

∑

n

|cn|2 < ∞ ⇐⇒
∑

n

cnxn converges ⇐⇒
∑

n

cnxn converges unconditionally.

By Example 12.18, these equivalences may fail if the frame is inexact. However, we can construct

an inexact frame for which these equivalences remain valid.

Let {en} be any orthonormal basis for a separable Hilbert space H, and consider the frame

{xn} = {e1, e1, e2, e3, . . .}. Then the series
∑

cnxn converges if and only if
∑ |cn|2 < ∞ since {xn}

is obtained from an orthonormal basis by the addition of a single element. Further, since {xn} is

norm-bounded below, it follows from Proposition 12.17 that
∑ |cn|2 < ∞ if and only if

∑

cnxn

converges unconditionally. ♦

The frame {e1, e1, e2, e3, . . .} considered in Example 12.23 consists of an orthonormal basis plus

one additional element. Holub [Hol94] has characterized those frames {xn} which consist of a Riesz

basis plus finitely many elements.
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