
REGENT DEVELOPMENTS IN RELAXATION TECHNIQUES 

E. STIEFEL 

I. One of the usual procedures for the solution of a system of real 
linear equations 

Ax = k (1) 
is iteration. Beginning with a trial point xQ, a sequence of points xi is to be 
constructed which approaches the point of exact solution A_1k; For the sake 
of simplicity we shall take x0 as the origin. In order to check the goodness of 
any approximation, we set xt into the equations and form the residual-vector 

r{ = k - Ax€. (2) 

The iteration procedure consists of following,a set of rules, which determine 
how to compute xi+1 from the preceding approximations. We shall call this 
set of rules the iteration algorithm and we limit ourselves to so-called linear 
iterations of the type 

w—1 

xi+1 = 2 C/«*<_, + v,. 
3=0 

The CW are matrices, which may depend upon A\ the vi are vectors, m is 
known as the order of the iteration, for exactly m preceding approximations 
appear on the right hand side. In particular we shall investigate second order 
procedures. They may be put in the form 

xi+1 = BiXi - CiXi^ + Vi. (3) 

As Forsythe x) has pointed out in his thorough report on the solution of linear 
equations, it should be required that the solution be a fixed point of this 
transformation; that is, the point xi-1 = x{ = xi+1 = A~xk must satisfy 
equation (3). This permits the elimination of the non-homogeneous terms vt. 
After some simple juggling of the terms, (3) may be written in the form 

Axi+1 = AiU + CiAxt, Ai=(l- Bi + Ci)A~\ (4) 
Here Axi+1 is the correction (xi+1 — x^) and the matrices At and Q are ar
bitrary as the Bi and Ci were. 

As you see in the general second-order procedure we may compute the 
correction from the present residual together with the preceding correction. 
A first order algorithm does not contain the term with Axt) and therefore 
does not use the history of the iteration. In an algorithm of higher order 
than the second, additional terms arise: 

DiAxi-1 + EiAxi_2 + ... (5) 
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II. The classical methods of iteration are all of first order: 
Axi+1 = Aft (6) 

They differ from each other only in the choice of the matrices Ait The more 
important of these methods are the following. 

1) In the "Cyclic single" step procedure (Gauss, Seidel, Nekrasov, Lieb-
mann) the Ai are equal to each other and are chosen as the inverse of the lower 
triangle of the given matrix A. 

2) Less familiar is the fact that the elimination algorithm of Gauss is also 
a first order iteration procedure. Here the At are the reciprocals of the tri
angular matrices which are generated during the reduction of A. 

3) In the so-called gradient methods, the Ai are scalars a^. 
Axi+1 = afo (7) 

The correction arising at each step is thus proportional to the residual. (Ri
chardson, Temple, Hestenes, Stein.) 

The convergence of these first-order procedures has been thoroughly 
investigated (v. Mises, Collatz, Ostrowski, Weissinger). 

III. Although the convergence of a given algorithm certainly suggests its 
use for practical computation, it is most desirable that the convergence be mono
tone. No one likes to walk around in circles or in spirals. This is the point at 
which the principle of relaxation enters. The fundamental idea is to reduce the 
value of an appropriate measure of error at each step. In the following we shall 
assume the given matrix A to be symmetrical and positive definite. A suitable 
error measure is then the length cp of the error vector yi = A~xk — xit measured 
not in the cartesian sense but in the sense of the A -metric: 

(fi= (Ayifyi) = (A-hi^i). (8) 
The comma means the ordinary cartesian scalar product. Although the follow
ing theory could be developed with a number of other error measures, the 
9?-measure has two advantages: 
1) It is invariant under coordinate transformations. 
2) If the given system (1) is the system of normal equations for a problem in 

the calculus of observations, then the error measure cp is nothing else than 
the sum of the squares of the errors (plus an additive constant). 

The three examples of first order algorithms given above are indeed relaxation 
methods in this sense; that is, the value of cp actually dmiinishes with each step. 
With the gradient method however, the at must be positive and smaller than 
certain bounds a*. 

Using the terminology of the theory of economic behaviour, we may say 
that the basic idea of relaxation is a tactic, in that one attempts to reduce cp by 
as much as possible in each single step. What we really desire, though, is a 
strategy. Of all the algorithms which have a given number n of steps, we want 
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to choose the one yielding xn closest to the true solution. The determination of 
such a strategy is a difficult mathematical problem and there is still much 
work to be done in this direction. Perhaps a closer study of the relationship to 
the theory of games would be useful. Certain partial results have akeady been 
found, however, and it appears to me that these represent the major advances 
in the theory of relaxation since the last international congress at Harvard. 
In particular the rules for over-relaxation have been investigated by Ostrowski 2) 
and Young 3). 

Today I should like to outline a complete solution of the strategy problem 
in the special case of "scalar" iteration schemes. By scalar iteration is meant a 
linear algorithm in which the matrices involved in (4) and (5) are scalars. In 
the case of a second order procedure, the iteration algorithm becomes 

Axi+1 = afa + CìAXì. (9) 

The method resulting from the choice of the <â  and q as independent of i, that 
is ai = a, Ci = e, was fkst proposed by Frankel4) and further investigated by 
Hochstrasser5). 

IV. Now it follows from (9) that any approximation %t must be a linear 
combination of the iterated vectors 

k, Ak, A2k, . . ., A^k, (10) 
assuming x0 = 0. In fact, this is true for scalar linear processes of any order 
and characterises these processes. 

We may write 
xt = F^{A)h. (11) 

where F4-± is a polynomial with real coefficients of degree (i — 1). The residual 
of xt is 

U = * - Axi = [1 - AFi-x(A)-\k. (12) 
Thus we shall have to do not only with the polynomials F^^A) but also with 
the residual polynomials 

R,(A) = 1 - AF^(A). (13) 
Equation (12) becomes 

U = RMik. (14) 
Let us consider the polynomials F^ and Ri for a real variable X as argument 
instead of the matrix A. It follows from (13) 

RS) = 1 - AiWA). (15) 
Thus for X = 0 

RM = 1. (16) 
It will turn out that this is the essential property of the residual polynomials. 
The residual polynomials have a simple and dkect meaning in connection with 
the progressive approximations during the relaxation. This becomes clear if 
we write our equations in the coordinate system of the principle axes of A. 

386 



Since A was assumed symmetric and positive definite, its eigen-values Xó are 
positive. Writing A3- for the components of k and riô for the j-th component of ri 

we have in consequence of (14) 

f„ = RS,)k,. (17) 
Since k = r0, the values î (̂A )̂ of the residual polynomial Rt(X) tell by what 
percentage the components of the original residual have been reduced after 
the i-th iteration step (note the figure). 

Interval of the eigen-values -

Our problem of finding the best strategy may now be stated somewhat 
inexactly as follows. A polynomial Rn(X) of given degree n must be found with 
the properties 
a) Rn(0) must be equal to one. 
b) The values of the polynomial must be small over the interval of the A-axis 

containing the eigen-values. 
To state this precisely we use the error measure q? in the second form of equa
tion (8). 

The j-th component of A*1^ is 

KM 

and hence 

•hi 

q>i = 2a — : Ä A (18) 
is) h 

It will be convenient to use a more general measure of error ip called the 
"continuous" error measure. In order to define it, we first need an upper bound 
for the eigenvalues, which without loss of generality may be set equal to 1. 
tp is then given by 
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m) g(X)dX, (19) 
X 

o 
where g (A) is an arbitrary density function defined over the interval o ^ X ^ 1. 
The old "discrete" error measure ç? is a special case of ^ corresponding to the 
density function 

Q(X) = Iik*.ô(X-Xj), (20) 
V) 

where ô is the Dirac-iunction. 
The following theorem can now be proved. 
In the family of polynomials of n-th degree Rn(X) which satisfy Rn(0) = 1, 

the error measure ip takes on its minimum value for the (n + l)-th polynomial 
of the orthogonal set belonging to the density function Q(X). 

V. This solves the strategy problem completely, but only if we are able 
to construct a scalar iteration algorithm yielding this minimal value of ip after 
n steps. 

Let R0(X), R^X), . . ., Rn(X) be the orthogonal set belonging to Q(X) such 
that each of the Ri satisfies (16). Note that the Rt can not be normalized in 
the usual sense. It is well known that three successive orthogonal polynomials 
are related by a recursion formula of the form 

Ä<+iW = (di - aiX)Rt(X) - CìRì-^X). 

In consequence of (16) it follows that dt — Ci = 1 and thus 

Ri+1(l) = (1 + ct - aflRilX) - e«2WA)- (21) 

As given by (13) and (11) there are a sequence of polynomials i*V_iW anc^ a 

sequence of approximations xi associated with the Rt(X). Taking (14) and (21) 
into account, the corresponding residuals satisfy the recursion formula 

U+i = (1 + ci — M K - c^ - i (22) 
and after proper substitutions it follows that 

Axi+1 = aft + CiAxi. (23) 
By the definition (9) this is a scalar second-order process. In other words we 
must simply carry out an iteration process of second order using coefficients taken 
from the recursion formula of the orthogonal set determined by the chosen density 
function. Since this is the best possible scalar process, it is not necessary to consi
der scalar procedures of higher order. 

As Young 6) has remarked for a special case, the end result after n steps 
of our procedure may be reached by n steps of a first order scalar algorithm, 
that is, of a gradient method. Although the end values xn coincide, the inter
mediate points do not. The second order procedure seems to be preferable in 
the sense of the adopted error-measure, since each of the intermediate points 
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Xi represents the better approximation after i steps. Furthermore the gradient 
algorithm requires the computation of the roots of Rn(X) but it needs less 
numerical work during the iteration. 

VI. The selection of a density function Q(X) in the interval 0 5g X ^ 1 
must still be made. I wish to discuss three possibilities. 

1) If no other information about the eigen-values is known except an 
upper bound, then we must take Q(X) > 0 for 0 < X < 1 in order to covertile 
entire spectrum of A. Furthermore Q(0) must be equal to Oto insure the exist
ence in the integral (19) and Q (1) may vanish. These conditions suggest the form 

Q(X) = T (1 - Xff(X), oc> 0, ß > - 1, (24) 
where we assume f(X) to have a continuous second derivative over 0 5̂  X ^ 1 
and to be bounded: 

0 < cx ^ f(X) ^ c2, 0 ^ X ^ 1. (25) 
It can be shown that then the relaxation converges; that is 

Rn(X) -> 0 for n ~> oo and 0 < X < 1. (26) 
The simplest possibility is f(X) = 1 yielding the hypergeometric or Jacobian 
polynomials. 

Rn(X) = F(-n,n + aL + ß + l,aL + 1; X), (27) 
where F is the hypergeometric function of Gauss, a and ß must still be chosen 
in consideration of the problem at hand. Some while ago Lanczos 7) proposed 
the special case a = -|, ß = — -|. The behavior of the hypergeometric relaxation 
for large n is described asymptotically by the formulas; 

a) for small X we have 
Rn(X)coAa(2nVX) (28) 

where Aa is LommeVs function. 

Aa(x) =*-£-Ja(x) (29) 

tabulated in Jahnke-Emde. 

b) In the interior of the interval, Rn(A) oscillates with an amplitude 

given by , -U+l) _ A _ 1 
•^=(»VX) 2 U-*) 2 4 (3°) 

ß may be called the parameter of over-relaxation for the following reason. 
Suppose ß to be large, than the density 

Q(X) = Xa(l - X)ß 

diminishes rapidly as X approaches 1. This means that the components of the 
residuals corresponding to the small eigen-values are more heavily weighted 
than the higher ones and therefore will be more rapidly eliminated. This is 
highly desirable in the application of relaxation techniques to partial differen
tial equations. 
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For example, assume that the given system (1) of equations has been 
roughly solved using the sum of fj, terms of thè Neumann-series 

A-1 = Ii(l-A)v. (31) 
(?) 

The residual given by this rough solution is 
r„ = (1 - Ayk (32) 

corresponding to the residual polynomial 
R„(i.) = (1 - X)>. (33) 

In order to improve this rough solution we continue with hypergeometric 
relaxation using ß = 2ja — -|. From (30) it follows that during this procedure 
(33) will be multiplied asymptotically by 

- ^ (^vir(a+i) ( I -A)-* . 
yn 

Hence the final amplitude of residuals is 
a/ (<x+—) 

-y={nVX) (a+J. 
yn 

The tendency of Neumann's series to neglect the lower eigen-values is thus 
removed. 

Another method to improve the convergence of the Neumann's series has 
been proposed by Rutishauser 8) using the transformation of a power series into 
a continued fraction by his so-called QD-algorithm. 

We have had satisfactory results with hypergeometric relaxation in Zürich. 
2) If a lower bound e > 0 for the eigen-values is also known, then Q(X) 

should vanish in the interval 0 ^ X ^ s, since there are no residuals there to be 
liquidated. This leads to the method of Shortley and Flanders 9), who use 
Tschebyscheff-polynomials in the remaining interval e ^ X 5g 1 and arrive at 
the best strategy in the sense of Tschebyscheff-approximation. 

3) Obviously we are particularly interested in choosing the density-
function (20) such that the ^-measure is identically to the old discrete cp-
measure. Since the eigen-values must be considered unknown, the explicit 
construction of the iteration-algorithm given in section V must be modified. 
Using (17) we find 

i i 

JR„(X)Rg(X)o(X)dX = JMjJR0[X)RQ(X)ò{X - X,)dX 
o W o 

= E Ä p & j Ä ^ Ä j = S r ^ . rqj = (r9, rq). 
V) U) 

The left side is zero for p ^ q because of the orthogonality of our polynomials. 
Thus this relaxation process has the special property that the residual vectors 
form an orthogonal set. The coefficients ait ct in (23) must therefore be com-
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puted in such a way that the residual ri+1 defined by (22) is orthogonal to rt 

and r^v 

After finite many steps, the residual vector must vanish since there can 
only be a finite number of orthogonal vectors. The iteration thus reaches the 
exact solution after a finite number of steps, as is the case with the elimination 
method of Gauss. As Hestenes 10) proved recently, every finite iteration is 
equivalent to the process of conjugate gradients developped by him and the au
thor. In conclusion we may thus state: 

Among all scalar iteration algorithms the method of conjugate gradients as 
given in the original papers u ) is the best strategy in the sense of the tp-measure 
of error. 

In particular for a problem of the calculus of observations this method 
gives the smallest sum of the squared errors which can be achieved in a given 
number of iteration steps by a scalar process 12). 
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