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SCOPE OF THE LECTURE. Our purpose is to sketch in a broad way the leading 
features of the origin and development of a new branch of number theory which 
furnishes a fundamental generalization of the theory of algebraic numbers. 
Algebraic fields (Körper) are all very special cases of linear associative algebras, 
briefly called algebras. The integral quantities of any algebra will be so defined 
that they reduce to the classic integral algebraic numbers in the special case in 
which the algebra becomes an algebraic field. 

For the sake of clearness, we shall not presuppose any acquaintance with 
the concept of algebras, but explain that concept and such of the results con­
cerning the theory of algebras as are indispensable in the later discussion of the 
arithmetics of algebras. 

EXAMPLES OF ALGEBRAS. All complex numbers x.l+yi form an algebra 
of order 2 with the basal units 1 and i. The quantities of which an algebra is 
composed may be numbers as in this example, or matrices as in the next example, 
or abstract elements. 

A more typical algebra is that whose quantities are two-rowed square 
matrices 

"(2M# 
etc., whose elements a, b, . . . are numbers of a specified kind, complex, or real, 
or rational. We define the sum and product of these two matrices to be 

(a+a b+ß\ /aa+by aß + bo\ 

**+»= [c+y d+t)>
 m»= \ca+dy cß+dt)-

Since the last matrix is altered in form by the interchange of the Roman and 
Greek letters, mn is usually distinct from \im, so that multiplication of matrices 
is not always commutative. If k is any number, we call the matrix 

( ka kb\ 
kc kdj 

the scalar product of the number k and the matrix m and denote it by km or mk. 
Consider the four special matrices 
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Then 

e=(òo)/=(Sò)«=(w)'*-(ra) 

Hence e, / , g, h are basal units of our total mairie algebra of order 4 of two-rowed 
square matrices. 

In the definition of any algebra we employ three operations called addition, 
multiplication, and scalar multiplication, which are assumed to have properties 
entirely analogous to those holding for the foregoing three operations on matrices. 
This close relation between general algebras and matric algebras is explained 
by the theorem which states that any algebra of order n can be expressed con­
cretely as an algebra of matrices with n or n+1 rows, although the latter is 
usually not the total matric algebra. 

QUATERNIONS. The four special matrices 

M=G ?)' i=(V"o-v-?)' i=(-? o) k=ij=(v^i V~J) 
satisfy the relations 

i2=jt = k2= —u, ij = k= —fi, ki=j= —ik, jk = i= —kj 

and are the basal units of quaternions xu+yi+zj+wk. Since matrix u plays 
the rôle of unity in multiplication, it is usually denoted by 1. 

Consider the algebra of all real quaternions 

q = x+yi-{-zj+wk 

with real coordinates x, y, z, w. Its conjugate is 

qf — x — yi — zj — w k. 

Each of the products qq', qfq has the value 

N = x2+y2+z2+w2, 

which is called the norm of q. Let q be not zero, so that x, y, z, w are not all 
zero and hence N^O. Then q evidently has the inverse 

N 

which is a quaternion with the real coordinates x/N, . . ., —w/N. The equation 
iq — r in real quaternions has the unique solution % = rq~l, while the equation 
q-q = r has the unique solution 7) = q~1r. Hence our algebra of all real quaternions 
is an example of a division algebra, in which the two kinds of division (except 
by zero) can always be performed uniquely. 

The special quaternions x+yi form an algebra of order 2 called a sub-algebra 
of the algebra of all quaternions. The x-\-zj form another sub-algebra. 
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DEFINITIONS AND THEOREMS ON ALGEBRAS. A sub-algebra I of an algebra 
A is called invariant in A if the product taken in either order of every quantity 
of I and every quantity of A belongs to I. In case A has no invariant sub-
algebra other than itself, A is called a simple algebra. It is known that every 
simple algebra can be expressed in a form such that its quantities are the 
matrices whose elements belong to a division algebra. 

The square of the matrix ( n o J is the matrix zero all four of whose elements 

are zero. A quantity is called nilpotent if some power of it is zero. An algebra 
is called nilpotent if all of its quantities are nilpotent. A semi-simple algebra 
is one which has no nilpotent invariant sub-algebra. 

An algebra A is said to be the sum of two sub-algebras B and C if every 
quantity of A can be expressed as a sum of a quantity of B and a quantity of C. 
If also the product in either order of every quantity of B and every quantity of 
C is zero, and if B and C have in common no quantity other than zero, then A is 
called the direct sum of B and C. 

Every semi-simple algebra is either simple or is a direct sum of simple 
algebras, and conversely. 

The principal theorem on algebras states that every algebra which is neither 
nilpotent nor semi-simple is the sum N-\-S of its unique maximal nilpotent 
invariant sub-algebra N and a semi-simple sub-algebra S. 

T H E INTEGRAL QUATERNIONS OF LIPSCHITZ AND THOSE OF HURWITZ. In 

his book* of 18&6, Lipschitz called a quaternion integral if and only if its four 
coordinates are ordinary integers. By very complicated discussions be obtained 
some interesting results. But his theory was not a real success, since his integral 
quaternions do not obey the essential laws of ordinary arithmetic. For example, 
there does not exist a greatest common left (or right) divisor of 2 and 
q = l+i+j+k, as shown by listing their divisors. 

Hurwitzf overcame all such difficulties by developing a new, successful 
theory of the arithmetic of quaternions. Using postulates quoted below, he was 
led to define integral quaternions to be those whose four coordinates are either 
all ordinary integers or all halves of odd integers. He proved that the essential 
laws of ordinary arithmetic hold also for such integral quaternions. For example, 
there exists a greatest common left divisor of any two integral quaternions, that 
of 2 and the above q being 2 since q is the product of 2 by the integral quaternion 
§<Z = è + i ^ + Ì 7 + i&- Thus we do not now have the difficulty which we met 
under the definition by Lipschitz. 

HURWITZ'S POSTULATES. Although Hurwitz stated his postulates only for 
the case of quaternions, it will prove convenient for later comparisons to formu­
late them for any rational algebra A whose quantities have rational coordinates 

* Inter suchungen über die Summen von Quadraten, Bonn, 1886; French translation in Jour. 
de Math., p. 4, t. 2, 1886, 393-439. 

fGöttinger Nachrichten, 1896, 311-40. Amplified in his book, Zahlentheorie der Quater-
nionen, Berlin, 1919. 



98 L. E. DICKSON 

and obey the associative law of multiplication. We assume also that A has the 
modulus 1 which plays the role of unity in multiplication. 

The integral quantities of A are defined to be the quantities belonging to a 
set of quantities satisfying the following four postulates: 

C (closure) : The sum, difference, and product of any two quantities of the 
set are also quantities of the set. 

B (basis): The set has a finite basis (i.e., it contains quantities 61, . . ., bk 

finite in number, such that every quantity of the set is a linear combination of 
the Vs with ordinary integral coefficients). 

U' : The set contains 1 and the basal units of A. 

M (maximal): The set is a maximal (i.e., is not contained in a larger set 
having properties C, B, U'). 

Note that Lipschitz's integral quaternions with integral coordinates form 
a set having the properties C, B, U'. For example, they have the basis 1, i, j , k. 
This set is, however, not a maximal, being contained in the larger set of Hurwitz's 
integral quaternions. We saw that the latter maximal set has properties 
which are simpler and more desirable than those of the former non-maximal set. 
The superiority of a maximal set is illustrated also by the advantage of the set 
of all complex numbers over number systems containing only real numbers, or 
only positive real numbers, or only the primitive numbers 1, 2, 3, . . . . 

Du Pasquier, a pupil of Hurwitz, published during the past fifteen years 
many papers* in which he replaced Hurwitz's postulate U' by the milder postu­
late U that the set contains 1. This replacement is an improvement, since all 
of the resulting postulates are invariant under every transformation of the basal 
units, while U' is evidently not invariant. 

T H E DEFINITIONS BY HURWITZ AND D u PASQUIER ARE UNSATISFACTORY. 

This fact will be illustrated for the special algebra having the two basal units 1 
and e, where e2 = 0. Under Du Pasquier's definition, any set of quantities with 
properties B and U has a basis of the form 1, q = r-\-se, where r and s are rational 
numbers and s^Q. Since q2 must belong to the set by property C, and hence is 
equal to a+bq, where a and b are ordinary integers, we find that r2 = a+br, 
2r — b, whence r2= —a. Thus r is an integer. We may therefore replace the 
initial basis 1, q by 1, q — r = se. Our set is evidently contained in the larger 
set with the basis 1, %se, which in turn is contained in the still larger set with 
the basis 1, \se, etc., where each such set has properties C, B, U. In other words, 
there does not exist a maximal set, so that the algebra does not possess integral 
quantities. 

The same unfortunate conclusion results also from the definition by Hur­
witz, which imposes the further condition that e shall belong to the set and hence 
that s be the reciprocal of an integer. 

*Vierteljahrsschrift Naturf. Gesell. Zürich, 51 (1906), 55-129; 52 (1907), 243-8; 54 (1909), 
116-48. L'Enseignement Math., 17 (1915), 340-3; 18 (1916), 201-60. Nouv. Ann. Math. (4), 
18 (1918), 448-61. Bull. Soc. Math. France, 48 (1920), 109-32. Comptes Rendus du Congrès 
International des Mathématiciens, Strasbourg, 1920, 164-75. 
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Under the definition by either Hurwitz or Du Pasquier there exist no 
integral quantities in the great majority of algebras, in fact for any algebra 
which is not semi-simple. 

T H E NEW CONCEPTION OF INTEGRAL QUANTITIES. The lecturer has recently 
published* a satisfactory theory of the integral quantities of any rational algebra 
having a modulus 1. Let its basal units be U\, . . ., un. If £1, . . ., £M are variables 
ranging independently over all rational numbers, the quantity q = £i^i+ . . .-\-%nun 

is a root of a uniquely determined rank equation whose coefficients are poly­
nomia l s in £1, . . ., £M with rational coefficients, the leading coefficient of the 
equation being unity, while q is not a root of an equation of smaller degree all 
of whose coefficients are such polynomials. For example, the quaternion 
q = x+yi+zj-\-wk and its conjugate are roots of 

œ2 — 2xœ + (x2+y2+z2+w2) = 0, 

which is the rank equation of the algebra of rational quaternions if x, y, z, w 
are variables ranging independently over all real numbers. 

The new definition of integral quantities employs postulates C, U, M and 
(in place of B). 

R: For every quantity of the set, the coefficients of the rank equation are all 
ordinary integers. 

As a first justification of this definition of the integral quantities of any 
rational algebra A having a modulus 1, note that when A is any algebraic field 
it is readily proved that its integral quantities coincide with the integral algebraic 
numbers of the field. In other words, the new theory is a direct generalization 
of the classic theory of algebraic numbers. 

Second, when A is the algebra of rational quaternions, the new definition 
leads very simply to the desirable integral quaternions of Hurwitz. 

Third, every algebra now hasf integral quantities, whereas this was rarely 
true under the earlier definitions. 

The final justification of the new conception of integral quantities of an 
algebra lies in the rich array of fundamental general theorems which have been 
developed under the new conception and will be summarized later on, whereas 
under the earlier conceptions no general theorem had been obtained. 

OLD AND NEW CONCEPTIONS CONTRASTED IN AN EXAMPLE. We shall apply 
the new definition to the foregoing rational algebra having the basal units 1 
and e, where e2 = 0. For x = a + be, we evidently have (x — a)2 = 0, which is the 
rank equation when a and b are variables ranging independently over all rational 
numbers. Its coefficients are ordinary integers if and only if a is an integer. 
Evidently the unique maximal set of quantities x having properties C, U, R 
is composed of all the-x — a-{-be in which a is an integer and b is a rational number. 

*Algebras and their Arithmetics, University of Chicago Press. 
t Proved in the lecturer's paper, Further development of the Theory of Arithmetics of Algebras, 

these Proceedings. 
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These quantities x are therefore the integral quantities of the algebra. For any 
rational number k, the product of the integral quantities u = l+ke and 1—ke 
is 1, whence each is called a unit. Let a5*0 and choose k= —b/a. Then xu = a. 
Such a product of x by a unit u is said to be associated with x. Associated 
quantities play equivalent roles in questions of divisibility. The integral quanti­
ties of our algebra are therefore associated with the ordinary integers a and 
may be replaced by the latter in questions of divisibility. 

Contrast these simple and satisfactory results under the new conception 
with the unfortunate conclusion, under the conceptions of integral quantities 
held by Hurwitz and Du Pasquier, that this algebra has no integral quantities. 
Faced with the dilemma that no maximal set exists under his definition, 
Du Pasquier suggested that we omit the desirable postulate M, that the set be a 
maximal and hence define the integral quantities to be those of an arbitrarily 
chosen one of the infinitude of sets with the basal units 1 and se. But it has 
been definitely proved by the lecturer* that factorization into indecomposable 
integral quantities is then not unique and cannot be made unique by the in­
troduction of ideals however defined. These insurmountable difficulties are in 
marked contrast with the simple conclusion, under the new conception, that the 
integral quantities are uniquely determined and are associated with ordinary 
integers. 

It is worthy of notice that our set of integral quantities is the aggregate of 
the infinitude of non-maximal sets of Du Pasquier. Our satisfactory set may 
therefore be derived by a suitable enlargement of any one of his unsatisfactory 
sets. There are many instances in the history of mathematics where success 
has been achieved by the principle of enlargement; examples are the evolution 
of our number system, the introduction of ideals in the theory of algebraic 
numbers, and the enlargement of Lipschitz's unsatisfactory set of integral 
quaternions to Hurwitz's satisfactory set. 

GENERAL THEORY OF ARITHMETICS OF ALGEBRAS. Let A be any rational 
associative algebra with a modulus 1. According to the principal theorem on 
algebras stated above, A=S-\-N, where N is the maximal nilpotent invariant 
sub-algebra of A, and 5 is a semi-simple sub-algebra. The fundamental theorem 
on arithmetics states that the arithmetic of A is associated wifh that of S in the 
sense that every integral quantity (whose determinant is not zero) of A is the 
product of an integral quantity of 5 by a unit. This theorem is illustrated by 
the foregoing example, in which N is composed of the components be and S is 
composed of the rational components a, so that the integral quantities of 5 are 
the ordinary integers. Another statement of this theorem is that in questions 
of divisibility we may suppress the bizarre nilpotent components belonging to N. 
This elimination of undesirable elements is fortunate both for the theory and 
for its applications. 

We have therefore reduced the problem of the arithmetics of all algebras 
to that of semi-simple algebras S. We can further reduce the problem to the 
case of simple algebras. For, we saw that 5 is a direct sum of simple algebras 

*Bull. Amer. Math. Soc, 28 (1922), 438-42; Jour, de Math. p. 9, t. 2 (1923), 281-326. 
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Si, 52, . . . , so that each quantity v of 5 is a sum of components <n, a2l . .., belong­
ing to Si, 52, . . ., respectively. It is an important theorem that if each <rt- is 
an integral quantity of Si, then a is one of S, and conversely. Moreover, the 
divisibility properties for S follow at once from those of the component algebras S,-. 

We saw that the quantities of any simple algebra 2 can be expressed as 
matrices whose elements range independently over the same division algebra D. 
It can be proved that there is a unique set of integral quantities of 2 which 
contains* all matrices whose elements are ordinary integers, and that this set 
is composed of the matrices whose elements range independently over the 
integral quantities of D, and conversely. 

Although we know the integral quantities of 2 as soon as we know those of 
D, it remains to deduce the divisibility properties of the former from the latter. 
This has been accomplished for the case of those division algebras D which have 
the property that its integral quantities possess a process of division yielding 
always a remainder whose norm is numerically less than the norm of the divisor. 
This property holds when D is the algebra of rational numbers, or one of numerous 
quadratic algebraic fields, or the algebra of rational quaternions, or certain 
algebras of generalized quaternions. For such a D, we have a theory of reduc­
tion and equivalence of matrices whose elements are integral quantities of D. 
The resulting theory is a direct generalization of the classic theory of matrices 
whose elements are ordinary integers, and then factorization into prime matrices 
is unique apart from unit factors. In our more general case, each matrix is a 
product of units and a matrix having only zeros outside the diagonal. 

We have therefore reduced the study of arithmetics of all rational algebras 
to the case of simple algebras, i.e., of the algebra of all matrices whose elements 
belong to a division algebra D, and have treated the arithmetic of the latter 
algebra when the integral quantities of D admit a process of division yielding 
a remainder of norm numerically less than that of the divisor. Such a process 
of division implies the existence of a right (or left) greatest common divisor. 
But the latter may exist even when that process of division is lackingf. 

APPLICATIONS TO DIOPHANTINE EQUATIONS. The theory of algebraic 

numbers is applicable only to problems involving polynomials which contain 
only one variable or two variables homogeneously, so that the polynomial can 
be factored into linear functions. This serious limitation can often be removed 
by employing quantities of an algebra. For example, N = x2+y2+z2+w2 has as 
factors the quaternion x+yi+zj+wk and its conjugate. By using integral 
quaternions we readily find all integral solutions of N = uv. Taking u as the 
sum and v as the difference of two unknowns, we deduce all ways of finding five 
integers the sum of whose squares is a square. 

*If we omit this assumption, we find many sets of integral quantities. For example, let D 
be composed of the rational numbers. Every set of integral quantities of the resulting total 
rational matric algebra 2 can be transformed into the set of matrices whose elements are ordinary 
integers by a suitably chosen matrix with rational elements. 

tDickson, Amer. Jour. Math. , 1923. 

—7 
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Various other Diophantine equations have been solved completely in integers 
for the first time by using the integral quantities of certain algebras of generalized 
quaternions. 

Since the new theory of arithmetics of algebras solves completely certain 
types of Diophantine equations in any number of variables which were not 
solvable by any earlier method, it furnishes us with an effective new tool for the 
theory of numbers. 

CONCLUSION. We have given a brief outline of the theory to date of 
arithmetics of algebras. This new branch of the theory of numbers is a far 
reaching generalization of the classic theory of integral algebraic numbers. 

We have also made it clear why it was necessary to discard the earlier con­
ceptions of the integral quantities of a general algebra and introduce a new 
conception of them. 

The gradual enlargement of the conception of number from the primitive 
numbers used in counting to the system of all complex numbers and finally to 
its culmination in hypercomplex numbers (or quantities of any algebra) has 
its parallel in the growth of the concept integer, which was first restricted to 
the counting numbers, was greatly enriched in the last century by the study of 
integral algebraic numbers, and now finds its culmination in the integral quanti ' 
ties of any algebra. 


