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ALGEBRAIC K-THEORY 

by RICHARD G. SWAN 

I will give here a brief account of the history of algebraic ^-theory and some of 
its main ideas and problems. Some of the work being done in this field at the present 
time will then be discussed in more detail. 

1. Origin and basic results. 

Although some early work of J. H. C. Whitehead [41] [42] and G. Higman [19] was 
later recognized as properly belonging to algebraic K-theory, the subject really began 
with Grothendieck's work on the Riemann-Roch theorem [9]. In this work, Gro­
thendieck introduced the functor K, now known as K0. For the case of rings, this 
functor may be described as follows. If R is a ring with unit, K0(R) is the abelian group 
with one generator [P] for each finitely generated projective K-module P, and a relation 
[P] = [P'] + [P"] for each short exact sequence O -* P ' -• P -• P" -• 0. The 
definition obviously extends to other categories, eg. sheaves, vector bundles, etc. 
Aside from its use in the Riemann-Roch theorem, this functor has found a number 
of applications to topology and algebra. For example, Wall [39] showed that if, 
X is a connected space dominated by a finite CW complex, there is a well defined 
obstruction w e K0(Zn1(X)) such that X has the homotopy type of a finite complex 
if and only if w = 0. This result was then used by Sieben mann [31] to give a similar 
obstruction to the possibility of adding a boundry to an open manifold. This result, 
together with a calculation of K0(Zn) for a free abelian group n, was then used to prove 
the important Splitting theorem for manifolds [32]. A more algebraic application 
may be found in [36]. If G is the cyclic permutation group acting on 47 indetermi-
nates xi9 then the fixed field of Q(xl9.. .,x41) under G is not a pure transcendental 
extension of Q. 

Probably the best known application of Grothendieck's functor K is the topological 
K-theory of Atiyah and Hirzebruch [3]. These authors consider a topological space X 
and define K°(X) by using vector bundles on X in place of the projective modules 
considered above. By applying this functor to suspensions of X9 they define Kn(X) 
for n < 0. Bott periodicity shows that Kn(X) « Kn+8(X) and this is used to define 
Kn(X) for all neZ. The resulting functors K" constitute a cohomology theory, 
i. e. they satisfy the exactness, excision, and homotopy axioms of [10]. The resulting 
topological K-theory has found many important applications, for example in Adams' 
solution of the vector field problem for spheres [1]. A good exposition of this theory 
may be found in [2]. 

The next big step in algebraic X-theory was taken by Bass [4]. He tried to find 
algebraic analogues of the topological functors Kn. By imitating the construction 
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of bundles over a suspension using clutching functions, he found a good definition 
for the functor K±(R). This is generated by;,symbols [P, a] where P is a finitely gene­
rated projective R-module and a is an automorphism of P. The relations are 
[P, aß] = [P, a] + [P, ß] and [P, a] = [Pf, a'] + [P", a"] if O - P ' •*> P -A P" -• 0 
is exact and od = za', ja = a")". Thie group turns out to be the same as one introduced 
by J. H. C. Whitehead [41] [42], K±(R) = GL(R)/E(R) where E(R) = [GL(R), GL(R)] 
is the subgroup of GL(R) generated by elementary matrices e^r) = 1 + retj. White­
head's theory of simple homotopy types shows that the group K^Zn) has important 
topological applications. An example of this is the well known s-cobordism theo­
rem [22]. 

Bass also succeeded in proving a partial analogue of the exactness and excision 
properties. 

THEOREM 1 (Bass). — If I is a 2-sided ideal of R, there is an exact sequence 

K±(R, I) -» Kt(R) -+ K,(R/I) -» K0(R, I) -> X0(Ä) -+ K0(R/I). 

The group K0(R, I) depends only on I considered as a ring without unit. 

The second statement expresses the excision property. For the definition of the 
relative groups Kt(R, I) and the proof, see [6]. 

There are two other, essentially equivalent, formulations of this result which avoid 
the use of the relative groups. 

THEOREM 2 (Milnor [26]). — Let 

A -> At 

A2 -* A' 
2 / 2 

be a cartesian diagram of ring homomorphisms such that f± or f2 is onto. Then there 
is an exact Mayer-Vietoris sequence 

KM) - KMÙ © KMi) -> W ) -> KM) -> KoWi) 0 K0(A2) -» KM')-

The other formulation, due to Gersten, requires a preliminary definition. If R 
is a ring without unit, we can adjoin a unit formally to R getting a ring R+ with unit 
and a split exact sequence 0 - > # - > R + ± > Z - » O . If F is a functor from rings 
with unit to abelian groups, we extend the definition of F by setting 

F(R) = ker [F(R+) -> F(Z)]. 

This is consistent provided that F preserves finite products [35], in particular for K0 

and Klm Theorem 2 continues to hold with this extended definition. 

THEOREM 3 (Gersten [13]). — If 0 -+ A -> B -* C -* 0 is an exact sequence of 
rings, there is an exact sequence KtA -» K^B -> K^C -> K0A -> K0B -> K0C. 

The hypothesis means that A is a 2-sided ideal of B and C = S/A. Therefore A 
has no unit if C # 0 (in general). 

In addition to the above exact sequences, there is also an exact sequence associated 
with a localization [6]. This is rather technical and we will not consider it here, but 
will only mention one of its most important consequences. The following theorem 
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is due to Bass, Farrell and Hsiang [6] [12] and gives a more precise version of an earlier 
result of Bass, Heller and Swan [7]. 

THEOREM 4. — There is a split exact sequence 

0 -• KtR -• K j t f ß e i ^ P t r 1 ] -+ KiR[t, r 1 ] -> K0R -• 0 

Also we have K^t] = K±R © Nil R where Nil R = 0 if R is regular. 

It follows that K^lt, r1] = KtR © K0R © Nil R © Nil R. 

The group Nil R is defined in a manner similar to K0R using pairs (P, v) where v 
is a nilpotent endomorphism of P. Details may be found in [6]. This group also has 
an interesting topological application [11], 

2. Problems. 

One of the most important problems in algebraic X-theory is simply to compute 
the groups KtR for various rings R. Group rings Zn are particularly important in 
view of the topological applications. Considerable work has been done on various 
special cases. Most of the results can be found in [6] [8] [25]. Recently Kervaire and 
Murthy [23] computed X0(Z7c) for % cyclic of prime power order. The computation 
makes use of classfield theory. 

Another important problem is that of finding analogues of algebraic X-theory 
corresponding to the various classical groups. For KXR = GL(R)/E(R), the group 
GL(R) is replaced by orthogonal, symplectic, and unitary groups. For K0 we consider 
projective modules with quadratic, symplectic, and Hermitian forms. There is consi­
derable topological interest in this since Wall's surgery obstruction groups are X-func-
tors of this type [40]. Work on this problem has been done by Wall and his students, 
Bass [5], Milnor [27], Shaneson [30] and M. Stein [34]. 

A third major problem is that of defining functors K„(R) for all n e Z. This problem 
is immediately suggested by the analogy with topological X-theory. A great deal 
of work is being done on this problem at the present time. I will discuss here some 
of the results which have been obtained. 

It is natural to ask that the functors K„ satisfy the analogues of Theorems 2 and 3, 
i. e. that the exact sequences extend indefinitely in both directions. We would also 
like the analogue of Theorem 4 to hold with Kl9 K0 replaced by Kn9 Kn^1. For 
n < 0 this determines K„ uniquely. If we have Kn, Kn_1R must be the cokernel of 
the map KnR[t] © K„R[t~ *] -+ K„R[t9 r 1 ] . This definition of Kn for n < 0 is due 
to Bass [6] who shows that it satisfies all the above requirements. Also KnR = 0 
for n < 0 if R is regular. Details may be found in [6]. 

For n ^ 2, we are not so fortunate. A number of definitions for K„R have been 
proposed but no analogue of Theorem 2 has been found. This is explained by the 
following result. 

THEOREM 5. — There is no functor K2 from rings to abelian groups such that for 
each cartesian diagram 

A - A, 
I if 
A2 - A' 
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with f a split epimorphism, there is an exact sequence 

K2AX © K2A2 -> K2A
f -> K±A -* K^ © KXA2 

We will now consider some of the definitions which have been proposed for KnR, 
n^2. 

3. Milnor's K2. 

A very reasonable candidate for K2R was defined by Milnor [26]. The elementary 
matrices e^r) satisfy certain relations which were found by Steinberg. Milnor consi­
ders the group St(R) with generators xtj(r) satisfying the Steinberg relations 

Xij{r + s) = xfj(r)xfj(s), [Xij(r), xkl(s)] = 1 

if i # 1, j ^ k, and [x£j(r), xjk(s)] = xik(rs) if i ^ h. Define cp : St(R) -> GL(R) by 
cp(xtj(r)) = etj(r). Milnor defines K2R = ker cp = center (St(R)). 

THEOREM 6 (Milnor [26]). — If 

A -> Ax 
i in _ 
A2 Ti A' 

is a cartesian diagram of ring homomorphisms and both ft and f2 are onto, there is an 
exact sequence 

K2A -> K2Ai © K2A2 -> K2A' -> KtA -> KXAX © K±A2 -» KXA' -+ ... -* K0A'. 

This is quite a reasonable approximation to Theorem 2 and about the best one can 
expect in view of Theorem 5. There is no obvious analogue of Theorem 3 but the 
sequence of Theorem 1 extends to 

K2(R, I) ^ K2R - K2(R/I) ^ K,(R, I) ^ K,R ^ K,(R/I) -^ . . . -> K0(R/I). 

Excision fails for K^R, I) by Theorem 5. 

It is not known whether the analogue of Theorem 4 holds for K2 but J. Wagoner [38] 
has recently shown that K2(R[t, t"1]) = K2R © K±R © ? C). The last summand is 
still unknown. It is also not known whether K2R[t] = K2R for R regular. 

The group K2R is extremely difficult to compute in general. Recently, H. Matsu-
moto succeeded in computing K2F for any field F using a very ingenious construction. 
This leads to some interesting results on algebraic number fields [31]. 

One further difficulty with K2 is that there is no obvious definition in terms of cate­
gories similar to that of K0 and Kt. In § 7 we will discuss one possible solution to 
this problem. 

4. Theory of Gersten and Swan. 

For convenience, we will work here with rings without unit. If R is a free ring, 
Gersten [14] and Stallings [33] have shown that K0R = K±R = 0. This suggests 

(1) This result was also obtained independently by KAROUBI [43]. 
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the requirement KnR = 0 for free R. This resembles the effacability axiom of homo-
logical algebra [18] and suggests defining Kn by taking the derived functors of GL( — ). 
Since this is nonabelian, we have to use simplicial methods. A resolution of GL 
is a functor G^ from rings to simplicial groups together with an augmentation 
e: G0 -• GL such that ed0 = EôX . We want to choose some such resolution and 
define KnR = nn_2(GJ(R)), for n > 3. We define Kx and K2 by the exact sequence 
0 -• K2R -> TIQG^R) -> GL(R) -• KXR -• 0. In [35], I used the theory of 
acyclic models to find such a resolution. The requirement that KnR = 0 for a free 
ring R is equivalent to the requirement that G^ be aspherical on models, the models 
being the free rings. Among all such resolutions, there is a universal one G^ such 
that if H% is any resolution which is aspherical on models, there is a map G^ -> H^ 
unique up to homotopy. Using this G t we get a series of functors which I will denote 
by Kl. A different approach was investigated by Gersten [15]. He considers the 
forgetful functor U : Rings -• Sets and its coadjoint F(S) = free ring on S. The 
composition T = FU is a cotriple on the category of rings which can be used to 
construct a simplicial ring T^(R). Gersten uses the resolution GL(T^(R)) -• GL(R) 
to define his K functors which I will denote by K%. Gersten's resolution is aspherical 
on models so there is a map K% -»• K%. I have recently shown that this is an isomor­
phism and will therefore use the notation K%s for these functors. It is known that 
K™ = Kt and that there is an epimorphism K2 -* K2

S. This will be an isomorphism 
if and only if K2R = 0 for free rings R but this has not yet been proved. 

The sequence of Theorem 1 is easily extended by converting G%(R) -+ G%(R/I) 
into a fibration but it is not known whether there is an exact Mayer-Vietoris sequence 
for the K™ under any reasonable hypothesis, eg. that of Theorem 6. It is also not 
known whether any of the statements of Theorem 4 hold for the K%s. The problem 
of computing K%s, even for a field, seems to be extremely difficult. It is also not 
known how to extend the definition to categories. 

5. Theory of Karoubi-Villamayor. 

In [28], Nobile and Villamayor gave another definition of Kn, essentially by defining 
the " suspension (2) " of a ring. Independently, Karoubi [20] gave a definition of Kn 

for categories. The two points of view were combined in [21]. The construction 
of these functors was rather complicated. Recently, Gersten gave a simpler definition 
using simplicial methods [16]. I will follow Gersten in denoting these functors by 
K„(R). The theory has the disadvantage that K^R) # K^R). In fact, 

Kt(R) « GL(R)/U(R) 

where U(R) is the subgroup generated by all unipotent elements. However, except 
for this, the theory has many very nice properties. The functors K„ can be characterized 
by axioms similar to those of homology theory [16] [21]. To state these, we need some 
preliminary definitions. We again use the category of rings without unit. A ring 
homomorphism / : R -• R' will be said to have the covering homotopy property 
if every X(t) e GLR'[t] with X(0) = 1 can be lifted to GLR[i\. We say that / is a fibra­
tion is R[xu.. .,xm, yu.. .,y„, yï1,.. ..y'1] -> R'[xl9.. .9yl9.. .9yï\...] has the 

(2) Karoubi points out that the term " loop space " would be more appropriate. 
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covering homotopy property for all m, n. (This is somewhat stronger than the property 
used in [16] [21]). We also say that two ring homomorphisms f, g'. R - • R' are 
homotopic ( / ä g) if there is a ring homomorphism h : R -> R'[£] such that d0h = / , 
fljLÄ = g9 where 0, : R'[r] -» R' is given by df(p(r)) = p(i), i = 0, 1. 

The functors K„ are characterized by the following axioms [16] [21]. 

(1) For each exact sequence O-+A-+B->C->0of ring homomorphisms 
with / a fibration, there is a natural exact sequence 

. . . - • KnA -> KnB -> KnC -> K „ _ I ; 4 -> . . . - • K^B -> jqC -> K0i4 -> X 0 5 -> KQC 

(2) If / « g : R -> R', then *„(/) = *.(*): K„R - K„R'. 

Axiom 2 is equivalent to the statement that KnR[t] = KnR. The functors KJ„ can be 
computed as follows [16]. Let ER = tR[t] = ker d0 : R[t] -+ R. Then d1 : ER -* R 
is a fibration. Let QR = t(t — l)R[t] be its kernel. Then Axiom 2 shows that 7c„ER = 0 
so Axiom 1 gives Kn+1R = K„QR for n ^ 1 and fCjR = ker [X0£XR -+ X 0 £ R ] . 

To compare Kn with X ^ s we make one more definition. If F is a functor from rings 
to abelian groups, we define F(R) to be the co-equalizer of F(d0), F(d1) : F(R[t]) =£ FR. 
This F satisfies Axiom 2 and F -> F is universal for maps of F into a functor satisfying 
Axiom 2. Gersten's simplicial definition and the universal property of Kl give us a 
map K%s -> K„ and therefore X^ s -> Kn. It is not known whether this is an iso­
morphism for all n, but this is so for n = 1. Using a result of Gersten [15], it is easy 
to see that K2(R) = K^S(R) = K2(R) if Nil R = 0, eg. if R is regular. 

It is not known whether the analogue of Theorem 4 holds for the functors Kn, but 
Gersten [17] has shown that this is so when Nil R = 0, i. e. KnR[t, t - 1 ] = KnR © Kn-±R 
in this case (3). In general, if we define KQ = K0, then K„R[t, t~1] = KnR © K0Q,"R, SO 
Theorem 4 will hold if and only if K0QR = fqR. This is equivalent to the statement 
that, in the exact sequence of Axiom 1, we can replace K0 by K0 . If so, this can be 
extended to all n < 0 using the functors Kn = Kn, n ^ 0, all of which satisfy Axiom 2. 

So far, little progress has been made in computing KnR for n > 2. Even for the 
case where R is a field, it is not known whether K2R = K2R. It is quite possible, 
however, that KnR will turn out to be easier to compute than Kn. Perhaps a simpler 
proof of Matsumoto's theorem could be found in this way. Karoubi's definition 
can be used to define K„ for categories but this is quite complicated compared to the 
definitions of K0 and K±. 

6. Theory of Quillen. 

A very interesting topological definition of KnR was recently proposed by Quillen [29]. 
I would like to thank Quillen for sending me a detailed account of his work. All 
rings here will be assumed to have a unit. The definition was suggested by the relation 
between the homology of the group GL(R) and the functors X1(R), K2(R). In fact, 
KXR = H1(GL(R)) and K2R = H2(E(R)). Quillen takes the classifying space BGL(R) 
and attaches 2-cells to kill the subgroup E(R) of n1BGL(R) = GL(R). This introduces 
new cycles in dimension 2 but these can all be killed by attaching 3-cells. The result 
is a space BR with some very remarkable properties. 

(3) This result was also obtained independently by KAROUBI [43]. 
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THEOREM 7 (Quillen). — BRis a homotopy associative, homotopy commutative H-space. 
The map BGL(R) -• BR gives an isomorphism of homology. 

Clearly BR can be regarded as the best H-space approximation to BGL(R). Quillen 
also considers a functor R (X) which is defined as X0 of the category of finitely gene­
rated projective R-modules with ^(XJ-action. He shows that the functor [X, BR] 
is, in a reasonable sense, the best approximation to RR by a representable functor. 
This justifies his definition of KnR as nn(BR). We denote these functors here by K%. 
Quillen also notes that X? = X t and X§ = X2 (Milnor's K2). This gives further 
justification for his definition. 

Using his calculation of the cohomology of finite linear groups, Quillen can actually 
compute all of the K%(R) for the case where R is a finite field. 

THEOREM 8 (Quillen), — For i > 0, K^(Fq) = 0 and X f t . ^ F j = ® 7v - i» where Vm 
is the group of m — th roots of unity in the algebraic closure of Fq. 

To compute K%(R) for other rings R, the first step would be to calculate H^(GL(R)). 
For example, it is reasonable to conjecture that X„(Z) is a torsion group for all n. 
This is equivalent to the conjecture that HJfiL(Z), Q) is trivial. In fact, Mumford 
and Milnor have conjectured that H^(GLn(Z)9 Q) is trivial for each n. If Pn is the 
space of positive definite quadratic forms in n variables and X„ = PJGL„(Z)9 the 
above conjecture is equivalent to the conjecture that Xn is acyclic over Q. Now X2 

is actually contractible and the same seems to be true for X3 although the proof involves 
a long calculation which I have not checked. Perhaps Xn is contractible for all n. 
A result of Magnus [24] shows that GL„(Z) is a direct limit of subgroups related to 
GL2 and GL3. It should be possible to use this to reduce the general case to that 
where n = 2 and 3. It would also be interesting to extend the results of Magnus to 
other rings. Possibly this could be used to prove a stability theorem for Xj? analogous 
to that of Bass for Kx [6]. 

It is natural to ask whether X? « Xjfs. This would imply that for a free ring R 
(with unit) we would have X?(R) « X?(Z) or, equivalently, that Hn(GL(R)) « Hn(GL(Z)). 
A proof of this would probably be one of the main steps in showing that X£ « K%s. 

One can produce an exact sequence for Xj? similar to that of Theorem 1 by convert­
ing BR -• BRjI into a fibration. I do not know whether the analogue of Theorem 4 
holds for X ? . 

7. Extension to categories. 

The groups Xj?(R) depend only on the group GL(R). This property is regarded 
as a disadvantage by Karoubi and Villamayor [21] who would like K„(R) to reflect 
properties of the ring R and not just those of GL(R). However, this property suggests 
a simple way to extend the definition of X£ to categories. If F is a functor from groups 
to groups, we would like to define KF(jtf) for a category sé by taking some sort of direct 
limit of the groups F (Aut (J^)) for Aes#. The functor K1 was treated in this way by 
Bass in [6]. I will give here one easy way of doing this which is suggested by the defini­
tion of X i . 

If £ is a short exact sequence 0 -• A! -^ A i A" -> 0, we define Aut (E) to 
be the subgroup of Aut (A') x Aut (A) x Aut (A") consisting of those (a', a, a") with 
ai = ia' 9 ja — a"j. 
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Let P be a functor from groups to groups. We define KF(sé) to be the abelian group 
with generators [A, u] for Aesé,ue F(Aut (A)) and with the relations. 

(1) [A, uv] = [A, u] + [A, v]. 
(2) If E, as above, is a short exact sequence and we F (Aut (£)) has images 

u'eF (Aut (A')), ueF (Aut (A))9 u" e F (Aut (A"))9 then [A, u] = [A'9 u'\ + \A", «"]. 

For example, if F(G) = G or G/[G, G], then KF(sé) = K±(sé). If F is a constant 
functor with value F(G) = % for all G, then KF(sé) = X 0 ( J ^ ) © 7c/[7c, %]. 

To get X „ ( J ^ ) , we define Fn by taking J3G, killing [G, G] c T ^ B G by Quillen's method, 
getting a space BG+

9 and setting F„(G) = nnBG+. We then let Kn(sé) = KFn(sé) 
(The group Aut (4) should be replaced by lim Aut (An) here). 

Now, if sé = 0>R is the category of finitely generated projective R-modules, it is 
not hard to show that KF(0*R) — F (GL(R)) provided that F has certain properties. 
These properties are exactly those which Quillen proves in his work on Xj?. Therefore 
we see that KJ^R) = K%(R). This gives some justification for our definition. In 
particular, since X§ = X 2 , this method gives a reasonable extension of Milnor's X 2 

to categories. 

If we use only split exact sequences, it should not be too hard to express KF(sé) 
as a filtered direct limit as in [6]. In this way we could presumably obtain a space BA 

with Kn(sé) = nn(BA). 
A more general form of the above construction is obtained by replacing F (Aut (A)) 

by X (End A) where X is a functor from rings to groups. In this way, any X-theory 
could be extended to categories. 
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