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1. There are three ways of developing the elementary parts of non-euclidean 
geometry : 

(1) The synthetic method of the founders Lobatschewsky and Bolyai, which 
in more recent days has been refined and extended by Hilbert and many others. 

(2) The method of projective geometry in which the fundamental notions 
of distance and angle are defined as cross ratios relative to a conic or quadric 
surface. Klein has been the great protagonist of this school. 

(S) The method of differential geometry inaugurated by Riemann and 
Beltrami. 

So far as the writer knows this third method has been employed only in a frag
mentary way to develop those subjects which in Euclidean geometry are found 
in treatises on analytic geometry. In a paper* which I gave last year at the 
annual meeting of the Mathematical Association of America an attempt was 
made to show how readily this method of approach lent itself to an elementary 
treatment of what I may call non-euclidean analytic geometry. In that paper 
I confined myself to elliptic geometry; here I will treat them together but more 
particularly the hyperbolic geometry. 

2. I begin by assuming that e-geometryf has been established with all 
requisite rigour, and on this we shall build the elliptic and hyperbolic geometries. 
The method is analogous to that employed in general arithmetic. Everyone 
knows the difficulties which beset our efforts to establish in a rigorous manner 
the real number system. But this once effected, other number systems as 
quaternions may be established with comparative ease. 

Let Xi, X2, Xz be the rectangular coordinates of ordinary analytic geometry. 
Then in ^-geometry the element of arc is defined by 

(1) ds2 = dx2+dx22+dxz2 

and the angle 6 between two curves meeting at the point x by 

(2) C O S0 = Y ^ ^ " ( a = l , 2 , 3 . ) 
ads ds 

*The Amer. Math. Monthly, vol. X X X (1923) and vol. X X X I (1924). 
fe-geometry, E-geometry, i7-geometry are abbreviations for euclidean, elliptic and hyperbolic 

geometry. 
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Straight lines or e-straights are such that 

(3) ds = 0. 

To get a non-euclidean geometry we keep XiX2xz the same, but define ds by 

(4) ds2 — Haijdxidxj, (i, j=l, 2, 3), 

where a^^a^ are functions of the x. The angle 6 we define by 

(5) cos *=£<**??• 
Âmi ds ôs 

Straight lines or "straights" in this geometry are such that (3) holds, ds having 
the value (4). 

How many geometries are defined by (4) ? Obviously there are an infinite 
number of differential forms (4) which define the same geometry, at least in 
regions of not too great extent. For if we change the variables x to x' in a 1 to 1 
manner, curves in x space go over into curves in x! space so that corresponding 
arcs have the same length, straights go over into straights and angles are un
altered. Hence figures are unaltered in size and shape in their respective metrics. 
Riemann showed that by a proper change of variables (4) can be reduced to 

(6) ds= ; r2 = Xi2 + X22 + Xz2, da2 = dxi2 + dx22 + dx32. 

l d z r 
4:R2 

If we set 

(7) \ = 4:R2-r2, v = 4:R2+r2, 

formu 

(8) 

or 

(9) 

la (6) gives 
4i?2 

ds= da 

4R2 

ds= da 

(elliptic geometry), 

(hyperbolic geometry), 
A 

according as we take the + or — sign in (6). 

The two geometries defined by (8), (9) have much in common and much 
that is different. In the first place (8) and (9) show at once in connection with 
(5) that the measure of the angle under which two curves cut is the same in 
these two geometries as in ^-geometry. Secondly we observe that (8) and (9) 
interchange on replacing R by iR; we must expect this duality in our analytical 
formulae. Thirdly we can show at once, using (3), that ^-straights through the 
origin 0 are also straights in E and iJ-geometry. 

On the other hand (8) and (9) reveal a great difference in these geometries. 
In fact (8) holds for all points of space while (9) breaks down on the sphere 
X = 0 or 
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(10) G = xl
2+x2

2+xz2-4:R2 = 0, 

and ds becomes even negative for points without. For this reason only points 
within G are regarded as real in H-geometry. This G-sphere plays a dominant 
role in both geometries; we call it the fundamental sphere. Associated with G 
is the imaginary sphere ju = 0 or 

(11) G, = x1
2+x2

2 + xz2+4:R2 = 0, 

which is also important. We observe that they interchange on replacing R 
with iR. 

Another difference is the following. Let p be the length of the segment OP 
of a straight through 0. In ^-geometry 

dr 

(12) 

while 

(13) 

in H •geometry 

PE = 

PH = 2 

r2 = 2R tan 
1 + — 2R 

4R2 

2R 

Thus the length of the entire straight through 0 in ^-geometry is 2TR. On 
the other hand in H-geometry, when P approaches a point of G, PH = °°. Hence 
all points in il-geometry are at an infinite distance from any point of the funda
mental sphere. In e-geometry the introduction of imaginary points has proved 
indispensable, e.g., the circular points at infinity. In non-euclidean geometry 
the same is true. As an example a straight in iJ-geometry through O cuts 
the sphere Gf in two imaginary points for which r2 = — £R2. For these points (13) 
gives 

/ 1 A \ • , K Ì R 

(14) p = ± _ _ . 

Thus on each of these straights there are points whose distance from 0 in 
iî-measure is given by (14). This is a particular case of a very important 
property. 

3. Let us consider briefly some of the simple facts of plane ^-geometry, 
which unroll with hardly any effort from the ^-geometry on a sphere. As we 
deal here only with points x in the plane we drop Xz from the foregoing formulae. 
If we introduce the variables 

, i c * 4:R2X! ±R2x2 DX 
(15) Zi= , z2= , zz = R-, 

p v n 

we find x is the stereographic projection of the point z on the sphere 

(16) Zl
2 + Z22 + Zz2 = R, 

while 
ds2 = dz\2+dz2

2+dzz2. 
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This shows that when x describes a curve of length s in E-measure, z de
scribes a curve on the sphere of equal length in e-measure. Thus to E-straights 
in the x plane correspond geodesies on the sphere by virtue of (3), that is, great 
circles. Any such great circle is determined by a plane through the centre of (16) 
whose equation is, say 

A1Zi + A2Z2 + AzZz = 0. 

Replacing the z's by (15) we obtain 

Az(xi2+x2
2) -4:R(A1x1+A2x2) = 4AzR2. 

Thus E-straights are from the standpoint of ^-geometry, circles cutting the 
fundamental G circle in diametral points, and the imaginary G' circle orthogonally. 
To any two curves in the x plane meeting under the angle 6 in E-measure corre
spond two curves on the sphere (16) meeting under the same angle 6 in e-measure. 
Thus to a triangle in the E-plane corresponds a triangle on the sphere having 
respectively equal sides and angles. The trigonometry of the E-plane is thus 
identical with ordinary trigonometry on a sphere of radius R. In particular 
the sum of the angles of an E triangle is > 180°. Finally since figures may be 
moved about freely without distortion on the sphere the same holds in plane 
E-geometry. Hence the length of all E straights is 2wR since this is the length 
in E measure of a straight through 0. On the sphere two points determine 
uniquely a great circle unless they lie on a diameter, hence in E-geometry two 
points determine but one straight unless they lie on a diameter of G. Similarly 
two E-straights do not cut in one point, but in two. 

To avoid this anomaly one has defined a restricted E-geometry by imposing 
the conditions that to diametral points on the sphere (16) shall correspond but 
one point in the x plane, viz., that one of the two points which lies within the 
fundamental G circle. The two end points of a diameter of G are regarded as 
identical points. There are no points outside G. In this geometry which we 
may denote by E* two points determine uniquely a straight; two straights 
intersect in a single point. The length of any E* straight is wR instead of 2wR 
as in E-geometry. 

A peculiarity of E*-geometry is illustrated by the accompanying figures: 
1, 2, 3. The circle A BCD in Fig. 1 is moved toward the right. When it meets 
G in Fig. 2, the two points L, M are identical with their diametral points L'M' and 
when the circle reaches 0 again the figure has been turned through 180° as 
indicated in Fig. 3. This is analogous to the twisted band of Möbius. 

We mention one other feature which is of great importance in the following. 
On the sphere (16) the locus of the points whose distance from a point A is 
irR/2 is a great circle, the polar of A. Thus in the E-plane the locus of all points 
at a distance TR/2 from A is an E-straight a, the polar of A, also A is the pole 
of a. In E-geometry a straight has two poles, in E*-geometry only one. The 
three E-straights Zi = 0, 22 = 0, s3 = 0 form a right polar triangle; each side is the 
polar of the opposite vertex. We may use this as a triangle of reference. From a 
point z let us drop E-perpendiculars on the three sides of this triangle. If ôi ,Ö2,#3 
are the lengths in E-measure of these perpendiculars we find 

zk = R.sin Sk/R, (£ = 1,2,3), 
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which gives us another geometric interpretation of the z's, analogous to the 
homogeneous coordinates of projective geometry. 

Fig. 1 Fig. 2 

Fig. 3 

4. We now leave these very instructive particulars and turn to hyperbolic 
geometry. First a word about plane H-geometry. If we replace R by iR the 
sphere (16) used for stereographic projection becomes imaginary. Perhaps for 
this reason one has introduced new variables so that (9) becomes 

ds2 = 
R2(dyi

2+dy22) 

yi2 

which defines the element of arc on a pseudosphere. This was first done by 
Beltrami and later by v. Escherich with considerable success, but it introduces 
unnecessary difficulties and one loses the close relations which exist between 
E and £T-geometry. We shall therefore introduce variables analogous to those 
of (15), and as we propose to treat.space and not the plane we need four, viz.: 

(17) fc = 
4:R2Xa (0 = 1,2,3), f4 = 

Rß 
> 0 . 
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The metric is that of (9). We shall find it convenient to use the abbreviations 

[ab] =aibi+ +a$4, [a2] =Oi2+ +#42, 

{ab} = axbi+a2b2+azbz—aibi, {a2} =ai2+a2
2+az2 — a^. 

We now find for all points x for which X^O, i.e., points not on the fundamental 
G-sphere (10), that 

(18) {f2} = - # 2 , 

which, if we like, may be regarded as a hyperboloid in 4-way e-space, but we shall 
not urge this interpretation. We find also that the element of arc (9) satisfies 

(19) ds2={dÇ2}. 

Let the straight joining 0 with the point P(xi, x2, xz) have the direction cosines 
lu h, h- The length p of the segment OP is given by (13). We find that 

(20) f « = Rla sinh P/R, (a = 1, 2, 3), f 4 = R cosh p/R. 

Let us first consider the locus defined by 

(21) [Az} = 0, 

which we call an H-plane. Setting (17) in this equation we get 

(22) A^+4tR(A1xl+A2X2+AzXz) + 4:AéR
2 = 0; 

or 

Thus the i^-plane (21) is in e-geometry a sphere cutting the fundamental 
G-sphere orthogonally. Since only the ratios of the A 's in (21) are important 
we may suppose 

(24) {A2)=R2. 

In this case we say (21) is in normal j or m. In case -44 = 0, (21) reduces to 
AiZi+A2z2+A3z3 = 0 or in x coordinates AiXi+A2x2-{-AzXz:=:Q. Hence il-planes 
through 0 are also e-planes. To the four iï-planes fi = 0, . . . , ^ 4 = 0 correspond 
the three coordinate planes #i = 0, x2 = 0, xz = 0 and the imaginary G' sphere. 
They form a tetrahedron which we shall always denote by r. Let us now see 
what H-straights are. If we perform the variations indicated in (3), using the 
ds of (19), we get four differential equations 

§ - , (* = l , . . . f 4) , 
R 

(25) 

whose integrals are 

(26) 

ds2 

f* = S . s 
a^cosh — + bk sinh — . 

R R 

The 8 constants of integration must be so chosen that f satisfies (18). When 
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s = 0, Ck — ttki hence {a2} = — R2. To satisfy (18) we impose the further conditions 

(27) {b2}=R2, {ab}=0. 

With these conditions (26) are the parameter equations of an H-straight. We 
easily find that every ü-straight is the intersection of two ü-planes of the type 
(21) and conversely, as in e-geometry. This is our reason for calling (21) a 
plane. We have thus the important result: H-straights are e-circles cutting 
the fundamental G-sphere orthogonally and the imaginary G' sphere in diametral 
points. Just the opposite is true in E-geometry as we should expect, since these 
spheres like the two metrics (8), (9) interchange on replacing R by iR. A pecu
liarity of plane 71-geometry is illustrated in the accompanying Fig. 4 which we 
suppose, to fix our ideas, lies in the XiX2 plane. G is the fundamental circle; 
e-circles cutting G orthogonally are iJ-straights. Straights as a, b which meet on 
G, i.e., at infinity, are said to be parallel. Through a point A we can draw two 
parallels b, c to a given straight a. On the other hand there are an infinity of 

Fig. 4 

straights through A which do not meet a given line, as for example a. Such a 
line is d, we observe that the parallels b, c are the limiting positions of lines 
through A which do not meet a. 

Returning to our main theme, let us multiply (26) by ax,. . ., a4; we get 

{öf} = {a2 \ cosh — + {ab} sinh — , 
R R 

or 

(28) cosh— = ^ 
R -R2 

Similarly, multiplying (26) by biy. . ., è4 gives 

(29) sinh — = - i^JL. 
R -R2 

The relation (28) is of utmost importance. 
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We have derived (25) and (26) on the supposition that the quantities 
involved are real. If we allow imaginary values we may regard (26) as defining 
an imaginary straight and (28) as defining the distance between the (imaginary) 
points a, f. The ambiguity of this definition is not disturbing as 5 is usually 
real or purely imaginary. Points whose coordinates are of the form bk~ißk, 
the ß's real, are of extreme importance in H-geometry. Such points are, e.g., the 
intersections of a straight through 0 with the imaginary G' sphere, i.e., the 
JJ-plane 4̂ = 0. We saw in (14) that the distance of any point of this plane 
from 0 is s = iriR/2, agreeing with (28). 

Let us generalize and say two points a, f are associate when 

(30) {af}=0 , 

or, by (28), when their distance apart is TìR/2. The locus of all points f associated 
with a is thus an il-plane. We call this plane the polar of a and a the pole 
of the plane (30). If a is real a4 is real and (23) shows that the polar of a is 
imaginary, since {a2} = —R2; on the other hand if a is imaginary, i.e. if its 
coordinates have the form iak, the polar of a is real. 

With this in mind let us return to (25). If we set s = iriR/2 we get 
ìk — ̂ bk. The relations (27) therefore mean that the iJ-straight passes through a 
and the associate point whose coordinates are ibk. The tetrahedron r mentioned 
above is a polar tetrahedron; each of its faces is the polar of the opposite vertex. 

Let us now consider the angle 6 between two iJ-planes 

(31) U r ] = 0, [5f] = 0, 

which we will suppose are in normal form. To these planes correspond ^-spheres 
whose equations are of the type (22). The angle under which these spheres 
cut is also 6 in e-measure as we saw in § 2. Then from analytic geometry 

(32) c o s o - ^ABl) 

R2 

The two planes (31) are orthogonal when 

(33) {AB}=0 

and in this relation we may note it is not necessary that the iJ-planes (31) 
should be in normal form. 

Let b, c be two points in the plane a = {af} =0 . The plane co through a, b, c 
has the equation 

' f 1 f 4 | 
a\ 041 
h b4 

C\ £4 

= i4 i f i+ . . .+ i4 4 f4 = 0. 

This plane is perpendicular to a if {â 4 } =0 , by (33). Butja^l} = a ^ 4 i + . . . +a^A4 

is the development of the above determinant when we replace the f's 
by the a's; hence {aA} = 0 and œ is orthogonal to a. If we keep a, b fixed 
and let c vary in the plane a, we see that all planes through the join of a, b cut 
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the a plane orthogonally. Hence the important theorem: The ü-straight 
joining a point with any point of its polar is perpendicular to this plane, or 
all straights perpendicular to an iJ-plane meet in the pole of this plane. This 
is illustrated by the r tetrahedron; we see now all its faces cut orthogonally. 

Let a=[AC] = 0 be a plane in normal form so that {A2} =R2. If we set 
Ax = iai A2 = ia2, Az = ia3, A^= —ia^ we have ja2} = —R2 and hence a\, a2, a3, #4 
are the coordinates of a point a. Then [/lf] = 0 becomes {af} =0 , which shows 
that a is the pole of a. We can now find the length ò of the H-perpendicular p 
dropped from a point f on the plane a. For let p cut a in the point c, then a 
is the associate of c on p and (29) gives 

(34) sinhA = M. = m 
R iR2 R2 

Hence if òk is the length of theil-perpendicular let fall from the point f on the 
face fk — 0 of the r tetrahedron we get at once 

(35) f, = Ä s i n h § - , i = l , 2 , 3 ; f 4 = ^ s i n h ^ - . 
R t R 

5. As an application of these formulae let us show how easily the formulae 
of H-trigonometry may be deduced. 

Let ABC be a triangle in the xix2 plane whose opposite sides have the 
lengths a, b, c in H-measure. Let A coincide with the origin 0 and OC with 
the +x axis as in Fig. 5. We shall show later that any triangle may be moved 
into this position without altering any of its dimensions. 

Let the f coordinates of the vertex B be b\, b2, bs and cu c2, c3 those of C. 
Then by (20) 

c c c 
b\ — R sinh — cos A, Z?2 = i^sinh — sin A, bz = R cosh—, 

R R R 

Ci = R sinh — , c2 — 0, Cz = R cosh —. 
R R 

These in combination with' (28) give 

(36) cosh — = - — - = cosh — cosh — — sinh — sinh — cos A. 
R -R2 R R R R 
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By cyclic permutation we obtain the corresponding formulae for 
cosh b/R, cosh c/R. 

To get the sine formula we drop an H-perpendicular of length p on the side 
OC, or the line f2 = 0, or in normal form RCi = 0. Then, by (34), 

. , p Rb2 . u c . 
sinh — = = sinh— sin A. 

R R 2 R 
This being true for any right triangle is true for CBP. Hence 

sinh— = sinh — sin C. 
R R 

Hence 

sinh— sin C==sinh — sin A. 
R R 

As these are entirely general we get as usual 

(37) sinh — : sinh— : sinh— = sin A : sin B: sin C. 
R R R 

The third fundamental formula is 

(38) sinh — cos B = sinh — cosh cosh — sinh — cos A. 
R R R R R 

This is obtained from (36) in precisely the same manner as the corresponding 
formulae in ordinary spherical trigonometry. From (36), (37), (38) all the 
formulae of ^-trigonometry may be obtained by following the steps employed 
in any elementary treatise on spherical trigonometry. We observe that we 
have merely to replace the sides a, b, c in such formulae by a/iR, b/iR, c/iR, to 
convert a formula of ^-spherical trigonometry into one of H-trigonometry. 

6. In e-geometry we assume the existence of rigid geometric figures, 
i.e., figures that can be moved about freely without altering their size or shape. 
This fact is characterized by the existence of continuous point transformations 
which leave ds unaltered. We extend this to üT-geometry. To simplify our 
analysis it will be convenient to set 

(39) *,. = £,, j = l, 2, 3 ; A4 = if4. 

Then the z coordinates satisfy the relation 

(40) [z2]=-R2, 

while ds2 becomes 
(41) ds2 = [dz2]. 

Let us effect a linear transformation of the JS'S 

(42) Zjf =akl zi+. . .+akAzi = 2akaza, (a, k = l,..., 4). 
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If the determinant A of the aka is ^ 0 , (42) defines a one to one transformation 
of the point z to z' and conversely, provided the relation (40) is valid for zf. Now 

[z'2] = 2zk'
2 = 2 2 a h z a ^ a k ß z ß = 2 zazß Xakaakß. 

k ko. ß a,ß k 

Hence if the a's satisfy the so-called orthogonal relations 

( Zakaakß=l (a = ß), 
(43) * 

( = 0 ( a ^ / 3 ) , 

the condition (40) is satisfied for the z's, that is z\,. . ., z\ are indeed the coordi
nates of a point z'. 

By virtue of (43) we find A = ± 1 ; if we take A = + 1 we find aka=Aka the 
minor of aka; also 

f 2aakaßk = l (a = ß), 
(44) \ * 

We must subject the a's to another condition. When the point f is real, Z\, z2, Zz 
are real and 24 is imaginary. Thus, as we wish the transformation (42) to convert 
a real point f into a real point f ', we will take the a's according to the scheme 

(45) 

Here the G's are real and the elements of this table satisfy the orthogonal relations 
by rows and by columns. We take C44 > 0. 

Let (45) transform the two near-by points z, z+dz whose distance apart is 
ds into the points zr, z'-\-dz' whose distance apart is ds'. Since the coefficients 
a in (42) are constants we see that the dz's transform the same as the z's. Since 
the orthogonal relations (43) now hold we see that ds'2 = ds2. Thus the linear 
orthogonal transformation (45) leaves all distances unaltered and hence also all 
angles. This is further confirmed by applying (45) to (28) ; we find at once that 

{ar} = {at\. 

Obviously the transformation (45) does not transform a point f within the funda
mental G sphere to one without it or on it. It is now not difficult to show that 
the tetrahedron r can be made to coincide with any other tetrahedron r of the 
same character. In particular any triangle can be brought into the special 
position employed in § 5. 

Let us briefly mention a few special cases of (45). 

Example 1. C 4 4 =l , the other C's in the last row and column = 0 . This 
defines a rotation about 0 in the e-sense. 

* l ' = f l ' . 
Z2 — & 

Zz —iz 

z*=iÇi 

S i = fl 

Cu 
G21 

Czi 

iCii 

%2= f2 

G12 

C22 

C32 

—ÌC&-

Zz= Çz 

Ci, 
G23 

G33 

- ÌC43 

24 = ^ 4 

iCu 
iC2\ 
iCzt 
C44. 
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Example 2. 

f i ' 
w 
f i ' 

*t* 

fi 

1 
0 
0 
0 

f« 

0 
1 
0 
0 

fi 

0 
0 

COS Î 0 

—sin id 

*'f4 

0 
0 

sin iö 
cos iö, 

(46) 

that is: 

?i' = fi, f2/ = f2, f3, = f3 cosh 6-U sinh 0, f4' = - f a sinh 0+f4 cosh 0. 

The Fig. 6 represents the tetrahedron r. A plane a = fi —gf2 = 0 through the 
xz axis is unaltered. A plane ß = ^z — h^ = 0 through the edge AiA2 is rotated 
about it as an axis. Thus points on the xz axis are shifted along it, in such 
a manner, however, that points within G remain in it. The intersection of a = 0, 
ß = 0 is an iî-straight as QP, Fig. 7, perpendicular to the Xz axis. A point L on it 
is moved to L', while P goes to P'. As distances are unaltered LP = L'P' in 

ff-measure. The points L a t a given distance from the xz axis form an ü-circle C 
whose centre is Q. If we rotate the plane a about the xz axis, the locus of C is 
a sort of torus. The equation of this surface is 

(47) A(^2+^22) + B(^z2-h2) =0 , 

for f i2+ f2
2 is unaltered by the rotation about the xz axis, that is, by the following : 

(48) 

and f3
2 —^42 is unaltered for (46). If we apply both (46) and (48) a point on 

the surface (47) describes a screwlike motion upon it. This surface is the 
analogue of the celebrated Clifford Surface. The rectilinear generators or 
Clifford parallels are here imaginary. 

f l ' 
f.' 
fa' 

iU' 

f i 

cos 6 
— sin 6 

0 
0 

f» 

sin 6 
cos 6 

0 
0 

f» 

0 
0 
1 
0 

i f 4 

0 
0 
0 

1, 


