
SOME ASPECTS OF THE THEORY OF ALMOST 
PERIODIC FUNCTIONS 

B0RGE JESSEN 

1. In this address, I shall endeavour to give an account of some of the 
work that has been done in Copenhagen, in recent years, on almost periodic 
functions. 

Let me first recall the main points of the theory of almost periodic func
tions of a real variable as developed by Bohr1) in 1924—25. We are concerned 
with complex functions F(t) = U(t) + iV (t) of an unrestricted real variable t. 
In order to be almost periodic, the function must be continuous, and for every 
e > 0 it must have translation numbers r, i.e., numbers for which | F(t + r) — 
F(t) | ^ e for all t, and not too few — more precisely, there must be a length 
1(e) such that every interval of this length on the real axis contains one of these 
numbers r. 

Every almost periodic function is bounded. The sum or product of two 
almost periodic functions and the limit of a uniformly convergent sequence of 
almost periodic functions are again almost periodic. Every almost periodic 

i rr 

function possesses a mean value, lim — I F(t)dL For a given almost peri-
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odic function, the mean value lim — F(t)e~mdt, where X is real, differs 
r-*-oo T J 

o 

from 0 for at most an enumerable set of values of A. Let these values be denoted 

by Xn and put lim — F(t)e %x^dt = an. The trigonometric series 

F{t)coE ane^ 

is called the Fourier series of F(t) and the numbers Xn the Fourier exponents 
of F(t). For a continuous periodic function with period 2TC, these exponents Xn 

are integers and the series is the usual Fourier series. The main result of the 
theory is the approximation theorem according to which the class of almost 
periodic functions is identical with the class of those functions which can be 
approximated uniformly by trigonometric polynomials 

*) Acta Math. 45 (1924), 29—127, 46 (1925), 101—214; Coll. Math. Works II, C3, C7. 
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P(t) = v « i * + . . . + cNea^ 

with arbitrary real exponents Xn and arbitrary complex coefficients cn. In other 
words, a function F(f) is almost periodic if and only if to each s there corres
ponds a trigonometric polynomial P(t) such that | F(t) — P(t) | ^ e for all t. 
As shown by Bochner2), such approximating trigonometric polynomials can 
be obtained from the Fourier series by a suitable summation method. 

The crucial point of Bohr's definition of almost periodicity is the existence 
of the length l(s). We express the existence of this length by saying that, for 
each e, the translation numbers form a relatively dense set on the real axis. It 
was therefore quite surprising when it turned out, as a consequence of a very 
beautiful direct proof of the approximation theorem due to Bogolyubov 3), 
that the relative density condition can be replaced by a weaker condition. It 
suffices, indeed, to assume that for each e there is a sequence of translation 
numbers rn such that | rn — xm | ^ a > 0 for all n and m, and rn = 0(n). On 
closer examination, it turned out that actually the difference is not at all deep, 
since, as shown by F0lner 4), it can be proved easily that the existence of trans
lation numbers satisfying Bogolyubov's condition implies the existence of a 
relatively dense set of translation numbers. The last paper of Bohr on almost 
periodic functions 5) deals with the problem of whether or not Bogolyubov's 
condition can be replaced by a still weaker one. He proved that this is not the 
case — more precisely, that if, instead of rn = 0(n), we assume rn = 0(ip(n)), 
where y)(n) is any function which goes to infinity more rapidly than n, then we 
obtain a class of functions which is properly larger than the class of almost 
periodic functions. 

Let us define the uniform norm of a function F(t) by 

11*11,,= sup \F(t)\. 
— Q 0 < * < 0 0 

It is finite for the bounded functions. By taking || F — G \\v as distance, we 
obtain a metric space. The content of the approximation theorem is then that 
the class of almost periodic functions is the closure, with respect to this metric, 
of the class of trigonometric polynomials; in symbols, 

{a.p.} = Cltf {trig. pol.}. 

2. Shortly after the appearance of the theory of almost periodic functions, 
a number of generalizations were introduced and discussed. We shall not go 

a) Math. Ann. 96 (1927), 119—147. 
3) Ann. Chaire Phys. Math. Kiev 4 (1939), 195—205. 
4) Mat. Tidsskr. B 1944, 24—27. 
e) J. Anal. Math. 1 (1951), 11—27; Coll. Math. Works III, C 54. 
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into the definitions of these generalizations here 6) but merely indicate how the 
various classes of generalized almost periodic functions are characterized 
through approximation by trigonometric polynomials. Instead of continuous 
functions, let us consider functions which are measurable in the Lebesgue sense. 
The first generalization was made by Stepanov. By the St epano v norm of order 
p ^ 1 of a measurable function F(t), we mean 

l|JF||s-= [sup r^pwdup: 

The class of Stepanov almost periodic functions of order p is then the closure 
with respect to the distance || F — G ||s», of the class of trigonometric polyno
mials; in symbols, 

{S»a.p.} = Cls. {trig. pol.}. 

This generalization was also made by Wiener. Another generalization, which 
leads to a much wider class of functions, was given by Besicovitch who con
sidered the norm 

F U ^ p i m s u p - L f \F(t)\Htfl». 
T-+co 

The class of Besicovitch almost periodic functions of order p is then the 
closure, with respect to the distance || F — G \\BP, of the class of trigonometric 
polynomials; in symbols 

{5*a.p.} = ClB* {trig. pol.}. 

There is also an intermediate generalization introduced by Weyl based on a 
norm || F \\WP. In all these cases, we have Fourier series F(t) oo S ané^ just 
as in the original case. 

A number of important questions concerning these generalizations were 
settled by Ursell7). Among other things, he proved that, whereas the Stepanov 
and Besicovitch classes are complete metric spaces, the Weyl classes are not. A 
very thorough examination of the relations between the different classes was 
made by Bohr and F0lner8) in 1944 and continued by F0lner 9). It would 
lead us too far afield to go into the very detailed description they obtained. 

In the case p = 2, we have the Parseval equality 

6) See, for example, the comprehensive treatment by Besicovitch and Bohr, Acta 
Math. 57 (1931), 203—292; Bohr, Coll. Math. Works I I , C 27; or Besicovitch, Almost 
periodic functions, Cambridge, 1932. 

7) Proc. London Math. Soc. (2) 32 (1931), 402—440. 
8) Acta Math. 76 (1944), 31—155; Bohr, Coll Math. Works I I I , C 47. 
D) Thesis, Copenhagen, 1944. 
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Hm-i f \F{t)\Ht=?i\an\* 
r_»oo i J 

in all three cases. Besicovitch's generalization is interesting because, for this 
generalization, the analogue of the Riesz-Fischer theorem is also valid, 
that is to say, any trigonometric series S ane

iXn with 2 | an |
2 finite is the 

Fourier series of a B2 almost periodic function. This is not the case for Stepanov 
or Weyl functions. 

One can, however, look at the question of generalization of the theorems 
on Fourier series of periodic functions in another way, and I would like to 
comment on the generalization of the Riesz-Fischer theorem byway of example. 
In many respects, the Stepanov generalization is the most satisfactory generali
zation, and one would therefore like to have analogues of the Riesz-Fischer 
theorem for Stepanov functions. Now, the Lebesgue class L2 of periodic func
tions with period 2TC can also be characterized as the class of those S2 almost 
periodic functions for which the Fourier exponents Xn are integers. Thus the 
Riesz-Fischer theorem holds for these functions. One can now ask: For which 
sequences of exponents Xn does the Riesz-Fischer theorem hold for S2 almost 
periodic functions having these exponents. This question has a very simple 
answer. As pointed out by Tornehave10), it follows from an old result of Wiener 
and a method of proof due to Stepanov that a sequence of exponents has the 
property in question if and only if there exists a constant k such that no interval 
of length 1 contains more than k exponents. Presumably, further interesting 
results could be obtained along this line. 

3. The generalization of the theory of almost periodic functions which is 
of greatest interest for the original theory is, of course, von Neumann's generali
zation of the theory to functions on groups11). It would fall entirely outside the 
scope of this lecture to go into this theory which recently has received a beauti
ful exposition in Maak's book12). I would merely like to mention that the theory 
of almost periodic functions on groups may sometimes be put to use in the or
dinary theory in cases where one would expect a direct analytical approach to be 
simpler. In this connection, we may mention a very simple treatment of Besico
vitch almost periodic functions recently given by Doss 13), and also the theory 
of linear functionals on spaces of generalized almost periodic functions. This 

10) Math. Scand. 2 (1954), 237—242. The result is a corollary of Wiener's result and 
of its counterpart proved by Tornehave in this paper. 

n ) Trans. Amer. Math. Soc. 36 (1934), 445—492. 
12) Fastperiodische Funktionen, Berlin/Göttingen/Heidelberg, 1950. 
13) Bull. Sci. Math. (2) 77 (1953), 186—194. 
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latter theory was first considered by Doss 14), and, recently, F0lner 1B) has ob
tained further results generalizing the classical result of F. Riesz on the LP 
spaces. 

4. The remainder of this lecture will be devoted to the subject of mean 
motions of almost periodic functions and related topics. For a moment, let us 
forget about almost periodic functions and go back to a classical investigation 
by Lagrange 16) from 1782 on the perturbations of the large planets. To indicate 
the elliptic orbit of a planet, we use certain parameters called the elements of 
the orbit. Owing to the influence of the other planets, the elliptic orbit of a 
planet changes slowly in the course of time. These parameters are therefore 
functions of the time t. Among these parameters is the longitude of the peri
helion, i.e., a certain angular variable indicating the direction to the perihelion. 

As shown by Lagrange, this angle is, in the first approximation, determined 
as the argument of a certain trigonometric polynomial 

F(t) = a ^ + . . . + aNeiX*t* 

with complex coefficients an and real exponents Xn. Thus this polynomial is a 
sum of vectors each having a constant length and turning with a constant angu
lar velocity. The number of terms N equals the number of planets. Thus the stu
dy of the variation of the longitude of the perihelion leads to a study of the 
variation of the argument arg F(t) of a trigonometric polynomial. 

These polynomials were calculated by Lagrange for the different planets, 
and it turned out that, in most cases, the polynomial contains a preponderant 
term, i.e., a term whose absolute value exceeds the sum of the absolute values 
of the remaining terms. Suppose, for example, that the first term is prepon
derant, that is, | % | > | a.2 | + . . . + | aN |. Then F(t) does not assume arbi
trarily small values, and it is easy to see that the argument of F(t) will differ 
by less than \TI from the argument of the first term. Consequently we have, for 
a continuous branch of the argument, the formula 

arg 2 7 ( 0 = ^ * + 0(1). 

Thus the argument is, in this case, the sum of a secular term A^ and a bounded 
remainder. 

ö. Lagrange formulated the problem of investigating the variation of the 
argument in the case when there is no preponderant term. In this case, it may 
happen that F(t) comes arbitrarily near to 0 or even assumes the value 0. The 

14) Amer. J. Math. 72 (1950), 81—92. 
lß) Dan. Mat. Fys. Medd. 29, no. 1 (1954), 1—27. 
16) Nouv. Mém. Acad. Berlin 1781—82, Oeuvres'5, 123—344. 
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line joining 0 and F(t) will however vary continuously, even if F(t) becomes 0, 
provided, that at 0, we replace the line by the tangent (which exists since the 
curve is analytic). It will however change its positive direction when passing 
through a zero of odd order. In order to be able to speak of a continuous branch 
of the argument, we must therefore consider the argument mod TZ and not as 
usual mod 2TC. In the case of a planet, this means tha i instead of the perihelion 
itself we must consider the line of apsides. 

6. After attempts by various astronomers, the first non-trivial case, N = 3, 
was completely treated by Bohl17) in 1909. He showed that, in this case, we 
always have 

<ngF(t)=ct + o(ty, 

but the constant c is generally not. as before, one of the exponents, and the 
remainder is generally not bounded. This result is equivalent to the existence 
of the limit 

arg F(T) - arg F(0) 
c = Imi . 

The constant c is called the mean motion of F(t). 
Bohl's proof depends on diophantine approximations. It is in this con

nection that the important notion of equidistribution mod 1 occurs for the 
first time. Bohl's investigation has since been extended to very general cases, 
notably by Weyl18) by means of his general theorem on equidistribution mod 1. 

7. After the creation of the theory of almost periodic functions, it was 
natural to extend Lagrange's problem to this wider class of functions. It was 
Wintner who first called attention to the connection between almost periodic 
functions and astronomical problems. It was conjectured by Wintner and prov
ed by Bohr 19) in 1930 that if F(t) oo^ ane

Unt is an almost periodic function 
which does not come arbitrarily near to 0, i.e., | F(t) \ ^> k > 0, then 

sxgF(t) = ct + 0(l), 

even if there is no preponderant term in the Fourier series. The mean motion 
c need not be one of the Fourier exponents. 

8. Before continuing the discussion of Lagrange's problem, I would like to 
digress slightly by mentioning certain results which are connected with Bohr's 
theorem. If the almost periodic function F(t), or, as we may also say, the almost 

17) J. Reine Angew. Math. 135 (1909), 189—283. 
18) Enseignem. Math. 16 (1914), 455—467, Math. Ann. 77 (1916), 313—352, Amer. 

Math. 60 (1938), 889—896, 61 (1939), 143—148. 
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periodic movement F(t) in the plane, does not come near to two points a and b, 
I could prove 20) that the mean motions ca and ch of F(t) —a and F(t) — b have 
a rational ratio. This result is contained in a general theorem of Fenchel and 
myself21) to the effect that an almost periodic movement F (t) in a closed domain 
D bounded by a finite number of circles is homo topic in D to a periodic move
ment G(t). This means that there exists a family of almost periodic movements 
H0(t) in D depending uniformly continuously on the parameter 0 for 0 5g 0 5j 1 
and such that HQ(t) = F(t) and H±(t) = G (J). This follows from a similar 
result on almost periodic movements on closed surfaces with negative Euler 
characteristic. A movement f(t) on such a surface is called almost periodic if, 
for each £ > 0, it has a relatively dense set of translation numbers r, i.e., 
numbers for which dist [f(t + r), f(t)] ^ e for all t. The theorem is to the effect 
that such a movement is homotopic, in the sense described before, to a periodic 
movement on the surface. The proof depends on the simple fact that a commu
tative subgroup of the fundamental group of the surface is cyclic. The theorem 
is not true for movements qn a torus. 

These investigations have been continued, in various ways, by Tornehave. 
Recently Tornehave 22) has discussed ahnost periodic movements in arbitrary 
metric spaces. He proves, among other things, that the theorem just mentioned 
also fails for movements on a sphere, a case which Fenchel and I had not decided. 

9. After this digression, let us return to the discussion of Lagrange's 
problem. If the almost periodic function F(t) comes arbitrarily near to 0, the 
variation of its argument may be very complicated, and if the function has 
zeros, it may even be impossible to choose the argument as a continuous func
tion of t. In this case, the study of the variation of the argument seems to be of 
interest only when the function F(t) is obtained by considering an analytic 
almost periodic function on a vertical line. Let me briefly recall the main 
points of the theory of analytic almost periodic functions as developed by 
Bohr 23) in 1926. 

We are concerned, in this theory, with functions f(s) = /(or + it) of a 
complex variable s = a + it in a vertical strip a < a* < ß. In order to be al
most periodic, the function must be regular, and, for every s > 0 and every 
reduced strip ax < a < ßlf it must have a relatively dense set of translation 

lö) Dan. Mat. Fys. Medd. 10, no. 10 (1930), 5—11, Comment. Math. Helv. 4 (1932), 
51—64; Coll. Math. Works I I , C 24, C 29. 

20) Math. Ann. I l l (1935), 355—363. 
21) Dan. Mat. Fys. Medd. 13, no. 6 (1935), 1—28. 
a2) Dan. Mat. Fys. Medd. 28, no. 13 (1954), 1—42. 
2a) Acta Math. 47 (1926), 237—281; Coll. Math. Works II, C 12. 
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numberâ r, i.e., real numbers for which | f(s + ir) — f(s) | ^ e for all s in the 
reduced strip. On every vertical line of the strip, i.e., for every fixed a, the 
function is an almost periodic function of t. The Fourier series of these functions 
are obtainable from a certain exponential series f(s) coj^ ane

kn3 with complex 
coefficients an and real exponents Xn by replacing 5 by a + it. This series is 
called the Dirichlet series of f(s) and the numbers Xn the Dirichlet exponents of 
/(s).The main result is the approximation theorem according to which a function 
is almost periodic in a strip if and only if it can be approximated uniformly in 
every reduced strip by exponential polynomials p(s) = c^1* + . . . + cNe*NS 

with complex coefficients cn and real exponents Xn, i.e., if to each e and each 
reduced strip, there corresponds a polynomial p (s) such that | f(s) — p(s) | fg s 
for all s in the reduced strip. 

10. It is evident that for an analytic function the variation of the argu
ment on vertical lines must be closely related to the distribution of the zeros of 
the function in vertical strips. This establishes a connection between Lagrange's 
problem and problems concerning the distribution of the values of analytic 
almost periodic functions. Such investigations were carried out by Bohr, partly 
in collaboration with other authors, especially in the case of the Riemann zeta 
function f (s) = Jjn~s. These investigations, which began about 1910, are closely 
related to the method of Bohl and Weyl. Historically they are at the origin of 
the theory of almost periodic functions 24). 

It was natural to try to generalize these investigations to arbitrary analytic 
almost periodic functions f(s). This problem was studied by myself 25) in 1933 
and by Hartman 26). The main results are as follows. For every a between a 
and ß, the mean value 

^ ) = l i m - ^ f log I f(a + it) I dt 
0 

exists, and cp (a) is a continuous, convex function in the interval a < a < ß. 
It has therefore a derivative cp'(o) at all points of the interval with the ex
ception of at most an enumerable set. If cp(o) is differentiable at the point a 
and if arg f(o-\- it) denotes a continuous branch of the argument on the cor-

arg f(a + iT) — arg/(a) 
responding vertical line, then the mean motion Mm 

24) See, for example, the comprehensive exposition by Bohr and the author, Acta 
Math. 50 (1930), 1—35, 54 (1932), 1—55; Bohr, Coll. Math. Works I, B 23, B 24. 

2B) Math. Ann. 108 (1933), 485—516. Certain results had been obtained previously by 
Favard, Leçons sur les fonctions presque périodiques, Paris, 1933, 129—140. 

28) Trans. Amer. Math. Soc. 46 (1939), 64—81. 
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exists and is determined by the formula 

Bigf(a+iT) -a rg / (c r ) 
hm • • = cp (a). 

Moreover, if 9? (or) is differentiable at the points ax and a%, then the zeros of f(s) 
in the strip ax < a < c2 have a relative frequency, i.e., "if N(T) denotes the 
number of zeros in the strip ax < a < c2 lying between the lines t = 0 and 

N(T) 
t = T, then the limit lim exists and its value is determined by the formula 

T->oo T 

N(T) y ' f r j - r - p ' f o ) 
lim • = • . 
r-*oo T 2TT 

For a periodic function, this is merely another form of the classical formula of 
Jensen. The function cp(a) is called the Jensen function of f(s). 

Regarding the proof of these results, I shall restrict myself to the following 
remarks. If we differentiate the expression for 9? (or) formally and interchange 
the differentiation and the formation of the mean value, we obtain 

1 fr d 
ç>'(<r)=lim — —log\f(0 + it)\dt. 

T-+ao A J act 
0 

Hence by.the Cauchy-Riemann equations 

1 rT d 
cp'(a) = hm — — arg f(a + %t)dt, dt 

which is the formula for the mean motion. The formula for the relative fre
quency of zeros is obtained by expressing the number of zeros in the rectangle 
ax < a.< crz, 0 < t < T by means of the variation of the argument along the 
contour and passing to the limit. The non-negativity of the frequency accounts 
for the convexity of cp(a). — The actual proof follows these lines but is compli
cated by the fact that 95(0*) need not be differentiable. 

11. By a combination of the preceding method and the method of Bohl 
and Weyl I obtained 27) in 1938 a complete solution of Lagrange's problem. It 
turned out that every trigonometric polynomial possesses a mean motion. Sub
sequently, the Jensen function and its connection with mean motions and 
distribution of zeros has been the object of a detailed and systematic study by 
Tornehave and myself 28) from 1945. 

The principal result, so far as Lagrange's problem is concerned, is that, for 

27) C. R. Acad. Sci. Paris 207 (1938), 1081—1084. 
28) Acta Math. 77 (1945), 137—279. 

313 



an exponential polynomial f(s) = a^*1* + . . . + aNex^s, the mean motion 
exists on every vertical line and is determined by 

arg f(a - iT) - arg/(cr) tp'(a -0)+cp'(o + 0) 
lrm • = •. 

r->oo T 2 

On the imaginary axis, we obtain the trigonometric polynomial 

flit) = F(t) = axe«* +... + aNe^, 
which therefore possesses a mean motion. 

Another important class of analytic almost periodic functions for which 
the last result is valid is the class of functions represented by a Dirichlet series 
of ordinary type f(s) = ^Ùann~* in its half plane of uniform convergence. 

In addition to these results dealing with special classes of almost periodic 
functions, the investigation of Tornehave and myself contains a detailed dis
cussion of the variation of the argument on vertical lines in cases where the 
mean motion does not exist and a determination of all convex functions that 
can occur as the Jensen function of an analytic almost periodic function. 

Further results have been obtained by Tornehave 29) who, among other 
things, has studied the Jensen function for analytic functions of several varia
bles. 

12. As mentioned earlier, these investigations have their origin in the 
investigations of Bohr on the distribution of the values of the Riemann zeta 
function. It was natural to reconsider this question using the Jensen function. 
This was done by Miss Borchsenius and myself 30) in 1948. The study of the 
distribution of the «-points of f (s), i.e., the zeros of £(s) — a, by this method, 
leads to refinements of the results of Bohr. The results deal not only with the 
half plane a > 1 where the function is almost periodic, but, as did ^the old 
results, with the part of the critical strip lying to the right of the critical line, 
i.e., the strip J < a ^ 1 where the function is almost periodic only in the Besi
covitch sense. The treatment depends on the standard statistical method of 
characteristic functions, which previously had been applied by Wintner and 
myself 31) to the study of the distribution of the values of the zeta function on 
vertical lines. 

29) Thesis, Copenhagen, 1944. 
30) Acta Math. 80 (1948), 97—166. 
31) Trans. Amer. Math. Soc. 38 (1935), 48—88. 
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