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In what sense does JÄ„ eix'*f(g) d£ converge to a given function/ on Rnl How do 
properties such as the size and smoothness of/influence the behavior of its Fourier 
transform/? These simple questions lie at the heart of much of classical analysis. 
Their deeper study leads naturally to certain basic auxiliary operators defined on 
functions on Rn ; and Fourier analysts seek to understand these operators and their 
generalizations, and to apply them to various branches of analysis. In this paper I 
shall describe some basic results and applications of Fourier analysis and speculate 
briefly on the future. I have left out many topics of great importance, and empha
sized merely those subjects I know something about. 

Let me begin by sketching the state of the art as of about 1950. At that time, the 
field was well developed only in the one-dimensional case. Since it had long been 
known that the Fourier series of a continuous function on[0, 2%\ need not converge 
at every point, Lebesgue measure (and in particular U) was clearly recognized as 
a basic tool. The Plancherel theorem ffi\f(x)\2 dx = 2% 2 ^ \ak\

2 with/(x) ~ 
J^ooCikeihx 8ave a complete characterization of L2 functions in terms of their 
Fourier coefficients and established norm convergence of Fourier series. However, 
the study oïU(p ^ 2) was known to be much harder. As an indication of the 
difficulty of the problems of Intake a function f(x) ~ J^^ ahe

ih* belonging to U 
(p < 2) but not to L2, and modify its Fourier series by writing g(;c) ~ 2-<x> ± ak&

k* 
with each ± sign picked independently by flipping a coin. Then with probability 
one, g does not belong to U (or even to V) but is merely a distribution with 
nasty singularities. Consequently, the assertion / ~ Ti-ooCt^ikx e Lp depends not 
only on the sizes \ak\ of the Fourier coefficients, but also on subtle relationships 
among the phases arg(aÄ). 

*I could not have prepared this article without very generous help by Mrs. Yit-Sin Choo and 
Dr. K. G. Choo. 
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96 CHARLES FEFFERMAN 

Despite the difficulty of the problem, a fair amount was known by 1940 about 
the relationship between the size of a function and the nature of its Fourier 
series, thanks to pioneering efforts by Hardy and Littlewood, M. Riesz, Paley, 
Zygmund, Marcinkiewicz and others. A result typical of the deepest work is as 
follows (see [95]) : 

THEOREM 1 (LITTLEWOOD-PALEY). Let {Sk}^-oobe a sequence of ± signs which 
stays constant on each dyadic block. (A dyadic block is an interval of the form 
[2N9 2^+1) or ( - 2^+1, - 2N]; the collection of all dyadic blocks will be denoted by A) 
Then iff(x) ~ T^° ake^x belongs to U (I < p < oo), it follows that S ^ x Ä ^ * * 
also belongs to ZA 

Thus, although the phases arg(a^) play a decisive role in determining the size of 
S-oo a^e'**, only the relationship of arg(aA) to relatively "nearby" arg(ffÄ,) really 
matters. 

Although the original techniques used to prove this and related theorems are 
very complicated, the underlying strategy is simple. The starting point is to rewrite 
Dirichlet's formula for the Nth partial sum of a Fourier series as 

iti - etNx r . .*-wu-v>/v- IAJy 

*= e~w*H(eWyf(y)) - e+>'N*H(e-™yf(y)) 

SNf(x) = e-'"* J , *"<*->> /{x - y ) ^ ~ *m* J* erw<*-y>(x - y) 

with Hf(x) s= JÄi (f(x - y)/y) dy, the integral being interpreted in the principal-value 
sense. (Hf is called the Hilbert transform of/.) This is a bold step, since for 
CQXJR1) (say), the integral in Dirichlet's formula converges absolutely, while that 
defining the Hilbert transform does not. 

Now the Hilbert transform also arises in complex analysis, for if F = u + iv 
is a well-behaved analytic function on the upper half-plane R\, then on the bound
ary R1, v is the Hilbert transform of w. Therefore we may hope to prove theorems 
on the Hilbert transform and related operators via complex analysis (e.g., Cauchy's 
theorem, Jensen's formula and Blaschke products, conformai mapping) and then 
translate the results into information on Fourier series. To illustrate the "complex 
method", let us prove a simple case of M. Riesz's famous theorem that the Fourier 
series of an LP function on [0, 2%\ converges in norm (1 < p < oo). This comes down 
to proving that the Hilbert transform is bounded on &>(Rl), and we give the argu
ment for the easiest nontrivial case p = 4. Given a well-behaved analytic function 
F ;= u + iv on R%, we have to show that j"#. v4 dx ^ C JÄ. w4 dx with C independent 
of F. However, Cauchy's theorem for JF4 = w4 + 4/«3v — 6w2v2 - 4/wv3 + v4 

yields JÄ, F* dx = 0 so that 0 = J*, Re(F4) dx = JÄ. (M4 - 6w2 v2 + v4) dx. Hence 
JJP v 4 à ^ 6 Jjpu2v2dx£6(fjp w4dx)l/2(j*. v4dx)1/2by Cauchy-Schwarz. Dividing 
both sides by (J^i vidx)in and squaring gives the desired inequality j"Äi vAdx S 
36 JÄi u*dx. The general case (p ^ 4) is similar, though not so easy.1 

^ e e the ingenious paper of S. Pichorides [72] for the exact norm of the Hilbert transform on Lp 

and other related constants. 
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Now I can give a vague idea of the proof of the Littlewood-Paley theorem. The 
idea is to relate an auxiliary operator S arising from complex analysis with an op
erator G arising from Fourier series. Specifically, given / <~ Tkkakeikx o n IP? 2TC] 
(say aQ = 0), we break up the Fourier series into dyadic blocks 

/ - S ahe"* = S ( S arf**) = E/7(x) 

and define G(f) as G(f)(x) = (£ / G„ |//(x)|2)1/2. The function S(f) is defined in 
terms of the Poisson integral u(r, 0) off by the equation 

S(f)(x) = ( Jf | Vw(r, 6)|* r dr doT 

where r(x) is the Stoltz domain {(r, 6)\ \x - 0\ < 1 - r < •£} in the unit disc. £2(/) 
has a natural interpretation as the area of the image of r(x) under the analytic 
function u + iv whose real part is u. For our purposes, the basic facts concerning 
S and G are: 

(a) \\S(f)\\p~\\f\\p(l <p < oo). Inotherwords, ||*»C/)||V||/||^ « bounded above 
and below. This can be proved by complex methods. Note that already (a) contains 
the Z>-boundedness of the Hilbert transform, since for F = w + iv analytic we 
have | Vu | = |Vv| by the Cauchy-Riemann equations, and hence S(u) = S(v). 

(b) || S(f) | | j ~ || G(f)\\p (1 < p < oo). Limitations of space prevent even a vague 
description of the proof, but the basic tool here is the ZAboundedness of the 
Hilbert transform acting on functions which take their values in a Hilbert space. 

Once we know (a) and (b), the Littlewood-Paley theorem follows at once, since 
evidently/= E /G^ / / and g = S/ej ±fj always have the same G-function. An 
extensive discussion of the Littlewood-Paley theorem and of complex methods in 
general may be found in Zygmund [95]. It must be admitted that the ingenious 
complex-variable proofs of classical Fourier analysis leave the researcher in the 
unhappy position of accepting the main theorems of the subject without any real 
intuitive explanation of why they are true. 

Now I want to speak of the profound changes which took place in classical 
Fourier analysis, starting with the fundamental paper of Calderón and Zygmund 
[17] in 1952.2 We shall be concerned here with efforts to generalize the basic oper
ators, especially the Hilbert transform, from Rl to Rn. These generalizations are 
anything but routine, because Blaschke products do not generalize to functions of 
several complex variables, and consequently (for this and other reasons) the whole 
complex method has to be abandoned and the results reproved by real-variable 
techniques. Moreover, the real-variable methods and the «-variable analogues of 
the Hilbert transform, ^-function, etc., play an important role in partial differential 
equations, several complex variables, probability and potential theory, and will 
probably continue to find further applications as time goes on. 

The operators. Let us begin with the Laplace equation au — f in Rn (n > 2) 
aIn retrospect we can see many of the ideas anticipated in the work of Titchmarsh, Besicovitch, 

and Marcinkiewicz. (See [95].) 
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which one solves with the standard Newtonian potential 

(1) 
f(y)dy 

w W - c» J*" \x-y\»~* ' 

If/belongs to some function space (LP, Lip(a), C(Rn), etc) does it follow that the 
second derivatives of w all belong to the same function space? Differentiating the 
right-hand side of (1) (carefully) under the integral sign, we obtain for the second 
derivatives of w the formula 

<2> w" <*> = I § f = '*•><*>+ J* fê^f-w * • 

where Qß is homogeneous of degree zero, and smooth away from the origin. Note 
that the integral in (2) diverges absolutely, but at least for "nice" functions /we 
may define that integral as 

lim J M^ZJlf(y)dy, 
e-o+ I*4I>* \*-y\n 

and the limit exists by virtue of the essential cancellation ĵ «-« Qjk(y) dy = 0. In 
general, a singular integral operator is defined on functions on Rn by 

(3) Tf(x) = lim J F?~*imdy, 
£-0 \x-y\>* \x ~ y\ 

where Q is reasonably smooth and homogeneous of degree zero, and Js.-i Q(y)dy 
= 0. For example, if we set Q(y) = sgn(j>) on R1, then (3) becomes Tf(x) — 
IR1 (/OO *?K/(* ~ J0)> i-e-j Tis the Hilbert transform. Thus regularity properties of 
solutions to the Laplace equation come down to boundedness on various function 
spaces of a few specific singular integral operators ; that is, certain w-variable gener
alizations of the Hilbert transform, 

More generally, the theory of singular integral operators plays an essential role 
in a host of problems of partial differential equations. To see why, start with a pure 
wth order differential operator 

and write 

where Rj = (d/dxj) (— A)~l/2. Now Rj is called the jfth Riesz transform, and is given 
as a singular integral operator by the formula 

x*m = CJ*- , *' ~ yi f(y) dy-" 
\x- y\n+l 

(Note that in one dimension, the single Riesz transform is just the Hilbert trans-
3See Horvâth [52] and Stein [85]. 
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form.) Therefore, L factors as L = T(— A)m/2> where Tis a variable-coefficient 
singular integral operator, i.e., an operator of the form 

(4) TAX) = c(x)f(x) + j * ^x-y)i\x-y\lf(y) dy, 
\x-y\ 

with c(-)e C°°(R»), Qe C(Rn x 5*"1), and Ĵ -i Q (x, œ) dœ *= 0 for all x. In other 
words, modulo the factor (— A)m/2 a partial differential operator is merely a special 
type of singular integral operator. 

As a substitute for the Fourier transform, we associate to the operator T of (4) 
its symbol a( T) defined by 

(5) a{x, 0 ~ e(x) + J* Qforc/M) e*" do>. 

hi" 
Clearly, a(x, £) is homogeneous of degree zero in £ and smooth on Rn x (Rn\0). 
In the special case T = (H\a\=m ^a(x)(d/dx)a)(- A)~m/2 the symbol is just a(x, £) 
= H\a\=maa W(?f)a/|£|w. Moreover, 

(6) Every smooth homogeneous a(x, £) on R2n arises as the symbol of a unique 
singular integral operator, which we denote by a(x, D). 

(7) The class of all symbols forms an algebra of functions. The mapping a(x, £) 
-> a(x, D) is an approximate homomorphism from functions to operators. That is, 
a\(x,D) oa2(x, D) = (o\'(T2)(x, D) + a "negligible" error. 

(8) The adjoint of a(x, D) is given approximately by the complex-conjugate sym
bol: (o(x,D))* p= a(x,D) + a "negligible" error. 

By virtue of (6)—(8) we may construct useful operators merely by making ele
mentary manipulations with symbols. For instance, an elliptic singular integral 
operator a(x, D) (i.e., an operator with nonvanishing symbol) evidently has an 
approximate inverse—we simply take (\ja)(x, D)—and the standard interior 
regularity results on elliptic partial differential equations follow easily from these 
observations. 

So far we have described the theory as it first appeared in the pioneering work of 
Calderón [12] on uniqueness of solutions to Cauchy problems. (Calderón used 
singular integrals to diagonalize a matrix of differential operators. See also earlier 
work of Giraud [43] and Mihlin [66].) Nowadays it is more common to work with 
the closely related theory of pseudodifferential operators, invented by Kohn and 
Nirenberg [60] and developed by Seeley [75], Hörmander [48], [49], Calderón and 
Vaillancourt [16] and others. To arrive at the notion of pseudodifferential oper
ators4 one uses (5) and the Fourier inversion formula in (4) to obtain 
(9) r/(*) = J* «*•**(*, 0 / ( 8 </f. 

Now we take (9) as the definition of a(x, D), broaden the class of symbols to 
include all functions satisfying suitable estimates, say 

(10) | (8/8*)« (8/8É)» a\ g Caß\ g |- W for all a, ß, 
4Actually Kohn and Nirenberg were led to pseudodifferential operators by their work on the 

3-Neumann problem of several complex variables. 
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and prove refinements of (7) and (8) directly from (9). Pseudodifferential operators 
have the advantage of making it relatively easy to refine (7) and (8) to "Leibniz' 
rules" 

(11) a(x,D)°b(x,D) = (aob)(x,D) with (a°è)(x, £) ~ E (l/a)[9/9£J« a-[i-ldßx}«b 
a 

and 

(12) (a(x, D)f *= a% (x, D) with a% ~ £ — J- JL 
i dx L'se. a. 

Later on, we shall see problems in which singular integrals have advantages over 
pseudodifferential operators. However, for many purposes the two theories are 
equivalent. 

The applications of pseudodifferential operators to index problems in topology 
and geometry are so well known that it is enough for me to pay them lip service. 
But I would like to take a few paragraphs to explain two recent developments in 
partial differential equations in which pseudodifferential operators and singular 
integrals played a crucial rôle. Both developments have their roots in a basic 
phenomenon of several complex variables, namely that the restriction of an an
alytic function F to a hypersurface V £ Cn satisfies a system of partial differential 
equations. To see this, we start with the n Cauchy-Riemann equations dF/dzj = 0 
in Cn. From the restriction of F to the hypersurface V, we know only the 2n — 1 
tangential derivatives of F, and thus we must solve one of the Cauchy-Riemann 
equations for the remaining (normal) derivative. Consequently, the restriction of 
F to V must satisfy n - 1 first-order partial differential equations, called the 
tangential Cauchy-Riemann equations on V. 

Our first topic in partial differential equations arises from the case V = the unit 
sphere in C2, where are we dealing with one equation in one unknown. In a suitable 
coordinate system on the sphere, that equation takes the form 

[9/9* + i(d/dx + td/dy)]F = 0. 

Therefore it is natural to try to "correct" functions which are "close to to analytic" 
by solving 

(13) [9/3/ + i(d/dx .+ td/dy)]u = f 

with/e C°°(say). Such "correction" procedures are common practice in complex 
variables. Thus, the discovery, by H. Lewy in 1957 [63] that equation (13) cannot be 
solved, even if we require/e C°° and demand only that u be a distribution defined in 
some neighborhood of a point, came as a great shock to researchers in partial 
differential equations. Prior to Lewy's discovery, it was universally assumed that 
all nondegenerate linear partial differential equations (and certainly those arising 
from "real life") could be solved. After Lewy's paper, intensive research began on 
the problem of deciding which equations admit local solutions. At the moment, 
systematic results are available only for equations of principal type, i.e., roughly 
equations in which all lower-order terms may be regarded as trivial perturbations of 
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the highest-order terms. These include the Laplace and wave equations, but not the 
heat equation or the Schrödinger equation. For equations £ \ct\=m

 aa(x) O""19/9*)*« 
= / of principal type, Nirenberg and Treves [70], [71] formulated the following 
condition and amassed overwhelming evidence to show that it is necessary and 
sufficient for existence of local solutions : 

(P) Let a(x, £) and b(x, £) be the real and imaginary parts of £ \a\~maa(x)£a-
Then for any point (xQ, £0) e R» x (R»\0) with a(x0, Ç0) = K#o, £o) = 0, the 
function b has constant sign when restricted to the "bicharacteristic curve" 
(x(t)9 £(t)) obtained by solving the ordinary differential equations Xj *= 9tf/9£;-, 
éy - - da/dxj, WO), £(0)) - (x0, £0). 

In fact condition (P) is now known to imply local solvability (see Beals and 
Fefferman [4], [5] as well as Hörmander [50], Egorov [26], [27], and Treves [92], 
[93]), There is no space here to discuss the ideas in any detail, Let me just 
mention two of the main techniques, namely the use of canonical transformations 
in (X, £)-spaçe to "straighten out" the zero sets of symbols of pseudodifferential 
operators via conjugation with Fourier integral operators (discussion of which 
would take us too far afield), and "microlocalization", i.e., the use of suitable 
partitions of unity 1 =%j<j>j(x, £) in (x, £)-space to define approximate projec
tion operators <j)j(x, D) and thus split L2(Rn) into a big direct sum of subspaces 
Hj— image of (f>j(x, D), By microlocalizing, we hope to split up one hard problem 
into many easy ones, and then patch the easy results together. In patching together, 
one has to use a calculus of pseudodifferential operators with "exotic" symbols 
Q satisfying merely 

|(9/9*)*(3/30*71 S Caß\C IM'2~m 

instead of the usual estimates (10). We shall say more about exotic symbols later on. 
Now let us return to the tangential Cauchy-Riemann equations on the sphere 

$2»-i c Cn, and this time suppose n > 2. A linear fractional transformation maps 
the sphere to the hypersurface H = {(zl, z») e Cn~l x C1 |Re(z") = \z' |2}, which 
has the structure of a nilpotent Lie group under the multiplication law (zf, zn)-
(w\ wn) — (zf + w', zn + wn + 2z' ' w'). By analogy with the Rn theory sketched above, 
one expects that very sharp results on existence and regularity of solutions of the 
tangential Cauchy-Riemann equations on H can be proved by using "singular 
integrals" of the form Tf(x) = ]# K(xy~l)f(y) dy, where K has appropriate pro
perties of cancellation and homogeneity with respect to the natural "dilations" 
ö°(zf, zn) = (dz', ö2zn) on H. Moreover, once the results are known for H, one can 
build a "variable-coefficient" theory of "singular integrals" on (say) the boundary 
of a strongly pseudoconvex domain in Cn, by osculating the domain with biholo-
morphic images of H. Thus, a natural analogue of singular integrals provides a 
powerful machine to study the tangential Cauchy-Riemann equations. (Note that 
we cannot use the pseudodifferential operators viewpoint here, because the non-
abelian Fourier transform on H is [so far] too cumbersome even to deal with the 
constant-coefficient case.) The ideas explained here come from Folland and Stein 
[41], although singular integrals on nilpotent Lie groups have already appeared in 
Knapp and Stein [59] in connection with irreducibility of the principal series. See 
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also Folland and Kohn [40] for the initial work of Kohn on tangential Cauchy-
Riemann equations, as well as Folland [39] and Stein [87].5 

I have attempted to show by a few examples how w-dimensional analogues of the 
Hilbert transform enter naturally into various branches of analysis. Let us now 
review some techniques which have been used to study such operators, and then see 
what insights we can gain into the Fourier transform in Rn. 

The techniques. The first step in analyzing operators that generalize the Hilbert 
transform is to prove L2-boundedness. Fortunately, this is often an easy conse
quence of the Plancherel theorem, as in the case of a constant-coefficient singular 
integral operator 

Q(x - y) Tfw = i*^-y\;W)4y 
where one has (f/)(£) = a(£)f(£) with a e L°°. The S-function falls into this category 
—it is not hard to show that U ^ / ) ^ = (const) ||/||2-However, when an operator 
cannot be diagonalized by the Fourier transform or its variants, there are remark
ably few L2-techniques available to deal with it. Sometimes in a lucky case we may 
be able to reduce matters back to constant-coefficient questions. For instance, let 

Tf(x) = j , tK*t*-y)l\*-y\) f(y)dy 
\x- y\2 

be a variable-coefficient singular integral operator on R2. For each fixed x 
we expand Q(x, •) in a Fourier series on the unit circle, obtaining Q(x, co) = 
HT=-ooCk(x)Ûk(cû) mthük(co) = etkd for co — (r, d), andc0(;x;) = 0. Now our operator 
T may be expanded in a series of constant-coefficient operators Tf(x) = 
ZT=-^k(x)Tkf(x), with 

TJ(x) = \R>Q
{fj$f(y)dy. 

Since Q(x, û ) ) ëC°° , it follows that \ck(x)\ ^ C/(k2 + 1) (say); moreover, the Tk 

(fc#0) are uniformly bounded on L2, as one sees from Plancherel. Therefore, 

iT/i^s^^-Hn/i^cfl/^ 
and our L2-result is proved. In Rn (n > 2) the same trick works, with Fourier 
series replaced by spherical harmonics. 

A promising idea which has begun to find applications recently is Cotlar's lemma 
on "almost orthogonal operators". 

LEMMA. Suppose that the operators 7\, r2 , -" , TN on a Hilbert space H satisfy the 
"orthogonality conditions" 

6Compare with the theory of "parabolic" singular integrals devised by Jones [58], Fabes and 
Rivière [28], Lizorkin [64], Krée [62] and others; and in connection with parabolic singular inte
grals, see the recent striking results of Negel, Rivière and Wainger [69]. 
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(H) | | 7 ? 7 } | | ^ C ( / - / ) , 
(15) \\TiTfWSCd~j), 

where ||< || denotes the operator norm, and 2£=-op (C(k))W ^ A, Then || 2 ^ Tk\^A. 

The simplest special case says merely that a direct sum E* © Zi- : 2,- © Hi -> 
Ut® Hf of operators 7} : Hi "-> //,• has norm sup,-1 Ti ||. The lemma was first 
given by Cotlar [24] in the case of commuting operators, and then extended by 
Knapp and Stein [59] to the general case. See also Calderón and Vaillancourt [16]. 

The proof of Cottar's lemma is so simple that I can give it here. We start with the 
formulas 

N 

S TV (a11) (fi") 1/2 

which imply 
N 

tu Ù •••» t»=l 
TT*T- ••• T- 7,.*ll. 

1/2* 

Hypotheses (14) and (15) show that each summand on the right is dominated both 
by 

A-WT.lWTrM \\Ttt,Tin.A-\\Tfn\\ 
£ Ci'2(0)C(/2 - i3)C(h - i5) - C(/2i_2 - i»_i)CWK0) 

and by 

* = II W I. || TunII II 7>„3TÄ II è c(ix - /2)C(*3 - / < ) . . . c ( * 2 ^ - w 
and hence also by the geometric mean AwPyz < C1/2(0)Ci/2(ix - h)C1/2(i2 - /3) 
••• C1/2(/2*--i - ig*). Consequently, 

Er, 2 Ä ^ S CW(P)C^/i - *2)C^(*2 ~ /3) - C^ /gw - i2k) 
ÎU "'I **M=1 

so that J S & 3T> || ^ (C^OJJV)^«*-»/**. Now just let k tend to infinity, and 
Cotlar's lemma is proved. 

To see how Cotlar's lemma applies to the operators we have been discussing, 
let us reprove the £2-boundedness of the Hilbert transform without using the 
Plancherel theorem. The idea is simply to write 

Hf(x) = S/(x-y)dy - E U„Kr- f{x-y)dy - S H,A*)-
y y=—oo y J—_«~ / = - o o y /=-oo 

Each H j is a convolution operator whose convolution kernel 

Kfiy)**rx \fV^\y\<2^\ 
= 0 if not, 

has L1 norm dominated by a constant independent of/. Moreover, # ? # , = HtHf 
is the convolution operator with kernel — Kt- * Kj, and elementary estimates using 

file:////TiTfWSCd~j
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fjp K{(y) dy = fa Kj(y) dy = 0 show that I* , * #y | |i ^ C-2-"-». Thus, ||#,* Jï>|| 
^ C-2H^> and ||ÄV/r/1| g C"1^1 , and the L2-boundedness of H = E£_oo#, is 
immediate from Cotlar's lemma. 

Of course the L2-boundedness of the Hilbert transform is nothing new. However, 
the proof sketched above applies also to the Knapp-Stein singular integrals on 
nilpotent groups—in fact it is the only method known to handle those operators, 
since as we pointed out earlier, the nonabelian Fourier transform does not help. 
Details are in [59]. 

A second application of Cotlar's lemma is the theorem of Calderón and Vail-
lancourt [16] on Z,2-boundedness of pseudodifferential operators with exotic 
symbols. (See also Hörmander [49] for earlier work on the subject, and Beals [2], 
[3] for extensions and applications.) The basic special case of their result which one 
uses in microlocalization arguments for equations of principal type is the following. 

THEOREM 2. Assume that a(x, Ç) satisfies the estimates 

\(didxy(dmya(x,a)\ ^ caß(i + \^\y^2-w2 

for all multi-indices a, ß. Then the corresponding pseduodifferential operator a(x, D) 
is bounded on L2. 

The main idea in the proof of the Calderón-Vaillancourt theorem is to 
apply Cotlar's lemma to the decomposition o(x, D) = Tij=i(^}^)(x, D), where 
Sy^y (x, £) = 1 is a smooth partition of unity in (x, £)-space, constructed so that each 
(j)j is supported in a region of the form {(*,£) | \x- x0 |^|£o|~1/2, |f ~ fo | ^ |£o|+1/2}-

When neither the Plancherel theorem nor Cotlar's lemma applies, L2-bounded-
ness of singular operators presents very hard problems, each of which must (so 
far) be dealt with on its own terms. I shall mention two outstanding L2-results of 
the last decade, and say a few words about their proofs and implications. 

Commutator integrals. Let D £ Cl be a domain bounded by a C1 curve T. Just 
as in the case of the unit disc, there is a "Hilbert transform" T defined on functions 
on r which sends the real part u\r of an analytic function F = w + iv to its imagin
ary part v\r, and it is natural to ask whether Tis bounded on L2(T) with respect to 
the arclenglh measure on T. This question is closely connected to the problem of 
understanding harmonic measure on T, i.e., the probability distribution of the place 
where a particle undergoing Brownian motion starting at a fixed point P0

 G T> first 
hits r. 

In effect, Tis an integral operator on functions on Rl, given by the formula 

J (* - y) + i(A(x) - A(y)) 
with A G C^R1). Expanding the denominator of the integrand in a geometric series, 
we obtain Tas an infinite sum of operators 

TUIA-p.**»: «p™*. 
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Tk is called the fcth commutator integral corresponding to A(x). 
Commutator integrals also arise naturally when one tries to construct a calculus 

of singular integral operators to handle differential equations with nonsmooth coef
ficients, To is just the Hilbert transform, but already the following two results are 
deep. 

THEOREM 3. Let A be a Cl function on the line. Then 
(A) (Calderón [14], 1965) Tx is bounded on L2. 
(B) (Coifman and Y. Meyer 1974, still unpublished) T% is bounded on L2. 

See also Calixto Calderón [18]. To prove (A), Calderón used special contour 
integration arguments which unforunately do not apply to higher TVs. Coifman 
and Meyer modified and built on Calderóne ideas to produce a far more flexible 
proof, which can probably be pushed further in the near future to cover all the 
7ys and possibly /"itself, We shall return to commutators in a moment. 

Pointwise convergence of Fourier series. No discussion of Fourier analysis can be 
complete without mentioning the fundamental theorem of Carleson [19] to the 
effect that the Fourier series of an L2 function on [0, 2%] converges almost every
where. Carleson's theorem provides the sharpest and most satisfactory answer to 
the historic problem of representation of an "arbitrary" function as the sum of a 
Fourier series. The result came as a surprise for several reasons. First of all, most 
specialists thought that pointwise convergence would turn out to be false even for 
continuous functions, the supporting evidence being an old example of Kolmo-
goroff (see [95]) of an Ll function with everywhere divergent Fourier series, and the 
fact that for thirty years no one had succeeded in improving the classical result of 
Kolmogoroff-Seliverstoff-Plessner which said that the rçth partial sum of an L? 
Fourier series is o ((log n)l/2) almost everywhere. Moreover, it was widely assumed 
that some radical new techniques would be needed to crack the pointwise conver
gence problem, while Carleson succeeded by pushing the known techniques very 
far and very hard. 

Unfortunately, Carleson's proof is so technical that it is impossible in so little 
space to give even the vaguest idea of its inner workings. I will only point out that 
the problem reduces immediately to showing that 

/̂ M/(^) = SupB|f..g'w;y 

is bounded on L2, so that pointwise convergence is really a problem about the 
Hilbert transform. R. Hunt extended Carleson's result to LP (p > 1) in [54], and 
his paper also gives the best presentation of Carleson's proof. P. Sjölin [76] 
proved the sharpest known result near L1 (the Fourier series of / converges a.e. 
i f / log + | / | log+log+l/JGL1), and Sjölin [77], Tevzadze [90], and Fefferman [30], 
[31] discovered some extensions to functions of n variables. See also the alternate 
proof of Carleson's theorem [33] (based partly on Cotlar's lemma) whose relation
ship with Carleson's proof is not well understood. 

Both Carleson's convergence theorem and the Calderón-Coifman-Meyer results 
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are stated purely in terms of L2, but, at least as far as we know today, purely L2 

methods are not strong enough for the proofs. In fact, the known proofs of the 
pointwise convergence and commutator theorems in one form or another involve 
the full force of the "Calderón-Zygmund" machinery described below, whose usual 
purpose is to pass from L2 to LP. I am not the only analyst who suspects a strong 
hidden connection between commutators and pointwise convergence. In any event, 
our understanding of L2 boundedness of variable-coefficient operators is still 
rudimentary. 

The "Calderón-Zygmund" techniques used to prove U boundedness of singular 
integrals contain the deepest ideas of the theory. In the next two sections, I hope to 
convey more than a superficial notion of how the proofs go, even though this 
necessitates a more technical discussion than is customary in a survey article.6 

We begin with a seeming digression on a topic in real variables. 

The maximal function. As preparation for the LMheory of singular integrals, we 
shall discuss the following basic result of Hardy and Littlewood [44] and Wiener 
[94]. 

THEOREM 4 (THE MAXIMAL THEOREM). Define the maximal function Mfofa locally 
integrable function f on Rn by the equation 

M/W = s u p | ß | - i | Q | / ( j ) | ^ . 

(Here Q denotes a cube in Rn with sides parallel to the coordinate axes.) Then we 
have the inequalities 

(A) \Mf\p£Cp\f\p{\<p£az)9 

(B) \{Mf>a}\^C\\flla. 

The technical-looking result (B) is the heart of the matter—it is the natural 
conjecture that comes to mind upon staring at the simple example/ = d~l

 XL-ö,öI
 o n 

the line. (In that case, Mf(x) ~ (d + x)"1.) 
The maximal theorem is really a sharp form of Lebesgue's theorem on differenti

ability of the integral. For, one knows trivially that \Q\~1\Q f(y)dy -+f(x) as Q 
shrinks to x, whenever/belongs to the dense subspace Cg0 £ Ll. To pass from the 
dense subspace to all of Ll one needs an a priori inequality, and part (B) of the 
maximal theorem exactly does the job. 

One set of applications of the maximal theorem concerns stronger theorems than 
Lebesgue's on differentiation of multiple integrals. In the plane R2, for example, let 
R0, RI, R2 be respectively the family of all squares, the family of all rectangles with 
sides parallel to the coordinate axes, and the family of all rectangles with arbitrary 
direction. The standard Lebesgue theorem in R2 says that | R \~l §R f(yh y2) dy\ dy2 

-• f(x\, Xi) a. e. for/G Ll(R2), when ReRQ shrinks to (xÌ9 x2). What happens if 
we allow R to belong to the larger familes J?i and Rfl The answer is contained in 
the following list of results : 

6Much has been deleted from an original version of this article. 
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(16) \R\~l fafiyuy^dyi dy2-+f(xx, x2)a,e, as ReRx shrinks to (xx, #2), provided 
f e LP(R2) with p> 1, 

(17) The result (16) may be sharpened—instead offe LP (p > 1), it is enough to 
assume that/ log+|/| is integrable on R2, 

(18) However, there exist Ll functions/for which \R\"1 faf&u y%) dyx ^2does 
not tend to a finite limit as R e Ri shrinks to any point (xx, x^) e R2. 

(19) The family R2 is even worse, Even for bounded functions/it may happen 
that l^l"1 fafiyu y%) dyx dy2 tends to/(x l5 xz) almost nowhere, as R e R2 shrinks 
to (xh X2). 

The positive results (16) and (17) cannot be established by the usual textbook 
proof of Lebesgue's theorem, because the Vitali covering lemma is false if we use Rx 

in place of JB0. However, with the aid of the maximal theorem (16) is a triviality. 
Since \R\"1

 J/?/0 ;I> J'S) dyx dy2 ->f(xi, x2) for / in the dense subspace Cg° £ LP 
(I < p < oo), it is enough to prove the maximal inequality 

\\MV\\pè Cp\\f \\p (l<p<n) with 
(A+) 

M+f(xh x2) = supÄBUbÄ)!ÄeA l^l"1 J* \f(yh y2)\ dyx dy2, 

just as in the familiar case of Lebesgue's theorem. Now set 

Mxf(xx, *ù = suPoBwosÄ» | öl"1 fa \f(y\> *ù\ ày\ 
and 

M2f(xu x2) = 8upgBjwgEÄ. Ißl"1 fa \f(xh y2)\ dy2. 

The ordinary one-dimensional maximal theorem shows that Mx and M2 are 
bounded operators on LP. On the other hand, it is trivial to show that M+/ ^ 
Mx(M2f) pointwise, so that || Af+/||, S \\Mx(M2f)\\p ^ Cp\\M2f\\p ^ C|| |/ | | ,and 
(A+) is proved. Thus, the maximal theorem implies statement (16), the "strong 
differentiability" of the integral. The refined positive result (17) again follows from 
M+f ^ Mx(M2f), using a more detailed version of the maximal theorem. Limita
tions of space prevent adequate discussion of the negative results (18) and (19), 
but I want to point out that they are intimately connected with the failure of the 
conjectures 

(B+) \{M+f>cc}\<C\\f\\xla, and 
(A++) hPABto.souM.lAl-1 fa\f(yhy2)\dyxdy2\\p fg Cp\\f\\p. 

In particular (19) and (A++) are strongly related to the Kakeya needle problem. 
(See Busemann and Feller [10].) 

Let us now try to understand why the maximal theorem is true. To simplify the 
discussion, I shall weaken the result slightly by restricting attention from all cubes 
to the special family of dyadic cubes. We start with the unit cube g0 £ Rn, "bisect" 
go into 2n subcubes of side \, "bisect" each of these cubes into 2n subcubes with 
side {, "bisect" each of these cubes, etc., etc., and continue forever. The family 
<& of all cubes so obtained is called the family of dyadic cubes. From now on, we 
shall look only at dyadic cubes—in particular we change the definition of the maxi-

http://hPABto.souM.lAl-1
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mal function so that the "sup" is taken only over dyadic cubes. This restriction is 
not severe, for given any cube ß £ ßo we can find a dyadic cube ß of about the 
same size, at about the same place; so dyadic cubes are almost as "general" as 
arbitrary cubes. However, for dyadic cubes we have the very convenient observa
tion 

(20) Two dyadic cubes are always disjoint, unless one is contained in the other. 
The easiest way to become convinced of the dyadic inequality (B) is to vent one's 

probabilistic intuition on the following game of chance, constructed from the set-up 
for the maximal theorem. Let / ^ 0 be a fixed Ll function on the unit cube ß0. 
Our fortune at time / = 0 is |ßo|_1 faj(y) dy, and we can either rest content or take 
a chance. If we decide to gamble, the dealer picks a cube Qx at random from 
among the 2n dyadic subcubes of ß0 of side ^ (all possible gj's have equal probabil
ity), and our fortune at time / = 1 is |ßi|_1 falf(y) dy. Again we may rest content or 
take a chance. If we again decide to gamble, the dealer picks a cube ß2 at random 
from among the 2n dyadic subcubes of Qx of side \ (all possible ß2's have equal 
probability), and our fortune at time / = 2 is | g21_1 fatf(y) dy. The game continues 
in this way, either forever or until we decide to quit. 

The most important feature of our game of chance is that it is absolutely fair 
(i.e., it is a "martingale"). More precisely, suppose we find ourselves at time t = k 
at the cube Qk so that our fortune is | Qk |

_1 fakf(y) dy. If we gamble once more, we 
may win or lose money, but our average fortune at time t = k + 1 will be 

sidePÄ- T> • T ô b kJ(y) dy = lk\ ^J{y) ^ 
i.e., exactly the same as our present fortune. Thus, the game is fair. 

Now consider the strategy "quit while you're ahead". We pick in advance a large 
number a > fa0 f(y) dy, and we stop playing the first time our fortune exceeds 
a—if our fortune never exceeds a, we keep playing forever. In the lucky case (one 
of our fortunes exceeds a), we shall have fortune at least a at the end of the game; 
and even in the unlucky case we shall have at least zero, since/ ^ 0. Therefore our 
average (or expected) fortune at the end of the game is at least a x Probability of 
the lucky case = a x Probability {supÄ |ß*| -1 fatf(y) dy > a}, and a few moments' 
thought shows that this is the same as a • \ {Mf > a) |. On the other hand, since the 
game is fair, our average fortune at the end of the game is merely our initial fortune 
faaf(y)dy, no matter which clever strategy we use. Therefore, a-\{Mf> a}\ g 
faj(y) dy, which is exactly the estimate (B). Part (A) of the maximal theorem 
follows from part (B) by a useful "interpolation" theorem which we state only in 
a basic special case. (For more general results, see Zygmund [95] and Hunt [53].) 

THEOREM 5 (MARCINKIEWICZ INTERPOLATION THEOREM). Let T be a linear or 
sublinear operator defined on functions on some measure space, and suppose that 
Po < P < Pi ^ °°. V T is bounded on U\ and if the "weak-type (p0, p0) inequality'9 

\{\Tf\ > a}\ ^ CWfWfta* holds, then it follows that Tis bounded on LP. 

To deduce the maximal theorem, we takepQ = \,px = oo. 
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ZAestimates for singular integrals. The techniques we have just discussed for the 
maximal function apply also to a wide class of singular integral operators. For 
simplicity, we will start with a constant-coefficient operator T : /-+ K*f on Rn

9 

where A'is a distribution locally integrable away from the origin, Thus, K might be 
X"1 on the line, or 0(#)/|x|" in Rn. 

Our assumptions on K are 
(21) Tis bounded on L2(Rn), and 
(22) j „ M | „ | K(x) -K(x-y)\dxSC<œ for all y e Rn. 

Condition (22) is always satisfied if |grad K(x)\ $ C/\x\nH, so (a) and (b) hold for 
all the usual singular integral operators. 

THEOREM 6 (CALDERóN-ZYGMUND INEQUALITY). Let T be a convolution operator 
satisfying hypotheses (21) and (22). Then 

(A) T is bounded on Lp(l < p < oo), 
(B) |{|7y| > «}| ^ CH/ld/a. 

The proof of Theorem 6 is based on further careful study of the game of chance 
used to prove the maximal theorem. See Stein [85]. 

Although for simplicity we stated the Calderón-Zygmund inequality only for 
convolution operators, its proof applies to virtually all the variable-coefficient 
singular integral operators mentioned above. In particular, the following operators 
are bounded on LP (1 < p < oo) : 

(A) A singular integral 

Tf(x) = c(x)f(x) + J* fl*»(*-jO/l*-J'l) / W d y 

\x- y\n 

with c and û as described above. (Actually, one can weaken considerably the as
sumptions on Q.) 

(B) A "classical" pseudodifferential operator 

TAx) = fa**Mx9&f(fìdSt 

where |(3/9x)«(9/9£)M*> £)|^ Cai3|£|H/91 for all multi-indices a, ß. 
(C) The commutator integrals 

Trfix) = fa^f ~ y Ay) dy, T2f(x) - J , W - Ay))2
 f(y) dy 

(x - y)2 (x - .y)3 

on^jWith^'eZ,00. 
(D) The Knapp-Stein singular integrals on nilpotent Lie groups. (See Korânyi 

and Vagi [61].) 
Moreover, the Calderón-Zygmund inequality turns out to be exactly the right 

tool to prove the classical results of Fourier analysis on the ^-function and the 
G-function, which we discussed briefly at the beginning of this paper in connection 
with complex methods. (See Stein [81], [83], J. Schwartz [74], Hörmander [47], 
Benedek, Calderón and Panzone [6].) Typical results are 
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(E) I SC/) ||, ~ | / | | , ( ! < / » < oo). 
(F) Let ^(Ç) = ^o(2_*l) on 7?1, with ^0

 a fixe(J smooth function supported 
in {]r^ |f | ^ 2}, chosen so that E^-oo | çA*(f)|z = 1- Define ^(/)(x) = 
(Er=-°oK/(*)|2)1 /2> where (^ / (£))A = &(£)/(£)• Then |(7(/) | | , ~ | / | | , 
(1 < p < oo ). 

(G) || G(/) !, ~ 1/1,(1 < / > < oo). Recall that (in effect) G(f)(x) = 
GEE~. 1**/M |2)1/2, where (£*/(£))A = Xa*w<*«>G) " /(*)• 

The main idea in proving (E), (F), (G) is to regard S, <& and G as convolution 
operators mapping ordinary scalar-valued functions to functions with values in a 
Hilbert space, and then apply the Calderón-Zygmund inequality. 

Actually, the connections between the maximal function, the Hilbert transform, 
and the ^-function are now known to be far closer even than had been suggested 
by the Calderón-Zygmund inequality and its applications (A)—(G). The main ideas 
here were developed by Burkholder, Gundy and Silverstein [8], [9] and Fefferman 
and Stein [38] in the context of the HP spaces. The key to the new results is the game 
of chance introduced above in connection with the maximal function. We consider 
a fair game of chance (e.g., matching pennies) in which the gambler is allowed to 
vary the size of his bets depending on past history. (For example: Bet $1.00 the 
first time. If you win, bet 2"k dollars at time k (k ^ 2) ; if you lose, bet 2+k dollars 
at time k(k ^ 2).) Then the following three events are equivalent, except on a set 
with probability zero. (See Burkholder and Gundy [8].) 

(a) The gambler's fortune remainds bounded as time tends to oo. 
(b) The gambler's fortune approaches a finite limit as time tends to oo. 
(c) The sum of the squares of the bets is finite. 

The simplest special case is the old "three series" theorem, which says that a series 
2 « ± cn with random ± signs converges with probability one if 2 W | cn |

2 < oo and 
diverges with probability one if 2W | cn |

2 = oo. 
By analogy, one hopes that for an arbitrary harmonic function won the upper half-

plane (not necessarily a Poisson integral), the following conditions on a boundary 
point x are equivalent outside a set of measure zero : 

(a') u is nontangentially bounded at x, i.e., supze/r(^ \u(z)\ < oo. 
(b') w has a nontangential limit at x, i.e., limz_r gŒPMu(z) exists. 
(c') S(u)(x) = (ttr(x)\ V«0012 dz dz)™ < oo. 

See Privalov [73], Marcinkiewicz and Zygmund [65], and Spencer [79] for the case 
of the upper half-plane, and Calderón [11] and Stein [82] for extensions to harmonic 
functions of several variables. Note that since S(u) = S(v) for conjugate harmonic 
functions, the equivalence of (b;) and (c;) shows that u and v have nontangential 
limits at essentially the same set of boundary points. Thus, we obtain a "local" 
analogue of M. Riesz's theorem on the Hilbert transform. 

So far, the analogy with gambling had done nothing but clarify the known re
sults (a;) o (b;) o (c') and the maximal theorem. However, further work of Burk
holder, Gundy and Silverstein [9] and Fefferman and Stein [38] uses probabilistic 
methods in recasting the theory of ^-spaces into a "Calderón-Zygmund" real-
variable framework. Unfortunately, I have not the space here to say anything 
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about HP, and I must simply refer the interested reader to a relevant survey paper 

tu. 
Up to now we have seen how singular integrals act on Lp (1 < p < oo) and on 

Ll. I want to close this section with a brief discussion of L°°, Surprisingly, one can 
write down explicitly the essential characterizing property of the Hilbert transform 
of a bounded function. The basic example to keep in mind is H(sgn(x)) — 
(2/*) log 1*1-1. 

THEOREM 7 (SPANNE [78], STEIN [84]). Let g e L°° and let Kbea convolution kernel 
satisfying the hypotheses of the Calderón-Zygmund inequality. Then K * g is a func
tion of bounded mean oscillation. 

A function fe L}0C(Rn) is said to be of bounded mean oscillation (BMO) if it 
satisfies the condition 

(23) supG | ß | - i JQ \f(x) - / 0 | dx < oo, wi th / 0 « | ß | - i faf(y) dy. 

Thus on A1,!,00 £ BMO, | x | ' ^BMO, log |*|'-1GBMO,butsgn(*)log|*|'-1^BMO. 
Functions of bounded mean oscillation were introduced by John and Nirenberg 
[57], who proved the following result in connection with partial differential equa
tions. 

THEOREM 8. The condition (23) is equivalent to the seemingly far stronger statement 

(24) sup0 | ö l " 1 Jo exp(/l|/(x) - fQ\) dx < oo for some X > 0. 

In particular, functions of bounded mean oscillation are (locally) exponentially 
integrable, 

The claim that (23) and (24) are the basic properties of K * g with g e L°° is sup
ported by the following converse result in the case of Riesz transforms : 

THEOREM 9. Every function f of bounded mean oscillation may be written in the 
formf = g0 + E£=i Rjgj W/ft go, gu • • •, gn

 e L°°-

This is equivalent to the duality of Hl and BMO [38]. In the one-dimensional case 
of the Hilbert transform H, we can say even more. 

THEOREM 10, A function f e L\QC(Rl) may be written in the form / = g0 + Hg\ 
with go e L°° and | gx \\œ < 1 if and only if (24) holds with A *= %\2. 

The proof of Theorem 10 is truly remarkable. One starts with the following 
question, which seemingly has nothing to do with bounded mean oscillation: 
Given a positive measure d/j, = ct)(x)dx on Rl, is the Hilbert transform H a bounded 
operator on LP(dpi)fi Clearly, various partial results could be proved without much 
trouble, but a complete solution seems too much to expect. However, at least for 
L2, one has not merely one necessary and sufficient condition, but two. 

THEOREM 11 (HELSON AND SZEGö [45]). H is bounded on L2(d/J) if and only if 
log co(x) may be written in the form go + Hg\, with go e L°° and || gi ||oo < %\2. 
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THEOREM 12 (HUNT, MUCKENHOUPT AND WHEEDEN [55]). H is bounded on LP(dfJ) 
if and only if 

(A,) sup0 (| ß |-i \Q a>(x) dx) (| Q |-i J0 arUW dx^ < oo 

holds. 

The Helson-Szegö theorem is proved by a simple but ingenious application of 
the Hahn-Banach theorem, while the proof of the Hunt-Muckenhoupt-Wheeden 
theorem uses Calderón-Zygmund methods, and builds on Muckenhoupt's solution 
of the corresponding problem for the maximal function [68]. (See also Coifman and 
Fefferman [22].) Since the Helson-Szegö condition and (A2) are necessary and suf
ficient conditions for the same thing, they must be equivalent. That is the proof of 
Theorem 10. 

Various applications of BMO are presented in John [56], Moser [67], Fefferman 
and Stein [38], and [34]. 

Multiple Fourier transforms. After all the progress of Fourier analysis in the last 
twenty years, we still know almost nothing about the Fourier transform in Rn. We 
can use the techniques of singular integrals to prove theorems like the following 
(see [85]). 

THEOREM 13 (LITTLEWOOD-PALEY THEOREM IN Rn). Let f ~ E*ez" ake
ikx be the 

multiple Fourier series of a function f e LP([Q, 2%]n) (1 < p < oo), and let {Sk}keZ, 
be a sequence of ± signs. Suppose that {Sk} is constant on each parallelopiped of the 
form Ii x J2

 x "• * h> where each Ij is a dyadic block (see Theorem 1). Then 
Tf~?lk Shake

ik'* also belongs to LP, and \Tf\p ^ Cp \\f\\p. 

But in many respects, Rn is fundamentally different from R1, so that merely 
provingRn analogues of l^-theorems misses a great deal. For example, given/G 
U(Rn) with 1 < p < 2, what can we say about the size of the Fourier transform/? 
The familiar Hausdorff-Young theorem | |/ | | , , ^ | | / | | , (1/p' + l/p = 1) is virtually 
all we can say in JR1.7 (There are further results, but they are in the nature of 
refinements.) Already in R2, however, we can go much further. Here is an ele
mentary "restriction theorem" to drive home the point. 

THEOREM 14 [29]. For fe LP(R2) f| L\R2) (1 S P < 4/3) we have a priori 
inequality 

(25) 1/fwso û Cp\\f\\„m 

where Sl denotes the unit circle. 

It follows t h a t / | s , is well defined for fe LP (p < 4/3) even though in principle 
the Fourier transform is defined only up to sets of measure zero.8 The correspond-

7However, recent work of Babenko and Beckner shows that the norm of the Fourier transform 
as an operator from Lp to Ü" is strictly less than one and can be computed. See Stein's lecture in 
PI. 

8Actually, the sharp estimate is ||/||L«'«CSO ^ Cp J|/||LW for/? < 4/3. The example/ = %B with J5= 
unit disc (feLp forp > 4/3) shows that we cannot expect to define/|s» for/ e Lp(p > 4/3). 
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ing statement for a straight line (replacing Sl) is utter nonsense. The first theorem of 
this kind is due to Stein (see [29]). 

The proof of the restriction theorem takes only a paragraph. We have to show 
that the operator T ;/-> / \s> is bounded from U(R2) to Ll(Sl)\ to do so, we prove 
that the adjoint J1* maps L°°(Sl) to LP' (R2) foxp' > 4. This comes down to showing 
that 

la^iVüwe^i/ii^OT, 
where dO denotes uniform measure on the circle. Now we write 

ICWIW) = |(CWA)2|k« 
= WdO)*(fdQ))%„wS \\<JdO)*(JdO)\\L,m 

with \jr + l/(p'/2) s= 1 (the last step follows from Hausdorff-Young, since 1 ^ r 
< 2for p' > 4), and the obvious pointwise inequality \(fdO) * (fdO)\ S ||/||~' 
(dO*dO) yields ||/</0||£,w) S \\f\\l-m • | | ( ^ *dd)\LrW. Thus, our restriction 
theorem comes down to checking that dd * do e Lr(R2) for r < 2. We omit the 
details, but we note that it is here that the difference between circles and straight 
lines shows up in the proof. A closely related idea appears in Zygmund [97]. 

In some ways, the Fourier transform is more intractable in Rn than in Rl. For 
instance, for many problems on partial sums of multiple Fourier series, the natural 
analogue of the Hilbert transform is an operator T0 defined on L2(Rn) by (7o/)A(£) 
~ XB(£)/(0> where %B is the characteristic function of the unit ball, To behaves far 
worse than the usual singular integrals, for its convolution kernel looks like 
ei\x\jx{n+D/2 at infinity, compared to which Q(x)/\x\n is very tame, As a "Hilbert 
transform", T0 is intimately connected to a certain maximal functiçn, but it is not 
the usual maximal function. Rather (in R2, say) the right maximal function is 
M2f(x) = supÄ3A. I^l"1 fa \f(y)\ dy, where R is a rectangle of arbitrary size, shape, 
and direction. We have already noted that M^ is not bounded on LP (p < oo), by 
virtue of the Besicovitch-Perron constructions for the Kakeya needle problem, and 
consequently TQ is unbounded on LP (p ^ 2). (See [32], [46].) Thus, a basic an
alogue of the Hilbert transform is a "bad" operator, and so, in dealing with 
multiple Fourier series, we expect trouble. 

This is not to imply that nothing positive can be said about TV We define the 
Bochner-Riesz operators T§ (d > 0) on L2 by 

(Tsf)
A(0 = (i-\^xB(Of(0; 

T$ is related to T0 just as Cesaró summation of Fourier series on [0, 2%\ is related 
to ordinary convergence (see Bochner [7]). By analogy between the Bochner-Riesz 
operators and restriction theorems on Fourier transforms, Carleson and Sjölin 
[21] proved the following result in the two-dimensional case, (See also [35] and 
Hörmander [51].) 

THEOREM 15. T5 (5 > 0) is bounded on LP(R2)for 4/3 <; p S 4. 

The result is essentially sharp (Herz [46]). 
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A. Cordoba [23] has recently shown that the Carleson-Sjölin theorem can be 
related to a positive result for a maximal function closely connected to M2. In fact, 
setting MN f(x) = supÄE3Ä l^l"1 fa \f(y)\ dy where R is a rectangle of arbitrary 
direction with (Longer side of J?)/(Shorter side of R) < N, we have : 

THEOREM 16 (CORDOBA MAXIMAL THEOREM). ||A/^/||2 ^ C(log N)* | | / | 2 . 

The three basic Theorems 14, 15 and 16 suggest a program to force us to come to 
grips with some genuinely «-dimensional Fourier analysis. First of all, the known 
results should be extended from the two-dimensional case (where they are really 
too easy) to Rn. The natural conjectures are 

(26) l l / j l ^ u ^ ^ C , | | / | | L W if 1 gp < 2n/(n + 1). 
(27) Ts is bounded on LP(Rn) if | \jp - 1/21 < (Ô + \)jn and Ö > 0. 
(28) Ltt MNf(x) = supÄ3a. | i? |_ 1 fa \f(y)\ dy where JR is any rectangular paral-

lelopiped of arbitrary direction, and sides d\ x 5\ x ••• x d\ x 52 with 1 ^ 52/^i 
^ N. Then 

| M ^ / | | L W ^ C ( l o g ^ | | / | | L W . 

So far, the best partial result known is a clever theorem of P. Tomas [91] : 

THEOREM 17. The following inequalities hold. 

(29) H/IIMS--1) è C||/||z,[^+^«-^]-(i?-)> 

and 

(30) | T , / | L W ^ C | / | | L W 

for | \\p - 1/21 < (Ô + \)jn and Ö > (n- l)/(2n + 2) + e (cf. [29] and [35]). 

See Carleson and Sjölin [21] for the three-dimensional case.9 

It seems that we are still far from complete solutions. Even after our conjectures 
have been settled, we shall only have barely started to grasp the real situation. It 
is as if we had just proved Cesaró summability of Fourier series on [0, 2%\ but 
still knew nothing about the Hilbert transform. One natural problem is to relate 
the geometry of the maximal function M2 to the behavior of the "Hilbert trans
form" TQ in Rn.10 The only result known in this direction is Cordoba's Theorem 16. 
We still know so little that we cannot answer intelligently the question "How big 
is the Fourier transform of a function in LP(R2)1" Perhaps {|/| > a} for large a 
can be covered efficiently by rectangles (of no fixed direction). If true, this would 
explain why / can be restricted to circles but not to straight lines, for a circle is 
harder to cover by thin rectangles than a straight line. Coverings by rectangles play 
a major role in the study of To, where the "Kakeya" set of Besicovitch exerts an 
influence all out of proportion to its small area. A recent counterexample of 
Carleson [20] to various conjectures on the polydisc related to Theorems 9 and 10 
has a similar flavor. Perhaps in dealing with the Fourier transform in Rn, we must 
abandon our fixation on Lebesgue measure, and search for new quantities (defined 

9E. M. Stein has modified Tomas' argument to handle e = 0 in (29) and (30). 
10There is also an analogue of the S-function for TQ, which we have not mentioned. 
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possibly in terms of coverings by thin rectangles) to express the size or importance 
of a set of points. This is easier said than done, but we have seen evidence sug
gesting that it is forced on us by the phenomena we seek to understand, I do not 
know where—if anywhere—these ideas lead. 
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