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TO COSMIC RAYS AND KINDRED PHENOMENA 

By CARL STORMER, Oslo 

In applied mathematics one is very often led to the problem of 
integrating a system of ordinary differential equations. For the application, 
a complete qualitative and quantitative study of all the integrals for values 
of the independent variable from — oo to + oo may be desirable. But, in 
general, this is such a vast problem that all the resources of contemporary 
mathematical methods are unable to solve it. 

From the standpoint of a pure mathematician, only proofs of the exist
ence and behaviour of the integrals in the neighbourhood of given values, 
together with some qualitative properties of the integrals, are generally all 
that is to be obtained. 

But, for the applications, such results are generally of very little use. 
What is wanted is a quantitative study of the integrals for real values of 
the independent variable, and over as large an interval as possible. 

It seems that both pure mathematicians and physicists generally neglect 
to pay enough attention to the fact that for an approximate quantitative 
study of the integrals, there exist methods sufficiently effective for the applic
ations, and also of great importance in pure mathematics as heuristic means 
to suggest new facts. 

Among the methods most important in this respect, I may first mention 
the use of the new integrating machine invented by V. Bush (i)* and by 
him called "differential analyzer". As far as I know, only a few of these 
machines have hitherto been built. 

At the expense of the Rockefeller Foundation, an improved Bush* ma
chine is now being built here for the Institute of Theoretical Astrophysics 
by Gundersen and Leken under the supervision of Professor Rosseland. 

We hope that this machine will be ready for use within a year, for 
its capacity will be so great that it may be able to integrate even a system 
of 12 simultaneous differential equations of the first order. 

If such a machine, however, is not available, the work can neverthe
less be done by methods of numerical integration. Of such methods, there 

The numbers refer to the bibliography at the end of the paper. 
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exist several, but those which use series of differences corresponding to 
equidistant values of the independent variable are to be preferred, also 
because errors in the calculations are then easy to discover by reason of 
the corresponding irregularities of the series of differences of the highest orders. 

Such methods have been used by astronomers in the theory of pla
netary perturbations, and especially by Darwin (2) and Strömgren (3) and 
their assistants in the problem of the three bodies. 

For a system of differential equations of the second order of the form : 
second derivatives equal to given functions of the variables, I elaborated in 
1904 a very practical method which has since been used for about 18000 
hours of work (4). At that time I did not know that a similar method for 
differential equations of the first order had already been given by Adams 
in 1883 (5). 

By such numerical methods the integrals of the differential equations 
can be followed as far as one likes with an accuracy quite sufficient for 
the applications. One only needs enough time and sufficient money for 
paying the assistants. 

In this lecture I shall mention a case where extended numerical inte
grations during a series of years have thrown much light upon all the inte
grals of a certain system of differential equations of the sixth order. This 
system is very interesting in itself, because we here meet types of orbits 
treated by Poincaré, such as periodic and asymptotic trajectories. But its 
chief importance lies in the applications, because two of the most interest
ing phenomena in nature, the polar aurora and the cosmic rays, both lead 
to this system. 

The system in question is that of the equations of motion of an elec
tron in the field of a magnetic dipole. In cartesian coordinates it has 
the form (6) 
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where a is a constant, r2=x2+y2+-z2, and where / is the time. 
The general integral contains 6 arbitrary constants. As I have shown 

in 1904, one easily finds two "first integrals" by which the integration is 
reduced to a differential equation of the second order and two quadratures. 
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Fig. i. System of coordinates. 

The first of the two integrals is, that the velocity is constant. From 
this is seen that every trajectory can be obtained from a corresponding 
trajectory in the case where a=l and t = s= the arc of the trajectory, 
by enlarging all dimensions in the same ratio. Using this, the second inte
gral can be written (Fig. i): 

R ds ~-? + 2r 

where x=Rcos<p, y=R sin q) and where y is a constant of integration. 
Further we find (7): 

(£_R__)_lQ_ d2z _ 1 d(J 
~ 2 dR1 ~ ds2 ds2 

2 dz 

where 

The motion of the particle can then be described in the following 
manner: We imagine a plane E through the #-axis which follows the motion 
of the particle in such a way that the particle is always situated in that plane. 
The motion can then be decomposed in the following two separate motions: 

1. The motion in the plane E (R, z as functions of s). 
2. The motion of the plane E (q? as a function of s). 
The first motion is the motion of a particle moving under the action 

of a force depending on the force function Q} s being considered as the 
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Fig. a. Field of force Q = constant, in the plane E. 

time. If we draw the level lines Q= constant, we get for each y such a 
field of force as seen in figure 2, with arrows pointing in the direction of 
the force. 

The field can be interpreted as a map of a landscape with the lines 
Q= const, going through all points of equal height over the sea level. The 
orbits in this field resemble, then, the orbits of a little sphere rolling in 
this landscape. 

The point cannot get out of the region limited by the branches of 
the level line 0 = 0 . 

Another important interpretation is obtained in the following manner (8): 
Suppose y negative and = — yly and put 

1 J? 1 

x=-—RiCosœ, z=~—z± 

27l *' 27l 

y = ±-R1sin<p, r=±r± 

ds -(eh 
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Then 
dcp 
~dï: RI 

d2R± = 1 dU d2z±_ 1 dU 
dx2 2 a / ? ^ dx2 ~ 2dz± 

where 

U+wl 

and the force function U does not contain the constant yx any longer, 
because 

—Ur-^r 

Fig. 3. Stereoscopic picture of a bundle of trajectories 
from infinity towards the dipole and with asymptotes parallel to the 

magnetic equatorial plane. 

J/--0,8 

Periodic orbit 

Fig. 4. Periodic orbits in the E plane for y = — 0,999, y = — 0,97 
and y = — 0,8, calculated by numerical integration. 
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Fig. 5- Corresponding periodic orbits in space. 
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-1 0 1 
Fig. 6. An asymptotic trajectory in space seen from the side 

and from above (here some loops only are drawn). 
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Fig. 7. Periodic orbit in space round a magnetic dipole (in the centre of the sphere). 
The circle (with radius unity) is also a periodic orbit. 

Fig. 8. Another periodic orbit. 
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Fig. g, io, n . Periodic orbits calculated by numerical integratici! 
and verified by the physical experiments of Brüche. 
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Fig. i s . Series of trajectories coming from infinity and going straight 
to the dipole, calculated in 1904 —1907. 
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Fig. 13. Stereoscopic picture of a more complicated trajectory 
of the same kind as those in fig. 12. 

Fig. 14. Another similar trajectory. Note the spiral towards 
the dipole and the big loops. 

(Similar reductions are obtained for y positive). Here the particle is 
moving in the field U= const., and has the velocity w0 each time it 
passes the level line U~Q. The same field can thus be used for all 
negative values of y and we have not one new field for each y as in the 
former case. 

We shall return to this field later. We now pass over to the pro
gramme for a complete quantitative study of the orbits in space. 

It is, then, natural to begin with trajectories having infinite branches, 
and follow these trajectories from infinity towards the dipole. This is also 
very important for the application to cosmic radiation. We have here 
adopted the big programme (9) to calculate 10 bundles, each containing 
about 150 trajectories and with asymptotes making angles from 90° to 1800 

degrees with the s-axis. Two such bundles are calculated (10) and a wire-
model of the first of them corresponding to 900 is seen in fig. 3. 
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For the application to cosmic radiation, a long series of further ^ 1 -
culations have been made (io) giving the points of precipitation of ^0$e 
trajectories on the earth, the dipole being in the earth's centre. *4ì; 

For the discussion of the orbits in the inner part where r < 1, iriäpr-
esting families of periodic and asymptotic orbits are of fundamental importate* 

In the field of force £?= const, such periodic orbits are seen in fig. 4 
and in space we have the corresponding ones in fig. 5. We will call 
these orbits in the plane E, periodic orbits in the pass (11). We have also 
in the plane E asymptotic orbits which approach to them asymptotically. 
They have been studied in a paper I published in 1911 (12), and more in 
detail, by Lemaitre and Vallarta, in a newly-published paper where several 
hundreds of them have been traced by the Bush-machine (13). 

They are very similar to the asymptotic orbits seen in fig. 6, 
where the field Q = const, has been replaced by a little simpler field chosen 
as a fairly good approximation. This picture is taken from a paper I publistiigd 
in 1934(14). ^ 

The importance of these asymptotic orbits is that their envelopes se
parate regions from which trajectories can or cannot, penetrate the periodic 
trajectory in the pass. 

There is also an infinity of other families of periodic trajectories (15). 
In figs. 7 and 8 are seen some wire-models of these orbits. 

The calculation of these orbits has later been verified by some most 
striking experiments on cathode rays by the German physicist Brüche (16). 
As you see in figs. 9—11, the verification is most satisfactory. 

Among the orbits coming from infinity there are series going straight 
to the dipole. These orbits are of outstanding importance for the theory 
of the polar aurora and several thousand hours have been sacrificed 
to calculate them (17). The corresponding orbits in the field U= const. 
have a very simple meaning. They are the orbits of a point shot out from 
the dipole with velocity w0 (18). 

Some of the corresponding orbits in space are shown in figs. 12, 13 
and 14. By means of these orbits it has been possible to explain a great 
many peculiarities of the aurora borealis (19). 

Other interesting families of orbits are on the programme, for instance, 
orbits cutting a sphere with centre in the dipole at right angles. 

From the theory of the cosmic radiation the following problem may 
be mentioned. At a given moment a cosmic particle with given energy 
comes down at a given place and from a given point of the sky. Find the 
regions among the stars from which the particle comes. 

This problem can be solved by numerical or mechanical integration. 
On the film will be shown a case where such rays were coming down 
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from zenith in Friedrichshafen and in Bergen, according to the experience 
by Ehmert and Trumpy (20).l 

I hope you will agree with me, that the methods of numerical and 
mechanical integration of differential equations are very important not only 
in the applications but also in pure mathematics. 
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