
BOUNDARY PROBLEMS IN ONE DIMENSION 

B Y M A X I M E B ô C H E R . 

§ 1. Introduction. 

By a boundary problem in one dimension I understand primarily the following 
question : 

To determine whether an ordinary differential equation has one or more solutions 
which satisfy certain terminal or boundary conditions, and, if so, what the character 
of these solutions is and how their character changes when the differential equation 
or the boundary conditions change*. This is the central problem, of which various 
modifications are possible. In its simplest forms this question is as old as the subject 
of differential equations itself. By the end of the nineteenth century it already had a 
considerable literature, which since that time has expanded rapidly. I shall try 
during the present hour to indicate some of the greatest advances made both as to 
results attained and methods used. In thus trying to get a brief and yet compre
hensive survey of a large subject, the desirability of a thorough correlation of the 
parts becomes doubly apparent, and I trust that you will find that in this respect 
I have succeeded at a few points in adding something to what was to be found in 
the literature. The older results will be discussed in detail only so far as may seem 
necessary to make the scope and importance of the more recent ones intelligible. 

The subject is so large that I must limit myself to certain central aspects of it 
by leaving out of consideration almost entirely 

(1) Non-linear boundary problems, that is cases in which the differential equation 
or the boundary conditions or both are non-linear. 

(2) Cases in which two or more parameters enter. (Klein's theorem of oscillation 
with its extensions.) 

(3) Cases where we have to deal not with a single differential equation but 
with systems of differential equations. 

(4) Cases in which the differential equation has singular points in or at the 
ends of the interval with which we deal, or, what is essentially the same thing, cases 
in which this interval extends to infinity. 

All of these cases are of the highest importance. 

* The question of finding effective means for computing the solutions in question is also one which 

might well be considered here. 
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An even more sweeping restriction than any of these is indicated by the very 
title of the lecture. This restriction to one dimension, i.e. to ordinary rather than 
partial differential equations, is made absolutely necessary by the time at my disposal 
if we are actually to reach the deeper lying parts of the subject. Fortunately the 
one-dimensional case may be regarded to a very large extent as the prototype of the 
higher cases ; but in this simple case methods are available which enable us to go 
far beyond the point which we can hope at present to reach for partial differential 
equations. 

The problem with which we deal is, then, this : 

A linear differential equation which, for the sake of simplicity, I write as of the 
second order, 

CM U fil J 

P(-U^d^ + ^Ta>+^U = r (1)' 
has coefficients ply p2,r which are continuous functions of the real variable x in the 
finite interval 

a£x£b .(X). 

We wish to solve this equation subject to the linear boundary conditions 

W1 (u) = «!% (a) + a/ ri (a) + ft u (b) + ftV (b) = ^ ) 
. (2), 

Tf2 (u) = a2u (a) + a2V (a) + ß2u (b) -f ß2ri(b) = y2 ) 
where the a's, /3's, 7's are constants. 

Why is this problem an important one ? The most obvious answer is that it is 
one of which special cases come up constantly in applied mathematics ; that even its 
special cases are of sufficient difficulty to have demanded the serious attention of the 
best mathematicians for nearly two hundred years; that in connection with this 
problem methods and results of large scope have been developed. From another 
and more abstract point of view also this problem may claim importance : it is one 
of the simplest and most natural generalizations of that most central of all subjects, 
the theory of a system of linear algebraic equations. This is a fact which has been 
known ever since John and Daniel Bernoulli in their treatment of vibrating strings 
replaced the uniform string by a massless one weighted at equal intervals by heavy 
particles. The effect of this was to replace the differential equation for determining 
the simple harmonic vibrations of the string, which is a special case of (1), and the 
boundary conditions, which come under (2), by a system of linear algebraic equations. 

The idea involved in this physical example may be formulated more generally 
as follows : 

We may replace (1) by a difference equation of the second order : 

Lm+j + MiUi + NiUi-^Ri (i = l, 2,...n-l) (Ï), 

and the boundary conditions by 

AxuQ -f AiUi 4- A^n-i + BlUn = Cx 

A2u0 4- A2ux + B2unn.1 + B2u, 

- f t , 
•(2). 

The equations (1) and (2) taken together form a system of n + 1 linear algebraic 
equations for determining u0, u1}...un. If now we allow n to become infinite, 
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causing the coefficients of (1) and (2) to vary in the proper way, we easily obtain 
the system (1), (2) as the limiting form. 

In the same way the linear boundary problem for a differential equation of the 
nth order may be regarded as the limit of a linear boundary problem for a difference 
equation of the nth. order, that is, again, of a system of linear algebraic equations. 

I t goes without saying that this relation yields a fertile source of suggestions 
both as to the facts in the transcendental case and as to possible methods of proof. 
I t was indeed the unpublished method which Sturm originally used in his funda
mental investigations*. On the other hand, the passage to the limit may be 
rigorously carried through, as was done by Cauchy in his proof of the fundamental 
existence-theorem for differential equations (not merely in the linear case). This 
proof was completed in 1899 by Picard and Painlevé by showing that the solution 
of the difference equation approaches that of the differential equation uniformly not 
only in a certain small neighbourhood of the point where the initial conditions are 
given, but throughout any closed interval about this point in which the solution 
in question of the differential equation is continuous. With this fact at our disposal 
there is no longer any difficulty in carrying through rigorously the passage to the 
limit from the difference equation to the differential equation in other cases of 
boundary problems, as was shown in a sufficiently general case by Porter-f- more 
than ten years ago. Thus we may regard this method of passage to the limit as 
one of the well-established methods, both heuristic and otherwise, of approaching 
boundary problems. 

This linear boundary problem for difference equations has, however, also distinct 
interest in itself apart from any assistance it may give us in the transcendental case. 
During the last few years great interest has been awakened in the theory of difference 
equations from a very different side by the remarkable work of Galbrun, Birkhoff, 
and Nörlund. It seems therefore an opportune time that this side of the subject 
should be also further developed. I shall return to this matter presently. 

§ 2. Generalities. Greens Function. 

A special case of the general linear boundary problem (1), (2) is the homogeneous 
boundary problem in which r = 0, yx — <y2 = 0 : 

PW=o (io, 
1 ^ ( ^ = 0, W2(u) = 0 (2'). 

This system we shall call the reduced system of (1), (2). If this system has no 
solution except the trivial solution ^=0,1 call it incompatible. If it has essentially only 
one solution, I call it simply compatible ; if it has two linearly independent solutions, 
I call it doubly compatible. If we have to deal with a differential equation of the 
nth order, we may have compatibility of order as high as n. One of the most funda
mental theorems here, and yet one which, I believe, has been enunciated and proved 

* For a reconstruction of this work see the paper by Porter cited below and Bôcher, Bull. Amer. Math. 
Hoc. vol. 18 (1911), p. 1. 

f Annals of Mathematics, 2nd series, vol. 3 (1902), p. 55. This was more than two years before Hilbert, 
in 1904, took a similar step for integral equations. 
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only within the last few years*, is that a necessary and sufficient condition that the 
general boundary problem (1), (2) have one and only one solution is that the reduced 
problem be incompatible. I t should be noticed that this is the direct analogue of a 
familiar theorem concerning linear algebraic equations. 

I t is readily seen that the general case is that in which the reduced system is 
incompatible. The case in which the reduced system is compatible, so that the 
complete system has either no solution or an infinite number of solutions, we may 
therefore speak of, for brevity, simply as the exceptional case. This exceptional case 
will always occur when the boundary conditions (2') are linearly dependent. I t may 
however occur in other cases too, and it is from this fact that the most interesting 
and important questions relating to boundary problems arise. 

Of all the boundary problems by far the simplest and most important is what 
we may call the one-point problem in which all the fts or all the a's are zero, so that 
the boundary conditions (2) involve only one of the end-points of (X). If in this case 
conditions (2') are linearly independent, equations (2) may be solved for u (a) and 
uf (a) (we assume for definiteness that the fts are zero) and thus be written in the 
form 

u(a)=^è1, u(a)=$2. 

Now the most fundamental existence-theorem in the theory of differential equations 
tells us that there always exists one and only one solution of (1) which satisfies these 
conditions. This existence-theorem may then be regarded as the answer to our 
boundary problem in this case, and phrased as follows : In the one-point boundary 
problem the exceptional case can occur only when conditions (2f) are linearly dependent 

So far as we have yet gone there is no necessity for the two points which enter 
the boundary conditions (2) to be precisely the end-points a, b of (X) ; they may 
instead be any two points xly x2 of this interval. Moreover, we may make a further 
generalization by considering in place of (2) conditions of the form 

CLiU '(Xj) + OL^U (Xx) + Oi2U (X2) -f OL2U
f (x2) + . . . + ClkU (xk) + 0Lk U (xk) = 7 , 

which involve not two points but k\ and we may at the same time consider 
differential equations of the nth order. This is a subject which has hardly been 
touched upon in the literature so far, but which seems likely to become of 
importance. The one result which I find in the literature is that if the boundary 
conditions consist in giving at each of the k points the value of u and of a certain 
number of its earliest derivatives, and if the k points are sufficiently near together the 
problem always has one and only one solution. This fact was established (not merely 
in the linear case) by Niccolettif as a generalization of some methods and results of 
Picard for certain non-linear differential equations of the second order. 

Still another direction in which we may generalize the boundary problem, either 
in connection with the generalization last mentioned or independently of it, is to 
admit in connection with the equation of the ?ith order more than n boundary 
conditions. We shall have occasion to mention some cases of this sort later. 

* Cf. Mason, Math. Ann. vol. 58 (1904), p. 532 ; Trans. Amer. Math. Soc. vol. 7 (1906), p. 340; and 
Bôcher, Annals of Math. ser. 2, vol. 13 (1911), p. 71. 

t Turin Atti, vol. 33 (1898), p. 746. 
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One occasionally finds the boundary conditions (2) replaced by conditions which 
involve definite integrals and which, on their face, are not boundary conditions at 
all*. Such conditions may however often be reduced to precisely the form (2). As 
an example of this we mention the problem of solving the equation 

d2u „ 

subject to the condition | <Ê> (x) u (x) dx = C, 

J a 

where <I> is a given continuous function, and G a given constant. 

Let </> (x) be any solution of the equation 
%-**-*• 

By combining this with the equation for u we readily find the formula 
rb ~ ~\b rb 

I &udx= fiu — ucj) + I r<f)dx. 
Ja |_ Ja J a 

The above integral condition may therefore be replaced by 

- </>' (a) u(a) + <j> (a) v! (a) + </>' (b) u(b)-<j> (b) u'(b) = C-l r$dx, 
J a 

a condition of precisely the form (2). 
If we approach the subject from the point of view of difference equations, this 

simply means that if we have in place of the boundary conditions general linear 
equations between u0, uly... un, these conditions can by using the difference equation 
be reduced to the ordinary four (or if we prefer three) term boundary condition form, 
—an obvious algebraic fact. 

Let us leave these generalizations, however, and return to the case in which the 
conditions (2) involve merely two points, the end-points of the interval (X). While 
what I am about to say may readily be extended to equations of the nth order, I will 
again, for the sake of simplicity, speak merely of the equation of the second order, 
i.e. of the system (1), (2) in precisely the form in which we wrote it at first. 

If, as is in general the case, the reduced system (1'), (2') is incompatible^ we are 
led to the important conception of the Green's Function by trying to find a function 
not identically zero satisfying (2') and which comes as near as possible to being a 
solution of (1')—it is to fail in this only through a finite jump of magnitude 1 at a 
point £ of (X) in its first (or in the case of equations of the nth order in its (n — l)th) 
derivative. Such a function, G (x, £), always exists and is uniquely determined when 
(1') and (2') are incompatible. A characteristic property of this function and one 
upon which its importance depends is that when (V), (2') are incompatible, the 
solution of the semi-homogeneous problem (1), (2'), which then exists and is uniquely 
determined, is given by the formula 

«-PötefMDdg (3), 
J a 

* Cf Picone, Annali della R. Scuola Normale Superiore di Pisa, voi. 11 (1909), p. 8 ; and v. Mises, 
Heinrich Weber Festschrift (1912), p. 252. 



1 6 8 M. BÔCHER 

which, as we mention in passing, includes as a special case (viz. when conditions (2) 
involve only one of the points a or b) the formula for the solution of (1) obtained by 
the method of variation of constants. 

These Green's Functions may also be regarded, if we wish, as the limits of the 
Green's Functions for the difference equation, i.e. the solution of the reduced system 
corresponding to (1), (2), except that for a single value of i the second member of (1 ) 
is to be taken not as zero but as 1 *. The formula (3) then becomes a special case 
of the obvious one for building up the solution of a general system of non-homogeneous 
linear algebraic equations of non-vanishing determinant from the solutions of the 
special non-homogeneous system obtained by replacing one of the second members 
by 1 while all the other second members are replaced by zero. 

So far we have demanded merely the continuity of the coefficients of (1). If in 
addition we demand the existence and continuity of the first derivative of p^, we 
can add considerably to the properties of the Green's function. When regarded as a 
function of £, it then satisfies the differential equation adjoint to (1') 

n/ . d2v d(pxv) / v , x 

except when f = x. Moreover, still regarding it as a function of £, we find that it 
satisfies a system of homogeneous boundary conditions precisely analogous to (2') 
but with different coefficients, these coefficients being however independent of the 
parameter x just as the coefficients of (2') are independent of f : 

W, (v) = a,v (a) 4- *!v* (a) + &v (b) + ftV (b) = 0 \ 

W2(v) = a2v(a) + ä2
/v\a) + ß2v(b) + ß2

/v,(b)^0) ( 2 )-

The system (1"), (2") is of fundamental importance in the whole theory of 
linear boundary problems and is called the system adjoint to (1'), (2'). A special 
case of it was used by Liou ville J but the general formulation and application of the 
conception was made for the first time by Birkhoff§ less than five years ago. The 
reason why even now this conception is not as well known as it deserves to be is 
that the special cases which have almost exclusively absorbed the attention of 
mathematicians belong to the class of self-adjoint systems where not only the equation 
(V) is self-adjoint but the boundary conditions (2") are also identical with (2'). I t 
is true that a somewhat more general case than this has received a little attention 
from Hilbert and his pupils |j, namely the case which they call that of " Greenian 
boundary conditions "1f where (2') and (2") are identical without (V) being self-

* Cf. Bôcher, Annals of Math. 2nd series, vol. 13 (1911), p. 71, where other references for the literature 
of Green's Functions will be found. 

t For the equation of the wth order 

dnu dn~H 

the requirement would be the existence and continuity of the first n-i derivatives of pi. 
% Liouville's Journal, vol. 3 (1838), p. 604. 
§ Trans. Amer. Math. Soc. vol. 9 (1908), p. 373. See also for the relation to Green's functions, Bôcher, 

Bull. Amer. Math. Soc. vol. 7 (1901), p. 297 and Annals of Math. vol. 13 (1911), p. 81. 
II See for instance Westfall, Zur Theorie der Integralgleichungen (dissertation), Göttingen, 1905, p. 19. 
IF It remains to be seen whether this case is really of sufficient importance to deserve a name. 
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adjoint. The general case, however, in which (2') and (2") are different is, apart 
from Birkhoff's fundamental paper, only just beginning to receive attention. 

Here too the analogies for difference equations are interesting and simple. In 
place of the adjoint system (differential equation and boundary conditions) we now 
have the system of homogeneous linear algebraic equations whose matrix is the 
conjugate (transposed) of the original system ; it is this system which the Green's 
function of the difference equation satisfies when regarded as a function of its second 
argument. The self-adjoint case now becomes the case in which the matrix of the 
system of linear equations is symmetric or can be made symmetric by a combination 
of rows and columns. Such expressions as 

rb 
vP (u) dx f 

J a which occur in Green's Theorem 

jb\vP(u)-uQ(v)^dx=\T(u,v)\b (4) 
Ja L J L J» 

(where T is a homogeneous bilinear differential expression of order one less than P), 
have as their analogues, in the case of difference equations, bilinear forms. I shall not 
go into these analogies in detail, since they have become very familiar during the last 
eight years in the similar case of linear integral equations as developed by Hilbert 
and his pupils. I wished however to say enough to make it clear that we can get 
to a large extent the satisfaction and the benefit of these analogies in the case of 
linear differential equations, without going to the subject of integral equations, by 
simply regarding the differential equation (of any order) as the limit of a difference 
equation. This same remark applies equally well to those parts of the subject 
upon which I have not yet touched, and I shall not in general think it necessary 
to repeat it. 

| 3. Small Variations of the Coefficients. 

All the deeper lying parts of the theory of boundary problems depend directly 
or indirectly on the effect produced by changes in the coefficients of the differential 
equation or of the boundary conditions or of both. Such changes are frequently, 
indeed usually as the literature of the subject now stands, produced by supposing 
these coefficients to depend on one or more parameters. The more general point 
of view, however, is to consider arbitrary variations in these coefficients ; and here, 
before coming to the deeper lying questions, it is essential to know under what 
conditions small variations of this sort will produce a small variation in the solution 
of the problem. The fundamental fact here is * 

I. If the reduced system (V), (2') is incompatible, it remains incompatible after 
a variation of the coefficients of (1) and (2) which is uniformly sufficiently small ; and 

* I have not found this fact in the literature. In the special case in which only one of the end-points 
appears in the boundary conditions I proved it in Trans. Amer. Math. Soc. vol. 3 (1902), p. 208 and 
Amer. Journ. of Math. vol. 24 (1902), p. 315. The general theorem may be deduced from this special case 
by following the general lines of the reasoning given by me in Annals of Math. vol. 13 (1911), p. 74. Indeed 
the case of the equation of the nth order where the boundary conditions involve k points (cf. § 2) presents 
no difficulty here. 
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such a variation produces a variation in the solution of (1), (2) and in its first two 
derivatives which is uniformly small throughout (X). 

I t is merely a special case of this if we assume the coefficients of (1) to be 
continuous functions of (x, X) when x is in (X) and the parameter X lies in any one or 
two dimensional region A of the complex X-plane. The coefficients of (2) we then 
also assume to be continuous functions of X in A. An immediate corollary of the 
above theorem is then : 

II. If for a certain point X0 of A the system (V), (2') is incompatible, the same 
will be true throughout a certain neighbourhood ofX0, and throughout this neighbourhood 
the solution of (I), (2) and its first two derivatives are continuous functions of ' (x, X). 

Something essentially new is, however, added if we demand that the coefficients 
be analytic functions of X and wish to infer the analytic character of the solution. 
Here the facts are these : 

III, If when x lies in (X) and X in a certain two-dimensional continuum A of the 
X-plane the coefficients of (1) are continuous functions of (x, X) and analytic functions 
of X, and if the coefficients of (2) are analytic in X throughout A, and if X0 is a point 
in A such that when X = X0, (].') and (2') are incompatible, then the same will be true 
throughout a certain neighbourhood of X0 and the solution of (1), (2) throughout this 
neighbourhood is, together with its first two derivatives with regard to x, continuous in 
(x, X) and analytic in X*. 

If the coefficients depend on a parameter X, as in cases I I and III , the values of 
X for which (1'), (2') are compatible are readily seen to be precisely the roots of the 
equation 

where y1 and y2 are any pair of solutions of (1') which do not become linearly 
dependent for any value of X with which we are concerned. This equation we 
call the characteristic equation and its roots the characteristic parameter values 
(Eigenwerte), or characteristic numbers. In case I I I it is clear that (5) may 
be taken as analytic in X, so that in this case, provided (5) is not identically 
satisfied, the characteristic numbers are all isolated though there may be an 
infinite number of them with cluster-points on the boundary of A. These 
characteristic numbers are the only singularities of the solution of (1), (2) 
regarded as a function of X, and also of the Green's function of (1'), (2'), and 
it may be shown that these functions can have no other singularities there 
than poles. In special cases the solution of (1), (2) may have no singularity at 
some of these points. Those characteristic numbers for which (1'), (2') become simply 
compatible we call simple characteristic numbers, those for which they become doubly 
compatible, double characteristic numbers, and so on in the higher cases when we are 
dealing with equations of higher order than the second. 

In all that has been said so far no restrictions have been made concerning the 

* In the special case in which (2) involves only one of the points a or 5 the proof of this theorem follows 
from the uniform convergence of the method of successive approximations. The general case may be 
inferred from this as indicated in a similar case in the preceding foot-note. 

= 0 (5), 
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reality of the quantities used except that x be real. In particular the coefficients of 
(1) may be complex. If the system (1), (2) is real, then when (1'), (2') is incompatible, 
the solution of (1), (2) is real; while if (V), (2') is compatible, it has a real solution not 
identically zero. In this case we can add various further facts to those already mentioned 
in this section, of which I mention the following immediate consequence of I I and I I I . 

IV. If for a certain real range A of values of X the coefficients of (1) are real 
continuous functions of (x, X) and the coefficients of (2) real continuous functions of 
X; if there is no characteristic value of X in A; and if for no point in A the solution 
u of (1), (2) vanishes at a or b, or at any interior point where its derivative also 
vanishes ; then u has the same number of roots in (X.)for all values ofX in A and these 
roots are continuous functions of X. 

If we add to our hypothesis that the coefficients of (1), (2) be analytic in X, we 
may add to the conclusion that the roots are analytic functions of X. 

I t must not be inferred from what I have said so far that the theory of boundary 
problems consists wholly, or even chiefly, in establishing existence-theorems or in 
proving by the exact methods of modern analysis facts which a hundred years ago 
would have seemed self-evident to any mathematician. Some applied mathema
ticians make it a reproach to pure mathematics that it has come now to a state where 
it is interested solely in questions of this sort. If this were so it would indeed be a 
cause for reproach ; but it should perhaps rather be regarded as a warning of whither 
certain extreme tendencies in modern pure mathematics might lead us if allowed to 
get too much the upper hand. The good old-fashioned view that it is the main 
object of mathematics to discover essentially new facts is, however, hardly in danger 
of becoming obsolete in a generation which has just witnessed the splendid achieve
ments of Poincaré. In the subject of boundary problems, while we need as a founda
tion the existence-theorems, and exact proofs of facts which in themselves are quite 
to be expected, these are only a foundation. We wish not merely to be able to say : 
under such and such conditions there exists a solution of the boundary problem 
which is continuous (or analytic) but also to be able to say what this solution is like 
and what can be done with it. However incomplete the theory still is, we can make 
important statements of this sort, as we shall now see. 

§ 4. Sturms Fundamental Results and their Recent Extensions. 

Sturm's great memoir of 1836, which forms to a certain extent the foundation of 
our whole subject, produces on most superficial readers the effect of being complicated 
and diffuse. Nothing could be a greater mistake. The paper is very rich in content, 
and, while it would no doubt be possible to present the material more compactly 
than Sturm has done, there is by no means the repetition of which one gets the 
impression on a first reading owing to similarity in appearance of theorems which are 
really very different. I t must be confessed, however, that Sturm does fail to empha
size sufficiently his really fundamental results. 

Sturm, throughout whose work all quantities used are assumed real, takes the 
differential equation in the self-adjoint form 

s W s ) - 0 » - 0 ' <*>0> <«>. 
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where K has a continuous first derivative, to which any homogeneous linear differ
ential equation of the second order can readily be reduced. Perhaps the most 
fundamental result of the whole paper is the one which when stated roughly says 
that if the solutions of (6) oscillate in (X), they will oscillate more rapidly when G 
or K is decreased. The precise statement is this : 

If we consider the two differential equations 

where throughout (X) 
0<K2^Kx, G2^GX (8), 

and if a solution ux of the first equation has two successive roots at xx and x2, then every 
solution u2 of the second will vanish at least once in the interval x1 < x < x2 provided 
both equality signs in (8) do not hold at every point of this interval. 

If we note that this theorem tells us that if u2 is a solution which vanishes 
with ux at xx, then it vanishes again before u2 vanishes for the first time, we see the 
appropriateness of the statement that the solutions of the second equation oscillate 
more rapidly than those of the first. 

The proof of this theorem is made to depend by Sturm on the formula 

\K2uxu2 — Kxu2ux] + I (G1 — G2)uxu2dx + 1 (Kx — K2)uxu»dx = 0...(9), 
Ci J CX J Cl 

where ux and u2 are any solutions of the first and second equations (7) respectively and 
cx, c2 any points of (X). This formula, which may be regarded as merely a special 
application of Green's Theorem *, yields an immediate and extremely brief proof of 
the theorem we are considering in the special, but very important, case Kx = K2. In 
the general case the proof is by no means so easy, it being necessary then to intro
duce a parameter so as to pass over continuously from Kx, Gx to K2, G2, and to 
consider carefully the effect of small changes of this parameter. Simpler methods 
have therefore since been devised for treating the general case, of which I 
will mention the extremely elegant one recently given by Piconef. This consists in 
using in place of (9) the formula 

\(KX - K2)ux
2dx + j C\GX - G2)ux

2dx + [ %K2 (ux - < — ) dx 

^ (K2uxu.; - Zx^toT = ° (10)> 
J^2 J Cj 

+ 
which may be deduced without difficulty from the differential equations. In applying 
this formula we must assume that u2 does not vanish between cx and c2, and vanishes 
at one or both of these points only if ux vanishes there. By means of this formula 
the proof of Sturm's theorem is immediate. 

* Cf. Dunkel, Bull. Amer. Math. Soc. vol. 8 (1902), p. 288. 
t Annali della R. Scuola Normale Superiore di Pisa, voi. 11 (1909), p. 1, where however only special 

cases of (10) are used. Another brief proof, based on the use of Riccati's resolvent of (6), had been 
previously given by me : Trans. Amer. Math. Soc. vol. 1 (1900), p. 414. 
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I have insisted somewhat at length on this one simple result of Sturm both on 
account of its great importance and because it represents a direction for investigation 
which, I believe, might well be pursued farther. The question is : What changes in 
K and G will cause the solutions of (6) to oscillate more rapidly ? Sturm's theorem 
gives one answer to this question. There are, however, many other changes in K and 
G besides a decrease in one or both which will have this same effect. Further 
theorems can of course be obtained by multiplying (6) before and after the change by 
different constants, or by making a change of independent or of dependent variable. 
All these results, while they may be formally more general, may be said not to go 
essentially beyond Sturm's classical theorem. An illustration of this which will be of 
some importance for us is the following : 

The special case of equation (6) where G = l — Xg, K = k, where g, I, k are con
tinuous functions of x independent of the parameter X, 

Uki)+^-l)u=o ( n )> 
has been much considered ever since Sturm's time. If g è 0, the equality sign not 
holding at all points with which we are concerned, an increase of X will produce 
a decrease of G and consequently it is merely a special case of Sturm's theorem in 
its simplest form to infer that if for one value of X a solution oscillates, the solutions 
will oscillate more rapidly for a larger value of X. Precisely the reverse is clearly 
true if g ^ 0. During the last few years, however, another case of (11) has also been 
considered by several authors using various methods, namely the case I = 0, while g 
changes sign. An increase in X then causes G to decrease for some parts of (X) and 
to increase for others. I t looks as though we had here a case going decidedly 
beyond that of Sturm. If, however, we divide (11) by | X |, we get an equation 
in which 

K = \x\ ' G = ixì ~" ^Sgn ^ g% 

Consequently an increase in | X | (X retaining one sign) produces a decrease in K 
while G either decreases or remains constant, and we see that we have precisely 
Sturm's case. 

I know of no published result* which goes in this direction, and in the sense I 
have explained, essentially beyond Sturm's. 

By the side of this theorem I will recall to you another one even simpler and 
better known and which Sturm proved by the same methods. I t may indeed be 
regarded as a limiting case of the above theorem. 

The roots of two linearly independent real solutions of a real homogeneous linear 
differential equation of the second order separate each other. 

These theorems perhaps hardly come within the subject of boundary problems 
if we take the term in a strict sense, since no particular boundary conditions are laid 

* From a verbal communication of Professor R. G. D. Richardson I understand that in a paper shortly 
to appear in the Mathematische Annalen he has made progress in this direction in the case of (11) when g 
changes sign and I is negative at some or all points of (X). This would appear to be a case really different 
from Sturm's. 
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down, but they are so fundamental for all work whose object is to determine the 
nature of the solutions of boundary problems that they could not be omitted here. 
Other theorems of the same sort contained in Sturm's memoir refer to the roots of u! 
or more generally of functions of the form fau — fau', where fa and fa are given func
tions satisfying certain conditions*. 

To the same category of theorems, preliminary, so to speak, to true boundary 
problems, are the various tests which have been given, some of which are contained 
in or follow readily from Sturm's memoir, for the equation (1) being oscillatory in (X), 
that is possessing solutions which vanish more than once theref. 

In all of these cases we have theorems whose extension to equations of higher 
order is by no means easy, not merely because of essentially new difficulties which 
may be and doubtless are involved in the proofs, but still more because it is not easy 
to surmise what the character of the analogous theorems will be. The only investi
gation in this direction with which I am acquainted is a recent paper by Birkhoff J 
in which theorems concerning the roots of the real solutions of real homogeneous 
linear differential equations of the third order are obtained. The method used is one 
which, while familiar in other parts of the theory of linear differential equations, had 
never, I think, been used in treating boundary problems or questions relating to them. 
I t consists in interpreting a fundamental system of solutions, ux, u2, u3, as the homo
geneous coordinates of a point in a plane. As x varies, this point traces out a curve 
whose shape is characteristic for the oscillatory properties of the solutions. I mention 
as a sample one of the simpler results obtained, from which it will be evident that 
we really have to deal with an extension of the results of Sturm mentioned above. 
Birkhoff proves that in an interval (X), where q and its derivative q' are real and 
continuous, the equation 

u" + qu' -f ^qu = 0, 

to which every self-adjoint equation of the third order may be reduced, always has 
real solutions which do not vanish, but that if two real solutions do vanish, their 
roots separate each other either singly or in pairs. Moreover, if q is increased, the 
maximum number of roots in (X) increases. 

We have here a field worthy of further cultivation. 

| 5. Boundary Problems as Treated by Sturm. 

Sturm's memoir may perhaps best be divided from a logical point of view into 
three parts, though this division is by no means followed out by the author in his 
method of exposition. We have 

First those parts of the memoir which do not involve any boundary conditions. 
These we have already sufficiently considered. 

* This part of Sturm's memoir, while extensive, is rather incomplete. Much more general results have 
been obtained by another method by Bôcher, Trans. Amer. Math. Soc. vol. 2 (1901), p. 428. 

f Bôcher, Bull. Amer. Math. Soc. vol. 7 (1901), p. 333. Of a somewhat different character is Kneser's 
paper, Math. Ann. vol. 42 (1893), p. 409, since it deals with an infinite interval. The question there is 
essentially the behaviour of solutions in the neighbourhood of a singular point, 

t Annals of Math. vol. 12 (1911), p. 103. 
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Secondly those theorems that refer to what we have called one-point boundary 
conditions, viz. u(a) = yx, u' (a) = y2. Since the existence-theorem here was well 
known, being merely the fundamental existence-theorem for differential equations, 
the theorems concern (a) the character of the solution of the boundary problem 
and (6) the changes produced in it by changes in the differential equation or in the 
boundary conditions. What is most essential here is contained in what I have called 
Sturm's two Theorems of Comparison. 

Thirdly there comes a special kind of two-point boundary problem, the boundary 
conditions being the so-called Sturmian Conditions : 

au (a) + du (a) = 0, | a | + | a' | =£ 0 ^ 

ßu(b) + ß'u'(b) = 0, |£ | -H/3 ' |=£0. 

characterised by the fact that each involves only one end-point of the interval. 
Here all three aspects of boundary problems are considered: (a) the existence of 
characteristic numbers; (b) the nature of the characteristic functions; (c) the changes 
produced in the characteristic numbers and functions by changes in the differential 
equation or the boundary conditions. The main result here is the Theorem of 
Oscillation, or perhaps it would be more correct to say the Theorems of Oscillation, 
since a variety of these may be formulated. 

The first theorem of comparison may be roughly but sufficiently characterised 
by saying that it tells us that a decrease of G, or K, or K (a) u' (a)ju (a) causes all 
the roots of u in (X) to decrease ; while the second theorem of comparison tells us 
that under the same conditions the value of K(b)uf (b)/u(b) will decrease provided 
the number of roots of u has not been changed. Both of these theorems are proved 
by Sturm by means of formula (9), which may, when Kx and K2 are not identically 
equal, be advantageously replaced by (10). 

I shall not stop to enunciate Sturm's theorem of oscillation in any very general 
form. The general case would be that in which K or G or both are functions 
of (x, X) which decrease as X increases, while the ratio K (a) u' (a)/u (a) may 
also decrease with X. I enunciate, however, merely two special cases in which X 
does not enter the boundary conditions and where the differential equation has the 
form (11). 

I. If g è 0, the equality sign not holding throughout (X), and if a, OL, ß, ß' are 
constants, there exist an infinite number of real characteristic numbers for the system 
(11), (12). These are all simple and have no cluster-point except + oo. If when 
arranged in order of increasing magnitude, they are denoted by X0, Xx> X2,... and the 
corresponding characteristic functions by u0, ux, u2,..., then un has exactly n roots in 
the interval a<x<b. 

This is the best known special case of the theorem of oscillation. Another 
special case which, after division by | X |, follows with exactly the same ease is this : 

II . If g changes sign in (X) and 

1^0, adzkO, ßß'^0, 

there exist an infinite number of real characteristic numbers for the system (11), (12). 
These are all simple and have + oo and — oo as cluster-points. If the positive and 
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negative characteristic numbers arranged each in order of increasing numerical value 
are denoted by 

X0 , Xx , X2 , ... 

and X0~, X{~, X2~~,... 

and the corresponding characteristic functions by 
^ 0 J ^ 1 y ^ 2 > • • • 

and UQ~, u{~, u2~,..., 

then un
+ and un~ have exactly n roots in the interval a<x<b. 

I doubt if it has been noticed before that this theorem is substantially 
contained in Sturm's results. I t has been re-discovered three times during the 
last few years*. 

That in the first of these cases there can be no imaginary characteristic 
numbers had been shown by Poisson by means of a special case of (9). A slight 
modification of this reasoning establishes this same fact for the second casef. 

Sturm thus had both existence-theorems for the characteristic numbers and, 
in the theorems of oscillation, some rather specific information as to the nature of 
the characteristic functions. The next thing was to consider the changes produced 
in the characteristic numbers and functions by changes in the coefficients of the 
equation or of the boundary conditions. Such questions are also touched upon by 
Sturm, but we will not enter upon their consideration here. 

As has already been said, all of these results including the theorems of 
oscillation, have their counterparts in the theory of linear difference equations, 
and it was from this side that the subject was first approached by Sturm. However, 
these oscillation properties will not hold for all equations of the form 

LiUi+1 + MiUi 4- NiUi_x = 0 (13), 

but only for those for which 2^A^ > 0 for all values of i with which we are concerned. 
As an illustration let us take the theorem that the roots of two linearly independent 
solutions of (1') separate each other. In order to get the analogous theorem for (13) 
we must introduce the conception of nodes as follows : Corresponding to the values 
i = l, 2 , . . . nlet us mark points xx,x2,...xn on the axis of x, whether equally spaced 
or not is for our present purpose of no consequence. At the point xi we erect an 
ordinate equal to Ui and we join the successive points thus obtained by straight 
lines. We regard the broken line thus formed as representing the solution U{ of 
(13), and the points where this line meets the axis of x we call the nodes of uit If 
the condition LiNi > 0 is fulfilled, it is readily seen that a solution of (13) not 
identically zero corresponds to a broken line which crosses the axis of x at each of its 
nodes, and here the theorem holds that the nodes of any two linearly independent 

* Sanielevici, Ann. de VEcole Normale Supérieure, 3rd ser. vol. 26 (1909), p. 19; Picone, loc. cit. (1909), 
and Richardson, Math. Ann. vol. 68 (1910), p. 279. The mere fact of the existence of an infinite number 
of positive and also of negative characteristic numbers (proved for instance under certain restrictions in 
Hubert's 5th Mitteilung) is an even more obvious corollary of Sturm's work, even if no restriction is placed 
on the sign of I. 

f Picone, loc. cit. p. 16. 
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solutions of (13) separate each other*. Without the restriction in question the 
theorem is false as the example f 

Ui+x Ui — U{—x = u 

shows. Here the solution determined by the initial conditions u0 = 0, ux = 1 gives 
for positive values of i Fibonacci's numbers 0, 1, 1, 2, 3, 5, 8, 13 , . . . with no node; 
while the solutions determined by u0 = - 10, ux = 6 and by u0 = ~lQ,ux = 7 both have 
several positive nodes, but these nodes do not separate each other. In the same 
way the other more complicated theorems of Sturm are, for the case of difference 
equations, essentially bound to the inequality in question. 

This apparent failure of the analogy is less surprising when we notice that every 
linear differential equation of the second order may be obtained as the limit of an 
equation of the form (1) in which after a certain point in the limiting process the 
inequality in question holds. I t is therefore only those difference equations that 
come nearest to the differential equations, so to speak, which share with them the 
simple oscillation properties. Difference equations of the form (13) in general will 
have oscillation properties of a very different character concerning which, so far as 
I know, nothing has been published, though from Sturm's brief remarks it seems 
possible that he had developed this theory also. 

The results of Sturm concerning the oscillatory properties of the solutions of 
differential equations and the existence of characteristic values have been carried 
forward in various directions since his time, partly by methods more or less closely 
related to his own and partly by a number of essentially different methods. Of 
these there are four which we may describe briefly as 

(1) Liouville's method of asymptotic expressions. 

(2) The method of successive approximations. 

(3) The minimum principle. 

(4) Integral equations. 

I t will be well for us to glance briefly at these methods in succession before proceeding 
to consider the present state of knowledge of the theory of one-dimensional boundary 
problems. 

§ 6. Asymptotic Expressions. 

Liouville's greatest contribution to the theory of boundary problems, which had 
been so brilliantly inaugurated by his friend Sturm a few years before, was first 
the discovery of asymptotic expressions for the large characteristic values and the 
corresponding characteristic functions, and secondly the application of these expressions 
in the theory of the development of arbitrary functions^. I t is the first of these 
questions which we must now consider. 

* E. J. Moulton, Annals of Math. vol. 13 (1912), p. 137. 
t Or, more generally, the difference equation satisfied by Gauss's symbols [a l5 a2, ... an].. 
Î Liouville's Journal, vol. 2 (1837), p. 16 and p. 418. 

M. a 12 
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Liouville begins by reducing equation (11), in which he assumes k > 0, g > 0, by 
a change of both independent and dependent variable to the normal form* 

^ + ( ^ - 1 ) ^ = 0, (/*2 = c2X) (14), 

where for the sake of simplicity we may suppose that the transformation has been 
so made that the interval (X) goes over into the interval (0, ir). I t is then sufficient 
to consider this simpler equation. The boundary conditions (12) may be written 

.eo-oi -(12)' u' (w) + Hu ( 

provided we assume a' ^ 0, ß' ± 0. If we suppose u multiplied by a suitable constant, 
the first equation (12') may be replaced by the two non-homogeneous conditions 

^(0) = 1, u'(0) = h (15), 

and it is the non-homogeneous boundary problem (14), (15) which Liouville first 
considers. He shows that its solution satisfies the relation 

h 
u = cos fjtic + -smfix+- \ ï(Ç)u(Ç)smfi(x-!;)dÇ (16). 

A6 H'J o 

This is of interest as being the first occurrence, so far as is known, of an integral 
equation of the second kind, and also because it is the first appearance of an integral 
equation as the equivalent of the system consisting of a differential equation and 
boundary conditions f. 

By means of (16) Liouville readily infers that u and u may be written 

^ i (x> H) 
u = cos fix + 

.(17), 
u' = — fi sin fix -f -\Jr2 (x, fJb) 

where fa and fa (and all functions which in this section are denoted by fa are 
continuous functions of (x, fi) which for all real values of fi and all values of x in 
(0, 7r) remain in absolute value less than a certain constant. From (17) we see that 
u differs when fi is large only in unessential ways from cos fix, so that the large 
characteristic values of fi may be approximately obtained, as is readily shown with 
entire rigour, by substituting cos fix in the second condition (12') in place of u. If 
then we denote the squares of the characteristic numbers arranged in order of 
increasing magnitude by /A0

2, fix
2, fi2

2,..., we may write for the positive values fii the 
expression n + i + ji, where 7; approaches zero as i becomes infinite, and n denotes 
an integer independent of i whose value is as yet unknown. It is worth while to 
notice that we thus get a new proof, quite independent of Sturm's, of the existence 
of an infinite number of positive characteristic values, and of a part of the theorem 
of oscillation, namely that at least after a certain point each characteristic function 

* Here and in what follows certain conditions of differentiability etc. must be satisfied by the coefficients 
of (11). Concerning the possibility of removing these restrictions cf. A. C. Dixon, Phil. Trans, vol. 211 
(1911), p. 411. 

t I.e. not only is (16) a consequence of (14), (15), but conversely (14), (15) is a consequence of (16). 
This last fact, it is true, is not brought out by Liouville. 
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has just one more root in (0, IT) than the preceding one. We see also that there 
are at most a finite number of negative or imaginary values for fi2. 

If, however, we are willing to make use of Sturm's theorem of oscillation, we 
may readily infer that n = 0 and thus get the more specific asymptotic formula 

A*i=s* + 7t> (lim 7̂  = 0) (18). 

The formulae (17), (18) are merely the roughest kind of asymptotic formulae, 
and Liouville proceeded to sharpen them by a further application of the integral 
equation (16). This process was carried a little farther by the same method by 
Hobson* whose results we record 

u = cos ax 1 + TlS^J1) 
L /* . + sin ux 

$ (x) fa(œ,fi) 
H 

L V* H? 
.(170, 

where <f> is continuous in (0, TT) ; 

. C $i , TT 1 f*î TTC = h + H+irì(x)dx (18'), 

and the constants Si are all in absolute value less than a certain constant. 

By substituting these asymptotic expressions for fii in the asymptotic expressions 
for u, Liouville and Hobson readily obtain, after certain reductions, asymptotic 
expressions for the characteristic functions, which need not be here recorded. 

All of these formulae, even the simple one (18), require certain modifications+ 
when in the boundary conditions (12) a' = 0 or ß' = 0 ; the method to be used, 
however, remains the same. 

These asymptotic expressions can be indefinitely sharpened. Thus Horn J, 
using another method, obtains expressions of the form (17'), (18') except that instead 
of containing only the first and second powers of 1/fi and 1/i, the powers from 1 to 
n~ enter, where n is an arbitrary positive integer. 

This paper of Horn was the starting point for the modern developments of this 
subject of asymptotic expressions. In a second paper by Horn§ and in papers by 
Schlesinger|| and Birkhoff 1Ï similar asymptotic expressions are obtained not only 
for equations of the second order in which the parameter enters in a more general 
way and in which the coefficients of the equation are not all assumed real, but also 
for equations of higher order in similarly general cases. These investigations refer, 
however, merely to asymptotic expressions of solutions of a differential equation 
either without special reference to the boundary conditions or else in the case where 

* Proc. London Math. Soc. 2nd ser. vol. 6 (1908), p. 349. 
t This was mentioned on p. 445 of my article II A la in the Encyclopädie and the formulae corresponding 

to (18) when one but not both of the quantities a', ß' are zero were given. By an oversight the case 
a!=j3' = 0, where (18) must be replaced by 

was not mentioned. These cases are considered by Kneser, Math. Ann. vol. 58 (1903), p. 136. 
t Math. Ann. vol. 52 (1899), p. 271. 
§ Math. Ann. vol. 52 (1899), p. 340. 
|| Math. Ann. vol. 63 (1907), p. 277. 
IF Trans. Amer. Math. Soc. vol. 9 (1908), p. 219. The method used in this paper was rediscovered by 

Blumenfchal, Archiv d. Math, u, Phys. 3rd ser. vol. 19 (1912), p. 136. 
12—2 
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the boundary conditions refer to a single point. The question of characteristic 
values does not present itself. This question, however, was taken up by Birkhoff 
in a second paper* in the case of the equation 

dnu dn~1u , • du • f . x , A '• h'(\\ 

where g and the p/s are continuous functions of x of which all except g may be 
complex while g is assumed to be real and not to vanish in (X). General linear 
homogeneous boundary conditions are considered, certain special cases merely (so-
called irregular cases) being excluded. Under these very general conditions Birkhoff 
establishes the existence of an infinite number of characteristic values, of which when 
n is qdd allbiit a finite number are simple,.while when,n is even an infinite number 
of multiple characteristic values can occur only in very special cases; and at the 
same time he obtains an asymptotic expression for them., By means ofthis result an 
asymptotic expression for the. characteristic functions is obtained. 

t h e question of the reality of the characteristic numbers, even when the 
coefficients of (19) are real, is not touched upon. Professor Birkhoff, however, 
calls my attention to the fact that it is possible to treat questions of this sort 
by the methods there given. For instance, to mention only an obvious case, one 
sees that if n is odd there can, apart from the irregular casesf, be at most a finite 
number of real characteristic values. 

| 7. The Method of Successive Approximations. 

Still another method which goes back to Liouville is the method of successive 
approximations. ,• Although in his published papers he used this method only in very 
special cases, it is certain that he was familiar with it in more general forms, though 
it is impossible now to say to what extent of generality he had carried it. The 
method may be formulated as follows in order to include the special cases to be 
found in the literature and many others : 

Let us write the homogeneous linear differential expression 

n/ . dnu dn-ru 

in the form P (u) = L(u) — M (u), 

where L, M are homogeneous linear differential expressions, whose coefficients we 
assume tobe continuous, of orders n and m<w. • The differential equation (1) may 
then be written 

L(û) = M(u) + r ...........................(2(ï). 

We wish to solve this equation subject to a system of linear boundary conditions 
which we will write in the form 

S W = Vi^d + Ji, : (i==l,2,...n) .(21), 

where Ui and V{ are homogeneous linear expressions in u(a), u (a), ...u[n~1](a), 

* Trans. Amer. Math. Soc. vol. 9 (1908), p. 373. 
f To these irregular cases belongs the one treated by Liouville in Liouville's Journal, vol. 3 (1838), 

p. 561. 
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u(b), ... u^n~1] (b). We have thus transposed part of equation (20) and conditions 
(21) to the second member, and we will suppose this so done that the auxiliary 
homogeneous system 

L(u) = 0, j 
Ui(u) = 0, (i=l,2,.:.n)\ '"""'• ( 2 2 ) 

is incompatible. We may then start from any function u0 for which M(uQ) is 
continuous in (X) and Vi(uQ) (i=l, ...n) are defined, and determine a succession of 
functions ux, u2,... by means of the equations 

L(ui+x) = M(u3) + r, 

Ui (uj+1) = Vi (tij) + yi, (i « 1, 2 , . . . n). 

If Uj and its first n — 1 derivatives converge uniformly throughout (X), and this is 
what we shall mean when we say the process converges, the limit of Uj is precisely 
the solution of the problem (20), (21). The question whether this process converges 
or not depends, as was noticed by Liouville in some special cases*, on the character
istic values for the problem 

L(u) = XM(u), 

Uiiu)^\ri(u)f (i = i ,2 , , . r 7i)[ ( 2 8 ) > 

This connection can best be stated by considering the system 

i(M) = X[J f (w)+rJ + r8, 
(24) 

^ ( ^ ) = = X [ F , ( ^ ) + 7/] + 7/ /, (i = l,2,...n)f h 

where rx + r2 = r, 7 / + 7/' = yif M (u0) + rx *= 0, and Vi (u0) f 7/ = 0, so that when X = 1 
(24) reduces to (20), (21). The fact then is this : 

The method of successive approximations applied to (24) (in the same way in 
which it was applied above to (20), (21)) converges for values of X lohich lie in a 
certain circle (finite or infinite) described about X = 0 as centre and diverges outside. 
If this circle is not infinite, its radius is precisely the absolute value of one of the 
characteristic values of (23). All the characteristic values of (23) which lie within 
this circle are such that for them the system (24) has solutions (necessarily in infinite 
number), while if all the characteristic values on its circumference are simple roots of 
the equation (5), there is at least one of them for which the system (24) has no solution f., 

If there exist no characteristic values, it follows that the method of successive 
approximations will always converge; and this will, in particular, be the case if only 
one of the end-points a or 6 enter in the boundary conditions. The well-known fact 
that in this case the method of successive approximations surely converges J appears 
thus as a special case of the above general theorem. 

In other cases, in which characteristic values do exist, it will be important in 
applying the theorem to know whether for à given characteristic value of X the 
system (24) has solutions or not. Necessary and sufficient conditions of this sort 

* Liouville?s Journal, vol. 5 (1840), p. 356. 
t The statement here made goes far beyond anything I. have found in the literature, and is sufficient 

for our purposes, although a considerable generalization is possible. I expect to take up this matter in 
detail on another occasion. 

X Cf. Fuchs, Annali di Matematica, ser. 2, voi. 4 (1870), p. 36. 
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have been given by Mason* in fairly general cases for differential equations of the 
second order. By means of such conditions the above theorem can of course be 
thrown into other, but equivalent, forms. In all investigations with which I am 
acquainted where the method of successive approximations is used a special case of 
this theorem in some of its forms plays a central part. Thus in Picard's well-known 
application of the method f to the semi-homogeneous problem 

~+XA(x)u = 0, A>Q 

-, u(a) = u(b) = l, 

the fact upon which the possibility of applying the method depends is that the 
successive approximations converge or diverge according as | X | is less or greater 
than the smallest characteristic value ; and this is readily seen to be substantially 
a special case of the above theorem. Again, although the term successive approxi
mation is not used, §§ 9,10 of Kneser's paper of 1903;j; are in substance an application 
of this method to the semi-homogeneous problem 

s(*s) + <*-*>«+/«0, 
au (a) + du' (a) — 0, | a \ + | OL j ^ 0, 

j8tt(6) + j8V(6) = 0, |/3|-f|/3'|=É0, 

and the first of these sections may be regarded as a proof of the above theorem so 
far as it refers to this special case. 

A second essential element in almost all applications of the method of successive 
approximations is constituted by Schwarz's constants which serve the purpose of 
giving a second test of the range of convergence of the process. I t is by a comparison 
of the inferences drawn from these two methods that the final result is deduced. 
For details we refer here to the work of Picard and Kneser already cited. 

§ 8. The Minimum Principle. 

That linear boundary problems can be brought into intimate connection with 
the calculus of variations was first noticed and is still best known in connection 
with Laplace's equation, where the method involved has received the now almost 
universally accepted misnomer Dirichlet's Principle. I t was pointed out by 
Weierstrass some fifty years ago that the existence of a minimum is here by no 
means obvious and that Dirichlet's Principle does not establish rigorously the existence 
of a solution of the boundary problem in question. This criticism was, however, 
not generally known in 1868 when H. Weber § applied a similar method to establish 
the existence of characteristic numbers for the partial differential equation 

d2u d2u 79 

* Trans. Amer. Math. Soc. vol. 7 (1906), p. 337. See also C. B. vol. 140 (1905), p. 1086. Cf. also for 
equations of higher order, Dini, Annali di Mat. vol. 12 (1906), pp. 240 ff. 

f Traité d'Analyse, vol. 3, 2nd edition, p. 100. 
X Math. Ann. vol. 58, p. 81. See also for more general cases the paper of Dini just cited. 
§ Math. Ann. vol. 1, p. 1. 
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subject to the boundary condition w = 0. While this work of Weber thus remained 
inconclusive, it at least made it clear that granting the existence of a minimum a 
precisely similar method could be carried through in the similar one-dimensional 
case*. The facts here are these: 

Consider the problem of determining the function u (x) with continuous first 
and second derivatives in (X) which satisfies the conditions 

u (a) = u(b) = 0, 

Au2dx = 1 i 
J a (A being a given function which is everywhere positive), and which minimizes the 

integral 

J— I u'2dx. 
J a 

If we admit that such a function, uQ, exists and call the corresponding 
(minimum) value of J, X0, it is readily proved that X0 is a characteristic number 
for the differential equation 

d^2 + XAu = ° 
with the boundary conditions u (a) = u (b) = 0, 

and that u0 is the corresponding characteristic function. Moreover it is shown that 
X0 is the smallest characteristic number. 

To get the next characteristic number we add to the conditions imposed above 
on u the further one 

rb 
Au0udx = 0. 

J a 

The function ux satisfying this condition as well as those stated above and minimizing 
J is the second characteristic function and this minimum value of J is the second 
smallest characteristic number, Xx. 

By adding to the conditions already imposed the further one 
rb 

Auxudx = 0, 
J a 

we get the third characteristic value and function, etc. 

After Hilbert's brilliant achievement in 1899 of inventing a method by which 
in many cases the existence of a minimizing function in problems of the calculus of 
variations may be established, it was natural to hope that this method might be 
applied successfully to this problem also. This was in fact done by Holmgren f, but 
a far simpler method of accomplishing the same result for this special problem, as 
well as for certain other boundary conditions, had been invented a little earlier by 
Mason I to whom the problem had been proposed by Hilbert. As first given, this 

* Cf. Picard, Traité d'Analyse, 1st edition, vol. 3 (1896), p. 117, where only a partial account of the 
matter is given. 

f Arkivför Mat., Astr. och Fysik, vol. 1 (1904), p. 401. 
X Dissertation, Göttingen, 1903. Some serious mistakes contained here were corrected in the abridged 

version, Math. Aim. vol. 58 (1904), p, 528. 
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method involved the use of some of Fredholm's results in the newly developed 
theory of integral equations, but it has been subsequently modified by Mason so as 
to be entirely independent of this theory and at the same time extended to much 
more general cases*. Still another method of establishing the existence of a 
minimum was given by Richardson f. This method depends essentially on develop
ment theorems in the theory of integral equations. 

| 9. The Method of Integral Equations. 

We come finally to the method of integral equations which has held such a 
prominent place in the mathematical literature of the last few years. The central 
fact here is that a linear differential equation, whether ordinary or partial, together 
with a system of linear boundary conditions can be replaced by a single integral 
equation of the second kind. We have already seen how this fact presented itself in 
a very special case in the early work of Liouville. In the case of the fundamental 
boundary problem for Laplace's equation it formed the starting point for Fredholm's 
epoch-making investigations. I t was however reserved for Hilbert % to bring out 
this relation clearly in more general cases, and to make use of it in the theory of 
characteristic numbers of differential equations and of the developments according to 
their characteristic functions. 

The relation of the linear boundary problem for ordinary differential equations to 
the subject of integral equations is actually established by formula (3) above which 
may be regarded as an integral equation of the first kind for the function r (x). The 
integral equation of the second kind originally used by Hilbert in the case of certain 
self-adjoint systems was 

f(œ) = u(œ) + \(b&(at,Ç)u(Ç)dÇ (25), 
J a 

where G is the Green's function of a certain homogeneous system, the differential 
equation of which we will denote by L(a)^ 0. Hilbert shows that the reciprocal, 
G (x, £, X), of the kernel XG (x, £) of this equation (the " solving function ") is precisely 
the Green's function of the equation 

L(u) + \u = 0: (26), 

with the same boundary conditions as before. Since the characteristic numbers for 
this last system are the poles of its Green's function, we see from one of the most 
fundamental of Fredholm's results that these characteristic numbers are the values 
of X for which the determinant of equation (25) vanishes ; that is they are, according 
to Hubert's terminology, the characteristic numbers of the homogeneous integral 
equation 

u(x) + xi G(x,Ç)u(Ç)dÇ = 0 (27). 
J a 

A comparison of this equation with the equation of the first kind (3) shows that 

* Trans. Amer. Math. Soc. vol. 7 (1906), p. 337, also vol. 13, p. 516. For the treatment of the special 
case here mentioned see The New Haven Colloquium of the American Mathematical Society, 1910, p. 210. 

f Math. Ann. vol. 68 (1910), p. 279. 
X Göttinger Nachrichten, 1904, Zweite Mitteilung, p. 213. 
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if X is a characteristic value, every solution of (27) is a solution of (26) which satisfies 
the given boundary conditions, and vice versa. Consequently we have in (27) a 
homogeneous integral equation of the second kind equivalent to the homogeneous 
system consisting of (26) and a set of homogeneous boundary conditions indepen
dent of X. 

In the cases considered by Hilbert, G is a real symmetric function of (x, £), that 
is we have to deal here with what we have called a real self-adjoiiit system. Here 
Hilbert's beautiful theory of integral equations with real symmetric kernels comes 
into play*, the fundamental theorem in which is that such a kernel always has at 
least one characteristic numberf and can have no imaginary characteristic numbers. 
I t was possible for Hilbert to go at once farther since the kernel G was readily shown 
to be closed, that is to be such that the equation 

f 
J a 

is satisfied by no continuous function u except zero. For such kernels he had 
established the existence of an infinite number of characteristic numbers. He thus 
obtained at one stroke the theorem: Every real self-adjoint system in which the 
parameter X does not enter the boundary conditions, and enters the differential 
equation only in the form (26), has an infinite number of real and no imaginary 
characteristic numbers J. 

Other applications made by Hilbert, including the theorems concerning the 
developments according to characteristic functions, will be mentioned later. 

Hilbert has sketched at the close, of his fifth and in his sixth Mitteilung^ still 
another method for reducing a boundary problem to an integral equation of the 
second kind. This method, which he carried through in detail only in the case of 
a special partial differential equation, leads us to a kernel which is not a Green's 
function, but is formed by means of a parametrix, that is a function of (x, £) which 
satisfies the same boundary conditions as the Green's function, and whose (n — l)th 
derivative has the same discontinuity, but which does not satisfy the differential 
equation. 

A linear integral equation may be regarded as the limiting form of a system of 
linear algebraic equations. This fact, which had been noticed by Volterra and put to 
essential use by Fredholm, as the very names determinant and minor sufficiently 
indicate, was made by Hilbert in his first paper the foundation, not merely 

* Göttinger Nachrichten, 1904, Erste Mitteilung, p. 49. This theory was subsequently put into still 
more elegant and complete form by E. Schmidt, Göttingen dissertation, 1905, Math. Ann. vol. 63 
(1907), p. 433. 

f In my Tract : Introduction to the Study of Integral Equations, Cambridge, England, 1909, p. 47, 
I erroneously attributed this theorem to Schmidt. This mistake will shortly be corrected in a second 
edition. 

X It is no essential generalization, as Hilbert himself points out, to consider the differential equation 

1/,(%)••+X0M = O,-• 
where g is continuous and does not vanish. The general conception of a self-adjoint system is not 
formulated by Hilbert, but his work evidently applies to this case. 

§ Göttinger Nachrichten, 1906, p. 480 ; 1910, p. 8. 
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heuristically but also in the way of rigorous deduction, of the theory of integral 
equations of the second kind. We thus have two methods of treating a boundary 
problem in one dimension as the limit of an algebraic problem concerning linear 
equations; first the direct method of difference equations described near the 
beginning of this lecture, and secondly the indirect method of replacing the 
boundary problem by an integral equation and regarding this as the limit of a linear 
algebraic system. Not only do these two methods look very unlike when super
ficially considered, but they present also a deeper lying difference : the determinant 
and its minors of the linear algebraic system whose limit is the integral equation 
approach definite limits, namely the Fredholm determinant and the Fredholm minors 
of the integral equation; whereas the determinant and its minors of the system of 
difference equations do not approach any limits as we pass over to the transcendental 
case. In spite of this apparently essential difference, there is the very closest 
relation between these two methods of obtaining the transcendental problem as the 
limit of an algebraic one. This relation was pointed out to me a few days ago in 
conversation by Dr Toeplitz of Göttingen, and may be briefly stated as follows : 

If we use Hubert's original method of passing from the differential to the 
integral equation by means of the Green's function G (x, £), as explained above, the 
connection with the system of difference equations may be established by considering 
the homogeneous linear algebraic system reciprocal to the system of difference 
equations of which L (u) = 0 is the limit. This system has as its matrix, as is readily 
seen, precisely the Green's function of the difference equation, and if we add to the 
terms in the principal diagonal the quantities 

UQ UX un 

XX X 

we get the linear algebraic system of which the integral equation (27) is the limit. 

On the other hand, if we use the parametrix to pass from the differential to the 
integral equation, the connection with the difference equation is even more direct. 
In order to make the determinant and its minors of the difference equation converge 
when we pass to the limit, it is sufficient to combine the linear algebraic equations 
into an equivalent system by taking suitable linear combinations with constant 
coefficients of the equations, and this can be done in an infinite number of ways. 
The limit of the algebraic system as thus modified is precisely the integral equation 
of the second kind yielded by the use of the parametrix, 

These relations will be explained in detail in Dr Toeplitz's forthcoming book on 
integral equations. 

All the methods which have been devised to treat linear integral equations, for 
instance Hubert's method of infinitely many variables, may be regarded as being 
indirect methods for the treatment of linear boundary problems ; but any discussion 
of such questions would obviously be beyond the scope of this lecture, 

§ 10. The Present State of the Problem. 

The methods discussed in the last three sections have in common the very 
important advantage that they are capable of generalization without serious difficulty 
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to the case of partial differential equations. It was therefore well worth while for 
their inventors and others to apply them somewhat systematically to the proofs of 
theorems in the case of the one-dimensional problem which had been already proved 
by other methods. The fact that the proofs by the newer methods were almost 
invariably both less direct and less simple than the earlier proofs leaves these 
applications of the newer methods still of decided interest, since they pointed the 
way to be followed in deducing really new results for partial differential equations. 
As an example in point I mention Eichardson's use of the calculus of variations in 
proving Sturm's theorem of oscillation*. 

I wish now, however, to indicate the stage which has been reached in results 
rather than in methods, and in doing this we begin with the case of the differential 
equation of the second order. 

Twelve years ago in writing the article on boundary problems in one dimension 
for the mathematical Encyclopaedia I was obliged to present as an unsolved, and 
indeed until then almost unformulated, problem the question of solving the real 
homogeneous equation of the second order 

£ + P^Ìx + q^X)u = 0 (28)' 
subject to the " periodic " boundary conditions 

u(a) = u(b), w ,(a) = %,(6) (29). 

If we assume that as X increases through the interval 

1<X<L (A), 

q constantly increases from negative or zero values to values which at least for some 
part of (X) become positively infinite, and that 

rb 

I p dx = 0, 
J a 

this problem has since been answered by the following theorem of oscillation which 
I quote in detail because it really goes beyond Sturm's results and is at the same 
time simplef : 

The problem (28), (29) has an infinite number of characteristic numbers in the 
interval (A), and these have L as their only cluster point. If we indicate these 
characteristic numbers in order of increasing magnitude by X0, Xx, X2, ..., each double 
characteristic number being repeated, and the corresponding characteristic functions by 
u0, ux, u2, ..., then un vanishes an even number of times, namely n or n + 1 times. 

This theorem was not completely proved until Birkhoff J in 1909 established it 
as a special case of a much more general theorem of oscillation referring to the 

* Math. Ann, vol. 68 (1910), p. 279. 
t Given in my Encyclopaedia article for the special case in which q has the same value at a + £ as at b - £ 

while the values of p at these two points are the negatives of each other (the statement as to p is there 
incorrectly given); for the case where q = \g-l{g>0), by Mason, C. R. vol. 140 (1905), p. 1086 (see also 
Tzitzeica, ibid. p. 492) ; as here stated, by Bôcher, G. R. vol. 140 (1905), p. 928, except that it was not 
there proved that only two w's have the same number of roots. 

X Trans. Amer. Math. Soc. vol. 10, p. 259. Special cases of these results were subsequently deduced by 
another method by Haupt, Dissertation, Würzburg, 1911. 
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general real self-adjoint homogeneous problem for the differential equation of the 
second order*. These results of Birkhoff, which he obtains by a natural extension of 
Sturm's methods, may be regarded as on the whole the high-water-mark of our 
subject so far as theorems of oscillation are concerned. They do not, however, at 
present include Sturm's theorems of oscillation when K depends on X or even the 
special case mentioned above where q is replaced by Xg — Z, g changing sign, 
but 1^0. 

I t is perhaps of interest to return for a moment to the periodic case in order to 
remark that if we seek there not the truly periodic solutions (on the supposition that 
p and q have the period b — a) but periodic solutions of the second kind, i.e. if we 
seek to make u(b) and u' (b) merely proportional to u(a) and u'(a),we are imposing 
not a linear but a quadratic homogeneous boundary condition, viz. 

u (a) u' (b) — u (a) u (b) = 0. 

This example of a quadratic boundary problem is interesting because of its relative 
simplicity—the problem always has one, and in general two, linearly independent 
solutions. I t was considered explicitly by Floquetf in 1883, but is essentially the 
problem of Riemann, and Fuchs concerning the existence of solutions of an analytic 
linear differential equation which behave multiplicatively when we go around a 
singular point. Concerning this quadratic problem and its relations to the linear 
problem (28), (29) reference should also be made to the work of Liapounoff J. 

We come next to a series of interesting but rather special investigations 
concerning the equation of the fourth order. The equations here considered are of 
the self-adjoint form 

d2 f1 d2u\ % A . , • ' 

In 1900, and more generally in 1905, Davidoglou§ treated this equation by the 
method of successive approximations, the boundary conditions being the very special 
ones which present themselves in the theory of the vibrating rod. By using Picard's 
methods it was shown that Sturm's theorem of oscillation may be transferred without 
change to this case, multiple roots for the characteristic functions never occurring 
between the points a and b. This same differential equation has since been 
treated by Haupt (loc. cit.) subject to more general, but still very special, real 
homogeneous self-adjoint boundary conditions; the method used being to consider 
the effect on the characteristic numbers and functions of continuous changes in the 
differential equation—a method, it will be seen, not unlike in spirit, however it may 
differ in detail, from the methods used by Sturm. 

In all the cases mentioned so far only self-adjoint problems have been considered. 
Liouville||, in 1838, considered a special real but not self-adjoint homogeneous 

* This requires p s O in (28), but this is no essential restriction. 
t Annales de "VEcole Normale Supérieure, 2nd ser. vol. 12, p. 47. 
X Memoirs of the Academy of St Petersburg, 8th ser. vol. 13 (1902), No. 2, where references to some 

earlier work by the same mathematician will be found. 
§ Annales de VEcole Normale Supérieure, 3rd ser. vols. 17 and 22, pages 359 and 539. 
|| Liouville's Journal, vol. 3, p. 561. 
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equation of the nth order with boundary conditions of a rather special form* to which 
special methods were applicable resembling those used in establishing Fourier's 
theorem concerning the number of real roots of algebraic equations. In this way 
a theorem of oscillation precisely like Sturm's was established. Liouville noticed 
that the characteristic values were the same for this problem and its adjoint, and 
that the corresponding characteristic functions for these two problems have the same 
number of roots. 

Finally we note a very recent paper by v. Mises f who reverts to Sturm's original 
method of obtaining the differential equation as the limiting form of a difference 
equation to treat the equation (11) either under the assumption g > 0 or I > 0 and 
with the boundary conditions 

rb rb 
I Audx — 0, I Budx — 0, 

Ja Ja 

where A and B are given functions. From what was said in § 2 it will be seen that 
these are equivalent to conditions of the form (2'), where, however, the coefficients are 
in general functions of X of a special kind. 

The only other result of a general character which has been obtained is 
Birkhoff's proof, already mentioned, of the existence of an infinite number of 
characteristic numbers for the general (not necessarily real or self-adjoint) boundary 
problem in which the parameter does not enter the boundary conditions, and enters 
the differential equation only in the form indicated in (19), g being real and positive, 
and his asymptotic expressions in this case. A similar result of Hub J deserves 
notice, although it refers only to special equations of the first and second orders, 
because it involves non-homogeneous differential equations with n - f1 instead of n 
non-homogeneous boundary conditions ; a case, however, which may readily be 
reduced to the type of problem we have been considering (i.e. a homogeneous system 
involving n boundary conditions) provided we are willing to admit the parameter 
into the coefficients of one of the boundary conditions. 

§ 11. The Sturm-Liouville Developments of Arbitrary Functions. 

Almost as old as linear boundary problems themselves, and indeed one of the 
chief causes for the importance of and continued interest in these problems, is the 
question of developing a more or less arbitrarily given function / (x) in the form of a 
series whose terms are the characteristic functions of such a problem. The simplest 
case here is that of the system (11), (12), with which alone we shall be concerned in 
this section§. Moreover we assume g > 0. Denoting the characteristic functions by 
u^ %, . . . , we have the problem of determining the coefficients c0, cx, ... so that the 
development 

f(x) =zc0u0 + cxux+ ... (30) 

* Namely n~;1,homogeneous conditions involving a and one homogeneous condition involving b. 
Liouville writes, to be sure, n non -homogeneous conditions at a, but they are, for his purposes, equivalent 
to n - 1 homogeneous ones. 

t H. Weber, Festschrift, 1912, p. 252. 
X Crelle's Journal, vol. 140 (1911), p. 205. 
§ We will assume that neither a' nor ß' is zero. These are exceptional cases which require a separate 

treatment which presents no difficulty. 
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shall be valid. By means of (9) we readily see that the u/s satisfy the relation 

•rb 
gUiUjdx^O, (i±j) • (31), 

J a 

by means of which the formal determination of the coefficients of (30), precisely as in 
the case of Fourier's series, is effected, namely 

J a 
gfui dx 

Ci = J~f , .(» = 0 , 1 , ...) (32). 
gui2dx 

Ja 
Liouville* set himself the problem of considering this formal development of 

Sturm and proving first that it converges, and secondly that its value is f(oo), but 
though he invented methods of great importance and got some valuable results, he 
did not succeed in carrying his treatment even for the simplest functions f(x) to 
a successful conclusion. 

Let us first consider the question of showing that if / (x) is continuous and the 
series (30) with coefficients (32) converges uniformly in (X), its value must be 
precisely f(oc). Liouville by a simple and ingenious process showed that under 
these conditions the function represented by the series coincides with the function 
f(x) for an infinite number of values of x in (X), but did not perceive that this was 
not sufficient. A rigorous proof was first given by Stekloff-f" in 1901 (modified and 
simplified in 1903 by Kneser|) by the method of successive approximations. Further 
proofs have since been given, namely one by Hilbert § completed by Kneser|| by 
means of integral equations, and a very simple one by MasonH by means of the 
calculus of variations. 

If we turn to the question of the convergence of the series, we find that 
Liouville accomplished decidedly more than in the matter just considered, since 
he proved by a method, which when examined in the light of our modern knowledge 
proves to be essentially rigorous, that if f(x) is continuous and consists of a finite 
number of pieces each of which has a continuous derivative, the series will converge 
uniformly. This he did by means of the asymptotic expressions of § 6. Finally 
Kneser** in his remarkable papers of 1903 and 1905, which so far as wTe have not 
already described them depend essentially on the use of asymptotic values, gave a 
comprehensive, rigorous, and simple treatment of this whole subject which applies 
to functions satisfying Dirichlet's conditions throughout the region (X), and even 
establishes the uniform convergence of the development in any portion of (X) 
where f(x) is continuous. Thus, with Kneser's papers, all the more fundamental 
questions concerning the development of an arbitrary function in a Sturm-Liouville 
series were completely and satisfactorily settled. 

* Liouville's Journal, vol. 1 (1836), p. 253; vol. 2 (1837), p. 16 and p. 418. 
t Anni de la Faculté des sciences de Toulouse, ser. 2, vol. 3, p. 281. 
X Math. Ann. vol. 58, p. 81. 
§ Göttinger Nachrichten, 1904, 2te Mitteilung, p. 213. 
|| Math. Ann. vol. 63 (1907), p. 477. 
11 Trans. Amer. Math. Soc. vol. 8 (1907), p. 431. 
** Math. Ann. vol. 58, p. 81 and vol. 60, p. 402. 
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I t was however of interest to accomplish the same thing in other ways, and two 
other methods essentially distinct from Kneser's and from each other have since 
been developed. The first of these was Hilbert's remarkable application of integral 
equations to this development problem*, while the second by A. C. Dixon j* involved 
Cauchy's method of residues. 

The subject was not however hereby exhausted. There remained, for instance, 
the question of showing that, as in the case of Fourier's series, the convergence of the 
development at a particular point depends, roughly speaking, only on the behaviour 
of f(x) in the neighbourhood of this point, a question which was successfully treated 
by Hobson\. One could, however, hardly have anticipated that there was still room 
for such an extensive advance as was to be made by Haar§ in two papers which seem 
to have such a degree of finality that we must consider them in some detail. 

Haar's work, like almost all other work on this subject, involves the reduction of 
the differential equation to the normal form (14) by means of Liouville's transforma
tion, and, for the sake of simplicity, it is only of this normal form I shall speak. 
Moreover we will assume that the characteristic functions have been multiplied by 
such constants as to make the denominators of the coefficients (32) have the value 1. 

From the earlier work on the development of functions we need merely assume 
as known that the very simplest kind of functions, say analytic functions, are 
represented uniformly by their Sturm-Liouville development. 

Let us now denote by sn (x) and an (x) the sums of the first n + 1 terms of the 
Sturm-Liouville and of the cosine development of f(x) respectively : 

We have then 

where 

fir n 

Sn (#) = f(a)tui (a) ui (x) da, 
J 0 2 = 0 

rtr r 1 2 ^ . . "1 
crn (x) = f(a) — i— 2 cos ia cos ix da. 

Jo [_7T 7Ti=zl J 

sn(x)- <rn(x) = I f(a)<&n(a,x)da .......(33), 
Jo 

n 1 2 % 

<3>n (a, x) = 2 Ui (a) Ui(x) 2 cos ia cos ix. 
i = 0 77 7T^ = i 

Now the central fact discovered by Haar, from which everything else flows with the 
greatest ease, is that whatever continuous function f (x) represents 

lim [sn (x) — an (x)] = 0 uniformly. 
n=cc 

* Göttinger Nachrichten, 1904, 2te Mitteilung, p. 213, where, however, the conditions imposed on f(x) 
were extremely restrictive. The matter was treated more generally by Kneser, Math. Ann. vol. 63 (1907), 
p. 477. 

t Proc. London Math. Soc. ser. 2, vol. 3 (1905), p. 83. 
X Proc. London Math. Soc. ser. 2, vol. 6 (1908), p. 349. 
§ Zur Theorie der orthogonalen Funktionensysteme. Göttingen dissertation (1909). Reprinted Math. 

Ann. vol. 69 (1910), p. 331. Also a second paper, Math. Ann. vol. 71 (1911), p. 38. See also Mercer, Phil 
Trans, vol. 211 (1911), p. 111. 
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The proof consists of three steps of which I give all but the first completely : 

(a) By means of the asymptotic expressions for Ui it is shown that there exists 
a constant if (independent of a, x, n) such that 

\®n(a,x)\<M. 

(b) If f(x) is analytic we know that sn(x) and crn(x) both approach f(x) 
uniformly. Consequently in this case, by (33), 

lim I f(a) <&n (a, x)da = 0 uniformly. 
n-<x> J 0 

(c) Whatever be the continuous function/(#), form a sequence (jyx (x), <£2 (x), ... 
of analytic functions which approach f(x) uniformly. We may write 

sn (oo) - an (x) ==' [ / (a) - 0m (a)] <ï>n (a, x) da + <j>m (a) <&n (a,x) da. 
Jo Jo 

Since (f)m approaches / uniformly, we see by (a) that m may be so chosen that for all 
ri's and #'s the first of these integrals is in absolute value less than -|e. Having thus 
fixed m, we see by (b) that the second integral can be made in absolute value less 
than -|e by taking n sufficiently large. This completes the proof. 

I t is now merely restating a part of what we have just proved if we say : 

The Sturm-Liouville development of any continuous function f(oc) in the case of 
the normal system (14), (12') converges or diverges at any point of (X) according as the 
cosine development of f(x) converges or diverges there. It diverges to + oo (— oo ) when 
and only when the cosine development does this. It converges uniformly through a 
portion of (X) when and only when this is true of the cosine development. 

If we now denote by Sn (x) and Sn(x) the arithmetic means of the first n ss and 
o-'s respectively, we may infer easily from the fact that sn — crn approaches zero 
uniformly, the further fact that 

lim [Sn (x) — Xn (#)] = 0 uniformly. 
n=cc 

Consequently, since Fejér has proved that the cosine development of a continuous 
function of "x is always uniformly summable by the method of the arithmetic mean 
to the value of the function, it follows that the same is true of the Sturm-Liouville 
development of any continuous function. 

The extension to the development of discontinuous functions is not at all 
difficult and leads, as is indicated by Haar, to analogous results. 

Finally in his second paper Haar shows how still other theorems concerning 
trigonometric series, namely those established by Riemann and his followers, can be 
carried over to the Sturm-Liouville developments with only very slight changes. 

§ 12. Other Developments. 

The most immediate and natural extension of the Sturm-Liouville developments 
is to the development according to the characteristic functions of a system which 
consists of the differential equation (11), in which g > 0, and in place of the Sturmian 
conditions (12) a more general pair of real self-adjoint conditions, thus including, for 
instance, the periodic conditions (29). The formal work in these cases is the same as 
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before, since the relation (31) is still satisfied. Some cases of this sort were treated 
by Hilbert in his second Mitteilung (1904) by the method of integral equations but 
only under very restrictive conditions on the function f(x) to be developed, namely 
the continuity of its first and second derivatives, besides the further fact that f(x) 
must satisfy the same boundary conditions as the characteristic functions in terms of 
which it is to be developed. Shortly after, the general case here described was treated 
by A. C. Dixon, in the paper referred to above, by Cauchy's method of residues, the 
restrictions to be placed upon/(#) being very much less restrictive. 

Here again an essential advance was made by Birkhoff* in 1908. Even more 
significant here than the generalization to equations of the nth order of the form 
(19)f is the fact that the condition of reality is dropped and that the system 
considered is no longer required to be self-adjoint. This last generalization makes, 
as Liouville had already noticed in a special case J, an essential change even in the 
formal work of expansion, since formula (31) is no longer valid. It is desirable now 
to consider by the side of the given problem the adjoint problem. This has, as we 
know, the same characteristic values as the original system, and if we denote the 
corresponding characteristic functions first of the original system and then of the 
adjoint system by 

UQ , U\, U%, . . . 

VQ, Vlf Vz, . . . 

respectively, we have the relation 
rb 

I 
J a 

gUiVjdx = 0, (i±j) (34), 

which reduces to (31) when the system is self-adjoint. We have then essentially not 
an orthogonal but what is known as a biorthogonal system. By means of this 
equation the coefficients may be formally determined by the expression 

gfvidx 
Ci = fb (35), 

I gu^idx 
J a 

where, however, the question of the possible vanishing of the denominator must be 
further considered. This formal work, which had been given by Liouville in a special 
case, is the basis of Birkhoff's paper. 

At a characteristic number \ the Green's function G (x, | ) has in general a pole 
of the first order whose residue Birkhoff finds to be given by the formula 

Ui (oc) Vi (£) 

I gu^idx 
J a 

* Trans. Amer. Math. Soc. vol. 9, p. 373. A very special case of Birkhoff's result was subsequently 
obtained by essentially the same method by Hilb, Math. Ann. vol. 71 (1911), p. 76. 

+ Westfall had in 1905 (Göttingen dissertation) considered the real self-adjoint case where the equation 
is of even order, where, however, no essentially new features occur. The method used was Hubert's and 
the restrictions imposed on / were correspondingly great. 

X Liouville's Journal, vol. 3 (1838), p, o61» 
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This when multiplied byf(lj) and integrated from a to b is precisely the general term 
of the formal development off(x) according to the functions^. Consequently the 
sum of the first n 4-1 terms of this formal development may readily be expressed as 
a contour integral in the \-plane whose path surrounds the first n-f 1 characteristic 
numbers X0, \ , ... Xn. Birkhoff then evaluates the limit of this contour integral as 
n becomes infinite by means of the asymptotic expressions for the characteristic 
functions Ui, Vi, and thus establishes at one stroke in fairly general cases both the 
convergence of the series and the fact that it represents the function f(oo). 

A similar treatment has since been given by Hilb in the case of two special 
non-homogeneous systems mentioned at the end of § 10. 

The Sturm-Liouville developments have also been generalized in one other 
direction, namely to the case where in the equation of the second order (11) the 
function g changes sign while I ^ 0. The results here are still very incomplete, only 
the real case with certain special self-adjoint boundary conditions having been so far 
treated. The first treatment was by Hilbert* in 1906, when by means of his theory 
of polar integral equations he succeeded in establishing the validity of the 
development under very special restrictions including the continuity of the first four 
derivatives of the function to be developed. Mason's proof by means of the calculus 
of variations, referred to above, that if / is continuous and the series converges 
uniformly, the development represents the function, is valid in this case also. 

The numerous important contributions which have been made during the last 
few years to the theory of series of orthogonal or biorthogonal functions in general 
all have a direct bearing on the questions here considered, and some of them give, 
even in the special cases we are here concerned with, essentially new results. I t 
would, however, lead us too far if we should attempt to follow up these more general 
investigations. 

§ 13. Conclusion. 

The questions we have been considering may be classified roughly as 
(a) Existence Theorems, (6) Oscillation Properties, (c) Asymptotic Expressions, 
(d) Development Theorems. For the Sturm-Liouville system (11), (12) the investi
gation of all of these questions has been carried to a high degree of perfection, 
although even here the field is not yet exhausted. In the real self-adjoint case for 
the equation of the second order (11) where g > 0 results of a fair degree of complete
ness in all these directions have also been attained. In most other cases, however, 
the ground has only just been broken and nearly everything is still to be done. 

Of the methods invented during the last few years undoubtedly that of integral 
equations is the most far-reaching and powerful. This method would seem however 
to be chiefly valuable in the cases of two or more dimensions where many of the 
simplest questions are still to be treated. In the case of one dimension where we 
now have to deal with finer or more remote questions other, in the main older, 
methods have so far usually proved to be more serviceable. I t is only fair to mention 

* Göttinger Nachrichten, 5te Mitteilung, p. 473. Cf. also Fubini, Annali di Mat. ser. 3, vol. 17 (1910), 
p. I l l , where Hubert's restriction that g vanish only a finite number of times in (X) is removed. 
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here the very important treatment given by Weyl of cases in which singular points 
occur at a or 6. The development theorems here, where we have frequently not 
series but definite integrals, or even mixed forms, have so far been handled only 
by the use of integral equations. Apart from this, it may fairly be said that the 
greatest advances of recent years in the theory of boundary problems in one 
dimension, I recall for instance Birkhoff's three important contributions, have been 
made by other methods, largely indeed by methods more or less closely analogous to 
the original methods of Sturm and of Liouville. If my lecture to-day can serve to 
emphasize not the historical importance but the present vitality of these methods it 
will have served one of its main purposes. 

13—2 




