
ON THE DECOMPOSITION THEOREMS 
OF ALGEBRA 

By 0YSTEIN ORE, Yale University. 

We shall in the following give an account of certain new ideas regard
ing the foundation of the so-called abstract algebra. These ideas, which 
have been developed only in the last couple of years, throw new light 
upon several of the basic problems of algebra. It should, however, be 
mentioned already at the beginning, that their application is in no way 
limited to algebra. They have originated principally in connection with 
algebraic problems and in the following we shall stress the algebraic 
consequences, but there are already important applications to geometry, 
to point-set theory and to the foundation of quantum mechanics. Since the 
theory is a very recent one and since it is in a state of rapid development, 
the following lecture cannot be expected to give any complete evaluation 
of its importance for algebra or for its several other domains of applications. 
It should serve to demonstrate, however, that a very fertile field or mathe
matical investigation has been opened up. 

Let us recall to begin with a few facts about abstract algebra. One 
may say that abstract algebra has been developed from ordinary algebra 
through the realization that the various algebraic theories may be derived 
from a small number of axiomatic rules, to a large extent the same for 
all algebraic theories. The axiomatic synthesis is, however, only one side 
of the abstract theory. Among its most notable achievements, I should 
prefer to mention the solution of what one may call the completeness problem 
in several important cases, namely the determination of all algebraic systems 
with given properties. As a classical example one may mention STEINITZ' 

theory of commutative fields and the determination of all fields for which 
the Galois theory of equations is valid. 

In algebra one deals with algebraic systems or spaces consisting of 
certain symbols called elements. For these elements certain operations are 
defined, usually in such a way that to any pair of elements another element 
is given uniquely. One may also consider more general systems in which 
certain subsets define other subsets according to given rules. Ordinarily 
one deals with operations satisfying some or all of the axioms for addition 
and multiplication and the various systems are classified accordingly as 
fields, rings, groups, moduli etc. Finally let us mention the notion of 
isomorphism which is of considerable importance in the following. Two 
systems are said to be isomorphic with respect to given operations when 
there exists a one-to-one correspondence between them preserving the 
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results of those operations. The properties of two isomorphic systems are 
identical in respect to the given operations. 

A fundamental problem is the deduction of theorems of decomposition 
for algebraic systems, i. e. the reduction of a system to simpler parts. As 
the simplest example of such a decomposition one may take the repre
sentation of a rational integer as the unique product of its prime factors. 
Similarly we have, according to Dedekind, a unique prime ideal factorisation 
for the ideals of an algebraic field of finite degree. Another almost as 
simple decomposition theorem is furnished by the basis theorem for Abelian 
groups. In this case the basis representation is not unique, but the cyclic 
subgroups occuring in two different basis representations have the same 
orders and hence are isomorphic. 

For arbitrary algebraic systems one cannot expect decomposition theorems 
as simple as these. In commutative rings the ideal theory and the corre
sponding decomposition theorems were first developed by EMMY NOTHER.1 

From this theory follows her solution of the completeness problem to 
determine all commutative rings in which there exists a unique prime ideal 
factorisation. Among the further important contributors to the theory of 
ideals in commutative and non-commutative rings one may mention: KRULL, 
GRELL, KöTHE, MORI, SCHMEIDLER, SONO, V. D. WAERDEN and others. W e 

shall not describe in details any of these general decomposition theorems 
for ideals. Their importance may best be judged by the numerous applic 
ations: Algebraic geometry (DUBREIL, KAPFERER, LASKER, MACAULAY 

SCHMEIDLER, V. D. WAERDEN), the theory of elimination (HENTZELT, HERMANN 

NOETHER) algebraic differential and difference equations (RITT, RAUDENBUSH), 

linear differential and non-commutative polynomials (KRULL, LOEWY, NOETHER 

SCHMEIDLER, ORE), the decomposition theory and arithmetic theory of linear 
algebras or hypercomplex systems (ARTIN, BRANDT, DEURING, DICKSON, 

SPEISER, SHODA, WEDDERBURN). The theory of reduction of matrices is 

based upon the decomposition theorems for moduli. In this connection one 
should mention E. Noether's moduli of representation (Darstellungsmoduln) 
and their applications to the representation of groups. Another general 
type of decomposition theorems has been obtained by Krull for the so-
called generalized Abelian groups. They are moduli with certain operators 
or multipliers. The residue systems of one-sided ideals belong to this type 
of system. 

1 The references to the various investigations on ideal theory and other decomposition 

theorems may be found in the recent book by W. KRULL: Idealtheorie. Ergebnisse 

der Mathematik etc. v. 4 , Berlin 1935 or in 0YSTEIN ORE: U algèbre abstraite, Actualités 

scient, et indust. Paris 1936. 
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The decomposition theorems we have mentioned have mostly been 
obtained under certain finiteness conditions. E. NOETHER assumes the so-
called (descending) chain condition (Teilerkettensatz): Every chain of ideals 

2 C 1 < 2 C 2 < - - -

breaks off after a finite number of terms. Still more restricted is the finite 
case where both ascending and descending chains are finite. 

A few words should also be said about the decomposition theorems 
for groups. In the finite case we have the well-known theorem of JORDAN-

HOLDER for composition and principal series. For the general case this 
theorem is replaced by the refinement theorem of SCHREIER-ZASSENHAUS. 

There also exists a decomposition theorem for the representation of a group 
by means of irreducible normal components. More difficult to prove is 
the theorem of SCHMIDT-REMAK which states that if all chains of normal 
subgroups (or permissible subgroups in the case of groups with operators) 
are finite, then any two representations of a group as the direct product 
of direct indecomposable components is unique except for isomorphisms. 
Recently KUROSCH has shown that this theorem is true for normal subgroups 
when only the descending chain condition is satisfied. 

Even a superficial analysis of the various theorems of decomposition 
show their similarity in character. In all cases one deals with certain 
distinguished subsystems of the given system like normal subgroups, ideals, 
characteristic moduli etc. The decomposition theorems themselves refer 
mainly to properties of these distinguished subsystems while the properties 
of the elements of the original system play a minor role. This remark suggests 
the possibility of a further abstraction of the algebraic theories by intro
ducing new systems whose elements are the subsystems themselves. These 
new systems which we shall define presently, shall be called structures. 
Our main object in the following is to show, that the decomposition theorems 
are only properties of these structures, while the properties of the elements 
of the original algebraic system are eliminated altogether. A consequence 
of this theory is naturally that it reduces the proofs to their essential 
foundation. More important is however that it gives new results and that 
it illuminates in new ways the character of the decomposition theorems. 
The situation is in many ways analogous to the familar one in geometry. 
A geometry is usually considered on the background of its points which 
are taken to be elements of an abstract space. However for the geometry 
and the geometric theorems these points are not the essential content. The 
geometric results refer to the properties of specified configurations like 
lines, planes, curves, surfaces and manifolds, cells, simplexes, neighbour
hoods etc. This analogy to geometry is not a superficial one as we shall 
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see, since it is actually based upon the fact that the axioms of the two 
theories to a large extent are the same. Hence we may also formulate 
our theory in saying that the decomposition theorems represent the results 
of a geometry of a simple type associated with the given algebraic system. 

The idea that such a theory might be possible goes back to DEDEKIND ' 
as do so many other fundamental ideas of abstract algebra. It occurs in 
connection with an investigation of the axiomatic foundation for the theorem 
of Jordan that in a group any two principal series of normal subgroups 
have the same length. In a group there exists to any two subgroups A 
and B a cross-cut (A, B) which is the maximal subgroup contained both 
in A and B. Similarly there exists a union [A, B] which is the minimal 
subgroup containing both A and B. The union is generated by A and B, 
but it is not the element union of the two groups. A similar situation 
occurs in all algebraic systems. Hence we are led to define: 

A structure2 2 is a system of element A, B, • • • • having the property 
that to any pair A, B there exists a unique union [A, B] and a unique 
cross-cut (A, B). 

These operations satisfy the ordinary axioms 

(A,B) = (B,A) [A,B] = [B,A] 
(A, A) = A [A, A] = A 
(A, (B, O) = ((A, B), C), [A, [B, C]] = [[A, B], C] 
[A(A,B)] = A (A,[A,B]) = A. 

On the basis of these axioms one defines the inclusion relation A~>B by 
the existence of either one of the two equivalent relations. 

[A, B] = A, (A, B) = B. 

Usually a structure also contains an all-element O0 and a unit element 
E0 defined by the existence of the relations 

[O0,A] = O0,(A,E0) = E0 

for all A in 2. 
One may also obtain an equivalent definition of a structure by starting 

with a semi-ordered (partly ordered) set in the sense of HAUSDORF. In 

1 R. DEDEKIND: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann. 53 (1900), 

W e r k e v . 2. pp. 3 7 1 — 4 0 3 . 
2 DEDEKIND uses the word "Dualgruppe" . Since the systems are not groups, this 

terminology is somewhat awkward . G. B I R K H O F F uses the term "lattice" (Gitter), 

which, however , has been used consistently in a différent mathematical meaning. For 

this reason I have adopted the term structure which seems suggestive of the algebraic 

applications of the systems. KLEIN-BARMEN says "Verband" . 
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such a set a transitive inclusion relation A*>B is defined for certain 
elements. A structure is then obtained by postulating the existence of a 
unique maximal element (A, B) contained in A and B and a unique minimal 
element [A, B] containing A and B. It is also possible to extend any 
semi-ordered set under preservation of order into a structure as shown by 
MAC NEILLE1 by introducing new elements by a method reminding of 
Dedekind cuts. 

Our problem is now to investigate the properties of the structures 
defined by certain subsystems of algebraic systems. If one prefers the 
geometric point of view one may say that the structure represents the 
geometry of the subsystems. However, without further limitations on the 
structure one can say very little about general properties. The most 
important remark is that there exists a dualistic correspondence between 
cross-cut and union, and it seems that this dualism is the ultimate source 
for [theorems of duality both in algebra and in geometry. In connection 
with the general properties of structures one should mention the investig
ations by KLEIN-BARMEN.2 

To obtain theorems of decomposition it is necessary to impose further 
conditions on the structure. The case of a group may serve an illustration. 
While the set of all subgroups already form a structure, all decomposition 
theorems refer to the structure of normal subgroups. The reason for this 
lies in the fact that the latter structure satisfies a further condition given 
by Dedekind: 

Dedekind axiom: If A, B and C are any three elements of the structure 
and C > A, then 

(i) (C,[A,B]) = [A,(C,B)l 

Any structure which satisfies the Dedekind axiom may be called a 
Dedekind structure or a Dedekind geometry. 

The Dedekind axiom is satisfied in almost all instances of decomposition 
theorems in algebra. In most cases it is easily verified. As an example 
let C > A and B be three normal subgroups of a group G. Any element 
of [A, B] has the form a ß, where a and ß belong to A and B respectively. 
An element of (C, [A, B]) must satisfy the relation 

(2) y = <*ß 

1 H. MAC N E I L L E : Extensions of partially ordered sets . Proc. Nat. Acad. vol. 22 (1936) 

PP- 4 5 - 5 0 -
2 A complete list of the publications of this author on the subject of structures may be 

found in the latest article F. KLEIN-BARMEN: Dedekindsche und distributive Verbände. 

Math. Zeitschr. v. 41 (1936) pp. 261—280 . 
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where y is some element of C. Hence ß = a~i-y belongs both to B and 
to C and (2) shows that the left-hand side of (1) is contained in the right-
hand. This proves our relation since the converse is true in any structure. 
In the same simple manner follows that the Dedekind axiom is satisfied 
for all one-sided or double-sided ideals in any ring. The Dedekind axiom 
may be formulated in several ways. We shall only mention the equivalent 
relations 

{[A,B),[A,C]) = [AAB,{A,C])] 

[(A, B), (A, Q] = {A, [B, (A, O]) 

and the self-dualistic formulation 

(3) [{A,B),(C,[A,B])] = ([A,B},\C,{A,B)]). 

All these relations hold for arbitrary elements A, B, C of the structure. 
The various possible relations may also be united in the statement that in 
a Dedekind structure three elements A, B, C generate a structure containing 
in general 28 different elements. From a geometric point of view these 
various relations may be said to represent geometric theorems. 

The principal result of Dedekind may now be stated as follows: a chain 

A>AX> >An>B 

of elements in the structure shall be called a principal chain, when each 
term is prime over the next, i. e. there is no term in the structure between 
them. The theorem is then : In a Dedekind structure all principal chains 
between two elements A and B have the same length. Conversely: The 
necessary and sufficient condition that this be true for a finite structure 2 
and all its substructures is that 2 be a Dedekind structure. 

Almost identical considerations to these were made by GARRET 

BIRKHOFF.1 At this point one should also mention some similar investig
ations by KUROSCH2 in regard to another theorem of decomposition. An 
element A in 2 may be said to be decomposable if there exists a re
presentation 

A = [B,C], A>B, A>C, 

and indecomposable otherwise. Kurosch then proves that if an element 
in a Dedekind structure can be represented as the union of a finite number 

GARRET BIRKHOFF: On -the combination of subalgebras. Proc. Cambridge Phil. Soc. 
v. 29 (1933) pp. 441 — 464. Note on the paper: On the combination of subalgebras 
ibid. v. 30 (1934) p. 200. Applications of lattice algebra, ibid. v. 30 (1934) pp. 115 —122. 
A. KUROSCH: Durchschnittsdarstellungen mit irreduziblen Komponenten in Ringen und 
in sogenannten Dualgruppen. Mathematiceski Sbornik v. 42 (1935) pp. 613 — 616. 
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of indecomposable elements, then any two such representations must contain 
the same number of components. This is a part of a wellknown decomposition 
theorem in ideal theory. 

While these theorems give an approximation to the corresponding 
algebraic theorems it is obvious that something essential is lacking. For 
instance in the formulation of the ordinary theorems of Jordan-Holder one 
emphasises that the quotient groups are isomorphic in some order. This 
statement already contains two notions for which no suitable definition has 
been provided in the structure, namely quotient group and isomorphism. 

In a recent paper1 in which I have taken up this question of the 
application of structures to algebra, it has been shown how these difficulties 
may be overcome. The question of an analogue to quotient groups or 
residue system is fairly simple. To any structure 2 one can construct a 
quotient structure 2' in the following manner. To all pairs of elements 
A*>B in 2 we associate a quotient 71= A IB. The set of all quotients 
is made into a structure 2' by defining for 

V1 = A1IB1, Tt, = A,IB, 

the cross-cut and union 

% , 2 y = [Au A%)l(Bv Bt), [2C1( 3U = [Au A^I[BX, B2]. 

To each quotient 7i = AIB is associated a substructure of 2, namely 
the set of all elements containing B and contained in A. 

If the original structure is a Dedekind structure then the quotient 
structure 2' has the same property. In the following we draw into our 
consideration the whole quotient structure 2' rather than the original structure. 
The algebraic analogy is obvious. It should also be mentioned that it is 
convenient to introduce the product of certain quotients by putting 

7lx^> = AIC 
when 

7i = AIB, © = 5 / C . 

On the face of it it seems more difficult to find a suitable substitute 
for the notion of isomorphism, since the isomorphism of two algebraic 
systems is essentially a property of their elements. The solution lies in the 
fact that for the decomposition theorems one needs only a special kind of 
isomorphism, namely isomorphism defined through the iterated use of the 
so-called second law of isomorphism. This law says that in a group or 
ring the quotient groups or residue rings 

1 0YSTEIN ORE: On the foundation of abstract algebra, Part I, Annals of Math. v. 36 

(1935) PP- 4 ° 6 —437» P a r t II, v. 37 (1936) pp. 265—292. 
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(4) 7l = [A,B]IA, %> = Bl(A,B) 

are isomorphic. If one considers (4) to be quotients in a Dedekind structure, 
then one can prove the fundamental theorem, that the two structures 
associated with X and 53 are structure isomorphic, i. e. there exists a one-
to-one correspondence between them preserving the result of union 
and cross-cut. It is convenient to say that in (4) the quotient 2( has been 
obtained by extension from 53 and conversely 53 has been obtained by 
reduction from X We define then that two quotients 71 and 2f are similar 
if one is obtainable from the other through a series of reductions and 
extensions. 

This notion of similarity of two quotients replaces and implies ordinary 
isomorphism in the applications to algebraic systems. It completes our 
program of formalisation of the algebraic theory. It is now possible to 
formulate and prove general decomposition theorems for Dedekind structures 
containing as special cases all the ordinary algebraic decomposition theorems 
to their full extent. Various new decompositions are also obtained, but 
we shall not discuss any of these results in detail. Most interesting is 
perhaps the theorem about direct decompositions corresponding in the case 
of groups to the SCHMIDT-REMAK theorem. This theorem is easily proved 
in the ordinary finite case. When only the descending chain condition is 
satisfied, peculiar difficulties arise and the theorem is only valid under 
certain restriction. This was, however, to be expected according to in
vestigations of STEINITZ and KRULL1 in the special case of moduli whose 
coefficients are algebraic integers. The formulation of the theorem of 
JORDAN-HOLDER may be of interest. The application of quotient products 
gives it a form reminding strongly of the ordinary arithmetic factorisation 
theorem: If a quotient % may be represented in two ways as the product 
of prime quotients 

then both factorisations have the same number of factors similar in pairs. 
The general theorem of SCHREIER-ZASSENHAUS may be expressed: If a 
quotient is factored in two ways 

2( = » 1 x . , . x q 5 r = e i x , . . x 5 s 

then these factors may be factored further such that both sides have the 
same number of factors similar in pairs. 

A further discussion of this theorem will be found in a paper which is to appear 
shortly in Duke Mathematical Journal. [Vol. 2 (1936), pp. 581—596.] 
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We have deduced our decomposition theorems only under the assumption 
of the Dedekind axiom and hence they have been obtained in their most 
general form. For many algebraic systems we have however more special 
decomposition theorems like in E. NOETHER'S ideal theory, in rings with 
unique factorisation, in Abelian groups, etc. This is due to further conditions 
satisfied by the structures associated with the system. We shall not discuss 
these properties here, but only observe that they may be used to classify 
the algebraic systems from a new point of view. 

Another remark which may be of interest is the following: When the 
theory of structures is applied to ideal theory one obtains only decompo
sition theorems regarding cross-cut and union while the existence of a 
multiplication only plays a minor role in the most general cases. In the 
special cases where the multiplicative decomposition are of importance it 
is mostly possible to define multiplication on the basis of the special 
structure axioms and hence also these theorems may be obtained from 
conditions on the structure. 

The theory of structures brings forth another interesting property of 
algebraic system, namely their selfdualistic character. We indicated the 
dualism between union and cross-cut in a structure. The further conditions 
which the structures corresponding to algebraic systems satisfy, preserve 
this dualism because the conditions are self-dualistic, that is they remain 
identically the same when cross-cut and union are interchanged. The 
Dedekind axiom may serve as our first example. The formulation (3) 
immediately shows its self-dualistic character. The distributive structures 
in which the much stranger distributive law 

(5) (A,[B,C}) = [{A,B),(A,C)} 

holds, form another important type of structures. A special case to which 
they apply is to ideals in rings with unique factorisation. The self-dualistic 
formulation of the distributive law (5) is 

([A, B], [B, C], [C, A]) = [(A, B), (B, C), (C, A)] 

a relation which not even in numbertheory is a familar one. The distributive 
structures have been studied particularly by G. BIRKHOFF.

 1 One of the 
principal results is, that to a finite distributive structure there exists an 
abstract set 5. such that the structure is structure isomorphic to the ordinary 
set-theoretical cross-cut and union of some of the subsets of 5 . Related 
to these investigations are certain results by MAC NEILLE2 on the possibility 
of imbedding semi-ordered sets or structures with given properties. 

See the first paper quoted in note 1 page 242 . 

Loc. cit. 
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Another type of structures are the completely reducible (flat, complemented) 
structures in which jthere exists to each element A a (not necessarily 
unique) complement A such that 

(A,A) = EQ, [A,A] = O0. 

The property of being completely reducible is also seen to be self-
dualistic. Such structures, which have several algebraic applications, have 
been studied by G. BIRKHOFF1 and the author2. 

If one requires that a distributive structure shall be completely reducible 
one obtains the well-known Boolean algebras. The application of these 
structures to logic and the calculus of classes is so familar that it need not 
be mentioned here. It is of interest however that a Boolean algebra is 
structure isomorphic with the element cross-cut and union of the subsets 
of a certain set associated with the structure. This property has been used 
by STONE3 to base the theory of topological spaces directly upon the 
Boolean algebras. 

This last remark brings us back to our former point of view on the 
close connection between geometry and the theory of structures. This is 
however most clearly illustrated by the axiomatic foundation of projective 
geometry by means of structures which has been given within the last year 
both by G. BIRKHOFF4 and MENGER.5 In our former terminology the main 
ideas of these papers are easily explained. One begins with a completely 
reducible Dedekind structure. Furthermore it is supposed that the descending 
chains have a finite maximal length n, eventually defining the dimension 
of the geometry. In addition only one further axiom is needed: 

Axiom of irreducibility (tertium datur). The complement of an element 
is not unique, except for E0 and O0. 

In the construction of projective geometry on this basis the element 
of the structure represents the various configurations like points, lines, 
planes. The cross-cut signifies common part and the union the least 
configuration containing two given ones. The Dedekind axiom together 

1 G A R R E T B I R K H O F F : Combinatorial relations in projective geometries. Annals of Math. 

v. 36 (1935) PP- 7 4 3 - 7 4 8 . 
2 O R E , loc. cit. Part 2. 
3 M. STONE: Boolean algebras and their application to topology. Proc. Nat. Acad. v. 20 

(T934) pp. 197 — 202. See also A. T A R S K I : Zur Grundlegung der Booleschen Algebra I. 

Fundamenta Mathematicae v. 24 (1935) PP- 177 — 198. 
4 See note 1 this page. 
5 K. MENGER: New Foundations of projective and affine geometry. Annals of Math. v. 37 

(1936) pp. 456 — 482. One of the principal axioms of Menger is easily seen to be 

equivalent to the Dedekind axiom. 
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with the finiteness condition classifies the elements as to dimension by 
means of the length of the corresponding Jordan-Holder chain. The axiom 
of irreducibility insures the existence of at least three points on each line. 
Beside its simplicity this axiomatic theory possesses certain advantages from 
a systematic point of view. In HILBERT'S foundation of three-dimensional 
geometry one starts with three different types of elements, points, lines 
and planes. In VEBLEN and YOUNG'S treatment the points play an exceptional 
role, all other elements being considered as classes of points. By the 
foundation on structures all configurations appear in a symmetric manner. 

The situation is quite analogous to our former theory of algebraic 
systems where we have reduced the importance of the elements while here 
the same thing is being done in regard to the points. 

MENGER also gives a similar foundation for affine geometry through the 
introduction of a certain paralel axiom in structures. 

To obtain the ordinary projective geometry of finite dimension a strong 
finiteness condition was required. Recently v. NEUMANN1 has considered 
the case where this condition is omitted and replaced only by certain 
requirements on the existence and properties of union and cross-cut of an 
infinite number of elements. In this case one obtains what one may call 
a continuous projective geometry with a dimension function for the elements 
which takes on all values in a continuous range from 0 to 1. Hence there 
is no classification of the elements as points, lines etc. This geometry 
at the first glance seems curious and far-fetched. It has been shown 
however in a joint paper by MURRAY and v. NEUMANN2 that this geometry 
has important applications to the theory of operators in Hilbert space and 
to quantum mechanics because the general operator theory in Hilbert space 
naturally may be based upon such a geometry. Various central problems 
of the theory may be solved by this new approach. 

1 J. v. NEUMANN: Continuous geometry. Examples of continuous geometry. Proc. Nat. 
Acad. v. 22 (1936) pp. 92 — 100, 101 —108. 

2 F. J. MURRAY and J. v. NEUMANN: On rings of operators. Annals of Math. v. 37 
(1936) pp. 116 — 229. 
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